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ABSTRACT:

Musculoskeletal disorders impact quality of life and incur substantial socio-economic costs.
While in vivo and in vitro studies provide valuable insights, they are often limited by
invasiveness and logistical constraints. Finite element (FE) analysis offers a non-invasive, cost-
effective alternative for studying joint mechanics. This study introduces a fully automated
algorithm for identifying soft-tissue attachment sites to streamline the creation of subject-specific
FE knee models from magnetic resonance images. Twelve knees were selected from the
Osteoarthritis Initiative database and segmented to create 3D meshes of bone and cartilage.
Attachment sites were identified in three conditions: manually by two evaluators and via our
automated Python-based algorithm. All knees underwent FE simulations of a 90° flexion-
extension cycle, and 68 kinematic, force, contact, stress and strain outputs were extracted. The
automated process was compared against manual identification to assess intra-operator
variability. The attachment site locations were consistent across all three conditions, with
average distances of 3.0 + 0.5 to 3.1 = 0.6 mm and no significant differences between conditions
(p=0.90). FE outputs were analyzed using Pearson correlation coefficients, randomized mean
squared error, and pairwise dynamic time warping in conjunction with ANOVA and Kruskal-
Wallis. There were no statistical differences in pairwise comparisons of 67 of 68 FE output
variables, demonstrating the automated method's consistency with manual identification. Our
automated approach significantly reduces processing time from hours to seconds, facilitating
large-scale studies and enhancing reproducibility in biomechanical research. This advancement
holds promise for broader clinical and research applications, supporting the efficient

development of personalized musculoskeletal models.
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INTRODUCTION:

Musculoskeletal disorders are a principal cause of discomfort, disability, and diminished quality
of life globally, bearing considerable socio-economic consequences. The study of
musculoskeletal disorders encompasses three primary methodologies: in vivo, in vitro, and in
silico investigations. In vivo research, while offering direct insights, often entails invasive
procedures, and it can be difficult to properly capture the mechanical environment of
musculoskeletal structures (Cooper et al., 2019). Cadaveric studies, provide more structural
clarity but they lack the muscular tone and other dynamic properties of some living tissues
(Wang et al., 2023). Both experimental approaches face constraints related to time, financial, and
logistical factors, including the scarcity of subjects or specimens. Computational analysis is a
potential alternative to in vivo and in vitro investigations. It is typically more efficient and cost
effective and can be applied on a broader scale than these methods (Diamond et al., 2024).
Nonetheless, there are challenges associated with the effort and expertise required to develop

subject-specific computational models (Paz et al., 2021).

Finite element (FE) analyses are commonly used in orthopedic applications to simulate complex
dynamics of joints and muscles (Pfeiffer, 2016). FE studies include optimizing design and
positioning of knee implants (Dagneaux et al., 2024), investigating spinal disc degeneration
(Khuyagbaatar et al., 2024), analyzing foot and ankle injuries (Phan et al., 2021), exploring
shoulder stability and rotator cuff tears (Zheng et al., 2017), studying hip impingement (Ng et al.,
2016), and osteoarthritis research (Diamond et al., 2024). This method can include detailed,
subject-specific, anatomic representations, mechanical properties and complex loading and
boundary conditions. FE simulations allow for detailed assessments of stress and strain

distributions within tissues, as well as joint contact forces and kinematics (Erdemir et al., 2019).
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Many studies use a singular, representative anatomic model of a joint, which neglects the
inherent variability among individuals, potentially skewing analysis results and limiting their
general applicability across the broader population (Taylor et al., 2013). More recently, there has
been a transition towards subject-specific FE modeling (Ellis et al., 2010; Lochner et al., 2014;
Mononen et al., 2016; Ng et al., 2012; Rieger et al., 2024; Worsley et al., 2011). Incorporating
subject-specific properties generally enhances the predictive accuracy of the models, making
their outcomes more congruent with experimental results (Naghibi Beidokhti et al., 2017). High
degrees of subject-specificity in FE models, however, often necessitate limiting the study to a
smaller cohort due to constraints on time and resources (Ali et al., 2017; Cooper et al., 2019;
Harris et al., 2016; Naghibi Beidokhti et al., 2017). Conversely, studies that manage to include a
larger sample size tend to rely on more generalized information or employ parametrized models
(Cooper et al., 2018; Mononen et al., 2023), which may not capture the individual variability as

effectively.

The challenge of incorporating large sample sizes in subject-specific computational modeling
has been underscored in recent review papers: within FE studies focusing on osteoarthritis
research, only three incorporated more than 20 subjects from 2020 to 2021 (Harlaar et al., 2022)
and only one study incorporated more than 30 participants in 2022 (Diamond et al., 2024). This
highlights the ongoing need for methodological advancements that can reconcile the demand for
both individual specificity and broad population applicability in FE studies on musculoskeletal

disorders.

Advancements in machine learning techniques have significantly reduced the necessity for
manual processing and segmentation of medical images to create 3D meshes of bones and

cartilages, thereby diminishing the time required for this task from days to minutes (Ambellan et
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al., 2019; Burton et al., 2020; Ebrahimkhani et al., 2020; Esrafilian et al., 2023; Gibbons et al.,
2022). Initially, most of these studies focused on bone, cartilage and menisci, and did not include
tendon and ligament representations. Manual identification of attachment sites, whether derived
directly from medical imaging or based on anatomical descriptions, can be time consuming and
is susceptible to significant intra-operator variability, thus impacting the reproducibility of the
data. Recently, several automated pipelines for identifying tendon and ligament attachment sites
on a 3D joint model have been developed (Clouthier et al., 2022, 2019; Esrafilian et al., 2023,
2020; Killen et al., 2024; Willems et al., 2024). However, to the best of our knowledge, no
previous work has evaluated the performance of these approaches to a human operator. Thus, the
effectiveness and reliability of these automatic algorithms compared to the manual selection of

these sites remain unknown.

The primary objective of our study is to introduce a novel, fully automated algorithm that
facilitates the rapid and accurate identification of attachment sites for use in FE simulations, and
compare it to the traditional manual method. For this, we compare FE outputs from our
automated process with those from models with manually identified soft tissues. A fully
automated algorithm will streamline the construction of musculoskeletal models and reduce the
time for identification of attachment sites to just a few seconds, thereby enabling broader

application in clinical and research settings.

METHODS:

Data sources. Twelve knees were randomly selected using the ‘sample’ function in Python from

the Osteoarthritis Initiative (OAI) database (NIAMS, 2004), based on the availability of the
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subject's weight, femoral and tibial lengths, double echo steady-state (DESS) magnetic resonance
(MR) images, and a Kellgren-Lawrence (KL) grade of less than 2. The MR images consisted of
384x384x160 voxels and featured a spatial resolution of 0.37x0.37x%0.70 mm in the sagittal
plane. MR scans were manually segmented using AMIRA software, and 3D FE meshes were
created for the femur, tibia, patella, and their corresponding cartilages (Gibbons et al., 2022).
Bones were meshed using uniform triangular rigid body surface meshes with a target element
size of 3 mm, while cartilage employed four layers of deformable hexahedral elements with an
average element edge length of 1 mm and blended edges (Gibbons et al., 2022) and isotropic
elastic material properties similar to prior models (Fitzpatrick et al., 2014, 2012; Klets et al.,

2016).

Manual attachment site identification. All knees were manually processed to identify ligament
and muscle attachment sites by two evaluators, each blinded to the other's work and to the
automatic processing (described in the subsequent section). Both raters had similar levels of
experience (multiple years) in manually reconstructing knee MR images and identifying
attachments to develop FE models. This approach allowed for the assessment of intra-operator
variation, providing a benchmark for the automated method's performance. The attachment sites
of interest were: origins and insertions for the anterior and posterior cruciate ligament (ACL,
PCL), superficial and deep medial collateral ligament (MCL, dMCL), lateral collateral ligaments
(LCL), medial and lateral patellofemoral ligaments (MPFL, LPFL), anterolateral structure
(ALS), patellar ligament (PL), posterior oblique ligament (POL), popliteofibular ligaments
(PFL), and lateral and medial posterior capsule ligaments (mPCAP, IPCAL), along with those for
the vastus lateralis and medialis (VL, VM), a combined bundle for vastus intermedius and rectus

femoris (VI+RF), long and short head of biceps femoris (BFLH, BFSH), semitendinosus (ST),
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and semimembranosus (SM) muscles (Figure 1). ACL and PCL were modeled using four springs
each, POL was modeled using two springs, and other structures were modeled using three
springs, except for muscles and PL. The VI+RF and PL were modeled using six springs each,
while hamstring muscles were modeled using one spring per bundle. These were chosen based
on a combined cadaveric and experimental study, where they found that this fiber selection used
in their computational study provided excellent agreement with the laxity data from the
experiment (Harris et al., 2016). This ligament template was used by both manual evaluators and

the automated algorithm.

Automated attachment site identification. For the automated identification of attachment sites,
the same reference template was used (Harris et al., 2016) in conjunction with a Python-based
algorithm to select the optimal attachment sites on the subject’s knee. The distal femur and
proximal tibia were aligned with their corresponding bone segments in the template using an
iterative closest point (ICP) algorithm from the Open3D library (Zhou et al., 2018). For femur
and tibia, each bone was scaled independently to best-match the medial-lateral and anterior-
posterior dimensions of the template model, and the superior-inferior axis was scaled based on
the average of these two dimensions to prevent the shaft length on the MR images from affecting
the transformation. The patella was scaled in all three dimensions separately to ensure alignment

with the template dimensions.

For each attachment point on the template model, nearby nodes—'template anchor nodes'—are
identified using a nearest neighbor search with a unique predefined search radius for each site.
Vectors from these nodes to the attachment points are stored and later scaled to match the
dimensions between the template and subject bones. These vectors are applied to corresponding

'subject anchor nodes' on the subject model, identified through a similar search to match each
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template anchor node to a similar node on the subject bone model. The subject attachment points
are then determined by averaging these vector endpoints, weighted by the proximity of each

point to the original attachment point in a logarithmic scale (Figure 2).

After attachment sites have been identified, each subject-specific model is aligned to a consistent
local femoral coordinate system. A local tibial coordinate system was defined on the tibia based
on anatomic landmarks. This was achieved via another automated algorithm finding the most
distal contacting positions on medial and lateral femoral condyles and their corresponding dwell
points on medial and lateral tibial condyles, and medial and lateral tibial intercondylar tubercles
(Figure 3.A-C). Grood and Suntay (Grood and Suntay, 1983) axes were determined using a
similar process, relying on established local origins for each of these bones and the unit vectors

for medial-lateral, superior-inferior, and anterior-posterior directions (Figure 3.D).

FE model. The FE model employed in this study was modified from a previously published
model (Fitzpatrick et al., 2014, 2012; Gibbons et al., 2022, 2019). Briefly, the model comprises
the femur, tibia and patella bone and cartilage. The ligaments are modeled as nonlinear tension-
only springs connecting the origin and insertion nodes identified as described above (Baldwin et
al., 2012). The quadriceps muscles were modeled as three bundles with their line of action being
based on cadaveric data (Farahmand et al., 2004): VI+RF, VM, and VL. The hamstring muscles,
comprising SM, ST, BFSH, and BFLH, were represented by four non-linear spring connectors.
Muscle activation was controlled via load actuators developed through a Fortran-based
subroutine, distributing force according to average cross-sectional areas derived from cadaveric
studies (Farahmand et al., 2004, 1998). The quadriceps muscle-tendon units were modeled using
2-D fiber-reinforced membrane elements to facilitate contact and wrapping during flexion. The

load actuators were governed by proportional- integral (PI) controllers. The quadriceps controller
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was set to align knee flexion with an average kinematic profile from in vivo studies of five
participants performing a deep knee bend (Heinlein et al., 2007; Kutzner et al., 2010). The
hamstring controller was adjusted to target a flexion angle 5° less than that of the quadriceps to

simulate hamstring coactivation.

A vertical load equivalent to half of the subject's body weight was applied at the hip. An
anterior-posterior load amplitude was applied to femur while its internal-external and varus-
valgus rotation were constrained. The femur was free in other degrees of freedom. Internal-
external and varus-valgus moments were applied to the tibia, with all other degrees of freedom
constrained. The patella was free to move in all six degrees of freedom, with constraints imposed
only by the articulating surfaces and connecting muscles and ligaments. Kinetic profiles for this
model were derived from published telemetric data averaged across five patients performing a

deep knee bend (Heinlein et al., 2007; Kutzner et al., 2010).

Output variables. FE model outputs included tibiofemoral (TF) and patellofemoral (PF) Grood
and Suntay kinematics in all 6 degrees of freedom, quadriceps and hamstrings force, total axial
force in the ACL ligament, total force on medial and lateral tibial condyles, total contact area on
articulating surfaces of medial and lateral tibial cartilage and patellar cartilage, total force due to
contact pressure, and the location of the center of pressure on these cartilages. Von Mises stress
and first principal logarithmic strain were extracted for all elements on femoral, tibial, and
patellar cartilage structures. We calculated the 50" percentile and interquartile range across the
knee bend activity for all cartilage elements. Additionally, we calculated the 90" and 95™

percentiles for these variables, which are relevant in cartilage damage and degradation studies.

Statistical analysis. First, the Euclidian distances between the location for each node in the three

conditions were calculated. These between-condition distances had normal distribution based on
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a Shapiro-Wilk test and were analyzed via ANOVA across all subjects. Further statistical
analysis was conducted on a dataset containing 68 output variables for each subject under each
condition (Auto, Evaluator 1, Evaluator 2). Since all output variables were recorded as time
series over the full flexion-extension cycle rather than as single values, dynamic time warping
(DTW) was employed as an appropriate statistical method to compare conditions. DTW is a
robust approach for determining the distance between two time series. The primary concept of
DTW is to calculate the distance by comparing corresponding items in time series that are
similar. DTW is scale sensitive and smaller DTW distances indicate greater similarity between
the two series with the same unit (Gulzar, 2018; Miiller, 2007). By comparing the DTW
distances, we test if the variation between the auto model versus the manual models is within the

same level of variation that exists between the two manual models.

First, pairwise DTW was used to compare the three conditions for each variable in each subject
separately. Following this, a Shapiro-Wilk test of normality was performed for each condition.
Based on the results, conditions were compared using either ANOVA or its nonparametric
equivalent, Kruskal-Wallis test (Figure 4). All DTW analyses were conducted using R software
(v4.1.3; R Core Team 2021) with the RStudio graphical interface. For the DTW tests, the “dtw”
package was utilized (Giorgino, 2009). A two-sided p-value of less than 0.05 was considered
statistically significant for all tests. Similarly, the root mean squared error (RMSE) comparing
each subject across each pair of conditions was calculated for all variables and analyzed using
either ANOVA or Kruskal-Wallis tests. The Pearson correlation coefficient (CC) was also
calculated for all conditions and analyzed in the same manner. The aim of all three previous

analyses was to determine whether the difference between two given conditions was statistically

10
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significant compared to the other comparisons. All statistical analyses were conducted in python,

using the SciPy package (Virtanen et al., 2020).

RESULTS:

The attachment site identification algorithm generated soft tissue representations in 8-10 seconds
for each subject-specific FE model. The manual attachment site identification process took 4-6
hours for each subject, similarly for both evaluators. FE simulations for all subject-specific

models were completed successfully (Figure 5).

Comparing spatial location for each attachment site between conditions across all subjects
showed a mean distance of 3.0 = 0.37 mm between evaluator 1 (E1) and evaluator 2 (E2), 3.1 +
0.6 mm between E1 and auto (AU), and 3.0 = 0.5 mm between E2 and AU (Figure 6). The
between-condition distances were not statistically different in any pairwise comparison (p =

0.90).

The Pearson CC showed an average correlation of 0.96 £ 0.06 for the comparison between the
two evaluators (E1-E2) across all variables, and 0.96 & 0.07 for both evaluator-automatic
comparisons (Figure 7). Independent statistical analysis for all variables showed no difference
between the coefficients across conditions (p>0.05). There was no statistical difference between
the pairwise RSME values across all variables (p>0.05), except for PF medial-lateral movement
(p=0.02) (Figure 6). The CC and RMSE for all variables along with their relevant p-values for

comparisons can be found in Appendix 1.

For the DTW tests comparing the outputs of the three conditions, none of the between conditions
differences were significantly different than the other two across 67 out of the 68 variables (p >

11
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0.05), except for PF medial-lateral kinematics (p = 0.03). The statistically significant difference
for PF medial-lateral movement was not clinically meaningful, with mean PF medial-lateral
differences between conditions being less that one millimeter (0.3-0.6 mm) across the entire
flexion-extension cycle. Additionally, the DTW differences and RMSE values for patella contact
area (p = 0.36 and 0.13, respectively), patella medial-lateral (p = 0.51 and 0.20) and superior-
inferior (p = 0.98 and 0.94) center of pressure, as well as all other patellar force, strain, or stress
outputs were not statistically different across conditions, demonstrating that this level of patella

medial-lateral differences did not have any observable effect on joint mechanics.

Overall, the pairwise RMSE values and DTW differences between the manual models and the
automatically created model for 67 out of the 68 variables tested, and the CC values for all 68
variables, were not statistically different throughout the entire flexion-extension range (Figures

8-10).

DISCUSSION:

The construction of subject-specific FE models of human joints entails several critical steps,
including the acquisition of medical images, creation of 3D geometries from these images,
conversion of the 3D geometries into a computational mesh, building the musculoskeletal model
through identification of tendon and ligament origin and insertion points, determination of
material models for different tissues, and application of kinematic and/or load profiles to the
model, among other steps. With the recent advances in automatic processing of medical images
to identify bone and cartilage geometries (Ambellan et al., 2019; Burton et al., 2020;

Ebrahimkhani et al., 2020; Esrafilian et al., 2023; Gibbons et al., 2022), identification of tendon

12
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and ligament attachment sites has emerged as the next challenge in developing automated

pipelines to generate FE models from medical imaging.

Our results indicate that the two manual methods and the automated method demonstrated
similar performance in determining attachment sites, as evidenced by the consistency in their
geometric locations and their comparable impact on the biomechanics of the knee joint models
across 67 kinematic and kinetic variables. The only variable where a significant difference
between pairwise comparisons was found was for PF medial-lateral translation; however, the
actual difference was less than one millimeter and did not affect relevant joint mechanics.
Nevertheless, in 67 out of the 68 cases the variability between the automatically created model
and the manually created models were within the same range of variability that exists between
the manually created models, as evident by lack of a significant difference in the DTW and
RMSE analysis. These data support our hypothesis that the automatic attachment site
identification algorithm has a similar performance compared to a human evaluator. In the current
work, we cannot evaluate the performance of these models against a single, gold-standard ‘true’
value; Comparing the outputs from these models to a clinically validated model of the same
subject would create the possibility of evaluating the true performance of these models, but this
would require additional data that was not available in our datasets and would be beyond the

scope of this study.

The automated methods offer a consistent and objective alternative to manual identification,
which can vary significantly between operators due to subjective interpretations and individual
levels of expertise. This consistency enhances reproducibility in biomechanical research and
clinical applications by removing the variability and inter-operator and between-operator errors

introduced by human operators.
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There has been a recent interest in the development of automated model segmentation and
attachment site identification algorithms (Clouthier et al., 2022, 2019; Esrafilian et al., 2023,
2020; Killen et al., 2024; Willems et al., 2024). Esrafilian et.al. (2023, 2020) attempted to
streamline the musculoskeletal attachment site identification for a FE simulation of human knee.
One strength of their work was the identification of the insertion points for several ligaments and
the quadriceps tendon based on auto-segmentation and reconstruction of their geometries from
the MR images which can offer highly personalized musculoskeletal models, but given the
challenges for auto-segmentation of these structures and poor performance for some ligaments,
this algorithm reverts to extracting some locations from a template instead (Esrafilian et al.,
2023). Clouthier et.al. (2022, 2019) used a statistical shape model with ligament and muscle
attachment points which morphed along with bony geometry changes (Clouthier et al., 2019).
Killen et.al. (2024) used a similar approach and continued further to project the attachment sites
on the morphed model onto the personalized bone geometry. This approach has the potential of
offering high accuracy, but the authors do not provide any validation or quantitative comparison
against traditional manual attachment site identification. Also, this level of precision in
replicating the template attachment locations comes at the price of computational efficiency,
since the generation of each model takes several hours using this approach (Killen et al., 2024).
In our proposed algorithm, the generation of each model takes 8-10 seconds, and to the best of
authors’ knowledge, this is the first time that quantitative evaluations of performance and
similarity to the manual method have been presented for an automated attachment site

identification algorithm.

One limitation of this study is our reliance on manual identification as a benchmark as opposed

to clinical data, primarily due to the lack of extensive clinical data. Acquiring clinical data poses
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its own challenges, especially since it is inherently challenging to acquire joint force or cartilage
stress distribution from in-vivo studies. Despite these issues, using manual methods as a standard
is in line with current research practices and provides a practical baseline for evaluating

automated techniques against the accepted status quo in biomechanical studies.

Another limitation of this study is the simplification used in the FE model to demonstrate the
performance of the automated attachment site identification algorithm, particularly the use of a
linear elastic model for the cartilage instead of more sophisticated or subject-specific material
models. This choice was driven by the need to maintain manageable computational times,
especially given the number of models analyzed. However, this simplification does not critically
impact the primary aim of this study, which was to assess the similarity between manual and
automated methods for identifying attachment sites, rather than to study the precise long-term
dynamic behavior of cartilage under load. The consistent use of a similar linear elastic model
across all comparisons effectively satisfies our study’s requirements, while balancing

computational efficiency with the need for comparative accuracy.

The use of automated algorithms is especially useful in scenarios where time efficiency and
scalability are crucial, such as in large-scale clinical or research studies where manual methods
would be impractical due to their labor-intensive nature. In the current study, we used manually
segmented bones and cartilages to better match the traditional manual workflow and to prevent
the potential smoothing induced errors from automated segmentation from compound with
attachment site identification. However, the automated attachment site identification algorithm
can readily be coupled with automated segmentation, producing FE-ready models from MR
scans in a matter of minutes. Additionally, this automated method paves the way for generating

sufficient numbers of musculoskeletal models with labeled attachment sites, to be used as

15
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training data for a machine learning algorithm. Future studies could explore the integration of
these approaches for the development of a machine learning algorithm that could generate the
musculoskeletal model for the entire knee, including bones, cartilages, and muscle and ligament

attachment locations, directly from MR images.

This study demonstrates that automated identification of attachment sites is a viable and efficient
alternative to manual methods, capable of supporting the high demands of modern
biomechanical research and clinical practice. The similar performances of manual and automated
methods in our study are encouraging for the field of computational biomechanics. By enabling
faster and more scalable model development, automated methods hold the potential to transform
the development of personalized, accurate, and reproducible musculoskeletal models, paving the

way for their broader application in clinical diagnostics, treatment planning, and research.

ACKNOWLEDGEMENTS:

This material is based upon work supported by the National Science Foundation under Grant No.
1944180 and National Science Foundation Graduate Research Fellowship under Grant No.
1946726. We acknowledge support from the Institutional Development Awards (IDeA) from the
National Institute of General Medical Sciences of the National Institutes of Health under Grants
P20GM109095 and P30GM154497. The content is solely the responsibility of the authors and

does not necessarily represent the official views of NIH.

Data and/or research tools used in the preparation of this manuscript were obtained and analyzed
from the controlled access datasets distributed from the Osteoarthritis Initiative (OAI), a data

repository housed within the NIMH Data Archive (NDA). OAI is a collaborative informatics

16



342

343

344

345

346

347

348

system created by the National Institute of Mental Health and the National Institute of Arthritis,
Musculoskeletal and Skin Diseases (NIAMS) to provide a worldwide resource to quicken the

pace of biomarker identification, scientific investigation and OA drug development. Dataset

identifier(s): 1200285; 1200816.

CONFLICT OF INTEREST STATEMENT:

There are no conflicts of interest in this project from any of the authors.

17



349

350
351
352

353
354
355

356
357
358

359
360
361

362
363
364

365
366
367

368
369
370

371
372

373
374
375

376
377
378
379

380
381
382

383
384

REFERENCES:

Ali, A.A., Harris, M.D., Shalhoub, S., Maletsky, L.P., Rullkoetter, P.J., Shelburne, K.B., 2017.
Combined measurement and modeling of specimen-specific knee mechanics for healthy and
ACL-deficient conditions. Journal of Biomechanics 57, 117-124.

Ambellan, F., Tack, A., Ehlke, M., Zachow, S., 2019. Automated segmentation of knee bone and
cartilage combining statistical shape knowledge and convolutional neural networks: Data
from the Osteoarthritis Initiative. Medical Image Analysis 52, 109-118.

Baldwin, M.A., Clary, C.W., Fitzpatrick, C.K., Deacy, J.S., Maletsky, L.P., Rullkoetter, P.J.,
2012. Dynamic finite element knee simulation for evaluation of knee replacement
mechanics. Journal of Biomechanics 45, 474-483.

Burton, W., Myers, C., Rullkoetter, P., 2020. Semi-supervised learning for automatic
segmentation of the knee from MRI with convolutional neural networks. Computer
Methods and Programs in Biomedicine 189, 105328.

Cooper, R.J., Wilcox, R.K., Jones, A.C., 2019. Finite element models of the tibiofemoral joint: A
review of validation approaches and modelling challenges. Medical Engineering and
Physics 74, 1-12.

Cooper, R.J., Williams, S., Mengoni, M., Jones, A.C., 2018. Patient-specific parameterised cam
geometry in finite element models of femoroacetabular impingement of the hip. Clinical
Biomechanics 54, 62-70.

Dagneaux, L., Canovas, F., Jourdan, F., 2024. Finite element analysis in the optimization of
posterior-stabilized total knee arthroplasty. Orthopaedics & Traumatology: Surgery &
Research 110, 103765.

Diamond, L.E., Grant, T., Uhlrich, S.D., 2024. Osteoarthritis year in review 2023:
Biomechanics. Osteoarthritis and Cartilage 32, 138—147.

Ebrahimkhani, S., Jaward, M.H., Cicuttini, F.M., Dharmaratne, A., Wang, Y., de Herrera,
A.G.S., 2020. A review on segmentation of knee articular cartilage: from conventional
methods towards deep learning. Artificial Intelligence in Medicine 106, 101851.

Ellis, B.J., Drury, N.J., Moore, S.M., McMahon, P.J., Weiss, J.A., Debski, R.E., 2010. Finite
element modelling of the glenohumeral capsule can help assess the tested region during a

clinical exam. Computer Methods in Biomechanics and Biomedical Engineering 13, 413—
418.

Erdemir, A., Besier, T.F., Halloran, J.P., Imhauser, C.W., Laz, P.J., Morrison, T.M., Shelburne,
K.B., 2019. Deciphering the “Art” in Modeling and Simulation of the Knee Joint: Overall
Strategy. Journal of Biomechanical Engineering 141, 1-10.

Esrafilian, A., Chandra, S.S., Gatti, A.A., Nissi, M., Mustonen, A.-M., Sédisdnen, L., Reijonen, J.,
Nieminen, P., Julkunen, P., Toyris, J., Saxby, D.J., Lloyd, D.G., Korhonen, R.K., 2023. An

18



385
386

387
388

389
390
391

392
393
394
395

396
397
398

399
400
401

402
403
404

405
406

407
408
409

410
411

412
413

414
415
416

417
418

Automated and Robust Tool for Musculoskeletal and Finite Element Modeling of the Knee
Joint. bioRxiv 2023.10.14.562320. https://doi.org/10.1101/2023.10.14.562320

Farahmand, F., Naghi Tahmasbi, M., Amis, A., 2004. The contribution of the medial retinaculum
and quadriceps muscles to patellar lateral stability—an in-vitro study. The Knee 11, 89-94.

Farahmand, F., Tahmasbi, M.N., Amis, A.A., 1998. Lateral force—displacement behaviour of the
human patella and its variation with knee flexion — a biomechanical study in vitro. Journal
of Biomechanics 31, 1147-1152.

Fitzpatrick, C.K., Baldwin, M.A., Clary, C.W., Maletsky, L.P., Rullkoetter, P.J., 2014.
Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite
element analysis. Computer Methods in Biomechanics and Biomedical Engineering 17,
360-3609.

Fitzpatrick, C.K., Clary, C.W., Rullkoetter, P.J., 2012. The role of patient, surgical, and implant
design variation in total knee replacement performance. Journal of Biomechanics 45, 2092—
2102.

Gibbons, K.D., Clary, C.W., Rullkoetter, P.J., Fitzpatrick, C.K., 2019. Development of a
statistical shape-function model of the implanted knee for real-time prediction of joint
mechanics. Journal of Biomechanics 88, 55-63.

Gibbons, K.D., Malbouby, V., Alvarez, O., Fitzpatrick, C.K., 2022. Robust automatic hexahedral
cartilage meshing framework enables population-based computational studies of the knee.
Frontiers in Bioengineering and Biotechnology 10, 1-14.

Giorgino, T., 2009. Computing and Visualizing Dynamic Time Warping Alignments in R : The
dtw Package. Journal of Statistical Software 31.

Grood, E.S., Suntay, W.J., 1983. A Joint Coordinate System for the Clinical Description of
Three-Dimensional Motions: Application to the Knee. Journal of Biomechanical
Engineering 105, 136-144.

Gulzar, H.M., 2018. Comprehensive Guide to Dynamic Time Warping in Python. LAMBERT
Academic Publishing.

Harlaar, J., Macri, E.M., Wesseling, M., 2022. Osteoarthritis year in review 2021: mechanics.
Osteoarthritis and Cartilage 30, 663—670.

Harris, M.D., Cyr, A.J., Ali, A.A., Fitzpatrick, C.K., Rullkoetter, P.J., Maletsky, L.P., Shelburne,
K.B., 2016. A Combined Experimental and Computational Approach to Subject-Specific
Analysis of Knee Joint Laxity. Journal of Biomechanical Engineering 138, 1-8.

Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Bergmann, G., 2007. Design, calibration
and pre-clinical testing of an instrumented tibial tray. Journal of Biomechanics 40, S4-S10.

19



419
420
421

422
423
424
425

426
427
428

429
430
431

432
433
434

435
436
437

438
439

440
441
442
443

444
445
446

447
448
449

450
451

452
453
454

Khuyagbaatar, B., Kim, K., Kim, Y.H., 2024. Recent Developments in Finite Element Analysis
of the Lumbar Spine. International Journal of Precision Engineering and Manufacturing 25,
487-496.

Klets, O., Mononen, M.E., Tanska, P., Nieminen, M.T., Korhonen, R.K., Saarakkala, S., 2016.
Comparison of different material models of articular cartilage in 3D computational
modeling of the knee: Data from the Osteoarthritis Initiative (OAI). Journal of
Biomechanics 49, 3891-3900.

Kutzner, 1., Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Halder, A., Beier, A.,
Bergmann, G., 2010. Loading of the knee joint during activities of daily living measured in
vivo in five subjects. Journal of Biomechanics 43, 2164-2173.

Lochner, S.J., Huissoon, J.P., Bedi, S.S., 2014. Development of a patient-specific anatomical
foot model from structured light scan data. Computer Methods in Biomechanics and
Biomedical Engineering 17, 1198—1205.

Mononen, M.E., Paz, A., Liukkonen, M.K., Turunen, M.J., 2023. Atlas-based finite element
analyses with simpler constitutive models predict personalized progression of knee
osteoarthritis: data from the osteoarthritis initiative. Scientific Reports 13, 8888.

Mononen, M.E., Tanska, P., Isaksson, H., Korhonen, R.K., 2016. A novel method to simulate the
progression of collagen degeneration of cartilage in the knee: Data from the osteoarthritis
initiative. Scientific Reports 6, 1-14.

Miiller, M., 2007. Dynamic Time Warping, in: Information Retrieval for Music and Motion.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 69-84.

Naghibi Beidokhti, H., Janssen, D., van de Groes, S., Hazrati, J., Van den Boogaard, T.,
Verdonschot, N., 2017. The influence of ligament modelling strategies on the predictive

capability of finite element models of the human knee joint. Journal of Biomechanics 65, 1—
11.

Ng, K.C.G., Lamontagne, M., Labrosse, M.R., Beaul¢, P.E., 2016. Hip Joint Stresses Due to
Cam-Type Femoroacetabular Impingement: A Systematic Review of Finite Element
Simulations. PLOS ONE 11, e0147813.

Ng, K.C.G., Rouhi, G., Lamontagne, M., Beaulé, P.E., 2012. Finite Element Analysis Examining
the Effects of Cam FAI on Hip Joint Mechanical Loading Using Subject-Specific
Geometries During Standing and Maximum Squat. HSS Journal ® 8, 206-212.

NIAMS, N.I. of A. and M. and S.D., 2004. Osteoarthritis initiative (OAI): A knee Health study
(clinical trial registration No. NCT00080171). Bethesda, Maryland.

Paz, A., Orozco, G.A., Korhonen, R.K., Garcia, J.J., Mononen, M.E., 2021. Expediting finite
element analyses for subject-specific studies of knee osteoarthritis: A literature review.
Applied Sciences (Switzerland) 11.

20



455
456

457
458
459

460
461
462

463
464
465

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

484
485
486

487
488
489

490
491
492

Pfeiffer, F., 2016. The Use of Finite Element Analysis to Enhance Research and Clinical Practice
in Orthopedics. Journal of Knee Surgery 29, 149-158.

Phan, P.K., Vo, A.T.N., Bakhtiarydavijani, A., Burch, R., Smith, B., Ball, J.E., Chander, H.,
Knight, A., Prabhu, R.K., 2021. In Silico Finite Element Analysis of the Foot Ankle
Complex Biomechanics: A Literature Review. Journal of Biomechanical Engineering 143.

Rieger, L.K., Shah, A., Schick, S., Draper, D.B., Cutlan, R., Peldschus, S., Stemper, B.D., 2024.
Subject-Specific Geometry of FE Lumbar Spine Models for the Replication of Fracture
Locations Using Dynamic Drop Tests. Annals of Biomedical Engineering 52, 816—831.

Taylor, M., Bryan, R., Galloway, F., 2013. Accounting for patient variability in finite element
analysis of the intact and implanted hip and knee: A review. International Journal for
Numerical Methods in Biomedical Engineering 29, 273-292.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,
E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J.,
Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J.,
Polat, 1., Feng, Y., Moore, E.-W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, 1., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F.,
van Mulbregt, P., Vijaykumar, A., Bardelli, A. Pietro, Rothberg, A., Hilboll, A., Kloeckner,
A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Hiaggstrom, C.,
Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D. V., Olivetti, E., Martin, E.,
Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.-L., Allen,
G.E., Lee, G.R., Audren, H., Probst, 1., Dietrich, J.P., Silterra, J., Webber, J.T., Slavic, J.,
Nothman, J., Buchner, J., Kulick, J., Schonberger, J.L., de Miranda Cardoso, J.V., Reimer,
J., Harrington, J., Rodriguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M.,
Newville, M., Kiimmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J.,
Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T.,
Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T.,
Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito,
T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vazquez-Baeza, Y., 2020. SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nature Methods 17, 261-272.

Wang, B., Mao, Z., Guo, J., Yang, J., Zhang, S., 2023. The non-invasive evaluation technique of
patellofemoral joint stress: a systematic literature review. Frontiers in Bioengineering and
Biotechnology 11.

Worsley, P., Stokes, M., Taylor, M., 2011. Predicted knee kinematics and kinetics during
functional activities using motion capture and musculoskeletal modelling in healthy older
people. Gait & Posture 33, 268-273.

Zheng, M., Zou, Z., Bartolo, P. jorge D. silva, Peach, C., Ren, L., 2017. Finite element models of
the human shoulder complex: a review of their clinical implications and modelling
techniques. International Journal for Numerical Methods in Biomedical Engineering 33.

21



493 Zhou, Q.-Y., Park, J., Koltun, V., 2018. Open3D: A Modern Library for 3D Data
494 Processing.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

22



522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

List of Figures:

Figure 1. Muscle and ligament structures included in the FE model.

Figure 2. The attachment site identification process. (A) the template model is built based on
experimental dissection and probing, and anatomical landmarks, (B) the subject-specific model
is built based on knee MRI, (C) the subject-specific model is scaled in medial-lateral and
anterior-posterior directions and superimposed on the template, (D) for each attachment site, the
nearby template anchor points are found, (E) for template anchor point, the equivalent subject
anchor point is determined, (F) subject model scaled back to original size, (G) the vectors going
from the template anchor points to the attachment site are determined, (H) these vectors are
projected to their equivalent subject anchor point after scaling, (I) the weighted average of vector
endpoints is calculated based on distance from the attachment site, (J) the subject attachment site
is determined, (K) this process repeated for all attachment sites makes the subject specific

musculoskeletal model.

Figure 3. The local anatomical landmarks and coordinate system automatically determined, (A)
most distal points on medial and lateral femoral condyles, (B) dwell points on medial and lateral
tibial condyles, (C) medial and lateral tibial intercondylar tubercles, (D) Grood and Suntay axes

for the knee.
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Figure 4. Flowchart of the overall study design. RMSE: root mean squared error, DTW:
dynamic time warping, MRI: magnetic resonance image, FE: finite element, CC: correlation

coefficient

Figure 5. (A) The FE model of a deep knee bend activity, (B) von Mises stress in tibial and

patellar cartilages in full extension and (C) at maximum flexion.

Figure 6. The between-condition comparison for the distances between attachment site nodal

locations. E1: Evaluator 1, E2: Evaluator 2, Au: Auto

Figure 7. Similarity between conditions across all output variables based on an RMSE-based
similarity index (left) and Pearson Correlation Coefficient (right). Each bar (slice) represents the
similarity between the two manual models for a given variable, with the variable indices shown
around the plot. The length of each bar was computed by averaging the relative index across all
subjects for that variable. Red and blue markers indicate the similarity between the automated
model and the manual models from evaluator 1 (red) and evaluator 2 (blue). The colors of the
bars are used solely for visual distinction between variables and do not represent any specific
value. The RMSE-based similarity index was calculated for plotting purposes by first
normalizing the RMSE values via dividing them by their maximum value, and then reversed so
that higher scores denote greater similarity between the conditions. The complete list of variables

and their raw and normalized RMSE values can be found in Appendix 1. * A significant
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difference between pairwise comparisons was found only for patellofemoral medial-lateral

translation (variable 13) as denoted by an asterisk.

Figure 8. Average kinematic outputs across all subjects (showing a representative sample of
kinematic outputs), with shaded regions illustrating the 25" and 75" percentile for each
condition. A-P: anterior-posterior, M-L: medial-lateral, I-E: internal-external, V-V: varus-valgus,

S-I: superior-inferior.

Figure 9. Mean force and contact outputs across all subjects (showing a representative sample of
soft-tissue forces, contact areas, joint forces and center of pressure outputs), with shaded regions
illustrating the 25™ and 75" percentile for each condition. CoP: center of pressure, PAT: patellar
cartilage, TIB_MED: tibial medial cartilage. A-P: anterior-posterior, M-L: medial-lateral. Note:
The mean ACL total force is higher than the 75" percentile for a portion of the cycle because the
mid-cycle ACL force drops to zero in several knees, skewing the 75" percentile lower than the

mean.

Figure 10. Average 90" percentile first principal logarithmic strain, and 50™ and 95 percentile
von Mises stress across all subjects, with shaded regions illustrating the 25" and 75™ percentile
for each condition. FEM: femoral cartilage, PAT: patellar cartilage, TIB_MED: tibial medial

cartilage.
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Figure 2. The attachment site identification process. (A) the template model is built based on
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experimental dissection and probing, and anatomical landmarks, (B) the subject-specific model
is built based on knee MRI, (C) the subject-specific model is scaled and superimposed on the
template, (D) for each attachment site, the nearby template anchor points are found, (E) for
template anchor point, the equivalent subject anchor point is determined, (F) subject model
scaled back to original size, (G) the vectors going from the template anchor points to the
attachment site are determined, (H) these vectors are projected to their equivalent subject anchor
point after scaling, (I) the weighted average of vector endpoints is calculated based on distance
from the attachment site, (J) the subject attachment site is determined, (K) this process repeated

for all attachment sites makes the subject specific musculoskeletal model.
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617  most distal points on medial and lateral femoral condyles, (B) dwell points on medial and lateral
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640  Figure 5. (A) The FE model of a deep knee bend activity, (B) von Mises stress in tibial and

641  patellar cartilages in full extension and (C) at maximum flexion.
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Figure 7. Similarity between conditions across all output variables based on an RMSE-based
similarity index (left) and Pearson Correlation Coefficient (right). Each bar (slice) represents the
similarity between the two manual models for a given variable, with the variable indices shown
around the plot. The length of each bar was computed by averaging the relative index across all
subjects for that variable. Red and blue markers indicate the similarity between the automated
model and the manual models from evaluator 1 (red) and evaluator 2 (blue). The colors of the
bars are used solely for visual distinction between variables and do not represent any specific
value. The RMSE-based similarity index was calculated for plotting purposes by first
normalizing the RMSE values via dividing them by their maximum value, and then reversed so
that higher scores denote greater similarity between the conditions. The complete list of variables
and their raw and normalized RMSE values can be found in Appendix 1. * A significant
difference between pairwise comparisons was found only for patellofemoral medial-lateral

translation (variable 13) as denoted by an asterisk.
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Figure 8. Average kinematic outputs across all subjects (showing a representative sample of
kinematic outputs), with shaded regions illustrating the 25" and 75" percentile for each
condition. A-P: anterior-posterior, M-L: medial-lateral, I-E: internal-external, V-V: varus-valgus,

S-1: superior-inferior.
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Figure 9. Mean force and contact outputs across all subjects (showing a representative sample of
soft-tissue forces, contact areas, joint forces and center of pressure outputs), with shaded regions
illustrating the 25™ and 75" percentile for each condition. CoP: center of pressure, PAT: patellar
cartilage, TIB_ MED: tibial medial cartilage. A-P: anterior-posterior, M-L: medial-lateral. Note:
The mean ACL total force is higher than the 75" percentile for a portion of the cycle because the
mid-cycle ACL force drops to zero in several knees, skewing the 75" percentile lower than the

mean.

35



695
696

697

698

699

0.10 1 0.30 1
54
—_ —_
& e
0.25 4
= o008 = = 54
& = =
w = =
c L 020 ]
5] o o o4
C 006 = =
5 o o
= ¥ 015 9 4]
wn ] 4]
< 0.04 | ﬁ ﬁ
o 0.10 - 5
Pe2) = -
4 4
I o N
0.02 Manual 1 A o
—— Manual 2 0.05 19
— Auto
o0t - 7 —+———+— +————————  W—————————— L
o 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Cycle (%) Cycle (%) Cycle (%)
3.0 4
0.14
a
— 254 —_
0.12 g g
E = =
o olo |<_t 2.0+ '<_( 64
s a a
c c
C 008
5 O 15 o
_ (%] (5]
F=] %] 0 44
2 0.06 g g
S v 1o w
S 0.04 ..'C_. 4":-'
8 8o
0.5
0.02
0.00 T T T T T T T T T T T 0.0 T T T T T T T T T T T [} T T T T T T T T T T T
V] 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Cycle (%) Cycle (%) Cycle (%)
0.121
— —_ 71
E 0.8 1 E
0.10
[m) = = .l
] = =
= o o
| w w
m 008 EI 0.6 4 EI 5]
= @ @
o = [
pt 0.06 - e
‘5 O o4 5]
s ] w 3]
= wn o]
2 0.04 g g
s w w24
0.2 4
o = S
0.02 I=) N
] o 14
oo tr—vn o v v v 4 00— ol
1] 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Cycle (%) Cycle (%) Cycle (%)

Figure 10. Average 90" percentile first principal logarithmic strain, and 50" and 95™ percentile
von Mises stress across all subjects, with shaded regions illustrating the 25" and 75™ percentile
for each condition. FEM: femoral cartilage, PAT: patellar cartilage, TIB_ MED: tibial medial

cartilage

36



