
1 
 

Submitted to the Journal of Biomechanics 

 

 

Efficient development of subject-specific finite element knee models: Automated 

identification of soft-tissue attachments 

 

Vahid Malbouby1, Kalin D. Gibbons1, Nurbanu Bursa2, Amanda K. Ivy1, Clare K. Fitzpatrick1 

 

1 Mechanical and Biomedical Engineering, Boise State University, Boise, ID 

2 Biomedical Research Institute, Boise State University, Boise, ID 

 

 

Corresponding Author: Clare K. Fitzpatrick, PhD 

 Mechanical and Biomedical Engineering 

 Boise State University 

 1910 University Drive, MS-2085 

 Boise, ID  83725-2085 

 Phone: 1 + 208.426.4027 

 Fax: 1 + 208.392.1589 

 Email: clarefitzpatrick@boisestate.edu 

 

 

about:blank


2 
 

ABSTRACT:  1 

Musculoskeletal disorders impact quality of life and incur substantial socio-economic costs. 2 

While in vivo and in vitro studies provide valuable insights, they are often limited by 3 

invasiveness and logistical constraints. Finite element (FE) analysis offers a non-invasive, cost-4 

effective alternative for studying joint mechanics. This study introduces a fully automated 5 

algorithm for identifying soft-tissue attachment sites to streamline the creation of subject-specific 6 

FE knee models from magnetic resonance images. Twelve knees were selected from the 7 

Osteoarthritis Initiative database and segmented to create 3D meshes of bone and cartilage. 8 

Attachment sites were identified in three conditions: manually by two evaluators and via our 9 

automated Python-based algorithm. All knees underwent FE simulations of a 90° flexion-10 

extension cycle, and 68 kinematic, force, contact, stress and strain outputs were extracted. The 11 

automated process was compared against manual identification to assess intra-operator 12 

variability.  The attachment site locations were consistent across all three conditions, with 13 

average distances of 3.0 ± 0.5 to 3.1 ± 0.6 mm and no significant differences between conditions 14 

(p=0.90). FE outputs were analyzed using Pearson correlation coefficients, randomized mean 15 

squared error, and pairwise dynamic time warping in conjunction with ANOVA and Kruskal-16 

Wallis. There were no statistical differences in pairwise comparisons of 67 of 68 FE output 17 

variables, demonstrating the automated method's consistency with manual identification. Our 18 

automated approach significantly reduces processing time from hours to seconds, facilitating 19 

large-scale studies and enhancing reproducibility in biomechanical research. This advancement 20 

holds promise for broader clinical and research applications, supporting the efficient 21 

development of personalized musculoskeletal models. 22 

KEYWORDS: finite element, knee, subject-specific modeling, ligament attachments, automated 23 

24 
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INTRODUCTION: 25 

Musculoskeletal disorders are a principal cause of discomfort, disability, and diminished quality 26 

of life globally, bearing considerable socio-economic consequences. The study of 27 

musculoskeletal disorders encompasses three primary methodologies: in vivo, in vitro, and in 28 

silico investigations. In vivo research, while offering direct insights, often entails invasive 29 

procedures, and it can be difficult to properly capture the mechanical environment of 30 

musculoskeletal structures (Cooper et al., 2019). Cadaveric studies, provide more structural 31 

clarity but they lack the muscular tone and other dynamic properties of some living tissues 32 

(Wang et al., 2023). Both experimental approaches face constraints related to time, financial, and 33 

logistical factors, including the scarcity of subjects or specimens. Computational analysis is a 34 

potential alternative to in vivo and in vitro investigations. It is typically more efficient and cost 35 

effective and can be applied on a broader scale than these methods (Diamond et al., 2024). 36 

Nonetheless, there are challenges associated with the effort and expertise required to develop 37 

subject-specific computational models (Paz et al., 2021). 38 

Finite element (FE) analyses are commonly used in orthopedic applications to simulate complex 39 

dynamics of joints and muscles (Pfeiffer, 2016). FE studies include optimizing design and 40 

positioning of knee implants (Dagneaux et al., 2024), investigating spinal disc degeneration 41 

(Khuyagbaatar et al., 2024), analyzing foot and ankle injuries (Phan et al., 2021), exploring 42 

shoulder stability and rotator cuff tears (Zheng et al., 2017), studying hip impingement (Ng et al., 43 

2016), and osteoarthritis research (Diamond et al., 2024). This method can include detailed, 44 

subject-specific, anatomic representations, mechanical properties and complex loading and 45 

boundary conditions. FE simulations allow for detailed assessments of stress and strain 46 

distributions within tissues, as well as joint contact forces and kinematics (Erdemir et al., 2019).  47 
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Many studies use a singular, representative anatomic model of a joint, which neglects the 48 

inherent variability among individuals, potentially skewing analysis results and limiting their 49 

general applicability across the broader population (Taylor et al., 2013). More recently, there has 50 

been a transition towards subject-specific FE modeling (Ellis et al., 2010; Lochner et al., 2014; 51 

Mononen et al., 2016; Ng et al., 2012; Rieger et al., 2024; Worsley et al., 2011). Incorporating 52 

subject-specific properties generally enhances the predictive accuracy of the models, making 53 

their outcomes more congruent with experimental results (Naghibi Beidokhti et al., 2017). High 54 

degrees of subject-specificity in FE models, however, often necessitate limiting the study to a 55 

smaller cohort due to constraints on time and resources (Ali et al., 2017; Cooper et al., 2019; 56 

Harris et al., 2016; Naghibi Beidokhti et al., 2017). Conversely, studies that manage to include a 57 

larger sample size tend to rely on more generalized information or employ parametrized models 58 

(Cooper et al., 2018; Mononen et al., 2023), which may not capture the individual variability as 59 

effectively.  60 

The challenge of incorporating large sample sizes in subject-specific computational modeling 61 

has been underscored in recent review papers: within FE studies focusing on osteoarthritis 62 

research, only three incorporated more than 20 subjects from 2020 to 2021 (Harlaar et al., 2022) 63 

and only one study incorporated more than 30 participants in 2022 (Diamond et al., 2024). This 64 

highlights the ongoing need for methodological advancements that can reconcile the demand for 65 

both individual specificity and broad population applicability in FE studies on musculoskeletal 66 

disorders. 67 

Advancements in machine learning techniques have significantly reduced the necessity for 68 

manual processing and segmentation of medical images to create 3D meshes of bones and 69 

cartilages, thereby diminishing the time required for this task from days to minutes (Ambellan et 70 
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al., 2019; Burton et al., 2020; Ebrahimkhani et al., 2020; Esrafilian et al., 2023; Gibbons et al., 71 

2022). Initially, most of these studies focused on bone, cartilage and menisci, and did not include 72 

tendon and ligament representations. Manual identification of attachment sites, whether derived 73 

directly from medical imaging or based on anatomical descriptions, can be time consuming and 74 

is susceptible to significant intra-operator variability, thus impacting the reproducibility of the 75 

data. Recently, several automated pipelines for identifying tendon and ligament attachment sites 76 

on a 3D joint model have been developed (Clouthier et al., 2022, 2019; Esrafilian et al., 2023, 77 

2020; Killen et al., 2024; Willems et al., 2024). However, to the best of our knowledge, no 78 

previous work has evaluated the performance of these approaches to a human operator. Thus, the 79 

effectiveness and reliability of these automatic algorithms compared to the manual selection of 80 

these sites remain unknown. 81 

The primary objective of our study is to introduce a novel, fully automated algorithm that 82 

facilitates the rapid and accurate identification of attachment sites for use in FE simulations, and 83 

compare it to the traditional manual method. For this, we compare FE outputs from our 84 

automated process with those from models with manually identified soft tissues. A fully 85 

automated algorithm will streamline the construction of musculoskeletal models and reduce the 86 

time for identification of attachment sites to just a few seconds, thereby enabling broader 87 

application in clinical and research settings.  88 

 89 

METHODS: 90 

Data sources. Twelve knees were randomly selected using the ‘sample’ function in Python from 91 

the Osteoarthritis Initiative (OAI) database (NIAMS, 2004), based on the availability of the 92 
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subject's weight, femoral and tibial lengths, double echo steady-state (DESS) magnetic resonance 93 

(MR) images, and a Kellgren-Lawrence (KL) grade of less than 2. The MR images consisted of 94 

384×384×160 voxels and featured a spatial resolution of 0.37×0.37×0.70 mm in the sagittal 95 

plane. MR scans were manually segmented using AMIRA software, and 3D FE meshes were 96 

created for the femur, tibia, patella, and their corresponding cartilages (Gibbons et al., 2022). 97 

Bones were meshed using uniform triangular rigid body surface meshes with a target element 98 

size of 3 mm, while cartilage employed four layers of deformable hexahedral elements with an 99 

average element edge length of 1 mm and blended edges (Gibbons et al., 2022) and isotropic 100 

elastic material properties similar to prior models (Fitzpatrick et al., 2014, 2012; Klets et al., 101 

2016). 102 

Manual attachment site identification. All knees were manually processed to identify ligament 103 

and muscle attachment sites by two evaluators, each blinded to the other's work and to the 104 

automatic processing (described in the subsequent section). Both raters had similar levels of 105 

experience (multiple years) in manually reconstructing knee MR images and identifying 106 

attachments to develop FE models. This approach allowed for the assessment of intra-operator 107 

variation, providing a benchmark for the automated method's performance. The attachment sites 108 

of interest were: origins and insertions for the anterior and posterior cruciate ligament (ACL, 109 

PCL), superficial and deep medial collateral ligament (MCL, dMCL), lateral collateral ligaments 110 

(LCL), medial and lateral patellofemoral ligaments (MPFL, LPFL), anterolateral structure 111 

(ALS), patellar ligament (PL), posterior oblique ligament (POL), popliteofibular ligaments 112 

(PFL), and lateral and medial posterior capsule ligaments (mPCAP, lPCAL), along with those for 113 

the vastus lateralis and medialis (VL, VM), a combined bundle for vastus intermedius and rectus 114 

femoris (VI+RF), long and short head of biceps femoris (BFLH, BFSH), semitendinosus (ST), 115 
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and semimembranosus (SM) muscles (Figure 1). ACL and PCL were modeled using four springs 116 

each, POL was modeled using two springs, and other structures were modeled using three 117 

springs, except for muscles and PL. The VI+RF and PL were modeled using six springs each, 118 

while hamstring muscles were modeled using one spring per bundle. These were chosen based 119 

on a combined cadaveric and experimental study, where they found that this fiber selection used 120 

in their computational study provided excellent agreement with the laxity data from the 121 

experiment (Harris et al., 2016). This ligament template was used by both manual evaluators and 122 

the automated algorithm. 123 

Automated attachment site identification. For the automated identification of attachment sites, 124 

the same reference template was used (Harris et al., 2016) in conjunction with a Python-based 125 

algorithm to select the optimal attachment sites on the subject’s knee. The distal femur and 126 

proximal tibia were aligned with their corresponding bone segments in the template using an 127 

iterative closest point (ICP) algorithm from the Open3D library (Zhou et al., 2018). For femur 128 

and tibia, each bone was scaled independently to best-match the medial-lateral and anterior-129 

posterior dimensions of the template model, and the superior-inferior axis was scaled based on 130 

the average of these two dimensions to prevent the shaft length on the MR images from affecting 131 

the transformation. The patella was scaled in all three dimensions separately to ensure alignment 132 

with the template dimensions. 133 

For each attachment point on the template model, nearby nodes—'template anchor nodes'—are 134 

identified using a nearest neighbor search with a unique predefined search radius for each site. 135 

Vectors from these nodes to the attachment points are stored and later scaled to match the 136 

dimensions between the template and subject bones. These vectors are applied to corresponding 137 

'subject anchor nodes' on the subject model, identified through a similar search to match each 138 
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template anchor node to a similar node on the subject bone model. The subject attachment points 139 

are then determined by averaging these vector endpoints, weighted by the proximity of each 140 

point to the original attachment point in a logarithmic scale (Figure 2).  141 

After attachment sites have been identified, each subject-specific model is aligned to a consistent 142 

local femoral coordinate system. A local tibial coordinate system was defined on the tibia based 143 

on anatomic landmarks. This was achieved via another automated algorithm finding the most 144 

distal contacting positions on medial and lateral femoral condyles and their corresponding dwell 145 

points on medial and lateral tibial condyles, and medial and lateral tibial intercondylar tubercles 146 

(Figure 3.A-C). Grood and Suntay (Grood and Suntay, 1983) axes were determined using a 147 

similar process, relying on established local origins for each of these bones and the unit vectors 148 

for medial-lateral, superior-inferior, and anterior-posterior directions (Figure 3.D).  149 

FE model. The FE model employed in this study was modified from a previously published 150 

model (Fitzpatrick et al., 2014, 2012; Gibbons et al., 2022, 2019). Briefly, the model comprises 151 

the femur, tibia and patella bone and cartilage. The ligaments are modeled as nonlinear tension-152 

only springs connecting the origin and insertion nodes identified as described above (Baldwin et 153 

al., 2012). The quadriceps muscles were modeled as three bundles with their line of action being 154 

based on cadaveric data (Farahmand et al., 2004): VI+RF, VM, and VL. The hamstring muscles, 155 

comprising SM, ST, BFSH, and BFLH, were represented by four non-linear spring connectors. 156 

Muscle activation was controlled via load actuators developed through a Fortran-based 157 

subroutine, distributing force according to average cross-sectional areas derived from cadaveric 158 

studies (Farahmand et al., 2004, 1998). The quadriceps muscle-tendon units were modeled using 159 

2-D fiber-reinforced membrane elements to facilitate contact and wrapping during flexion. The 160 

load actuators were governed by proportional- integral (PI) controllers. The quadriceps controller 161 
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was set to align knee flexion with an average kinematic profile from in vivo studies of five 162 

participants performing a deep knee bend (Heinlein et al., 2007; Kutzner et al., 2010). The 163 

hamstring controller was adjusted to target a flexion angle 5° less than that of the quadriceps to 164 

simulate hamstring coactivation. 165 

A vertical load equivalent to half of the subject's body weight was applied at the hip. An 166 

anterior-posterior load amplitude was applied to femur while its internal-external and varus-167 

valgus rotation were constrained. The femur was free in other degrees of freedom. Internal-168 

external and varus-valgus moments were applied to the tibia, with all other degrees of freedom 169 

constrained. The patella was free to move in all six degrees of freedom, with constraints imposed 170 

only by the articulating surfaces and connecting muscles and ligaments. Kinetic profiles for this 171 

model were derived from published telemetric data averaged across five patients performing a 172 

deep knee bend (Heinlein et al., 2007; Kutzner et al., 2010).  173 

Output variables.  FE model outputs included tibiofemoral (TF) and patellofemoral (PF) Grood 174 

and Suntay kinematics in all 6 degrees of freedom, quadriceps and hamstrings force, total axial 175 

force in the ACL ligament, total force on medial and lateral tibial condyles, total contact area on 176 

articulating surfaces of medial and lateral tibial cartilage and patellar cartilage, total force due to 177 

contact pressure, and the location of the center of pressure on these cartilages. Von Mises stress 178 

and first principal logarithmic strain were extracted for all elements on femoral, tibial, and 179 

patellar cartilage structures. We calculated the 50th percentile and interquartile range across the 180 

knee bend activity for all cartilage elements. Additionally, we calculated the 90th and 95th 181 

percentiles for these variables, which are relevant in cartilage damage and degradation studies. 182 

Statistical analysis. First, the Euclidian distances between the location for each node in the three 183 

conditions were calculated. These between-condition distances had normal distribution based on 184 
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a Shapiro-Wilk test and were analyzed via ANOVA across all subjects. Further statistical 185 

analysis was conducted on a dataset containing 68 output variables for each subject under each 186 

condition (Auto, Evaluator 1, Evaluator 2). Since all output variables were recorded as time 187 

series over the full flexion-extension cycle rather than as single values, dynamic time warping 188 

(DTW) was employed as an appropriate statistical method to compare conditions. DTW is a 189 

robust approach for determining the distance between two time series. The primary concept of 190 

DTW is to calculate the distance by comparing corresponding items in time series that are 191 

similar. DTW is scale sensitive and smaller DTW distances indicate greater similarity between 192 

the two series with the same unit (Gulzar, 2018; Müller, 2007). By comparing the DTW 193 

distances, we test if the variation between the auto model versus the manual models is within the 194 

same level of variation that exists between the two manual models. 195 

First, pairwise DTW was used to compare the three conditions for each variable in each subject 196 

separately. Following this, a Shapiro-Wilk test of normality was performed for each condition. 197 

Based on the results, conditions were compared using either ANOVA or its nonparametric 198 

equivalent, Kruskal-Wallis test (Figure 4). All DTW analyses were conducted using R software 199 

(v4.1.3; R Core Team 2021) with the RStudio graphical interface. For the DTW tests, the “dtw” 200 

package was utilized (Giorgino, 2009). A two-sided p-value of less than 0.05 was considered 201 

statistically significant for all tests. Similarly, the root mean squared error (RMSE) comparing 202 

each subject across each pair of conditions was calculated for all variables and analyzed using 203 

either ANOVA or Kruskal-Wallis tests. The Pearson correlation coefficient (CC) was also 204 

calculated for all conditions and analyzed in the same manner. The aim of all three previous 205 

analyses was to determine whether the difference between two given conditions was statistically 206 
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significant compared to the other comparisons. All statistical analyses were conducted in python, 207 

using the SciPy package (Virtanen et al., 2020). 208 

 209 

RESULTS: 210 

The attachment site identification algorithm generated soft tissue representations in 8-10 seconds 211 

for each subject-specific FE model. The manual attachment site identification process took 4-6 212 

hours for each subject, similarly for both evaluators. FE simulations for all subject-specific 213 

models were completed successfully (Figure 5). 214 

Comparing spatial location for each attachment site between conditions across all subjects 215 

showed a mean distance of 3.0 ± 0.37 mm between evaluator 1 (E1) and evaluator 2 (E2), 3.1 ± 216 

0.6 mm between E1 and auto (AU), and 3.0 ± 0.5 mm between E2 and AU (Figure 6). The 217 

between-condition distances were not statistically different in any pairwise comparison (p = 218 

0.90). 219 

The Pearson CC showed an average correlation of 0.96 ± 0.06 for the comparison between the 220 

two evaluators (E1-E2) across all variables, and 0.96 ± 0.07 for both evaluator-automatic 221 

comparisons (Figure 7). Independent statistical analysis for all variables showed no difference 222 

between the coefficients across conditions (p>0.05). There was no statistical difference between 223 

the pairwise RSME values across all variables (p>0.05), except for PF medial-lateral movement 224 

(p=0.02) (Figure 6). The CC and RMSE for all variables along with their relevant p-values for 225 

comparisons can be found in Appendix 1.  226 

For the DTW tests comparing the outputs of the three conditions, none of the between conditions 227 

differences were significantly different than the other two across 67 out of the 68 variables (p > 228 
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0.05), except for PF medial-lateral kinematics (p = 0.03). The statistically significant difference 229 

for PF medial-lateral movement was not clinically meaningful, with mean PF medial-lateral 230 

differences between conditions being less that one millimeter (0.3-0.6 mm) across the entire 231 

flexion-extension cycle. Additionally, the DTW differences and RMSE values for patella contact 232 

area (p = 0.36 and 0.13, respectively), patella medial-lateral (p = 0.51 and 0.20) and superior-233 

inferior (p = 0.98 and 0.94) center of pressure, as well as all other patellar force, strain, or stress 234 

outputs were not statistically different across conditions, demonstrating that this level of patella 235 

medial-lateral differences did not have any observable effect on joint mechanics. 236 

Overall, the pairwise RMSE values and DTW differences between the manual models and the 237 

automatically created model for 67 out of the 68 variables tested, and the CC values for all 68 238 

variables, were not statistically different throughout the entire flexion-extension range (Figures 239 

8-10). 240 

 241 

DISCUSSION: 242 

The construction of subject-specific FE models of human joints entails several critical steps, 243 

including the acquisition of medical images, creation of 3D geometries from these images, 244 

conversion of the 3D geometries into a computational mesh, building the musculoskeletal model 245 

through identification of tendon and ligament origin and insertion points, determination of 246 

material models for different tissues, and application of kinematic and/or load profiles to the 247 

model, among other steps. With the recent advances in automatic processing of medical images 248 

to identify bone and cartilage geometries (Ambellan et al., 2019; Burton et al., 2020; 249 

Ebrahimkhani et al., 2020; Esrafilian et al., 2023; Gibbons et al., 2022), identification of tendon 250 
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and ligament attachment sites has emerged as the next challenge in developing automated 251 

pipelines to generate FE models from medical imaging. 252 

Our results indicate that the two manual methods and the automated method demonstrated 253 

similar performance in determining attachment sites, as evidenced by the consistency in their 254 

geometric locations and their comparable impact on the biomechanics of the knee joint models 255 

across 67 kinematic and kinetic variables. The only variable where a significant difference 256 

between pairwise comparisons was found was for PF medial-lateral translation; however, the 257 

actual difference was less than one millimeter and did not affect relevant joint mechanics. 258 

Nevertheless, in 67 out of the 68 cases the variability between the automatically created model 259 

and the manually created models were within the same range of variability that exists between 260 

the manually created models, as evident by lack of a significant difference in the DTW and 261 

RMSE analysis. These data support our hypothesis that the automatic attachment site 262 

identification algorithm has a similar performance compared to a human evaluator. In the current 263 

work, we cannot evaluate the performance of these models against a single, gold-standard ‘true’ 264 

value; Comparing the outputs from these models to a clinically validated model of the same 265 

subject would create the possibility of evaluating the true performance of these models, but this 266 

would require additional data that was not available in our datasets and would be beyond the 267 

scope of this study.  268 

The automated methods offer a consistent and objective alternative to manual identification, 269 

which can vary significantly between operators due to subjective interpretations and individual 270 

levels of expertise. This consistency enhances reproducibility in biomechanical research and 271 

clinical applications by removing the variability and inter-operator and between-operator errors 272 

introduced by human operators.  273 
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There has been a recent interest in the development of automated model segmentation and 274 

attachment site identification algorithms (Clouthier et al., 2022, 2019; Esrafilian et al., 2023, 275 

2020; Killen et al., 2024; Willems et al., 2024). Esrafilian et.al. (2023, 2020) attempted to 276 

streamline the musculoskeletal attachment site identification for a FE simulation of human knee. 277 

One strength of their work was the identification of the insertion points for several ligaments and 278 

the quadriceps tendon based on auto-segmentation and reconstruction of their geometries from 279 

the MR images which can offer highly personalized musculoskeletal models, but given the 280 

challenges for auto-segmentation of these structures and poor performance for some ligaments, 281 

this algorithm reverts to extracting some locations from a template instead (Esrafilian et al., 282 

2023). Clouthier et.al. (2022, 2019) used a statistical shape model with ligament and muscle 283 

attachment points which morphed along with bony geometry changes (Clouthier et al., 2019). 284 

Killen et.al. (2024) used a similar approach and continued further to project the attachment sites 285 

on the morphed model onto the personalized bone geometry. This approach has the potential of 286 

offering high accuracy, but the authors do not provide any validation or quantitative comparison 287 

against traditional manual attachment site identification. Also, this level of precision in 288 

replicating the template attachment locations comes at the price of computational efficiency, 289 

since the generation of each model takes several hours using this approach (Killen et al., 2024). 290 

In our proposed algorithm, the generation of each model takes 8-10 seconds, and to the best of 291 

authors’ knowledge, this is the first time that quantitative evaluations of performance and 292 

similarity to the manual method have been presented for an automated attachment site 293 

identification algorithm. 294 

One limitation of this study is our reliance on manual identification as a benchmark as opposed 295 

to clinical data, primarily due to the lack of extensive clinical data. Acquiring clinical data poses 296 
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its own challenges, especially since it is inherently challenging to acquire joint force or cartilage 297 

stress distribution from in-vivo studies. Despite these issues, using manual methods as a standard 298 

is in line with current research practices and provides a practical baseline for evaluating 299 

automated techniques against the accepted status quo in biomechanical studies. 300 

Another limitation of this study is the simplification used in the FE model to demonstrate the 301 

performance of the automated attachment site identification algorithm, particularly the use of a 302 

linear elastic model for the cartilage instead of more sophisticated or subject-specific material 303 

models. This choice was driven by the need to maintain manageable computational times, 304 

especially given the number of models analyzed. However, this simplification does not critically 305 

impact the primary aim of this study, which was to assess the similarity between manual and 306 

automated methods for identifying attachment sites, rather than to study the precise long-term 307 

dynamic behavior of cartilage under load. The consistent use of a similar linear elastic model 308 

across all comparisons effectively satisfies our study’s requirements, while balancing 309 

computational efficiency with the need for comparative accuracy. 310 

The use of automated algorithms is especially useful in scenarios where time efficiency and 311 

scalability are crucial, such as in large-scale clinical or research studies where manual methods 312 

would be impractical due to their labor-intensive nature. In the current study, we used manually 313 

segmented bones and cartilages to better match the traditional manual workflow and to prevent 314 

the potential smoothing induced errors from automated segmentation from compound with 315 

attachment site identification. However, the automated attachment site identification algorithm 316 

can readily be coupled with automated segmentation, producing FE-ready models from MR 317 

scans in a matter of minutes. Additionally, this automated method paves the way for generating 318 

sufficient numbers of musculoskeletal models with labeled attachment sites, to be used as 319 
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training data for a machine learning algorithm. Future studies could explore the integration of 320 

these approaches for the development of a machine learning algorithm that could generate the 321 

musculoskeletal model for the entire knee, including bones, cartilages, and muscle and ligament 322 

attachment locations, directly from MR images. 323 

This study demonstrates that automated identification of attachment sites is a viable and efficient 324 

alternative to manual methods, capable of supporting the high demands of modern 325 

biomechanical research and clinical practice. The similar performances of manual and automated 326 

methods in our study are encouraging for the field of computational biomechanics. By enabling 327 

faster and more scalable model development, automated methods hold the potential to transform 328 

the development of personalized, accurate, and reproducible musculoskeletal models, paving the 329 

way for their broader application in clinical diagnostics, treatment planning, and research. 330 
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List of Figures: 522 

 523 

Figure 1. Muscle and ligament structures included in the FE model. 524 

 525 

Figure 2. The attachment site identification process. (A) the template model is built based on 526 

experimental dissection and probing, and anatomical landmarks, (B) the subject-specific model 527 

is built based on knee MRI, (C) the subject-specific model is scaled in medial-lateral and 528 

anterior-posterior directions and superimposed on the template, (D) for each attachment site, the 529 

nearby template anchor points are found, (E) for template anchor point, the equivalent subject 530 

anchor point is determined, (F) subject model scaled back to original size, (G) the vectors going 531 

from the template anchor points to the attachment site are determined, (H) these vectors are 532 

projected to their equivalent subject anchor point after scaling, (I) the weighted average of vector 533 

endpoints is calculated based on distance from the attachment site, (J) the subject attachment site 534 

is determined, (K) this process repeated for all attachment sites makes the subject specific 535 

musculoskeletal model. 536 

 537 

Figure 3. The local anatomical landmarks and coordinate system automatically determined, (A) 538 

most distal points on medial and lateral femoral condyles, (B) dwell points on medial and lateral 539 

tibial condyles, (C) medial and lateral tibial intercondylar tubercles, (D) Grood and Suntay axes 540 

for the knee. 541 

 542 
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Figure 4. Flowchart of the overall study design. RMSE: root mean squared error, DTW: 543 

dynamic time warping, MRI: magnetic resonance image, FE: finite element, CC: correlation 544 

coefficient 545 

 546 

Figure 5. (A) The FE model of a deep knee bend activity, (B) von Mises stress in tibial and 547 

patellar cartilages in full extension and (C) at maximum flexion. 548 

 549 

Figure 6. The between-condition comparison for the distances between attachment site nodal 550 

locations. E1: Evaluator 1, E2: Evaluator 2, Au: Auto 551 

 552 

Figure 7. Similarity between conditions across all output variables based on an RMSE-based 553 

similarity index (left) and Pearson Correlation Coefficient (right). Each bar (slice) represents the 554 

similarity between the two manual models for a given variable, with the variable indices shown 555 

around the plot. The length of each bar was computed by averaging the relative index across all 556 

subjects for that variable. Red and blue markers indicate the similarity between the automated 557 

model and the manual models from evaluator 1 (red) and evaluator 2 (blue). The colors of the 558 

bars are used solely for visual distinction between variables and do not represent any specific 559 

value. The RMSE-based similarity index was calculated for plotting purposes by first 560 

normalizing the RMSE values via dividing them by their maximum value, and then reversed so 561 

that higher scores denote greater similarity between the conditions. The complete list of variables 562 

and their raw and normalized RMSE values can be found in Appendix 1. * A significant 563 
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difference between pairwise comparisons was found only for patellofemoral medial-lateral 564 

translation (variable 13) as denoted by an asterisk. 565 

 566 

Figure 8. Average kinematic outputs across all subjects (showing a representative sample of 567 

kinematic outputs), with shaded regions illustrating the 25th and 75th percentile for each 568 

condition. A-P: anterior-posterior, M-L: medial-lateral, I-E: internal-external, V-V: varus-valgus, 569 

S-I: superior-inferior. 570 

 571 

Figure 9. Mean force and contact outputs across all subjects (showing a representative sample of 572 

soft-tissue forces, contact areas, joint forces and center of pressure outputs), with shaded regions 573 

illustrating the 25th and 75th percentile for each condition. CoP: center of pressure, PAT: patellar 574 

cartilage, TIB_MED: tibial medial cartilage. A-P: anterior-posterior, M-L: medial-lateral. Note: 575 

The mean ACL total force is higher than the 75th percentile for a portion of the cycle because the 576 

mid-cycle ACL force drops to zero in several knees, skewing the 75th percentile lower than the 577 

mean. 578 

 579 

Figure 10. Average 90th percentile first principal logarithmic strain, and 50th and 95th percentile 580 

von Mises stress across all subjects, with shaded regions illustrating the 25th and 75th percentile 581 

for each condition. FEM: femoral cartilage, PAT: patellar cartilage, TIB_MED: tibial medial 582 

cartilage. 583 
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Figure 1. Muscle and ligament structures included in the FE model. 587 
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 604 

Figure 2. The attachment site identification process. (A) the template model is built based on 605 

experimental dissection and probing, and anatomical landmarks, (B) the subject-specific model 606 

is built based on knee MRI, (C) the subject-specific model is scaled and superimposed on the 607 

template, (D) for each attachment site, the nearby template anchor points are found, (E) for 608 

template anchor point, the equivalent subject anchor point is determined, (F) subject model 609 

scaled back to original size, (G) the vectors going from the template anchor points to the 610 

attachment site are determined, (H) these vectors are projected to their equivalent subject anchor 611 

point after scaling, (I) the weighted average of vector endpoints is calculated based on distance 612 

from the attachment site, (J) the subject attachment site is determined, (K) this process repeated 613 

for all attachment sites makes the subject specific musculoskeletal model. 614 
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 615 

Figure 3. The local anatomical landmarks and coordinate system automatically determined, (A) 616 

most distal points on medial and lateral femoral condyles, (B) dwell points on medial and lateral 617 

tibial condyles, (C) medial and lateral tibial intercondylar tubercles, (D) Grood and Suntay axes 618 

for the knee. 619 
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 634 

Figure 4. Flowchart of the overall study design. RMSE: root mean squared error, DTW: 635 

dynamic time warping, MRI: magnetic resonance image, FE: finite element, CC: correlation 636 

coefficient 637 
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 639 

Figure 5. (A) The FE model of a deep knee bend activity, (B) von Mises stress in tibial and 640 

patellar cartilages in full extension and (C) at maximum flexion. 641 
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  643 

Figure 6. The between-condition comparison for the distances between attachment site nodal 644 

locations. E1: Evaluator 1, E2: Evaluator 2, Au: Auto 645 
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 647 

Figure 7. Similarity between conditions across all output variables based on an RMSE-based 648 

similarity index (left) and Pearson Correlation Coefficient (right). Each bar (slice) represents the 649 

similarity between the two manual models for a given variable, with the variable indices shown 650 

around the plot. The length of each bar was computed by averaging the relative index across all 651 

subjects for that variable. Red and blue markers indicate the similarity between the automated 652 

model and the manual models from evaluator 1 (red) and evaluator 2 (blue). The colors of the 653 

bars are used solely for visual distinction between variables and do not represent any specific 654 

value. The RMSE-based similarity index was calculated for plotting purposes by first 655 

normalizing the RMSE values via dividing them by their maximum value, and then reversed so 656 

that higher scores denote greater similarity between the conditions. The complete list of variables 657 

and their raw and normalized RMSE values can be found in Appendix 1. * A significant 658 

difference between pairwise comparisons was found only for patellofemoral medial-lateral 659 

translation (variable 13) as denoted by an asterisk. 660 
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 662 

 663 

Figure 8. Average kinematic outputs across all subjects (showing a representative sample of 664 

kinematic outputs), with shaded regions illustrating the 25th and 75th percentile for each 665 

condition. A-P: anterior-posterior, M-L: medial-lateral, I-E: internal-external, V-V: varus-valgus, 666 

S-I: superior-inferior. 667 



34 
 

 668 



35 
 

Figure 9. Mean force and contact outputs across all subjects (showing a representative sample of 669 

soft-tissue forces, contact areas, joint forces and center of pressure outputs), with shaded regions 670 

illustrating the 25th and 75th percentile for each condition. CoP: center of pressure, PAT: patellar 671 

cartilage, TIB_MED: tibial medial cartilage. A-P: anterior-posterior, M-L: medial-lateral. Note: 672 

The mean ACL total force is higher than the 75th percentile for a portion of the cycle because the 673 

mid-cycle ACL force drops to zero in several knees, skewing the 75th percentile lower than the 674 

mean. 675 
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 695 

Figure 10. Average 90th percentile first principal logarithmic strain, and 50th and 95th percentile 696 

von Mises stress across all subjects, with shaded regions illustrating the 25th and 75th percentile 697 

for each condition. FEM: femoral cartilage, PAT: patellar cartilage, TIB_MED: tibial medial 698 

cartilage 699 


