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Abstract—Influence Maximization (IM) is a critical area of

research with widespread applications in viral marketing, social

network recommendations, and disease containment. The pri-

mary objective of IM is to identify an optimal seed set that max-

imizes influence spread across networks. Traditional approaches

to IM, including proxy-based, sketch-based, and simulation-based

methods, each face specific limitations. Proxy-based methods

often fail to capture complex seed interactions and are model-

specific, sketch-based methods balance scalability with accuracy

but can introduce errors, and simulation-based techniques, while

accurate, are computationally intensive, particularly for large-

scale graphs. Additionally, the relationship between seed set

configurations and their resulting influence spreads remains

largely a black box, posing significant challenges in modeling

and prediction without extensive computational effort. To address

these challenges, we introduce the Neural Tangent BOIM (NT-

BOIM) framework, which utilizes Bayesian Optimization (BO)

to reduce the number of required simulations significantly. This

approach employs the Neural Tangent Kernel (NTK) as the

kernel for the Gaussian Processes(GP) in our BO framework,

enhancing our ability to model the complex, high-dimensional

data typical of social networks. The NTK provides a robust

framework to analyze and predict the training dynamics of neural

networks, making it particularly effective for understanding

and optimizing influence spread across different seed sets. Our

NT-BOIM methodology not only enhances the performance of

IM tasks but also expedites the optimization process, offering

a computationally efficient alternative to traditional methods.

Key innovations include designing a specialized NTK that accu-

rately quantifies distances between seed sets in graph structures

and implementing a stratified sampling technique, preceded

by clustering, to ensure uniform sampling distribution within

each BO iteration. Extensive empirical experiments demonstrate

that our approach outperforms standard simulation methods in

both effectiveness and computational speed, bridging the gap

between computational efficiency and approximation accuracy.

[Code](https://github.com/XGraph-Team/NT-BOIM).

Index Terms—Influence Maximization, Bayesian Optimization,

Gaussian Process, Neural Tangent Kernel

I. INTRODUCTION

In an increasingly networked world, the concept of IM has
risen to prominence, attracting sustained interest from both
the academic and industrial communities [6], [14]. The signif-
icance of IM is underscored by its wide-ranging applications,
including viral marketing [4], personalized recommendations
in social networks [30], rumor mitigation [9], and the con-
tainment of infectious diseases [16]. The core objective of IM

is to identify a seed set of size k that optimizes the extent
of influence propagation, commonly referred to as influence
spread. Given that solving IM problems optimally is NP-hard,
existing research often resorts to approximation techniques,
primarily greedy algorithms [10], [26], [29], [31]. However,
the suboptimal performance or computational inefficiency of
current IM algorithms can lead to significant repercussions.
As such, the timely identification of the most effective seed
set remains a research imperative.

Current research on IM faces two major pain points: For-

mulation of an Optimal Algorithm for IM: IM methodolo-
gies predominantly bifurcate into two paradigms: proxy-based
and simulation-based approaches. Proxy-based techniques em-
phasize computational efficiency and have evolved over time,
employing heuristic estimations of nodal influence, while
subsequent advancements strive for a more nuanced capture
of propagation dynamics. Despite their computational advan-
tages, these methods often exhibit limitations in capturing in-
tricate seed interactions and are highly model-specific, thereby
compromising approximation quality. Conversely, simulation-
based methods prioritize approximation fidelity by iteratively
selecting nodes that maximize marginal influence, though
the computational burden escalates exponentially for large-
scale graphs. Modeling the Interplay between Seed Set

and Influence Propagation: The prevailing focus in existing
IM literature has predominantly been the identification of
influential seed sets, often neglecting the intricate relationship
between seed selection and resultant influence spread. Recent
attempts to dissect the influence contributions of individual
seeds and their interdependencies using global sensitivity
analysis still overlook the latent correlations between seed set
configurations and ultimate influence outcomes. Another line
of inquiry employs Graph Neural Networks as a predictive
model for individual seed influence but is constrained by
model transferability and computational overhead.

To address these challenges, we introduce the NT-BOIM, a
method that leverages the sample efficiency of BO to signifi-
cantly reduce the number of simulations required. We employ
the NTK as the kernel for the GP in our BO framework.
NTK represents a convergence point between neural networks
and kernel methods, offering a framework to analyze the
training dynamics of neural networks in the infinite-width
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limit. This allows us to model the complex, high-dimensional
data of social networks effectively, enhancing the prediction
of influence spread across different seed sets.

To facilitate graph-level BO, we design a specialized NTK
that accurately quantifies the distance between seed sets within
the graph structure. Moreover, we implement a stratified sam-
pling technique, preceded by clustering, to ensure a uniform
distribution of sampled instances within each BO iteration.
This methodology not only enhances performance but also
expedites the optimization process, offering a more compu-
tationally efficient alternative to traditional simulation-based
approaches for IM. Our primary contributions include:

• Proposing an efficient and effective simulation-based
method that deviates from conventional methods by incor-
porating the consideration of seed interactions, enhancing
the feasibility of the algorithm by substantially decreasing
the number of simulations required.

• Providing theoretical support for the proposed NTK and
sampling in IM, rigorously validating the kernel function
through theoretical analysis, and providing a compre-
hensive theoretical framework that significantly mitigates
variance.

• Conducting extensive empirical experiments to prove the
superiority of NT-BOIM, employing a suite of both
real-world and synthetic datasets that not only attain
performance metrics on par with traditional methods but
also exhibit a computational speedup.

II. RELATED WORK

A. Influence Maximization

IM is recognized as a NP-hard problem, prompting re-
searchers to explore feasible solutions with optimal per-
formance. The first approximation approach proposed a
simulation-based greedy algorithm, which, however, suffered
from scalability issues [10]. Subsequent simulation-based
methods aimed to improve performance or reduce complexity
but still faced prohibitive computational costs, limiting their
application to massive online networks [1], [8], [13], [25]. To
alleviate the burden of simulations, proxy-based approaches
emerged, approximating node spreading power using various
proxies. Early proxies were simple heuristics like degree,
PageRank [21], and eigen-centrality [33]. Later developments
introduced influence-aware and diffusion model-aware proxies
that offered more accurate estimations of seed influence spread
[3], [11], [29], [31]. Common diffusion models, such as the
Independent Cascade (IC) and Linear Threshold (LT), describe
activation dynamics but typically abstract away the stochastic
elements for analytical traceability. A comprehensive survey
of influence maximization models, covering both static and
dynamic networks, provides a detailed taxonomy and high-
lights new trends and challenges in detecting influential nodes
[42]. Recently, deep graph representation learning methods
have been proposed to address the challenges of IM, offering
accelerated inference and improved scalability [43].

B. Bayesian Optimization

BO is employed for optimizing black-box functions that
are costly to evaluate, constructing a probabilistic model
of the objective function to guide the search for optimal
solutions [15]. It has become a staple in hyperparameter tuning
and optimization of complex simulations and models [24].
Bayesian probability theory underpins the method, where a
prior distribution over function spaces is updated with observa-
tions, and an acquisition function determines subsequent eval-
uation points by balancing exploration with exploitation [22].
Researchers have extended BO to accommodate constraints,
parallel evaluations, and high dimensions [5], [7]. Although
BO has been applied over graph search spaces, most studies
have focused on node-level tasks and developed specific
kernels for node smoothing, which do not directly address
IM optimization challenges [2], [17], [19], [20], [28]. Recent
work has applied BO techniques to influence maximization,
addressing the complexity of multiplex diffusion processes
through scalable surrogate models [44].

C. Neural Tangent Kernel in Bayesian Optimization

The NTK bridges the gap between neural networks and
kernel methods by describing the evolution of a neural network
during training, particularly in infinitely wide networks where
it becomes deterministic and time-independent [34]–[36]. This
property allows for both theoretical analysis and practical
applications. NTK’s application within Bayesian Optimization
(BO) has shown improvements in sample efficiency and scal-
ability across various optimization tasks [37]–[39]. He et al.
[40] explore the connection between deep ensembles and GP
through the lens of NTK, providing a Bayesian interpretation
for deep ensembles. This development is particularly relevant
to IM, as it suggests potential avenues for quantifying uncer-
tainty in influence spread predictions and improving robustness
in dynamic network environments.

