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Distance covariance is a popular dependence measure for two random vectors X and Y of possibly different
dimensions and types. Recent years have witnessed concentrated efforts in the literature to understand the
distributional properties of the sample distance covariance in a high-dimensional setting, with an exclusive
emphasis on the null case that X and Y are independent. This paper derives the first non-null central
limit theorem for the sample distance covariance, and the more general sample (Hilbert–Schmidt) kernel
distance covariance in high dimensions, in the distributional class of (X,Y) with a separable covariance
structure. The new non-null central limit theorem yields an asymptotically exact first-order power formula
for the widely used generalized kernel distance correlation test of independence between X and Y . The
power formula in particular unveils an interesting universality phenomenon: the power of the generalized
kernel distance correlation test is completely determined by n · dCor

2(X,Y)/
√
2 in the high-dimensional

limit, regardless of a wide range of choices of the kernels and bandwidth parameters. Furthermore, this
separation rate is also shown to be optimal in a minimax sense. The key step in the proof of the non-null
central limit theorem is a precise expansion of the mean and variance of the sample distance covariance
in high dimensions, which shows, among other things, that the non-null Gaussian approximation of the
sample distance covariance involves a rather subtle interplay between the dimension-to-sample ratio and
the dependence between X and Y .

Keywords: central limit theorem; distance covariance; independent test; non-null analysis; power analysis;
Poincaré inequalities.

1. Introduction

1.1 Overview

Given samples from a random vector (X,Y) inRp+q, it is of fundamental statistical interest to test whether
X and Y are independent. The long history of this problem has given rise to a large number of dependence
measures targeting at different types of dependence structure. Notable examples include the classical
Pearson correlation coefficient [32], rank-based correlation coefficients [5,15,21,25,35,40,49], Cramér-
vonMises-type measures [47], measure based on characteristic functions [41,44], kernel-based measures
[18,19] and sign covariance [4,46]. We refer to the classical textbooks [1, Chapter 9] and [31, Chapter
11] for a systematic exposition on this topic.

Among the plentiful dependence measures for such a purpose, the distance covariance metric and
its generalizations [43,44] have attracted much attention in recent years. In one of its many equivalent
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forms, the distance covariance between X and Y can be defined as (cf. [41, Theorems 7 and 8])

dCov2(X,Y) ≡ E
(
‖X1 − X2‖‖Y1 − Y2‖

)
− 2E

(
‖X1 − X2‖‖Y1 − Y3‖

)

+ E
(
‖X1 − X2‖)E

(
‖Y1 − Y2‖

)
. (1.1)

Here (Xi,Yi), i = 1, 2, 3 are independent copies from the joint distribution of (X,Y), and ‖·‖ is the
Euclidean norm. The distance covariance metric dCov2(X,Y) is particularly appealing for several nice
features. First,X and Y are independent if and only if dCov2(X,Y) = 0. Second, dCov2(X,Y) can be used
in cases where X and Y are of different dimensions and data type (discrete, continuous or mixed). Third,
several estimators of dCov2(X,Y) are known to allow for efficient calculation. Due to these reasons, the
distance covariance has been utilized in a wide range of both methodological and applied contexts, see
e.g. [27,28,30,39,50,51] for an incomplete list of references.

An estimator of dCov2(X,Y) based on n i.i.d. samples (X1,Y1), . . . , (Xn,Yn) from the distribution
of (X,Y) is first proposed in [44], with its bias-corrected version proposed in [43], which is now
known as the sample distance covariance dCov2∗(X,Y). The finite-sample distribution of dCov2∗(X,Y)

is generally intractable; so the literature has focused on deriving its asymptotic distribution in different
growth regimes of (n, p, q), cf. [17,22,42,52]. In the fixed-dimensional asymptotic regime when p, q are
fixed and n diverges to infinity, [22] showed that dCov2∗(X,Y) converges in distribution to a mixture
of chi-squared distributions. This is complemented by the result of [42], where a t-distribution limit
was derived in the so-called ‘high-dimensional low sample size’ regime when n remains fixed and
both p, q diverge to infinity. The high-dimensional regime where both the sample size n and the data
dimension p, q diverge was recently studied in [17,52], where dCov2∗(X,Y) was shown to obey a central
limit theorem (CLT). We also refer to [16,48] for some related distributional results in the problem of
two-sample distribution testing. Except for some non-null results in [52, Proposition 2.2.2] under the
fixed n regime, all these results are derived under the null scenario where X and Y are independent.
This leaves open the more challenging but equally important issue of non-null limiting distributions
of dCov2∗(X,Y), which are the key to a complete characterization of the power behaviour of distance
covariance based tests. Bridging this significant theoretical gap is one of the main motivations of
this paper.

1.2 Non-null CLTs

For the majority of the paper, we work with distributions of (X,Y) with a separable covariance structure
(see Section 2.2 ahead for details), and perform an exact analysis of the distributional properties of the
sample distance covariance dCov2∗(X,Y) in the following high-dimensional regime:

min{n, p, q} → ∞. (1.2)

Our first main result is the following non-null CLT (see Theorem 2.2 below for the formal statement):
Uniformly over the covariance matrix Σ of (X�,Y�)� with a compact spectrum in (0,∞),

dCov2∗(X,Y) − dCov2(X,Y)

Var1/2
(
dCov2∗(X,Y)

) converges in distribution to N (0, 1) (1.3)
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in the regime (1.2). Here N (0, 1) denotes the standard normal distribution. For simplicity, we have
presented here the asymptotic version of the result; the more complete Theorem 2.2 below is non-
asymptotic in nature and gives an error bound with explicit dependence on the problem parameters
(n, p, q). Furthermore, we show that an analogue of (1.3) also holds for dCov2∗(X), the ‘marginal’
analogous unbiased estimator of dCov2(X). To the best of our knowledge, (1.3) is the first non-null
CLT for dCov2∗(X,Y) in the literature.

Let us now give some intuition why one would expect a non-null CLT (1.3) that holds for a
general Σ in the regime (1.2). It is well known that the sample distance covariance dCov2∗(X,Y)

admits a U-statistics representation (cf. Proposition 2.1) with first-order degeneracy under the null.
By classical theory in the fixed-dimensional asymptotics (i.e. p, q fixed with n → ∞), a CLT holds
for dCov2∗(X,Y) under any fixed alternative Σ 	= Ip+q, while a non-Gaussian limit holds under
the null Σ = Ip+q. In such fixed-dimensional asymptotics, the Gaussian limit is due to the non-

degeneracy of dCov2∗(X,Y) under the alternative, while the non-Gaussian limit is due to the degeneracy
of dCov2∗(X,Y) under the null. Now, as high dimensionality also enforces a Gaussian approximation
of dCov2∗(X,Y) under the null with degeneracy (cf. [17,52]), one would naturally expect the finite-
sample distribution of the centred dCov2∗(X,Y) under a general Σ , to be approximately a ‘mixture’
of a centred Gaussian component due to non-degeneracy and another centred Gaussian component
due to degeneracy, which is again Gaussian. The non-null CLT (1.3) formalizes this intuition in the
regime (1.2).

To formally implement the above intuition, an important step in the proof of (1.3) is to obtain precise
mean and variance expansions for the sample distance covariance dCov2∗(X,Y) in the regime (1.2). In
particular, we show in Theorem 8.4 that the mean can be expanded as

dCov2(X,Y) =
‖ΣXY‖2F

2
√

tr(ΣX) tr(ΣY)

(
1 + o(1)

)
, (1.4)

and in Theorem 9.12 that the variance under the null σ 2
null can be expanded as

σ 2
null =

‖ΣX‖2F‖ΣY‖2F
2n(n− 1) tr(ΣX) tr(ΣY)

(
1 + o(1)

)
. (1.5)

Here ΣX , ΣY and ΣXY are sub-blocks of the covariance matrix Σ = [ΣX ,ΣXY ;ΣYX ,ΣY ]; tr(·)
denotes the trace and ‖·‖F denotes the matrix Frobenious norm, and o(1) is the standard small-
o notation representing a vanishing term under the asymptotics (1.2). The variance formula for
general Σ (explicit form see Theorem 9.12) is rather complicated so is not presented here, but as
explained above, it is expected to contain two parts that are contributed individually by the non-
degenerate and the degenerate components of dCov2∗(X,Y). Notably, the contributions of these two
components to the Gaussian approximation in (1.3) depend on the dimension-to-sample ratio in a
fairly subtle way. In ‘very high dimensions’, the non-null CLT is entirely driven by the degeneracy
of dCov2∗(X,Y) regardless of the degree of dependence between X and Y . On the other hand, in
‘moderate high dimensions’, dependence between X and Y plays a critical role in determining the
contributions of the (non-)degeneracy in the non-null CLT. See the discussion after Theorem 2.2 for
details.
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1.3 Independent test via distance covariance: power asymptotics

A major application of the non-null CLT derived in (1.3) is a precise power formula for the following
popular distance correlation test of independence between X and Y , first considered in [42]:

Ψ (X,Y;α) ≡ 1

(∣∣∣∣
n · dCov2∗(X,Y)√

2dCov2∗(X) · dCov2∗(Y)

∣∣∣∣ > zα/2

)
. (1.6)

The above independence test and the null part of (1.3) is connected by the mean and variance expansions
in (1.4) and (1.5). In fact, as will be detailed in Section 3, the above test is asymptotically (in the regime
(1.2)) equivalent to the (infeasible) z-test built from the null part of (1.3). As a direct consequence,
Ψ (X,Y;α) will also have an asymptotic size of α. The null behaviour of (a variant of) Ψ (X,Y;α) was
first studied in [42] in the regime of fixed n and min{p, q} → ∞, and then in [17] in a high-dimensional
regime slightly broader than ours (1.2).

Having understood the behaviour of the test (1.6) under the null, we now turn to the more challenging
question of its behaviour under a generic alternative covarianceΣ . Using again the non-null CLT in (1.3),
we show that the test statistic in (1.6) is asymptotically normal with a mean shift (formal statement see
Theorem 3.1):

EΣΨ (X,Y;α) = P(|N (mn(Σ), 1)| > zα/2) + o(1). (1.7)

Here EΣ denotes expectation under the data distribution with covariance Σ so the left side is the power
of the test Ψ (X,Y;α), and the mean shift parameter mn(Σ) can be either

n · dCor2(X,Y)
√
2

≡
ndCov2(X,Y)√

2dCov2(X)dCov2(Y)
or

n‖ΣXY‖2F√
2‖ΣX‖F‖ΣY‖F

.

Here the (rescaled) left side is known as the distance correlation between X and Y , and its asymptotic
equivalence to the right side follows again from the mean expansion in (1.4). It follows directly from
(1.7) that if the spectra of ΣX and ΣY are appropriately bounded, Ψ (X,Y;α) has asymptotically
full power if and only if n · dCor2(X,Y) → ∞. A complementary minimax lower bound in Theo-
rem 3.3 shows that this separation rate cannot be further improved from an information theoretic point
of view.

Power results for tests based on distance covariance (correlation) are scarce, particularly in high
dimensions when both n and p and/or q diverge to infinity. [52] gives a relatively complete power
characterization for a related studentized test in the regime of fixed n and p ∧ q → ∞, followed
by some partial results in the regime min{p, q}/n2 → ∞. The same test Ψ (X,Y;α) as in (1.6) is
recently analysed in [17] in the slightly broader regime min{n,max{p, q}} → ∞, but their analysis
requires a much stronger condition

√
n · dCor2(X,Y) → ∞ for power consistency (see their theorem

5 and subsequent discussion). In contrast, under the distributional Assumption A, (1.7) gives a much
more precise characterization of the power behaviour of the distance correlation test (1.6), even when
consistency does not hold.
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1.4 Kernel generalizations and power universality

Following [18,19], the distance covariance in (1.1) can be naturally generalized to the so-called Hilbert–
Schmidt covariance:

dCov2(X,Y; f , γ ) ≡ E

[
fX
(
‖X1 − X2‖/γX

)
fY
(
‖Y1 − Y2‖/γY

)]

− 2E
[
fX
(
‖X1 − X2‖/γX

)
fY
(
‖Y1 − Y3‖/γX

)]

+ E

[
fX
(
‖X1 − X2‖/γX

)]
E

[
fY
(
‖Y1 − Y2‖/γY

)]
. (1.8)

Here f = ( fX , fY) are kernel functions, and γ = (γX , γY) ∈ R
2
≥0 are the bandwidth parameters for X

and Y , respectively. dCov2(X; f , γ ) and dCov2(Y; f , γ ) are defined analogously. The above definition
reduces to the (rescaled) standard distance covariance in (1.1) when the kernel is taken to be the
identity function. Let dCov2∗(X,Y; f , γ ), dCov2(Y; f , γ ), dCov2∗(X; f , γ ) be the sample kernel distance
covariance. As a key step of the universality results presented below, we show that these quantities can
be related to the standard sample distance covariance: under mild conditions on kernels f = ( fX , fY) and
bandwidths γ = (γX , γY),

dCov2∗(X,Y; f , γ ) = �(γ )dCov2∗(X,Y)
(
1 + oP(1)

)
. (1.9)

Here oP(1) is again under the asymptotics (1.2) and �(γ ), whose exact definition is given in (2.13) below,
depends on the kernels f , bandwidths γ and population covariance Σ . Similar expansions hold for the
marginal quantities dCov2(X; f , γ ) and dCov2(Y; f , γ ).

Relation (1.9) implies that as long as the scaling factor �(γ ) stabilizes away from zero and infinity,
dCov2∗(X,Y; f , γ ) (up to a scaling) shares the same limiting distribution as dCov2∗(X,Y), which has been
studied in detail in the previous subsection. In particular, both the non-null CLT in (1.3) and the power
expansion in (1.7) hold for the kernelized distance covariance as well, upon changing the test (1.6) to its
kernelized version in the latter result; see Theorems 2.6 and 3.1 for formal statements. In other words, the
power behaviour in (1.7) exhibits universality with respect to both the choice of kernels and bandwidth
parameters; see Section 4 for numerical evidence.

1.5 Organization

The rest of the paper is organized as follows. Section 2 starts with some background knowledge of the
distance covariance metric and then states the main non-null CLTs for both the canonical sample distance
covariance and its kernel generalizations. Section 3 studies the power behaviour of a class of generalized
kernel distance correlation tests and discusses their minimax optimality. Some numerical simulations for
the main results in the preceding two sections are presented in Section 4, with some concluding remarks
in Section 5. Section 6 is devoted to a proof outline for the non-null CLTs. Details of the important steps
are then presented in Sections 7–10, followed by the main proof in Section 11. The rest of the technical
proofs are deferred to the supplement.

1.6 Notation

For any positive integer n, let [n] denote the set {1, . . . , n}. For a, b ∈ R, a∨ b ≡ max{a, b} and a∧ b ≡
min{a, b}. For a ∈ R, let a+ ≡ a ∨ 0 and a− ≡ (−a) ∨ 0. For x ∈ R

n, let ‖x‖p = ‖x‖�p(Rn)
denote its
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p-norm (0 ≤ p ≤ ∞) with ‖x‖2 abbreviated as ‖x‖. Let Bp(r; x) ≡ {z ∈ R
p : ‖z− x‖ ≤ r} be the unit �2

ball in R
p. By 1n we denote the vector of all ones in R

n. For a matrix M ∈ R
n×n, let ‖M‖

op
and ‖M‖F

denote the spectral and Frobenius norms of M, respectively. For two matrices M,N of the same size,
let M ◦ N denote their Hadamard product. We use {ej} to denote the canonical basis, whose dimension
should be self-clear from the context.

We use Cx to denote a generic constant that depends only on x, whose numeric value may change
from line to line unless otherwise specified. Notations a �x b and a �x b mean a ≤ Cxb and a ≥ Cxb,
respectively, and a �x b means a �x b and a �x b. The symbol a � b means a ≤ Cb for some absolute
constant C. For two non-negative sequences {an} and {bn}, we write an � bn (respectively, an � bn) if
limn→∞(an/bn) = 0 (respectively, limn→∞(an/bn) = ∞). We write an ∼ bn if limn→∞(an/bn) = 1.
We follow the convention that 0/0 = 0.

Letϕ,Φ be the density and the cumulative distribution function of a standard normal randomvariable.
For any α ∈ (0, 1), let zα be the normal quantile defined by P(N (0, 1) > zα) = α. For two random
variables X,Y on R, we use dKol(X,Y) to denote their Kolmogorov distance defined by

dKol(X,Y) ≡ sup
t∈R

∣∣P
(
X ≤ t

)
− P

(
Y ≤ t

)∣∣. (1.10)

Here B(R) denotes the Borel σ -algebra of R.

2. Non-null CLTs

2.1 Distance covariance: a review

We start with a review for the distance covariance (correlation). For two random vectors X ∈ R
p and

Y ∈ R
q, the squared distance covariance [44] is originally defined by

dCov2(X,Y) ≡
∫

Rp+q

|ϕ(X,Y)(t, s) − ϕX(t)ϕY(s)|2

cpcq‖t‖p+1‖s‖q+1
dtds.

Here cp = π (p+1)/2/Γ
(
(p+1)/2

)
with Γ (·) denoting the gamma function, and ϕ(·) is the characteristic

function. The marginal quantities dCov2(X,X) and dCov2(Y ,Y) are defined analogously, and we will
shorthand them as dCov2(X) and dCov2(Y) in the sequel. It is well known that X and Y are independent
if and only if dCov(X,Y) = 0, hence dCov2(X,Y) captures any kind of dependence between X and
Y including nonlinear and non-monotone ones. Analogous to the standard notion of covariance and
correlation, the squared distance correlation is defined by

dCor2(X,Y) ≡
dCov2(X,Y)√

dCov2(X)dCov2(Y)
,

with convention dCor2(X,Y) ≡ 0 if dCov2(X)dCov2(Y) = 0.
The distance covariance can be equivalently characterized in a number of different ways. In addition

to (1.1), another useful representation that will be particularly relevant for our purpose is through the
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double-centred distances:

U(x1, x2) ≡ ‖x1 − x2‖ − E‖x1 − X‖ − E‖X − x2‖ + E‖X − X′‖,

V(y1, y2) ≡ ‖y1 − y2‖ − E‖y1 − Y‖ − E‖Y − y2‖ + E‖Y − Y ′‖. (2.1)

Then by (1.1) or [29, pp. 3287], we have the identity

dCov2(X,Y) = EU(X1,X2)V(Y1,Y2). (2.2)

Now we define the sample distance covariance. For n copies of i.i.d. observations (X1,Y1), . . . , (Xn,Yn),
define two symmetric matrices A,B ∈ R

n×n entrywise by

Ak� ≡ ‖Xk − X�‖, Bkl ≡ ‖Yk − Y�‖, 1 ≤ k, � ≤ n. (2.3)

Following [43], the bias-corrected sample distance covariance is defined by

dCov2∗(X,Y) =
1

n(n− 3)

∑

k 	=�

A∗
k�B

∗
k�, (2.4)

where A∗,B∗ ∈ R
n×n are U-centred versions of A,B defined by

A∗ = A−
11�A+ A11�

n− 2
+

11�A11�

(n− 1)(n− 2)
,

B∗ = B−
11�B+ B11�

n− 2
+

11�B11�

(n− 1)(n− 2)
. (2.5)

Marginal quantities dCov2∗(X,X) and dCov2∗(Y,Y) are defined analogously, and will be shorthanded as
dCov2∗(X) and dCov2∗(Y) in the sequel.

The definition of the sample distance covariance dCov2∗(X,Y) in (2.4) above looks a bit mysterious at
first sight, but the following representation via a fourth-orderU-statistic makes it clear why the definition
is indeed natural. Recall the definitions of U,V in (2.1).

PROPOSITION 2.1. ([17, 50]). The following holds:

dCov2∗(X,Y) =
1(
n
4

)
∑

i1<···<i4

k
(
Zi1 ,Zi2 ,Zi3 ,Zi4

)
,

where the symmetric kernel can be either

k(Z1,Z2,Z3,Z4) =
1

4!

∑

(i1,...,i4)∈σ(1,2,3,4)

[
‖Xi1 − Xi2‖‖Yi1 − Yi2‖

+ ‖Xi1 − Xi2‖‖Yi3 − Yi4‖ − 2‖Xi1 − Xi2‖‖Yi1 − Yi3‖
]
, (2.6)
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or

k(Z1,Z2,Z3,Z4) =
1

4!

∑

(i1,...,i4)∈σ(1,2,3,4)

[
U(Xi1 ,Xi2)V(Yi1 ,Yi2)

+ U(Xi1 ,Xi2)V(Yi3 ,Yi4) − 2U(Xi1 ,Xi2)V(Yi1 ,Yi3)

]
. (2.7)

Here Zi = (Xi,Yi) for i ∈ N, and σ(1, 2, 3, 4) denotes the set of all ordered permutation of {1, 2, 3, 4}.

It is a direct consequence of the above result that dCov2∗(X,Y) is an unbiased estimator for
dCov2(X,Y). The fact that dCov2∗(X,Y) can be represented as a U-statistic is first validated in [22,
Section 3.2]. The kernel representation (2.6) (proved in e.g. [50, Lemma 2.1]) is quite natural in that it
gives an unbiased estimate for the population in the form (1.1). The double-centred version (2.7), which
turns out to be more convenient and useful for the purpose of theoretical developments in this paper, is
essentially proved in [17, Lemma 5] in a different form. For the convenience of the reader, we provide a
self-contained proof in Appendix A.

2.2 General non-null CLTs I: distance covariance

Throughout the paper, we work with the following distributional family of (X,Y) with a separable
covariance structure:

Assumption A. Suppose

(X�,Y�)�
d= Σ1/2Z. (2.8)

Here Σ , in its block form [ΣX ,ΣXY ;ΣYX ,ΣY ], is a covariance matrix in R
(p+q)×(p+q), Z ∈ R

p+q has
i.i.d. components with mean 0, variance 1 and satisfies the following:

(A1) Z1 is symmetric around 0 with excess kurtosis κ ≡ EZ41 − 3.

(A2) Z1 satisfies a Poincaré inequality: for some c∗ > 0, we have Var f (Z1) ≤ c∗E( f ′(Z1))
2 for any

absolutely continuous f such that E( f ′(Z1))
2 < ∞.

(A3) Z1 has a Lebesgue density fZ(·) with supx∈(−ε,ε) fZ(x) ≤ Cε for some small ε > 0 and positive
Cε. For future purpose, let ε0 ≡ sup

{
ε > 0 : 2πε · supx∈(−ε,ε) fZ(x) ≤ 1

}
.

The distribution class of (X,Y) with separable covariance is quite common in the literature, in
particular in the study of non-null behaviour of statistics related to large random matrices; the readers
are referred to the recent papers [11,12,26,45] and monographs [2,14] for more backgrounds and results
under separable covariance in this direction.

The major assumption on the distribution of Z1 is the requirement of a Poincaré inequality in
condition (A2). It is well known that the existence of a Poincaré inequality as in (A2) is equivalent to
exponential mixing of a Markov semigroup with stationary distribution Z1 and Dirichlet form E( f , g) =
Ef ′(Z1)g

′(Z1), cf. [3]. An important example fulfillingAssumptionA is the family of symmetric, strongly
log-concave distributions, which are known to satisfy a Poincaré inequality (cf. [6,36]) and contain the
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Gaussian distribution as a special case. It is easy to further weaken condition (A2) to aweighted Poincaré
inequality as in [7]; we shall not pursue these formal refinements here. Condition (A3) above is purely
technical, and can be further weakened at the cost of a more involved mathematical expression. We
choose to work under this condition for clean presentation.

We mention two important implications of Assumption A: (i) since Z1 has a Lebesgue density, κ ≥
c0−2 for some c0 > 0 depending only on the distribution of Z1; (ii) by [7, Theorem 4.1], Z1 has moments
of any order with (E|Z1|p)1/p ≤ p ·

√
c∗/2 for any p ≥ 1.

Some notation that will be used throughout the paper:

τ 2X ≡ E‖X − X′‖2 = 2 tr(ΣX), τ 2Y ≡ E‖Y − Y ′‖2 = 2 tr(ΣY). (2.9)

We also reserve κ for the excess kurtosis of Z1:

κ ≡ EZ41 − 3. (2.10)

Since Z1 has a Lebesgue density, we have κ ≥ c0 − 2 for some c0 > 0 that only depends on the
distribution of Z1.

Let I[ij] ≡ (1(i′,j′)=(i,j))1≤i′,j′≤2 be the indicator of the block matrix, and Σ[ij] ≡ (Σ(i′j′)
1(i′,j′)=(i,j))1≤i′,j′≤2. Let

G[ij] ≡ Σ1/2Σ[ij]Σ
1/2, H[ij] ≡ Σ1/2I[ij]Σ

1/2. (2.11)

Then G�
[ij] = G[ji] and H

�
[ij] = H[ji]. Let Ḡ[1,2] ≡ (G[12] + G[21])/2.

The following non-null CLT is the first main result of this paper; its proof can be found in Section 11.

THEOREM 2.2. Suppose that Assumption A holds, and that the spectrum of Σ is contained in [1/M,M]
for some M > 1. Then there exists some C = C(M,Z1) > 0 such that

dKol

(
dCov2∗(X,Y) − dCov2(X,Y)

σn(X,Y)
,N (0, 1)

)
≤

C

(n ∧ p ∧ q)1/6
.

Here σn(X,Y) can be either Var1/2(dCov2∗(X,Y)) or σ̄n(X,Y), where

σ̄ 2
n (X,Y) ≡ σ̄ 2

n,1(X,Y) + σ̄ 2
n,2(X,Y),
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with

σ̄ 2
n,1(X,Y) ≡

4

nτ 2Xτ 2Y

[
‖ΣXYΣYX‖2F + tr(ΣXYΣYΣYXΣX) +

‖ΣXY‖4F‖ΣX‖2F
2τ 4X

+
‖ΣXY‖4F‖ΣY‖2F

2τ 4Y
−

2‖ΣXY‖2F
τ 2X

tr(ΣXYΣYXΣX)

−
2‖ΣXY‖2F

τ 2Y

tr(ΣYXΣXYΣY) +
‖ΣXY‖6F

τ 2Xτ 2Y

+ κ ·
(

tr(G[12] ◦ G[12])

+
‖ΣXY‖4F
4τ 4X

tr(H[11] ◦ H[11]) +
‖ΣXY‖4F
4τ 4Y

tr(H[22] ◦ H[22])

−
‖ΣXY‖2F
2τ 2X

tr(H[11] ◦ G[12]) −
‖ΣXY‖2F
2τ 2Y

tr(H[22] ◦ G[12])

+
‖ΣXY‖4F
4τ 2Xτ 2Y

tr(H[11] ◦ H[22])
)]

,

σ̄ 2
n,2(X,Y) ≡

2

n(n− 1)τ 2Xτ 2Y

(
‖ΣX‖2F‖ΣY‖

2
F + ‖ΣXY‖

4
F

)
.

Here ◦ is the Hadamard product and H[··] and G[··] are given in (2.11) above.

REMARK 2.3. (Variance formula). The variance formula Var
(
dCov2∗(X,Y)

)
=
(
1 + o(1)

)
σ̄ 2
n (X,Y) is

valid in the high-dimensional limit n∧ p∧ q → ∞; see Section 9 ahead for details. The same is true for
the variance formula in Theorem 2.5 below.

REMARK 2.4. (Convergence rate). The convergence rate (n ∧ p ∧ q)−1/6 results from the application of
Chatterjee’s second-order Poincaré inequality [9] (see Section 10 for details) and is likely to be sub-
optimal. Such rate, however, is common in the literature. For example, [17, Proposition 3] assumed
(X,Y) to be jointly Gaussian and employed a martingale CLT theorem to prove the normal limit under
the null, but the convergence rate is also only (pq)−1/5 ∨ n−1/5. It is an interesting but challenging task
to pin down the optimal Gaussian approximation rate in terms of (n, p, q).

As mentioned in the introduction, most of the CLTs in the literature so far are derived under the null
case that X and Y are independent, and to the best of our knowledge, Theorem 2.2 is the first non-null
CLT that applies to a general class of alternatives. Due to the challenging nature of non-null analysis, the
proof of the above theorem requires several technically involved and intertwined steps, so an outline will
be provided in Section 6 that discusses the relevance of the groundwork laid in Sections 7–10, which
culminates in the proof of Theorem 2.2 in Section 11.

Let us examine the variance structure in more detail. Roughly speaking, in the high-dimensional
regime n ∧ p ∧ q → ∞, the variance σ̄ 2

n (X,Y) of dCov2∗(X,Y) only contains two possibly different
sources—the first part σ̄ 2

n,1(X,Y) comes from the contribution of the non-degenerate first-order kernel,

while the second part σ̄ 2
n,2(X,Y) comes from the contribution of the degenerate second-order kernel, in

the Hoeffding decomposition of dCov2∗(X,Y) to be detailed in Section 9 ahead.
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One notable complication of σ̄ 2
n (X,Y) is the existence of terms with negative signs in the first-order

variance σ̄ 2
n,1(X,Y). These terms may contribute to the same order of the leading quantities ‖ΣXYΣYX‖2F

and tr(ΣXYΣYΣYXΣX), but a lower bound in Lemma 9.5 ahead shows that their contributions do not lead
to ‘cancellations’ of the main terms. In fact, under the spectrum condition of Theorem 2.2, the second
claim of Lemma 9.5 indicates the order of σ̄ 2

n (X,Y) with terms of positive signs only:

σ̄ 2
n (X,Y) �M max

{‖ΣXY‖2F
npq

,
1

n2

}
.

Here the first term in the above maximum is contributed by σ̄ 2
n,1(X,Y) and the second term is contributed

by σ̄ 2
n,2(X,Y). Now we consider two regimes:

• (Ultra high-dimensional regime
√
pq � n). In this regime, as ‖ΣXY‖2F �M p∧q ≤ √

pq via Lemma
G.5 in the appendix, the variance σ̄ 2

n (X,Y) in this ultra high-dimensional regime is completely
determined by the contribution from the degenerate second-order kernel σ̄ 2

n,2(X,Y):

σ̄ 2
n (X,Y) =

(
1 + o(1)

)
σ̄ 2
n,2(X,Y).

• (Moderate high-dimensional regime
√
pq � n). In this regime, there are three possibilities:

– If ‖ΣXY‖2F � (pq)/n, which includes the null ΣXY = 0 as a special case, the variance σ̄ 2
n (X,Y)

is again completely determined by the degenerate second-order kernel σ̄ 2
n,2(X,Y).

– If ‖ΣXY‖2F � (pq)/n, then the variance σ̄ 2
n (X,Y) is completely determined by the non-

degenerate first-order kernel σ̄ 2
n,1(X,Y):

σ̄ 2
n (X,Y) =

(
1 + o(1)

)
σ̄ 2
n,1(X,Y).

If furthermore ‖ΣXY‖2F � p ∧ q (i.e. excluding the critical regime ‖ΣXY‖2F � p ∧ q), then the
first-order variance σ̄ 2

n,1(X,Y) can be simplified to be

σ̄ 2
n (X,Y) =

4
(
1 + o(1)

)

nτ 2Xτ 2Y

[
‖ΣXYΣYX‖2F + tr(ΣXYΣYΣYXΣX)

]
.

– If ‖ΣXY‖2F � (pq)/n, the variance σ̄ 2
n (X,Y) is contributed by both the non-degenerate first-order

kernel σ̄ 2
n,1(X,Y) and the degenerate second-order kernel σ̄ 2

n,2(X,Y) so the general variance
expression in Theorem 2.2 cannot be further simplified.

The smallest eigenvalue condition in Theorem 2.2 excludes the case X = Y , but a slight variation of
the proof can cover this case as well. We record formally the result below.
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THEOREM 2.5. Suppose that Assumption A holds, and that the spectrum of ΣX is contained in [1/M,M]
for some M > 1. Then there exists some C = C(M,Z1) > 0 such that

dKol

(
dCov2∗(X) − dCov2(X)

σn(X)
,N (0, 1)

)
≤

C

(n ∧ p)1/6
.

Here σn(X) can be either Var1/2
(
dCov2∗(X)

)
or σ̄n(X,X), where

σ̄ 2
n (X) ≡ σ̄ 2

n,1(X) + σ̄ 2
n,2(X),

with

σ̄ 2
n,1(X) ≡

1

n tr2(ΣX)

[
2‖Σ2

X‖2F +
‖ΣX‖6F

2 tr2(ΣX)
−

2‖ΣX‖2F tr(Σ3
X)

tr(ΣX)

+ κ ·
(

tr(Σ2
X ◦ Σ2

X) +
3‖ΣX‖4F
4τ 4X

tr(ΣX ◦ ΣX) −
‖ΣX‖2F

τ 2X

tr(Σ2
X ◦ ΣX)

)]
,

σ̄ 2
n,2(X) ≡

‖ΣX‖4F
n(n− 1) tr2(ΣX)

.

The variance σ̄ 2
n (X) in Theorem 2.5 is simpler than that in Theorem 2.2. In fact, a similar

consideration using the variance lower bound in Lemma 9.5, we may obtain the order of σ̄ 2
n (X):

σ̄ 2
n (X) �M max

{
1

np
,
1

n2

}
.

Through the Hoeffding decomposition of dCov2∗(X), the first and second terms in the maximum are
contributed by the variance of the non-degenerate first-order kernel and the the degenerate second-order
kernel, respectively. Therefore,

• In the ultra high-dimensional regime p � n, the variance σ̄ 2
n (X) is completely determined by the

degenerate second-order kernel σ̄ 2
n,2(X).

• In the strictly moderate high-dimensional regime p � n, the variance σ̄ 2
n (X) is completely

determined by the non-degenerate first-order kernel σ̄ 2
n,1(X).

• In the critical regime p � n, the variance σ̄ 2
n (X) is determined jointly by the first- and second-order

kernels σ̄ 2
n,1(X), σ̄ 2

n,2(X) so cannot be in general simplified.

2.3 General non-null CLTs II: generalized kernel distance covariance

The sample distance covariance dCov2∗(X,Y) can be generalized using kernel functions as follows. Given
functions fX , fY : R≥0 → R, and bandwidth parameters γX , γY > 0, let for 1 ≤ k, � ≤ n

Ak�( fX , γX) ≡ fX
(
‖Xk − X�‖/γX

)
1k 	=�, Bk�( fY , γY) ≡ fY

(
‖Yk − Y�‖/γY

)
1k 	=�.
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It is essential to set the diagonal terms {Akk( fX , γX)}k, {Bkk( fY , γY)}k to be 0, so that the generalized kernel
distance covariance to be introduced below can be analysed in a unified manner; see Proposition F.1 in
the appendix for details. Now with A∗

k�( fX , γX),B∗
k�( fY , γY) defined similarly as in (2.5) by replacing

Ak�,Bk� with Ak�( fX , γX),Bk�( fY , γY), we may define the generalized sample distance covariance with
kernels f = ( fX , fY) and bandwidth parameters γ = (γX , γY) ∈ R

2
>0 by

dCov2∗(X,Y; f , γ ) ≡
1

n(n− 3)

∑

k 	=�

A∗
k�( fX , γX)B∗

k�( fY , γY), (2.12)

and its population version dCov2(X,Y; f , γ ) as in (1.8). Marginal quantities dCov2(X; f , γ ) and
dCov2(Y; f , γ ) are defined analogously, and similar to distance correlation, the kernelized distance
correlation is defined as

dCor2(X,Y; f , γ ) ≡
dCov2(X,Y; f , γ )√

dCov2(X; f , γ )dCov2(Y; f , γ )

,

with convention dCor2(X,Y; f , γ ) ≡ 0 if dCov2(X; f , γ )dCov2(Y; f , γ ) = 0.
A more general formulation, when replacing fX(‖X� − Xk‖/γX) (resp. fY(‖Y� − Yk‖/γX)) by some

generic bivariate kernel kX(X�,Xk) (resp. kY(Y�,Yk)), is also known as theHilbert–Schmidt independence
criteria, see e.g. [18,19], which can in fact be written as the maximum mean discrepancy between the
joint distribution and the marginal distributions of X and Y; see e.g. [37, Section 3.3] for an in-depth
discussion. Two particular important choices for f are the Laplace and Gaussian kernels:

• (Laplace kernel) f (w) = e−w;

• (Gaussian kernel) f (w) = e−w
2/2.

These kernels have been considered in, e.g. [20,52].

Assumption B. (Conditions on the kernel f )Suppose that f ∈ { fX , fY} is four times differentiable on
(0,∞) such that:

1. f is bounded on [0,M) for any M > 0.

2. For any ε > 0, max1≤�≤4 supx≥ε | f (�)(x)| ≤ Cε for some Cε > 0.

3. For any ε > 0, there exists some cε > 0 such that infx∈(ε,ε−1) | f ′(x)| ≥ cε.

4. There exists some q > 0 such that lim supx↓0 max1≤�≤4 x
q|f (�)(x)| < ∞.

In words, Assumption B-(1)(2) require the kernel functions fX , fY and its derivatives to be appropri-
ately bounded, (3) requires the first derivative to be bounded from below on any compacta in (0,∞)

and finally (4) regulates that the derivatives of fX , fY up to the fourth order can only blow up at 0 with
at most a polynomial rate of divergence. It is easy to check that both the Laplace/Gaussian kernels, and
the canonical choice f (x) = x that recovers the distance covariance (up to a scaling factor) all satisfy
Assumption B.
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Let ρX ≡ τX/γX , ρY ