

**Efficient development of subject-specific finite element knee models: Automated
identification of soft-tissue attachments**

Vahid Malbouby¹, Kalin D. Gibbons¹, Nurbanu Bursa², Amanda K. Ivy¹, Clare K. Fitzpatrick¹

¹ Mechanical and Biomedical Engineering, Boise State University, Boise, ID

² Biomedical Research Institute, Boise State University, Boise, ID

Corresponding Author: Clare K. Fitzpatrick, PhD
Mechanical and Biomedical Engineering
Boise State University
1910 University Drive, MS-2085
Boise, ID 83725-2085
Phone: 1 + 208.426.4027
Fax: 1 + 208.392.1589
Email: clarefitzpatrick@boisestate.edu

1 **ABSTRACT:**

2 Musculoskeletal disorders impact quality of life and incur substantial socio-economic costs.
3 While *in vivo* and *in vitro* studies provide valuable insights, they are often limited by
4 invasiveness and logistical constraints. Finite element (FE) analysis offers a non-invasive, cost-
5 effective alternative for studying joint mechanics. This study introduces a fully automated
6 algorithm for identifying soft-tissue attachment sites to streamline the creation of subject-specific
7 FE knee models from magnetic resonance images. Twelve knees were selected from the
8 Osteoarthritis Initiative database and segmented to create 3D meshes of bone and cartilage.
9 Attachment sites were identified in three conditions: manually by two evaluators and via our
10 automated Python-based algorithm. All knees underwent FE simulations of a 90° flexion-
11 extension cycle, and 68 kinematic, force, contact, stress and strain outputs were extracted. The
12 automated process was compared against manual identification to assess intra-operator
13 variability. The attachment site locations were consistent across all three conditions, with
14 average distances of 3.0 ± 0.5 to 3.1 ± 0.6 mm and no significant differences between conditions
15 ($p=0.90$). FE outputs were analyzed using Pearson correlation coefficients, randomized mean
16 squared error, and pairwise dynamic time warping in conjunction with ANOVA and Kruskal-
17 Wallis. There were no statistical differences in pairwise comparisons of 67 of 68 FE output
18 variables, demonstrating the automated method's consistency with manual identification. Our
19 automated approach significantly reduces processing time from hours to seconds, facilitating
20 large-scale studies and enhancing reproducibility in biomechanical research. This advancement
21 holds promise for broader clinical and research applications, supporting the efficient
22 development of personalized musculoskeletal models.

23 **KEYWORDS:** finite element, knee, subject-specific modeling, ligament attachments, automated

25 **INTRODUCTION:**

26 Musculoskeletal disorders are a principal cause of discomfort, disability, and diminished quality
27 of life globally, bearing considerable socio-economic consequences. The study of
28 musculoskeletal disorders encompasses three primary methodologies: in vivo, in vitro, and in
29 silico investigations. In vivo research, while offering direct insights, often entails invasive
30 procedures, and it can be difficult to properly capture the mechanical environment of
31 musculoskeletal structures (Cooper et al., 2019). Cadaveric studies, provide more structural
32 clarity but they lack the muscular tone and other dynamic properties of some living tissues
33 (Wang et al., 2023). Both experimental approaches face constraints related to time, financial, and
34 logistical factors, including the scarcity of subjects or specimens. Computational analysis is a
35 potential alternative to in vivo and in vitro investigations. It is typically more efficient and cost
36 effective and can be applied on a broader scale than these methods (Diamond et al., 2024).
37 Nonetheless, there are challenges associated with the effort and expertise required to develop
38 subject-specific computational models (Paz et al., 2021).

39 Finite element (FE) analyses are commonly used in orthopedic applications to simulate complex
40 dynamics of joints and muscles (Pfeiffer, 2016). FE studies include optimizing design and
41 positioning of knee implants (Dagneaux et al., 2024), investigating spinal disc degeneration
42 (Khuyagbaatar et al., 2024), analyzing foot and ankle injuries (Phan et al., 2021), exploring
43 shoulder stability and rotator cuff tears (Zheng et al., 2017), studying hip impingement (Ng et al.,
44 2016), and osteoarthritis research (Diamond et al., 2024). This method can include detailed,
45 subject-specific, anatomic representations, mechanical properties and complex loading and
46 boundary conditions. FE simulations allow for detailed assessments of stress and strain
47 distributions within tissues, as well as joint contact forces and kinematics (Erdemir et al., 2019).

48 Many studies use a singular, representative anatomic model of a joint, which neglects the
49 inherent variability among individuals, potentially skewing analysis results and limiting their
50 general applicability across the broader population (Taylor et al., 2013). More recently, there has
51 been a transition towards subject-specific FE modeling (Ellis et al., 2010; Lochner et al., 2014;
52 Mononen et al., 2016; Ng et al., 2012; Rieger et al., 2024; Worsley et al., 2011). Incorporating
53 subject-specific properties generally enhances the predictive accuracy of the models, making
54 their outcomes more congruent with experimental results (Naghibi Beidokhti et al., 2017). High
55 degrees of subject-specificity in FE models, however, often necessitate limiting the study to a
56 smaller cohort due to constraints on time and resources (Ali et al., 2017; Cooper et al., 2019;
57 Harris et al., 2016; Naghibi Beidokhti et al., 2017). Conversely, studies that manage to include a
58 larger sample size tend to rely on more generalized information or employ parametrized models
59 (Cooper et al., 2018; Mononen et al., 2023), which may not capture the individual variability as
60 effectively.

61 The challenge of incorporating large sample sizes in subject-specific computational modeling
62 has been underscored in recent review papers: within FE studies focusing on osteoarthritis
63 research, only three incorporated more than 20 subjects from 2020 to 2021 (Harlaar et al., 2022)
64 and only one study incorporated more than 30 participants in 2022 (Diamond et al., 2024). This
65 highlights the ongoing need for methodological advancements that can reconcile the demand for
66 both individual specificity and broad population applicability in FE studies on musculoskeletal
67 disorders.

68 Advancements in machine learning techniques have significantly reduced the necessity for
69 manual processing and segmentation of medical images to create 3D meshes of bones and
70 cartilages, thereby diminishing the time required for this task from days to minutes (Ambellan et

71 al., 2019; Burton et al., 2020; Ebrahimkhani et al., 2020; Esrafilian et al., 2023; Gibbons et al.,
72 2022). Initially, most of these studies focused on bone, cartilage and menisci, and did not include
73 tendon and ligament representations. Manual identification of attachment sites, whether derived
74 directly from medical imaging or based on anatomical descriptions, can be time consuming and
75 is susceptible to significant intra-operator variability, thus impacting the reproducibility of the
76 data. Recently, several automated pipelines for identifying tendon and ligament attachment sites
77 on a 3D joint model have been developed (Clouthier et al., 2022, 2019; Esrafilian et al., 2023,
78 2020; Killen et al., 2024; Willems et al., 2024). However, to the best of our knowledge, no
79 previous work has evaluated the performance of these approaches to a human operator. Thus, the
80 effectiveness and reliability of these automatic algorithms compared to the manual selection of
81 these sites remain unknown.

82 The primary objective of our study is to introduce a novel, fully automated algorithm that
83 facilitates the rapid and accurate identification of attachment sites for use in FE simulations, and
84 compare it to the traditional manual method. For this, we compare FE outputs from our
85 automated process with those from models with manually identified soft tissues. A fully
86 automated algorithm will streamline the construction of musculoskeletal models and reduce the
87 time for identification of attachment sites to just a few seconds, thereby enabling broader
88 application in clinical and research settings.

89

90 **METHODS:**

91 ***Data sources.*** Twelve knees were randomly selected using the ‘sample’ function in Python from
92 the Osteoarthritis Initiative (OAI) database (NIAMS, 2004), based on the availability of the

93 subject's weight, femoral and tibial lengths, double echo steady-state (DESS) magnetic resonance
94 (MR) images, and a Kellgren-Lawrence (KL) grade of less than 2. The MR images consisted of
95 384×384×160 voxels and featured a spatial resolution of 0.37×0.37×0.70 mm in the sagittal
96 plane. MR scans were manually segmented using AMIRA software, and 3D FE meshes were
97 created for the femur, tibia, patella, and their corresponding cartilages (Gibbons et al., 2022).
98 Bones were meshed using uniform triangular rigid body surface meshes with a target element
99 size of 3 mm, while cartilage employed four layers of deformable hexahedral elements with an
100 average element edge length of 1 mm and blended edges (Gibbons et al., 2022) and isotropic
101 elastic material properties similar to prior models (Fitzpatrick et al., 2014, 2012; Klets et al.,
102 2016).

103 ***Manual attachment site identification.*** All knees were manually processed to identify ligament
104 and muscle attachment sites by two evaluators, each blinded to the other's work and to the
105 automatic processing (described in the subsequent section). Both raters had similar levels of
106 experience (multiple years) in manually reconstructing knee MR images and identifying
107 attachments to develop FE models. This approach allowed for the assessment of intra-operator
108 variation, providing a benchmark for the automated method's performance. The attachment sites
109 of interest were: origins and insertions for the anterior and posterior cruciate ligament (ACL,
110 PCL), superficial and deep medial collateral ligament (MCL, dMCL), lateral collateral ligaments
111 (LCL), medial and lateral patellofemoral ligaments (MPFL, LPFL), anterolateral structure
112 (ALS), patellar ligament (PL), posterior oblique ligament (POL), popliteofibular ligaments
113 (PFL), and lateral and medial posterior capsule ligaments (mPCAP, lPCAL), along with those for
114 the vastus lateralis and medialis (VL, VM), a combined bundle for vastus intermedius and rectus
115 femoris (VI+RF), long and short head of biceps femoris (BFLH, BFSH), semitendinosus (ST),

116 and semimembranosus (SM) muscles (Figure 1). ACL and PCL were modeled using four springs
117 each, POL was modeled using two springs, and other structures were modeled using three
118 springs, except for muscles and PL. The VI+RF and PL were modeled using six springs each,
119 while hamstring muscles were modeled using one spring per bundle. These were chosen based
120 on a combined cadaveric and experimental study, where they found that this fiber selection used
121 in their computational study provided excellent agreement with the laxity data from the
122 experiment (Harris et al., 2016). This ligament template was used by both manual evaluators and
123 the automated algorithm.

124 ***Automated attachment site identification.*** For the automated identification of attachment sites,
125 the same reference template was used (Harris et al., 2016) in conjunction with a Python-based
126 algorithm to select the optimal attachment sites on the subject's knee. The distal femur and
127 proximal tibia were aligned with their corresponding bone segments in the template using an
128 iterative closest point (ICP) algorithm from the Open3D library (Zhou et al., 2018). For femur
129 and tibia, each bone was scaled independently to best-match the medial-lateral and anterior-
130 posterior dimensions of the template model, and the superior-inferior axis was scaled based on
131 the average of these two dimensions to prevent the shaft length on the MR images from affecting
132 the transformation. The patella was scaled in all three dimensions separately to ensure alignment
133 with the template dimensions.

134 For each attachment point on the template model, nearby nodes—"template anchor nodes"—are
135 identified using a nearest neighbor search with a unique predefined search radius for each site.
136 Vectors from these nodes to the attachment points are stored and later scaled to match the
137 dimensions between the template and subject bones. These vectors are applied to corresponding
138 'subject anchor nodes' on the subject model, identified through a similar search to match each

139 template anchor node to a similar node on the subject bone model. The subject attachment points
140 are then determined by averaging these vector endpoints, weighted by the proximity of each
141 point to the original attachment point in a logarithmic scale (Figure 2).

142 After attachment sites have been identified, each subject-specific model is aligned to a consistent
143 local femoral coordinate system. A local tibial coordinate system was defined on the tibia based
144 on anatomic landmarks. This was achieved via another automated algorithm finding the most
145 distal contacting positions on medial and lateral femoral condyles and their corresponding dwell
146 points on medial and lateral tibial condyles, and medial and lateral tibial intercondylar tubercles
147 (Figure 3.A-C). Grood and Suntay (Grood and Suntay, 1983) axes were determined using a
148 similar process, relying on established local origins for each of these bones and the unit vectors
149 for medial-lateral, superior-inferior, and anterior-posterior directions (Figure 3.D).

150 **FE model.** The FE model employed in this study was modified from a previously published
151 model (Fitzpatrick et al., 2014, 2012; Gibbons et al., 2022, 2019). Briefly, the model comprises
152 the femur, tibia and patella bone and cartilage. The ligaments are modeled as nonlinear tension-
153 only springs connecting the origin and insertion nodes identified as described above (Baldwin et
154 al., 2012). The quadriceps muscles were modeled as three bundles with their line of action being
155 based on cadaveric data (Farahmand et al., 2004): VI+RF, VM, and VL. The hamstring muscles,
156 comprising SM, ST, BFSH, and BFLH, were represented by four non-linear spring connectors.
157 Muscle activation was controlled via load actuators developed through a Fortran-based
158 subroutine, distributing force according to average cross-sectional areas derived from cadaveric
159 studies (Farahmand et al., 2004, 1998). The quadriceps muscle-tendon units were modeled using
160 2-D fiber-reinforced membrane elements to facilitate contact and wrapping during flexion. The
161 load actuators were governed by proportional- integral (PI) controllers. The quadriceps controller

162 was set to align knee flexion with an average kinematic profile from in vivo studies of five
163 participants performing a deep knee bend (Heinlein et al., 2007; Kutzner et al., 2010). The
164 hamstring controller was adjusted to target a flexion angle 5° less than that of the quadriceps to
165 simulate hamstring coactivation.

166 A vertical load equivalent to half of the subject's body weight was applied at the hip. An
167 anterior-posterior load amplitude was applied to femur while its internal-external and varus-
168 valgus rotation were constrained. The femur was free in other degrees of freedom. Internal-
169 external and varus-valgus moments were applied to the tibia, with all other degrees of freedom
170 constrained. The patella was free to move in all six degrees of freedom, with constraints imposed
171 only by the articulating surfaces and connecting muscles and ligaments. Kinetic profiles for this
172 model were derived from published telemetric data averaged across five patients performing a
173 deep knee bend (Heinlein et al., 2007; Kutzner et al., 2010).

174 ***Output variables.*** FE model outputs included tibiofemoral (TF) and patellofemoral (PF) Grood
175 and Suntay kinematics in all 6 degrees of freedom, quadriceps and hamstrings force, total axial
176 force in the ACL ligament, total force on medial and lateral tibial condyles, total contact area on
177 articulating surfaces of medial and lateral tibial cartilage and patellar cartilage, total force due to
178 contact pressure, and the location of the center of pressure on these cartilages. Von Mises stress
179 and first principal logarithmic strain were extracted for all elements on femoral, tibial, and
180 patellar cartilage structures. We calculated the 50th percentile and interquartile range across the
181 knee bend activity for all cartilage elements. Additionally, we calculated the 90th and 95th
182 percentiles for these variables, which are relevant in cartilage damage and degradation studies.

183 ***Statistical analysis.*** First, the Euclidian distances between the location for each node in the three
184 conditions were calculated. These between-condition distances had normal distribution based on

185 a Shapiro-Wilk test and were analyzed via ANOVA across all subjects. Further statistical
186 analysis was conducted on a dataset containing 68 output variables for each subject under each
187 condition (Auto, Evaluator 1, Evaluator 2). Since all output variables were recorded as time
188 series over the full flexion-extension cycle rather than as single values, dynamic time warping
189 (DTW) was employed as an appropriate statistical method to compare conditions. DTW is a
190 robust approach for determining the distance between two time series. The primary concept of
191 DTW is to calculate the distance by comparing corresponding items in time series that are
192 similar. DTW is scale sensitive and smaller DTW distances indicate greater similarity between
193 the two series with the same unit (Gulzar, 2018; Müller, 2007). By comparing the DTW
194 distances, we test if the variation between the auto model versus the manual models is within the
195 same level of variation that exists between the two manual models.

196 First, pairwise DTW was used to compare the three conditions for each variable in each subject
197 separately. Following this, a Shapiro-Wilk test of normality was performed for each condition.
198 Based on the results, conditions were compared using either ANOVA or its nonparametric
199 equivalent, Kruskal-Wallis test (Figure 4). All DTW analyses were conducted using R software
200 (v4.1.3; R Core Team 2021) with the RStudio graphical interface. For the DTW tests, the “dtw”
201 package was utilized (Giorgino, 2009). A two-sided p-value of less than 0.05 was considered
202 statistically significant for all tests. Similarly, the root mean squared error (RMSE) comparing
203 each subject across each pair of conditions was calculated for all variables and analyzed using
204 either ANOVA or Kruskal-Wallis tests. The Pearson correlation coefficient (CC) was also
205 calculated for all conditions and analyzed in the same manner. The aim of all three previous
206 analyses was to determine whether the difference between two given conditions was statistically

207 significant compared to the other comparisons. All statistical analyses were conducted in python,
208 using the SciPy package (Virtanen et al., 2020).

209

210 **RESULTS:**

211 The attachment site identification algorithm generated soft tissue representations in 8-10 seconds
212 for each subject-specific FE model. The manual attachment site identification process took 4-6
213 hours for each subject, similarly for both evaluators. FE simulations for all subject-specific
214 models were completed successfully (Figure 5).

215 Comparing spatial location for each attachment site between conditions across all subjects
216 showed a mean distance of 3.0 ± 0.37 mm between evaluator 1 (E1) and evaluator 2 (E2), $3.1 \pm$
217 0.6 mm between E1 and auto (AU), and 3.0 ± 0.5 mm between E2 and AU (Figure 6). The
218 between-condition distances were not statistically different in any pairwise comparison ($p =$
219 0.90).

220 The Pearson CC showed an average correlation of 0.96 ± 0.06 for the comparison between the
221 two evaluators (E1-E2) across all variables, and 0.96 ± 0.07 for both evaluator-automatic
222 comparisons (Figure 7). Independent statistical analysis for all variables showed no difference
223 between the coefficients across conditions ($p > 0.05$). There was no statistical difference between
224 the pairwise RSME values across all variables ($p > 0.05$), except for PF medial-lateral movement
225 ($p = 0.02$) (Figure 6). The CC and RMSE for all variables along with their relevant p-values for
226 comparisons can be found in Appendix 1.

227 For the DTW tests comparing the outputs of the three conditions, none of the between conditions
228 differences were significantly different than the other two across 67 out of the 68 variables ($p >$

229 0.05), except for PF medial-lateral kinematics ($p = 0.03$). The statistically significant difference
230 for PF medial-lateral movement was not clinically meaningful, with mean PF medial-lateral
231 differences between conditions being less than one millimeter (0.3-0.6 mm) across the entire
232 flexion-extension cycle. Additionally, the DTW differences and RMSE values for patella contact
233 area ($p = 0.36$ and 0.13, respectively), patella medial-lateral ($p = 0.51$ and 0.20) and superior-
234 inferior ($p = 0.98$ and 0.94) center of pressure, as well as all other patellar force, strain, or stress
235 outputs were not statistically different across conditions, demonstrating that this level of patella
236 medial-lateral differences did not have any observable effect on joint mechanics.

237 Overall, the pairwise RMSE values and DTW differences between the manual models and the
238 automatically created model for 67 out of the 68 variables tested, and the CC values for all 68
239 variables, were not statistically different throughout the entire flexion-extension range (Figures
240 8-10).

241

242 **DISCUSSION:**

243 The construction of subject-specific FE models of human joints entails several critical steps,
244 including the acquisition of medical images, creation of 3D geometries from these images,
245 conversion of the 3D geometries into a computational mesh, building the musculoskeletal model
246 through identification of tendon and ligament origin and insertion points, determination of
247 material models for different tissues, and application of kinematic and/or load profiles to the
248 model, among other steps. With the recent advances in automatic processing of medical images
249 to identify bone and cartilage geometries (Ambellan et al., 2019; Burton et al., 2020;
250 Ebrahimkhani et al., 2020; Esrafilian et al., 2023; Gibbons et al., 2022), identification of tendon

251 and ligament attachment sites has emerged as the next challenge in developing automated
252 pipelines to generate FE models from medical imaging.

253 Our results indicate that the two manual methods and the automated method demonstrated
254 similar performance in determining attachment sites, as evidenced by the consistency in their
255 geometric locations and their comparable impact on the biomechanics of the knee joint models
256 across 67 kinematic and kinetic variables. The only variable where a significant difference
257 between pairwise comparisons was found was for PF medial-lateral translation; however, the
258 actual difference was less than one millimeter and did not affect relevant joint mechanics.

259 Nevertheless, in 67 out of the 68 cases the variability between the automatically created model
260 and the manually created models were within the same range of variability that exists between
261 the manually created models, as evident by lack of a significant difference in the DTW and
262 RMSE analysis. These data support our hypothesis that the automatic attachment site
263 identification algorithm has a similar performance compared to a human evaluator. In the current
264 work, we cannot evaluate the performance of these models against a single, gold-standard ‘true’
265 value; Comparing the outputs from these models to a clinically validated model of the same
266 subject would create the possibility of evaluating the true performance of these models, but this
267 would require additional data that was not available in our datasets and would be beyond the
268 scope of this study.

269 The automated methods offer a consistent and objective alternative to manual identification,
270 which can vary significantly between operators due to subjective interpretations and individual
271 levels of expertise. This consistency enhances reproducibility in biomechanical research and
272 clinical applications by removing the variability and inter-operator and between-operator errors
273 introduced by human operators.

274 There has been a recent interest in the development of automated model segmentation and
275 attachment site identification algorithms (Clouthier et al., 2022, 2019; Esrafilian et al., 2023,
276 2020; Killen et al., 2024; Willems et al., 2024). Esrafilian et.al. (2023, 2020) attempted to
277 streamline the musculoskeletal attachment site identification for a FE simulation of human knee.
278 One strength of their work was the identification of the insertion points for several ligaments and
279 the quadriceps tendon based on auto-segmentation and reconstruction of their geometries from
280 the MR images which can offer highly personalized musculoskeletal models, but given the
281 challenges for auto-segmentation of these structures and poor performance for some ligaments,
282 this algorithm reverts to extracting some locations from a template instead (Esrafilian et al.,
283 2023). Clouthier et.al. (2022, 2019) used a statistical shape model with ligament and muscle
284 attachment points which morphed along with bony geometry changes (Clouthier et al., 2019).
285 Killen et.al. (2024) used a similar approach and continued further to project the attachment sites
286 on the morphed model onto the personalized bone geometry. This approach has the potential of
287 offering high accuracy, but the authors do not provide any validation or quantitative comparison
288 against traditional manual attachment site identification. Also, this level of precision in
289 replicating the template attachment locations comes at the price of computational efficiency,
290 since the generation of each model takes several hours using this approach (Killen et al., 2024).
291 In our proposed algorithm, the generation of each model takes 8-10 seconds, and to the best of
292 authors' knowledge, this is the first time that quantitative evaluations of performance and
293 similarity to the manual method have been presented for an automated attachment site
294 identification algorithm.
295 One limitation of this study is our reliance on manual identification as a benchmark as opposed
296 to clinical data, primarily due to the lack of extensive clinical data. Acquiring clinical data poses

297 its own challenges, especially since it is inherently challenging to acquire joint force or cartilage
298 stress distribution from in-vivo studies. Despite these issues, using manual methods as a standard
299 is in line with current research practices and provides a practical baseline for evaluating
300 automated techniques against the accepted status quo in biomechanical studies.

301 Another limitation of this study is the simplification used in the FE model to demonstrate the
302 performance of the automated attachment site identification algorithm, particularly the use of a
303 linear elastic model for the cartilage instead of more sophisticated or subject-specific material
304 models. This choice was driven by the need to maintain manageable computational times,
305 especially given the number of models analyzed. However, this simplification does not critically
306 impact the primary aim of this study, which was to assess the similarity between manual and
307 automated methods for identifying attachment sites, rather than to study the precise long-term
308 dynamic behavior of cartilage under load. The consistent use of a similar linear elastic model
309 across all comparisons effectively satisfies our study's requirements, while balancing
310 computational efficiency with the need for comparative accuracy.

311 The use of automated algorithms is especially useful in scenarios where time efficiency and
312 scalability are crucial, such as in large-scale clinical or research studies where manual methods
313 would be impractical due to their labor-intensive nature. In the current study, we used manually
314 segmented bones and cartilages to better match the traditional manual workflow and to prevent
315 the potential smoothing induced errors from automated segmentation from compound with
316 attachment site identification. However, the automated attachment site identification algorithm
317 can readily be coupled with automated segmentation, producing FE-ready models from MR
318 scans in a matter of minutes. Additionally, this automated method paves the way for generating
319 sufficient numbers of musculoskeletal models with labeled attachment sites, to be used as

320 training data for a machine learning algorithm. Future studies could explore the integration of
321 these approaches for the development of a machine learning algorithm that could generate the
322 musculoskeletal model for the entire knee, including bones, cartilages, and muscle and ligament
323 attachment locations, directly from MR images.

324 This study demonstrates that automated identification of attachment sites is a viable and efficient
325 alternative to manual methods, capable of supporting the high demands of modern
326 biomechanical research and clinical practice. The similar performances of manual and automated
327 methods in our study are encouraging for the field of computational biomechanics. By enabling
328 faster and more scalable model development, automated methods hold the potential to transform
329 the development of personalized, accurate, and reproducible musculoskeletal models, paving the
330 way for their broader application in clinical diagnostics, treatment planning, and research.

331

332 **ACKNOWLEDGEMENTS:**

333 This material is based upon work supported by the National Science Foundation under Grant No.
334 1944180 and National Science Foundation Graduate Research Fellowship under Grant No.
335 1946726. We acknowledge support from the Institutional Development Awards (IDeA) from the
336 National Institute of General Medical Sciences of the National Institutes of Health under Grants
337 P20GM109095 and P30GM154497. The content is solely the responsibility of the authors and
338 does not necessarily represent the official views of NIH.

339 Data and/or research tools used in the preparation of this manuscript were obtained and analyzed
340 from the controlled access datasets distributed from the Osteoarthritis Initiative (OAI), a data
341 repository housed within the NIMH Data Archive (NDA). OAI is a collaborative informatics

342 system created by the National Institute of Mental Health and the National Institute of Arthritis,
343 Musculoskeletal and Skin Diseases (NIAMS) to provide a worldwide resource to quicken the
344 pace of biomarker identification, scientific investigation and OA drug development. Dataset
345 identifier(s): 1200285; 1200816.

346

347 **CONFLICT OF INTEREST STATEMENT:**

348 There are no conflicts of interest in this project from any of the authors.

349 **REFERENCES:**

350 Ali, A.A., Harris, M.D., Shalhoub, S., Maletsky, L.P., Rullkoetter, P.J., Shelburne, K.B., 2017.
351 Combined measurement and modeling of specimen-specific knee mechanics for healthy and
352 ACL-deficient conditions. *Journal of Biomechanics* 57, 117–124.

353 Ambellan, F., Tack, A., Ehlke, M., Zachow, S., 2019. Automated segmentation of knee bone and
354 cartilage combining statistical shape knowledge and convolutional neural networks: Data
355 from the Osteoarthritis Initiative. *Medical Image Analysis* 52, 109–118.

356 Baldwin, M.A., Clary, C.W., Fitzpatrick, C.K., Deacy, J.S., Maletsky, L.P., Rullkoetter, P.J.,
357 2012. Dynamic finite element knee simulation for evaluation of knee replacement
358 mechanics. *Journal of Biomechanics* 45, 474–483.

359 Burton, W., Myers, C., Rullkoetter, P., 2020. Semi-supervised learning for automatic
360 segmentation of the knee from MRI with convolutional neural networks. *Computer
361 Methods and Programs in Biomedicine* 189, 105328.

362 Cooper, R.J., Wilcox, R.K., Jones, A.C., 2019. Finite element models of the tibiofemoral joint: A
363 review of validation approaches and modelling challenges. *Medical Engineering and
364 Physics* 74, 1–12.

365 Cooper, R.J., Williams, S., Mengoni, M., Jones, A.C., 2018. Patient-specific parameterised cam
366 geometry in finite element models of femoroacetabular impingement of the hip. *Clinical
367 Biomechanics* 54, 62–70.

368 Dagneaux, L., Canovas, F., Jourdan, F., 2024. Finite element analysis in the optimization of
369 posterior-stabilized total knee arthroplasty. *Orthopaedics & Traumatology: Surgery &
370 Research* 110, 103765.

371 Diamond, L.E., Grant, T., Uhlrich, S.D., 2024. Osteoarthritis year in review 2023:
372 Biomechanics. *Osteoarthritis and Cartilage* 32, 138–147.

373 Ebrahimkhani, S., Jaward, M.H., Cicuttini, F.M., Dharmaratne, A., Wang, Y., de Herrera,
374 A.G.S., 2020. A review on segmentation of knee articular cartilage: from conventional
375 methods towards deep learning. *Artificial Intelligence in Medicine* 106, 101851.

376 Ellis, B.J., Drury, N.J., Moore, S.M., McMahon, P.J., Weiss, J.A., Debski, R.E., 2010. Finite
377 element modelling of the glenohumeral capsule can help assess the tested region during a
378 clinical exam. *Computer Methods in Biomechanics and Biomedical Engineering* 13, 413–
379 418.

380 Erdemir, A., Besier, T.F., Halloran, J.P., Imhauser, C.W., Laz, P.J., Morrison, T.M., Shelburne,
381 K.B., 2019. Deciphering the “Art” in Modeling and Simulation of the Knee Joint: Overall
382 Strategy. *Journal of Biomechanical Engineering* 141, 1–10.

383 Esrafilian, A., Chandra, S.S., Gatti, A.A., Nissi, M., Mustonen, A.-M., Säisänen, L., Reijonen, J.,
384 Nieminen, P., Julkunen, P., Töyräs, J., Saxby, D.J., Lloyd, D.G., Korhonen, R.K., 2023. An

385 Automated and Robust Tool for Musculoskeletal and Finite Element Modeling of the Knee
386 Joint. bioRxiv 2023.10.14.562320. <https://doi.org/10.1101/2023.10.14.562320>

387 Farahmand, F., Naghi Tahmasbi, M., Amis, A., 2004. The contribution of the medial retinaculum
388 and quadriceps muscles to patellar lateral stability—an in-vitro study. *The Knee* 11, 89–94.

389 Farahmand, F., Tahmasbi, M.N., Amis, A.A., 1998. Lateral force–displacement behaviour of the
390 human patella and its variation with knee flexion — a biomechanical study in vitro. *Journal*
391 of Biomechanics 31, 1147–1152.

392 Fitzpatrick, C.K., Baldwin, M.A., Clary, C.W., Maletsky, L.P., Rullkoetter, P.J., 2014.
393 Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite
394 element analysis. *Computer Methods in Biomechanics and Biomedical Engineering* 17,
395 360–369.

396 Fitzpatrick, C.K., Clary, C.W., Rullkoetter, P.J., 2012. The role of patient, surgical, and implant
397 design variation in total knee replacement performance. *Journal of Biomechanics* 45, 2092–
398 2102.

399 Gibbons, K.D., Clary, C.W., Rullkoetter, P.J., Fitzpatrick, C.K., 2019. Development of a
400 statistical shape-function model of the implanted knee for real-time prediction of joint
401 mechanics. *Journal of Biomechanics* 88, 55–63.

402 Gibbons, K.D., Malbouby, V., Alvarez, O., Fitzpatrick, C.K., 2022. Robust automatic hexahedral
403 cartilage meshing framework enables population-based computational studies of the knee.
404 *Frontiers in Bioengineering and Biotechnology* 10, 1–14.

405 Giorgino, T., 2009. Computing and Visualizing Dynamic Time Warping Alignments in R : The
406 dtw Package. *Journal of Statistical Software* 31.

407 Grood, E.S., Suntay, W.J., 1983. A Joint Coordinate System for the Clinical Description of
408 Three-Dimensional Motions: Application to the Knee. *Journal of Biomechanical*
409 Engineering

410 Gulzar, H.M., 2018. Comprehensive Guide to Dynamic Time Warping in Python. LAMBERT
411 Academic Publishing.

412 Harlaar, J., Macri, E.M., Wesseling, M., 2022. Osteoarthritis year in review 2021: mechanics.
413 *Osteoarthritis and Cartilage* 30, 663–670.

414 Harris, M.D., Cyr, A.J., Ali, A.A., Fitzpatrick, C.K., Rullkoetter, P.J., Maletsky, L.P., Shelburne,
415 K.B., 2016. A Combined Experimental and Computational Approach to Subject-Specific
416 Analysis of Knee Joint Laxity. *Journal of Biomechanical Engineering* 138, 1–8.

417 Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Bergmann, G., 2007. Design, calibration
418 and pre-clinical testing of an instrumented tibial tray. *Journal of Biomechanics* 40, S4–S10.

419 Khuyagbaatar, B., Kim, K., Kim, Y.H., 2024. Recent Developments in Finite Element Analysis
420 of the Lumbar Spine. *International Journal of Precision Engineering and Manufacturing* 25,
421 487–496.

422 Klets, O., Mononen, M.E., Tanska, P., Nieminen, M.T., Korhonen, R.K., Saarakkala, S., 2016.
423 Comparison of different material models of articular cartilage in 3D computational
424 modeling of the knee: Data from the Osteoarthritis Initiative (OAI). *Journal of*
425 *Biomechanics* 49, 3891–3900.

426 Kutzner, I., Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Halder, A., Beier, A.,
427 Bergmann, G., 2010. Loading of the knee joint during activities of daily living measured in
428 vivo in five subjects. *Journal of Biomechanics* 43, 2164–2173.

429 Lochner, S.J., Huissoon, J.P., Bedi, S.S., 2014. Development of a patient-specific anatomical
430 foot model from structured light scan data. *Computer Methods in Biomechanics and*
431 *Biomedical Engineering* 17, 1198–1205.

432 Mononen, M.E., Paz, A., Liukkonen, M.K., Turunen, M.J., 2023. Atlas-based finite element
433 analyses with simpler constitutive models predict personalized progression of knee
434 osteoarthritis: data from the osteoarthritis initiative. *Scientific Reports* 13, 8888.

435 Mononen, M.E., Tanska, P., Isaksson, H., Korhonen, R.K., 2016. A novel method to simulate the
436 progression of collagen degeneration of cartilage in the knee: Data from the osteoarthritis
437 initiative. *Scientific Reports* 6, 1–14.

438 Müller, M., 2007. Dynamic Time Warping, in: *Information Retrieval for Music and Motion*.
439 Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 69–84.

440 Naghibi Beidokhti, H., Janssen, D., van de Groes, S., Hazrati, J., Van den Boogaard, T.,
441 Verdonschot, N., 2017. The influence of ligament modelling strategies on the predictive
442 capability of finite element models of the human knee joint. *Journal of Biomechanics* 65, 1–
443 11.

444 Ng, K.C.G., Lamontagne, M., Labrosse, M.R., Beaulé, P.E., 2016. Hip Joint Stresses Due to
445 Cam-Type Femoroacetabular Impingement: A Systematic Review of Finite Element
446 Simulations. *PLOS ONE* 11, e0147813.

447 Ng, K.C.G., Rouhi, G., Lamontagne, M., Beaulé, P.E., 2012. Finite Element Analysis Examining
448 the Effects of Cam FAI on Hip Joint Mechanical Loading Using Subject-Specific
449 Geometries During Standing and Maximum Squat. *HSS Journal* ® 8, 206–212.

450 NIAMS, N.I. of A. and M. and S.D., 2004. Osteoarthritis initiative (OAI): A knee Health study
451 (clinical trial registration No. NCT00080171). Bethesda, Maryland.

452 Paz, A., Orozco, G.A., Korhonen, R.K., García, J.J., Mononen, M.E., 2021. Expediting finite
453 element analyses for subject-specific studies of knee osteoarthritis: A literature review.
454 *Applied Sciences* (Switzerland) 11.

455 Pfeiffer, F., 2016. The Use of Finite Element Analysis to Enhance Research and Clinical Practice
456 in Orthopedics. *Journal of Knee Surgery* 29, 149–158.

457 Phan, P.K., Vo, A.T.N., Bakhtiyardavijani, A., Burch, R., Smith, B., Ball, J.E., Chander, H.,
458 Knight, A., Prabhu, R.K., 2021. In Silico Finite Element Analysis of the Foot Ankle
459 Complex Biomechanics: A Literature Review. *Journal of Biomechanical Engineering* 143.

460 Rieger, L.K., Shah, A., Schick, S., Draper, D.B., Cutlan, R., Peldschus, S., Stemper, B.D., 2024.
461 Subject-Specific Geometry of FE Lumbar Spine Models for the Replication of Fracture
462 Locations Using Dynamic Drop Tests. *Annals of Biomedical Engineering* 52, 816–831.

463 Taylor, M., Bryan, R., Galloway, F., 2013. Accounting for patient variability in finite element
464 analysis of the intact and implanted hip and knee: A review. *International Journal for
465 Numerical Methods in Biomedical Engineering* 29, 273–292.

466 Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,
467 E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J.,
468 Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J.,
469 Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
470 Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F.,
471 van Mulbregt, P., Vijaykumar, A., Bardelli, A., Pietro, Rothberg, A., Hilboll, A., Kloeckner,
472 A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C.,
473 Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D. V., Olivetti, E., Martin, E.,
474 Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.-L., Allen,
475 G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavić, J.,
476 Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso, J.V., Reimer,
477 J., Harrington, J., Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M.,
478 Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J.,
479 Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodkorb, P.A., Lee, P., McGibbon, R.T.,
480 Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T.,
481 Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito,
482 T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y., 2020. SciPy 1.0:
483 fundamental algorithms for scientific computing in Python. *Nature Methods* 17, 261–272.

484 Wang, B., Mao, Z., Guo, J., Yang, J., Zhang, S., 2023. The non-invasive evaluation technique of
485 patellofemoral joint stress: a systematic literature review. *Frontiers in Bioengineering and
486 Biotechnology* 11.

487 Worsley, P., Stokes, M., Taylor, M., 2011. Predicted knee kinematics and kinetics during
488 functional activities using motion capture and musculoskeletal modelling in healthy older
489 people. *Gait & Posture* 33, 268–273.

490 Zheng, M., Zou, Z., Bartolo, P. jorge D. silva, Peach, C., Ren, L., 2017. Finite element models of
491 the human shoulder complex: a review of their clinical implications and modelling
492 techniques. *International Journal for Numerical Methods in Biomedical Engineering* 33.

493 Zhou, Q.-Y., Park, J., Koltun, V., 2018. Open3D: A Modern Library for 3D Data
494 Processing.
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

522 **List of Figures:**

523

524 **Figure 1.** Muscle and ligament structures included in the FE model.

525

526 **Figure 2.** The attachment site identification process. (A) the template model is built based on
527 experimental dissection and probing, and anatomical landmarks, (B) the subject-specific model
528 is built based on knee MRI, (C) the subject-specific model is scaled in medial-lateral and
529 anterior-posterior directions and superimposed on the template, (D) for each attachment site, the
530 nearby template anchor points are found, (E) for template anchor point, the equivalent subject
531 anchor point is determined, (F) subject model scaled back to original size, (G) the vectors going
532 from the template anchor points to the attachment site are determined, (H) these vectors are
533 projected to their equivalent subject anchor point after scaling, (I) the weighted average of vector
534 endpoints is calculated based on distance from the attachment site, (J) the subject attachment site
535 is determined, (K) this process repeated for all attachment sites makes the subject specific
536 musculoskeletal model.

537

538 **Figure 3.** The local anatomical landmarks and coordinate system automatically determined, (A)
539 most distal points on medial and lateral femoral condyles, (B) dwell points on medial and lateral
540 tibial condyles, (C) medial and lateral tibial intercondylar tubercles, (D) Grood and Suntay axes
541 for the knee.

542

543 **Figure 4.** Flowchart of the overall study design. RMSE: root mean squared error, DTW:
544 dynamic time warping, MRI: magnetic resonance image, FE: finite element, CC: correlation
545 coefficient

546

547 **Figure 5.** (A) The FE model of a deep knee bend activity, (B) von Mises stress in tibial and
548 patellar cartilages in full extension and (C) at maximum flexion.

549

550 **Figure 6.** The between-condition comparison for the distances between attachment site nodal
551 locations. E1: Evaluator 1, E2: Evaluator 2, Au: Auto

552

553 **Figure 7.** Similarity between conditions across all output variables based on an RMSE-based
554 similarity index (left) and Pearson Correlation Coefficient (right). Each bar (slice) represents the
555 similarity between the two manual models for a given variable, with the variable indices shown
556 around the plot. The length of each bar was computed by averaging the relative index across all
557 subjects for that variable. Red and blue markers indicate the similarity between the automated
558 model and the manual models from evaluator 1 (red) and evaluator 2 (blue). The colors of the
559 bars are used solely for visual distinction between variables and do not represent any specific
560 value. The RMSE-based similarity index was calculated for plotting purposes by first
561 normalizing the RMSE values via dividing them by their maximum value, and then reversed so
562 that higher scores denote greater similarity between the conditions. The complete list of variables
563 and their raw and normalized RMSE values can be found in Appendix 1. * A significant

564 difference between pairwise comparisons was found only for patellofemoral medial-lateral
565 translation (variable 13) as denoted by an asterisk.

566

567 **Figure 8.** Average kinematic outputs across all subjects (showing a representative sample of
568 kinematic outputs), with shaded regions illustrating the 25th and 75th percentile for each
569 condition. A-P: anterior-posterior, M-L: medial-lateral, I-E: internal-external, V-V: varus-valgus,
570 S-I: superior-inferior.

571

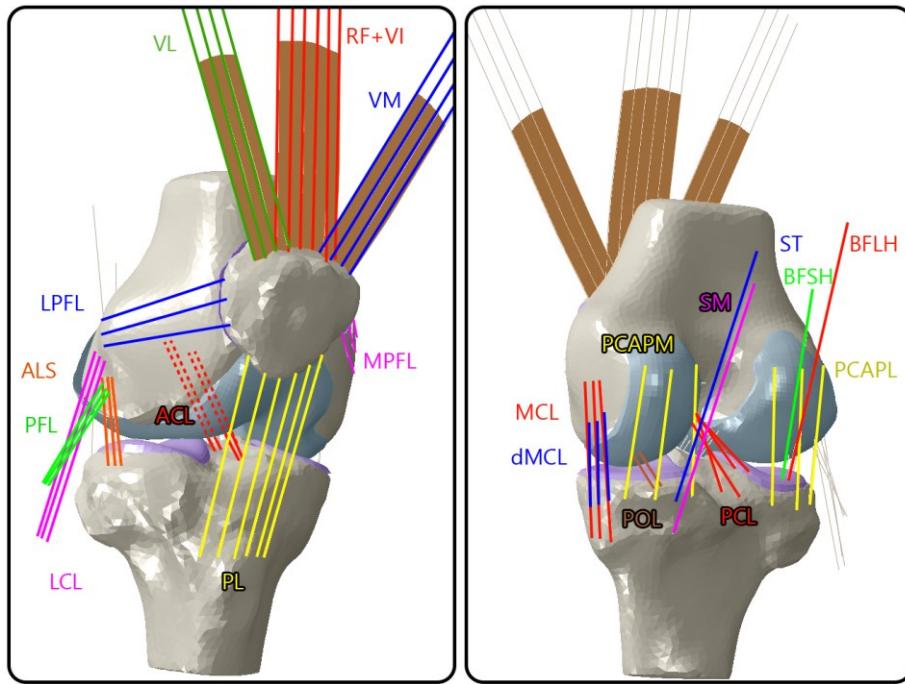
572 **Figure 9.** Mean force and contact outputs across all subjects (showing a representative sample of
573 soft-tissue forces, contact areas, joint forces and center of pressure outputs), with shaded regions
574 illustrating the 25th and 75th percentile for each condition. CoP: center of pressure, PAT: patellar
575 cartilage, TIB_MED: tibial medial cartilage. A-P: anterior-posterior, M-L: medial-lateral. Note:
576 The mean ACL total force is higher than the 75th percentile for a portion of the cycle because the
577 mid-cycle ACL force drops to zero in several knees, skewing the 75th percentile lower than the
578 mean.

579

580 **Figure 10.** Average 90th percentile first principal logarithmic strain, and 50th and 95th percentile
581 von Mises stress across all subjects, with shaded regions illustrating the 25th and 75th percentile
582 for each condition. FEM: femoral cartilage, PAT: patellar cartilage, TIB_MED: tibial medial
583 cartilage.

584

585



586

587 **Figure 1.** Muscle and ligament structures included in the FE model.

588

589

590

591

592

593

594

595

596

597

598

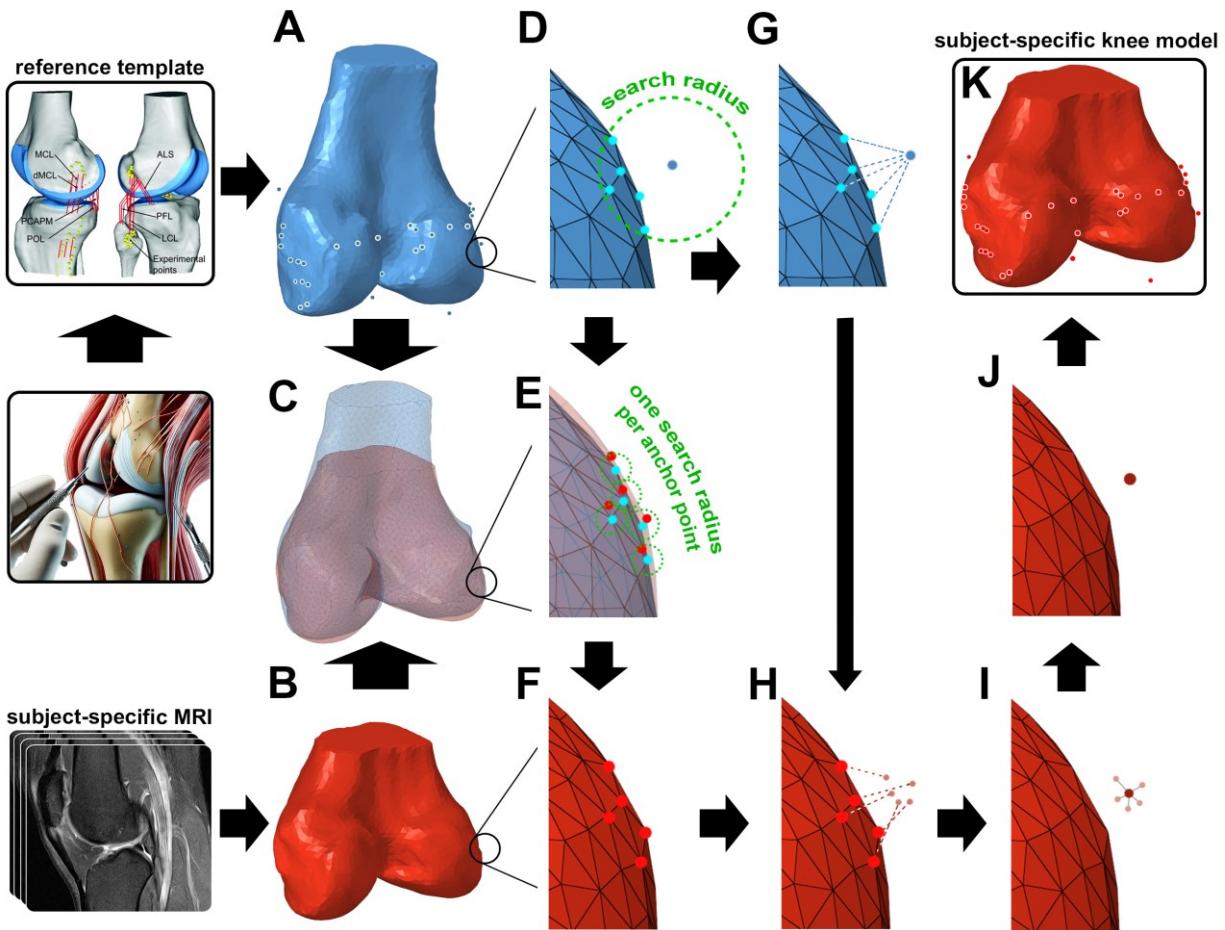
599

600

601

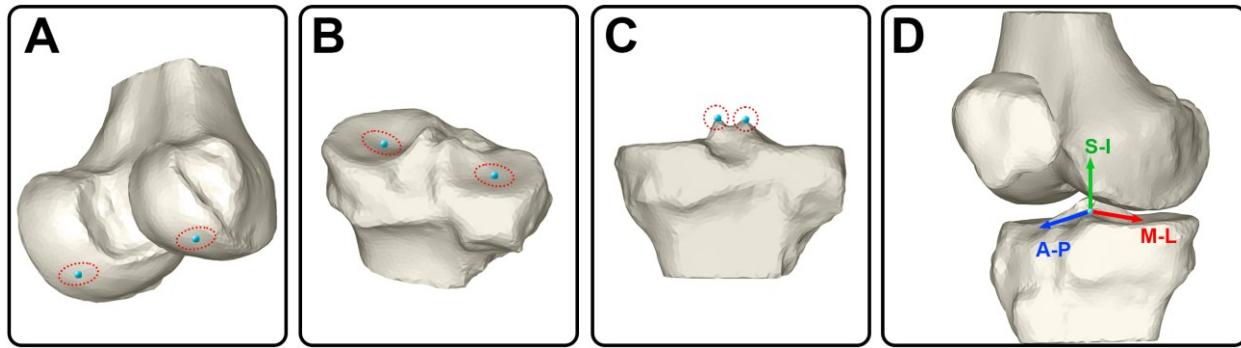
602

603



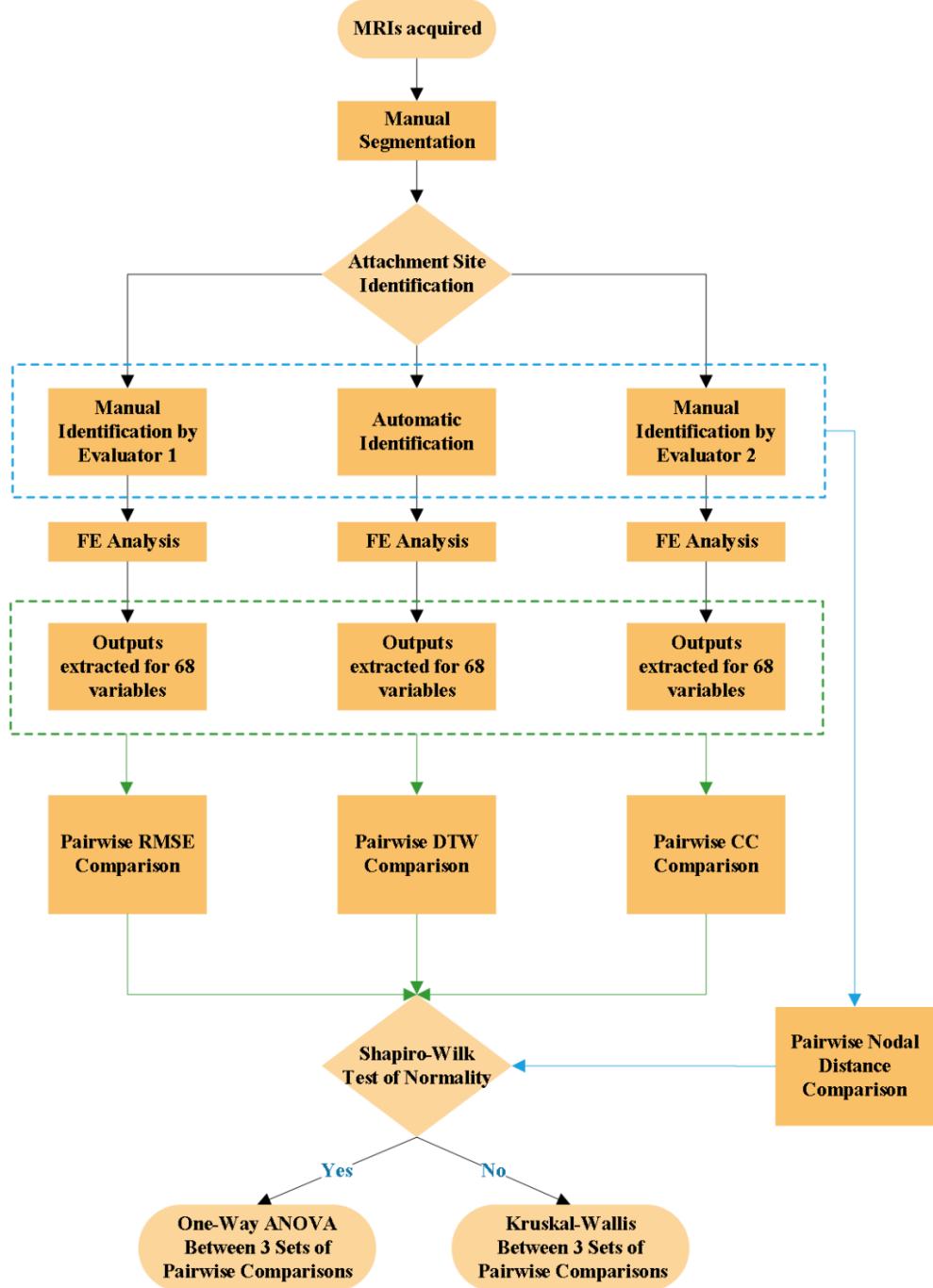
604

605 **Figure 2.** The attachment site identification process. (A) the template model is built based on
 606 experimental dissection and probing, and anatomical landmarks, (B) the subject-specific model
 607 is built based on knee MRI, (C) the subject-specific model is scaled and superimposed on the
 608 template, (D) for each attachment site, the nearby template anchor points are found, (E) for
 609 template anchor point, the equivalent subject anchor point is determined, (F) subject model
 610 scaled back to original size, (G) the vectors going from the template anchor points to the
 611 attachment site are determined, (H) these vectors are projected to their equivalent subject anchor
 612 point after scaling, (I) the weighted average of vector endpoints is calculated based on distance
 613 from the attachment site, (J) the subject attachment site is determined, (K) this process repeated
 614 for all attachment sites makes the subject specific musculoskeletal model.



616 **Figure 3.** The local anatomical landmarks and coordinate system automatically determined, (A)
617 most distal points on medial and lateral femoral condyles, (B) dwell points on medial and lateral
618 tibial condyles, (C) medial and lateral tibial intercondylar tubercles, (D) Grood and Suntay axes
619 for the knee.

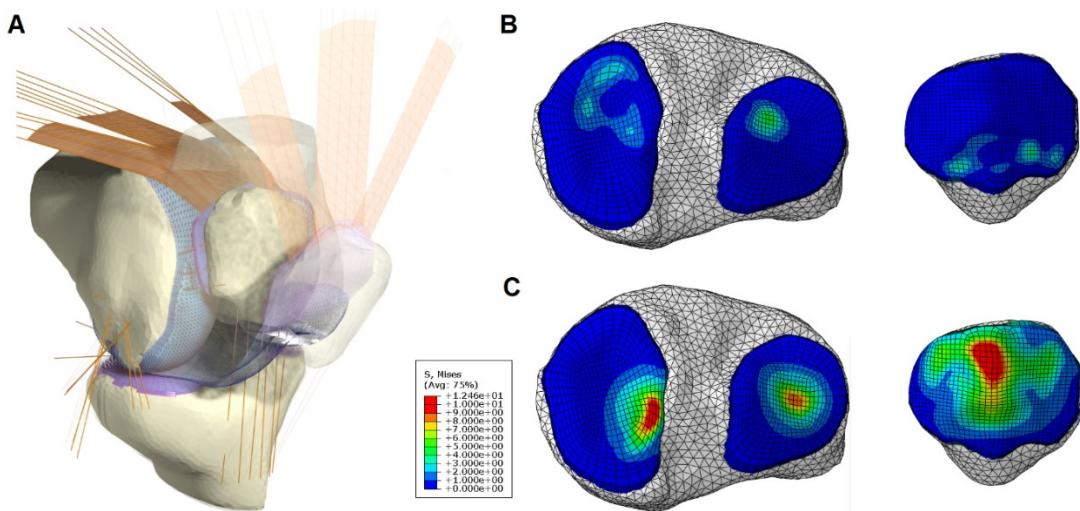
620
621
622
623
624
625
626
627
628
629
630
631
632
633



634

635 **Figure 4.** Flowchart of the overall study design. RMSE: root mean squared error, DTW:
 636 dynamic time warping, MRI: magnetic resonance image, FE: finite element, CC: correlation
 637 coefficient

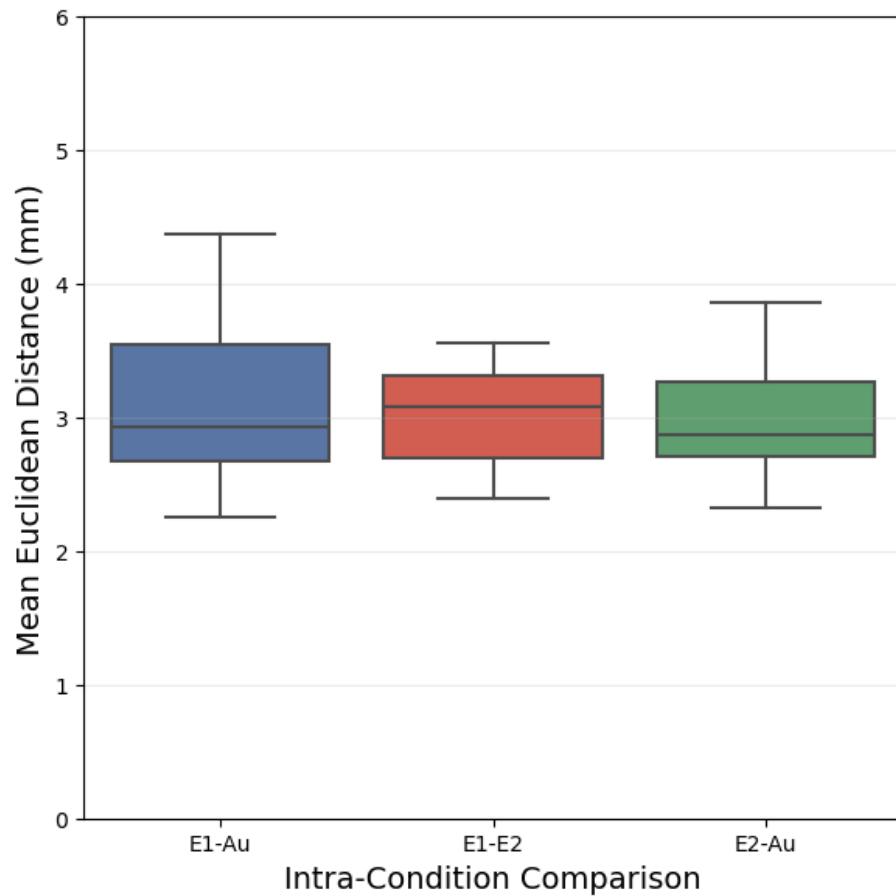
638



639

640 **Figure 5.** (A) The FE model of a deep knee bend activity, (B) von Mises stress in tibial and
 641 patellar cartilages in full extension and (C) at maximum flexion.

642

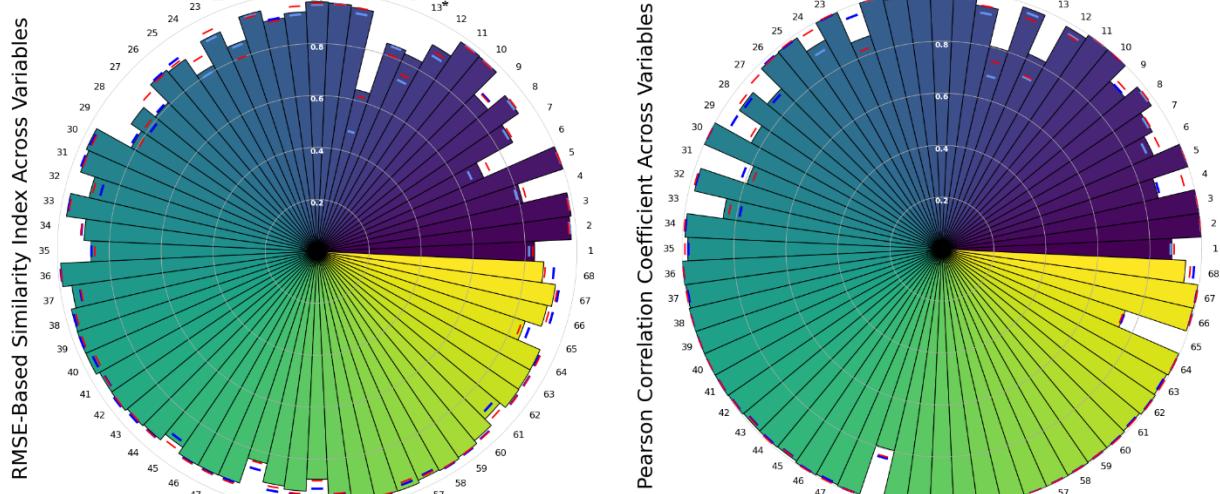


643

644 **Figure 6.** The between-condition comparison for the distances between attachment site nodal

645 locations. E1: Evaluator 1, E2: Evaluator 2, Au: Auto

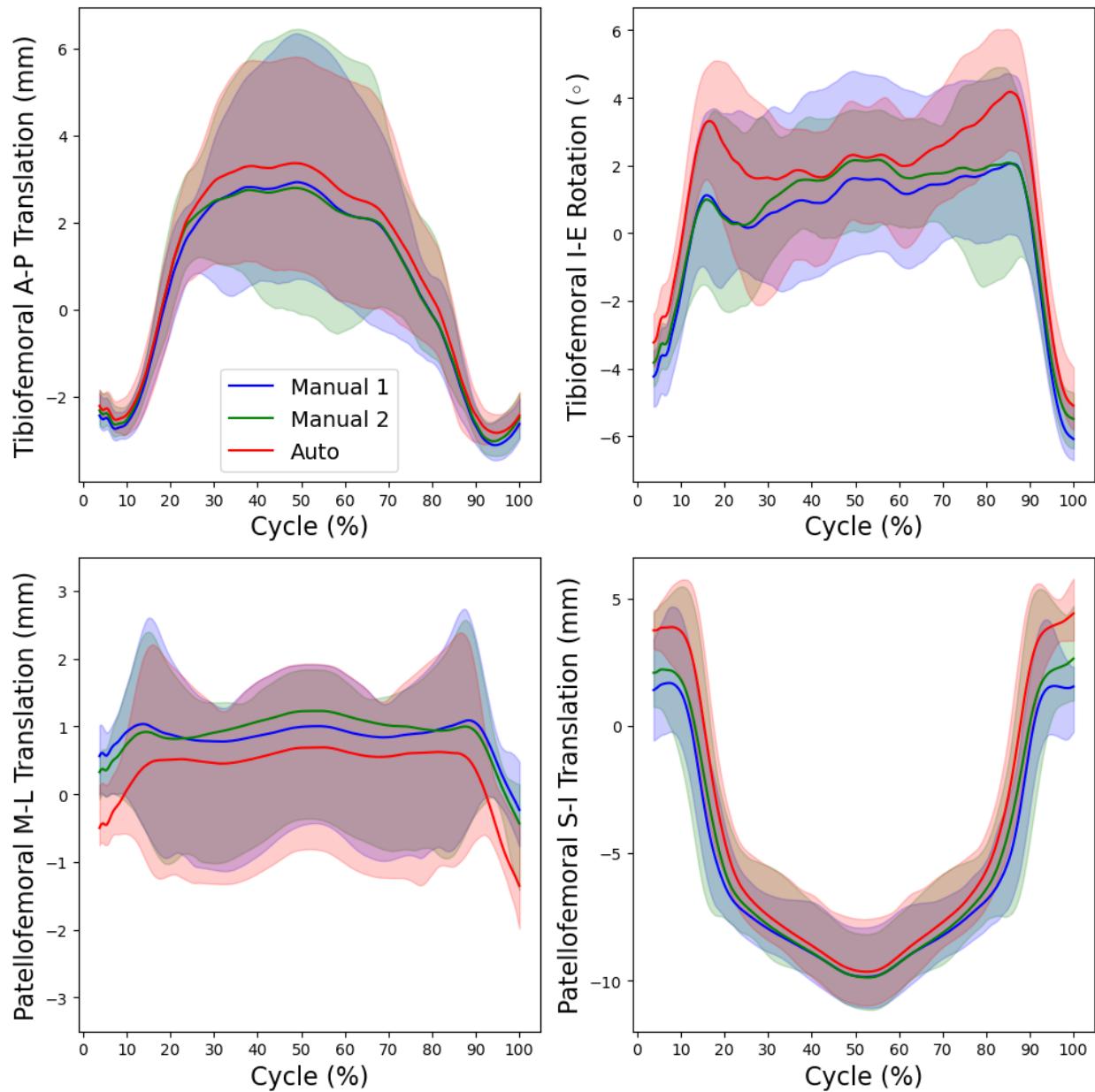
646



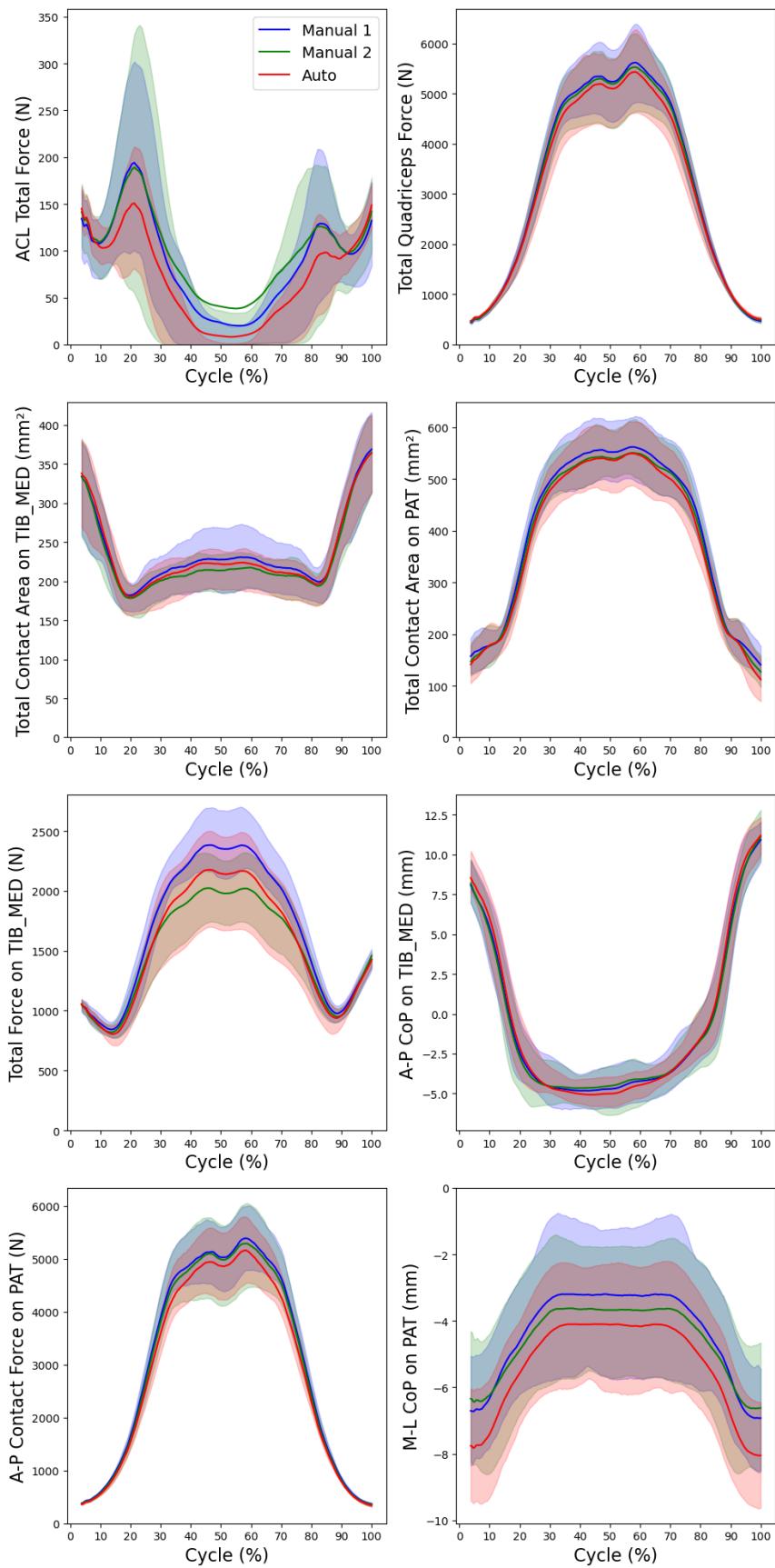
647

648 **Figure 7.** Similarity between conditions across all output variables based on an RMSE-based
 649 similarity index (left) and Pearson Correlation Coefficient (right). Each bar (slice) represents the
 650 similarity between the two manual models for a given variable, with the variable indices shown
 651 around the plot. The length of each bar was computed by averaging the relative index across all
 652 subjects for that variable. Red and blue markers indicate the similarity between the automated
 653 model and the manual models from evaluator 1 (red) and evaluator 2 (blue). The colors of the
 654 bars are used solely for visual distinction between variables and do not represent any specific
 655 value. The RMSE-based similarity index was calculated for plotting purposes by first
 656 normalizing the RMSE values via dividing them by their maximum value, and then reversed so
 657 that higher scores denote greater similarity between the conditions. The complete list of variables
 658 and their raw and normalized RMSE values can be found in Appendix 1. * A significant
 659 difference between pairwise comparisons was found only for patellofemoral medial-lateral
 660 translation (variable 13) as denoted by an asterisk.

661



664 **Figure 8.** Average kinematic outputs across all subjects (showing a representative sample of
 665 kinematic outputs), with shaded regions illustrating the 25th and 75th percentile for each
 666 condition. A-P: anterior-posterior, M-L: medial-lateral, I-E: internal-external, V-V: varus-valgus,
 667 S-I: superior-inferior.



669 **Figure 9.** Mean force and contact outputs across all subjects (showing a representative sample of
670 soft-tissue forces, contact areas, joint forces and center of pressure outputs), with shaded regions
671 illustrating the 25th and 75th percentile for each condition. CoP: center of pressure, PAT: patellar
672 cartilage, TIB_MED: tibial medial cartilage. A-P: anterior-posterior, M-L: medial-lateral. Note:
673 The mean ACL total force is higher than the 75th percentile for a portion of the cycle because the
674 mid-cycle ACL force drops to zero in several knees, skewing the 75th percentile lower than the
675 mean.

676

677

678

679

680

681

682

683

684

685

686

687

688

689

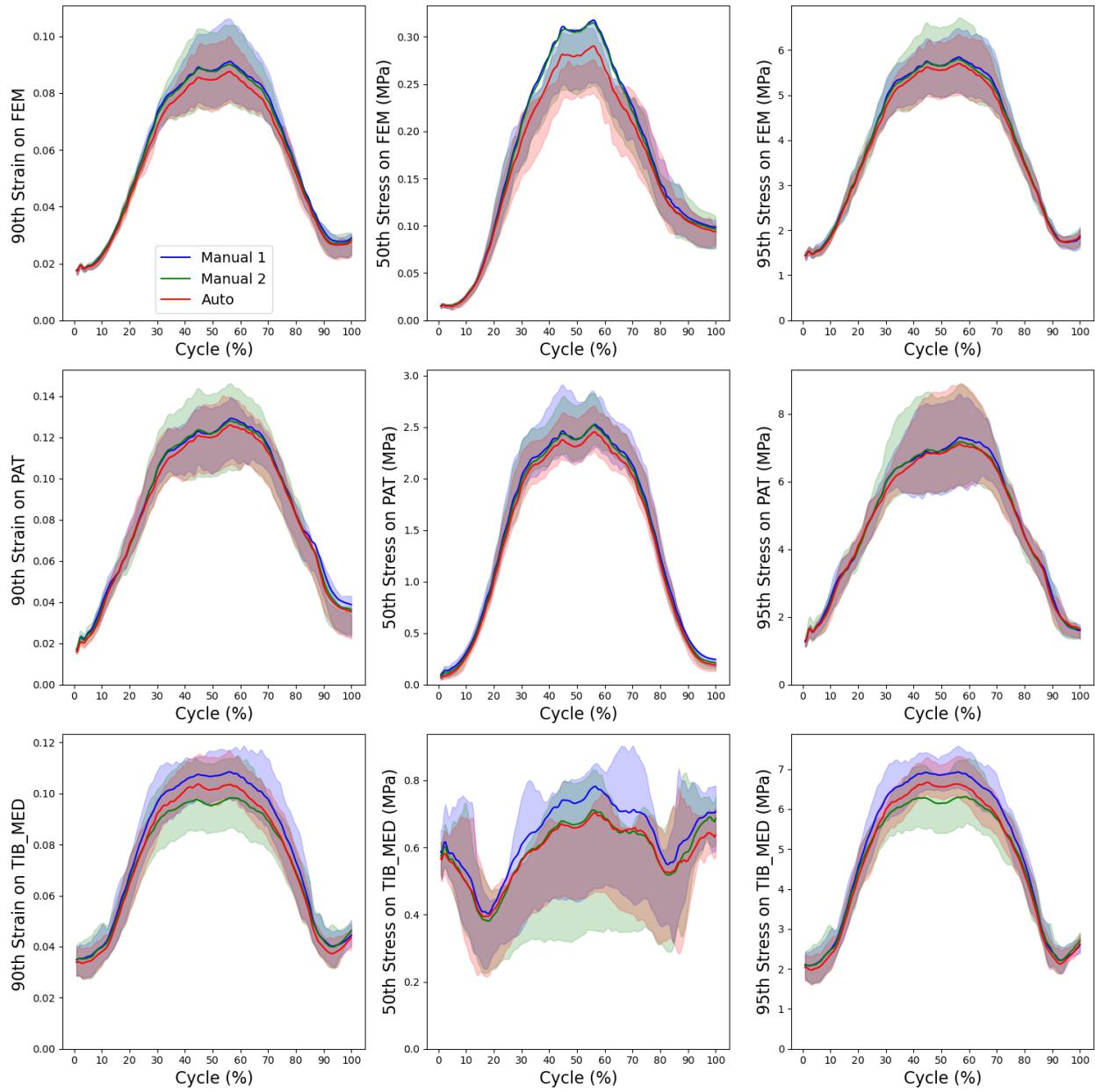
690

691

692

693

694



695

696 **Figure 10.** Average 90th percentile first principal logarithmic strain, and 50th and 95th percentile
697 von Mises stress across all subjects, with shaded regions illustrating the 25th and 75th percentile
698 for each condition. FEM: femoral cartilage, PAT: patellar cartilage, TIB_MED: tibial medial
699 cartilage