Recent work has extended the NTK framework to GNNs,
leading to the development of Graph Neural Tangent Kernels
(GNTKs). Krishnagopal and Ruiz [46] investigate the train-
ing dynamics of large-graph GNNs using GNTKs, providing
theoretical insights into their convergence properties on large
graphs. This advancement is significant for IM, as it enhances
our understanding of how GNNs behave in large network
settings, which is crucial for modeling influence propagation.
The relevance of NTK to IM stems from its ability to capture
complex relationships between seed sets and influence spread,
modeling IM as a function optimization problem over the
space of seed sets. By leveraging the NTK’s capacity to
approximate neural network behaviors in kernel space, we can
more accurately model the non-linear dynamics of influence
propagation in social networks. Despite its potential, chal-
lenges remain in designing appropriate kernels that effectively
capture the structural properties of graphs and the dynamics
of influence propagation. Integrating NTK with BO for IM
offers a promising direction for enhancing the efficiency and
effectiveness of IM algorithms, potentially leading to more
accurate and robust solutions in complex network settings.
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Fig. 1. Overview of NT-BOIM

III. PROBLEM SETUP

A graph is represented as a bidirectional structure G =
(V, E), where V and E denote the set of nodes and edges,
respectively, and |V| = N . Given this graph G, a predefined
seed budget k → N+, and a specific diffusion model d, the
objective of an IM algorithm is to identify a seed set ! of
size k that approximately maximizes the expected influence
spread ω(!) (i.e., numbers of covered nodes). Mathematically,
this can be formulated as:

! = argmax
!

ω(!), s.t. |!| ↑ k. (1)

To capture the underlying relationship between the seed set
! and the influence spread ω(!), we aim to approximate
a function f such that ω(!) ↓ f(!;G, d). Consequently,
Equation 1 can be reformulated as:

! = argmax
!

f(!;G, d), s.t. |!| ↑ k. (2)

IV. METHOD

NT-BOIM is a learning framework designed to identify
influential nodes in a network, as depicted in Figure 1.
This framework leverages BO, utilizing a GP model with
different kernel functions to predict influence spread based on
a given seed set of nodes. To enhance the accuracy of the GP
model and ensure efficient exploration of the search space, we
employ various sampling strategies, including stratified sam-
pling, cluster-based sampling, normal (Gaussian) sampling,
and random sampling. These strategies aim to address the chal-
lenges of high computational cost and diverse representation
in selecting influential nodes. Initially, we perform simulations
and utilize these sampling techniques to initialize the GP
model effectively. Subsequent model updates are conducted
iteratively, guided by the EI criterion to balance exploration
and exploitation. The iterative process continues until the
budget constraint is exhausted, and the final exploration of
candidate cases reveals the optimal collection of influential
nodes. This approach addresses the shortcomings of traditional
methods, which often ignore graph structure and node at-
tributes, leading to unreliable estimates of influence spread. By

incorporating graph information through specialized kernels
and using advanced sampling strategies, NT-BOIM provides a
robust and efficient solution for IM in complex networks.

A. Reduce Search Space

Consider a graph with N nodes. Node sets are typically
associated with a binary vector, where they are labeled as 1 if
they are sources and 0 otherwise. This vector is represented
as s = {0, 1}N . With k sources, the total possible source con-
figurations is

(N
k

)
. Recognizing that not all nodes are equally

significant in diffusion, like major cities in transport networks
or key influencers in social networks, we focus on reducing the
potential source combinations using various strategies tailored
for different variants of our NT-BOIM approach. In general,
the following techniques are employed across different NT-
BOIM variants to manage and reduce the search space: Focus
on Significant Nodes: Many variants prioritize nodes based
on their degree centrality or other centrality measures. For
instance, a common strategy involves selecting the top a nodes
by degree, thereby reducing the search space to

(a
k

)
where

a ↔ N . Distance Maximization: To mitigate the overlap
of influence regions, we maximize the inner distance among
selected seed sets. This is done by ensuring that the shortest
path between nodes in a seed set s is maximized:

ds = max
s

min
u,v

d(u, v), ↗u, v → s (3)

where d(u, v) is the shortest node distance. Top ds seed sets
are chosen as candidates.

B. Kernel Design for Gaussian Process

A kernel that is appropriate and valid ensures that GPs
reliably estimate the extent of influence propagation, given
a specific seed set. One significant issue lies in the absence
of graph structural information in the binary seed vector
representation s. To illustrate, consider two 3-node sets: one
original and the other formed by shifting each node by one
hop based on the original set. Although it is anticipated that
the final influence spread would be quite similar for these
two sets due to their structural similarity, the similarity of
the binary representations is actually quite low (0 in this
case). This binary representation inadequately characterizes
the similarity between two sets of nodes, as it disregards the
underlying graph structure that significantly impacts influence
propagation. Furthermore, the binary representation violates
the smoothness assumption of GP, which posits that similar
inputs should produce similar outputs. Without incorporating
structural information, the GP model cannot leverage this
assumption effectively, leading to unreliable estimates of in-
fluence spread. Previous work on graph kernels, including the
Radial Basis Function (RBF) kernel, has primarily focused
on structural comparisons, often ignoring node attributes [12],
[18], [23], [27].

In order to overcome this constraint, we propose novel
kernels that effectively combine graph structure information
and attributes with theoretical validity. We introduce a new
kernel based on NTK. This kernel leverages the expressiveness
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of neural networks to capture complex patterns in graph-
structured data. The NTK model in our implementation lever-
ages the Neural Tangents library [41], a powerful tool that
enables the computation of the NTK for infinitely wide neural
networks. This infinite-width approximation offers a compu-
tationally efficient way to capture the complex interactions
between graph structure and node features that influence the
dynamics of information diffusion.

The NTK can be formulated as follows:
First, the input graph data is transformed using a neural

network, where the transformation is parameterized by the
neural network’s weights and biases. Let ωω(s) represent the
output of the neural network given the seed vector s and
parameters ε.

The NTK is then defined as:

KNTK(s, s
→) = Eω

[
ϑωω(s)

ϑε

ϑωω(s→)

ϑε

↑
]
, (4)

where the expectation is taken over the distribution of the
neural network parameters ε.

To incorporate the graph Fourier transformation, we first
transform the source vector s into its Fourier counterpart s̃ as
follows:

s̃ = U
↑
s, s̃(i) =

n∑

i=1

siU
↑(i), (5)

where U↑ is the matrix of eigenvectors of the graph Laplacian.
Then, the Fourier-transformed NTK (FNTK) is defined as:

KFNTK(s, s
→) = Eω

[
ϑωω(s̃)

ϑε

ϑωω(s̃→)

ϑε

↑]
. (6)

C. Proof of Validity as a Mercer Kernel

Theorem: The FNTK KFNTK(s, s→) is a valid Mercer kernel.
Proof:

• Definition of the Kernel: The FNTK is defined as the
expected inner product of the gradients of the neural
network outputs with respect to the parameters ε after the
input vectors have been transformed by the graph Fourier
transformation. This expectation over the gradients can be
seen as a form of averaging over multiple feature maps,
where each feature map is defined by the neural network’s
gradients.

• Positive Semi-Definiteness:
Assumption: We assume that the expectation Eω[·] is
well-defined and results in a finite kernel matrix.
Consider any finite set of points {s1, s2, . . . , sn}
and form the kernel matrix K with entries
Kij = KFNTK(si, sj). Let ”ω(S) be the matrix
where each row is the vectorized gradient
(Jacobian) of ωω(s̃i) with respect to ε, i.e.,

”ω(S) =
[
εϑω(s̃1)

εω

↑
,
εϑω(s̃2)

εω

↑
, . . . ,

εϑω(s̃n)
εω

↑]↑
.

The kernel matrix can be expressed as:

K = Eω

[
”ω(S)”ω(S)

↑]
. (7)

For any vector v → Rn, consider the quadratic form:

v↑
Kv = v↑Eω

[
”ω(S)”ω(S)

↑]v
= Eω

[
v↑”ω(S)”ω(S)

↑v
]
.

(8)

The term inside the expectation, v↑”ω(S)”ω(S)↑v,
is the squared norm (Euclidean length) of the vector
”ω(S)↑v, and is therefore non-negative.
Since expectations preserve non-negativity, we have
v↑

Kv ↘ 0 for all v, proving that K is positive semi-
definite.
Since the FNTK matrix K is positive semi-definite for
any finite set of input points, the FNTK KFNTK(s, s→) is
a valid Mercer kernel.
Next, we set up a GP with the FNTK kernel to realize
Equation 2. The purpose of this GP is to estimate the
expected influence spread ω of the provided seed set s

evaluated by simulation.

GP : s ≃ ω(s). (9)

D. Data Acquisition

To train our GP model effectively, we need pairs of seed sets
(si) and their corresponding influence spreads ω(si), acquired
through simulations. The objective is to select diverse and
representative seed sets to minimize variance. We employ four
principal sampling Techniques to initialize and iteratively train
the GP model, balancing exploration and exploitation:

• Stratified Sampling: We employ stratified sampling to
ensure diverse, representative selections from candidate
seed sets. Mathematically, let S = {s1, s2, . . . , sn} be all
candidate sets. Partition S into k strata S =

⋃k
i=1 Si,

where each Si contains sets of similar size. For each
stratum Si, sample mi sets, determined by the desired
representation level.

• Clustered Sampling: Group S into ϖ clusters Cj based on
a size-divisibility criterion, where S =

⋃ϖ
j=1 Cj . Each

cluster Cj includes seed sets where the size modulo a
constant factor (e.g., 5) is the same. Sample pj seed sets
from each cluster Cj , ensuring a varied size representa-
tion within the samples.

• Normal Distribution Sampling: Seed sets are selected
based on a normal distribution with mean µ = N↓1

2 and
standard deviation ϱ = N

6 . Indices xi are clipped to the
range [0, N ⇐ 1] to ensure valid selections.

• Random Sampling: As a baseline, seed sets are randomly
selected from S with equal probability, providing a com-
parison to structured sampling methods.

The selection of seed sets in each iteration is driven by
Expected Improvement (EI), optimizing:

s
↔ = argmax

si
EI(si) = E[ς(si, s+) · I(si)], (10)

where ς(si, s+) = f(si; o↔) ⇐ f(s+; o↔) and I(si) is an
indicator function. Initial seed sets are chosen based on degree
centrality. Influence spreads ω are estimated using simulations
with models such as IC or LT, providing data for GP training.
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Our integrated sampling strategies within a BO significantly
enhance the efficiency and performance of IM algorithms.

E. Algorithm

NT-BOIM with Fourier transformation is outlined in Al-
gorithm 1. Starting with a graph G and various configuration
parameters, it aims to find a k-sized node set ! that maximizes
the expected influence spread ω. The algorithm computes the
normalized Laplacian and its eigenvectors to create Fourier
and inverse Fourier transform matrices. Candidate sets are
generated and clustered based on the allowed shortest distance
between nodes. A subset of candidate sets is sampled to form
the training dataset. For each candidate set, a Fourier signal
is created, and the diffusion model (IC or LT) calculates the
influence spread, forming the training labels. An NTK model
is initialized with the training data, using EI as the acquisition
function. In each iteration, new candidate sets are sampled,
and their Fourier signals are evaluated using the NTK model.
The most promising candidate is selected, and its source set is
found via the inverse Fourier transform. This set is evaluated
using the diffusion model, and the NTK model is updated. This
process repeats for the specified number of iterations. Finally,
the best-performing source set is selected as the seed set !.
This approach uses Fourier transforms to efficiently handle
candidate sets in the spectral domain, while clustering and the
NTK model balance exploration and exploitation during BO.

F. Time Complexity

We analyze the time complexity of NT-BOIM based on
the provided code, focusing on the shared components of
both NT-BOIM cluster and NT-BOIM stratified methods, as
well as their unique elements, including the added Fourier
transformations.

Preparation Phase:

• Candidate Generation: This process involves several
steps: Calculating degrees of all nodes and sorting them:
O(N logN). Generating all combinations of k from
C candidates: O

((C
k

))
. Calculating shortest paths be-

tween pairs of nodes in each combination, dominated
by: O

((C
k

)
· (k2 · (M +N logN))

)
. Applying Fourier

transforms to each candidate set to create signals:
O

((C
k

)
·N logN

)
for all candidate sets. Thus, the over-

all complexity for candidate generation is:

O

(
N logN +

(
C

k

)
· (k2 · (M +N logN) +N logN)

)

• Stratification or Clustering Candidate Sets: This step
groups candidate sets based on their size, which has a
linear complexity relative to the number of candidate sets
n: O(n).

• Model Initialization: Initializing the model involves
computing the kernel matrix, which is polynomial in the
input size and number of parameters. We denote this com-
plexity as O(g(N,P )), where P is the number of model
parameters. Here, g(N,P ) represents the complexity of

computing the kernel matrix, which is polynomial in the
number of nodes (N ) and model parameters (P ).

GP Training and Prediction (Iterative Loop):

• Sampling: The complexity of sampling from strata or
clusters is negligible compared to other steps, so we can
consider it O(1).

• Influence Spread Simulation: The complexity here re-
mains O(T ), where T is the simulation time for one seed
set. Perform |strata| or |clusters| simulations per iteration.

• Model Update and Prediction: This involves updating
the model or NTK and making predictions. The complex-
ity is O(g(N,P )), the same as initialization, as the kernel
matrix needs to be recomputed.

• EI Optimization: The complexity of optimizing EI in-
volves evaluating it for each sampled seed set, which is
dominated by the simulation cost and Fourier transform
application.

Considering these factors, the overall time complexity for
both methods can be expressed as:

O

(
N logN +

(
C

k

)
· (k2 · (M +N logN) +N logN)

+g(N,P ) + φ · (|strata/clusters| · (T + g(N,P ))))

where: O(N logN) is for sorting degrees and applying
Fourier transforms.

(C
k

)
· (k2 · (M +N logN) +N logN) is

for generating and filtering candidate sets and signal creation.
g(N,P ) is the complexity of the model initialization and up-
date. φ is the BO budget (number of iterations). |strata/clusters|
is the number of strata or clusters. T is the simulation time for
one seed set. If we assume the simulation time T dominates
the other terms (as is often the case), the complexity simplifies
to O(φ · |strata/clusters| ·T ). If the number of strata or clusters
|strata/clusters| is a constant, the complexity further simplifies
to O(φT ). Compared to the original simulation-based greedy
method (GRD) [10], which performs N simulations to find
the first seed, for each following seed, the number of simu-
lations reduces by 1. Thus, the total number of simulations
is N + (N ⇐ 1) + · · · + (N ⇐ k + 1) = kN ⇐ k2↓k

2 and
the time complexity is O(kNT ). CELF++ [13] improves the
efficiency of the greedy algorithm by reducing the number
of evaluations. CELF++ maintains a priority queue to keep
track of the marginal gains of nodes and reduces unnecessary
evaluations by leveraging lazy forward optimization. The
theoretical time complexity of CELF++ is O(N logN+kNT ).
However, in practice, CELF++ performs fewer evaluations
than the standard greedy method, making it faster in real-world
scenarios.The time complexity for the fastest simulation-based
IM, which is Sobol IM [32] (SIM), is O(M), where M is a
proxy-based IM algorithm that combines with the following
simulations. It is claimed that SIM combined with Degree Dis-
count (SIM-DD) could provide a good enough solution. Thus,
the time complexity can be regarded as O(k logN). However,
this time complexity considers the evaluation time negligible.
As the evaluation is #P-hard, which is at least as hard as NP
problems, we need to consider the evaluation time. Therefore,
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the actual time complexity for SIM combined with degree
discount is O(k logN + 2kT ). Assuming that the complexity
of T dominates N

3, we can put the time complexities of the
four methods together: NT-BOIM: O(φT ), GRD: O(kNT ),
SIM-DD: O(2kT ), CELF++: O(N logN + kNT ).

V. EXPERIMENTAL SETUP

We assess the NT-BOIM approach using the Cora and
CiteSeer datasets, representing citation networks in machine
learning and computer science, respectively. These datasets
are comprised of 2,708 and 3,312 publications and model
real-world social network characteristics, such as clustering
and power-law degree distributions. Influence propagation is
simulated using both the IC and LT models to reflect different
mechanisms of information spread in networks. The perfor-
mance of NT-BOIM is benchmarked against state-of-the-art
IM methods, including greedy algorithms and heuristic-based
approaches. Evaluation metrics focus on influence spread and
computational efficiency. Experiments are conducted with var-
ious random initializations to ensure robustness, and statistical
tests determine the significance of performance differences.
Additional tests explore the impact of parameters like candi-
date set size, number of initial simulations, and the type of
acquisition function used in BO, providing insights into the
optimal configuration of NT-BOIM. The setup aims to com-
prehensively evaluate the efficacy of NT-BOIM in academic
citation networks and understand its sensitivity to different
design choices. The Influence Spread (eval) measures the
coverage achieved by the seed nodes, where higher values
indicate greater IM, and the Computational Time (runtime)

assesses the method’s efficiency, recorded in seconds.

VI. RESULTS ANALYSIS

This section evaluates various IM methods on the CITE-
SEER and CORA datasets under IC and LTmodels, analyzing
performance via Eval Mean and Eval Std metrics, with a focus
on the proposed NT-BOIM method.

A. CITESEER Dataset

• In the LT Model, NT-BOIM methods with cluster sam-
pling demonstrate potential at 913.962, though with
higher variability, suggesting room for optimization.
CELF++ remains the top performer with 1014.300, while
IMRank closely follows at 979.220.

• In the IC Model, NT-BOIM methods show strong per-
formance. Notably, the NT-BOIM stratified achieves
646.584, closely approaching the effectiveness of
CELF++, which leads with the highest performance of
658.720 and low variability. IMRank also shows solid
performance at 619.630.

B. CORA Dataset

• In the LT Model, NT-BOIM methods underperform com-
pared to traditional methods such as degree-based strate-
gies. However, they still offer adaptability and potential
for further optimization. CELF++ again leads with top
performance at 1719.560.

• In the IC Model, NT-BOIM methods demonstrate ro-
bust performance with cluster (1146.188) and stratified
(1164.200) sampling, closely trailing CELF++, which has
the highest performance at 1227.310. IMRank also shows
strong performance at 1143.440.

C. Sampling Strategies

Cluster Sampling often shows the highest mean among NT-
BOIM methods but with considerable variability, indicating
a potential for capturing network structure effectively. Strat-
ified Sampling exhibits strong performance, especially in IC
models, suggesting it achieves a good balance in seed selec-
tion. Random and Normal Sampling are lower performing,
providing baselines for assessing more sophisticated strate-
gies. NT-BOIM methods are competitive, particularly in IC
models, where the cascading nature of influence spread can
be effectively modeled. While CELF++ consistently outper-
forms across datasets and models, NT-BOIM shows significant
potential, especially with cluster and stratified sampling strate-
gies. The performance of NT-BOIM in IC models versus LT
models highlights its suitability for scenarios that align closely
with the probabilistic nature of IC models. This suggests that
NT-BOIM offers a valuable and flexible tool for IM tasks
where rapid, cascading influence patterns are prevalent.

Fig. 2. NT-BOIM performs well with LT on CiteSeer

Fig. 3. NT-BOIM demonstrates competitiveness with IC on CiteSeer
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Fig. 4. NT-BOIM needs improvement with LT on Cora

Fig. 5. NT-BOIM shows robust performance with IC on Cora

D. Runtime

According to the Table 1, the NT-BOIM variants consis-
tently achieve performance close to CELF++ in terms of
evaluation mean, with an average of 96% on the CiteSeer
dataset and 93% on the Cora dataset. Additionally, they
significantly outperform CELF++ in runtime, being on average
59% faster on CiteSeer and 72% faster on Cora.

VII. CONCLUSION

We introduce NT-BOIM, a novel IM approach utilizing
FNTK to enhance the efficiency and accuracy of simulations.
This method leverages BO to unravel complex relationships
between seed sets and influence spread, demonstrating compet-
itive performance across various datasets. Through theoretical
validation and empirical experiments, NT-BOIM proves to be a
robust tool for network analysis, simplifying the computational
demands while capturing detailed network dynamics more
effectively than traditional methods.
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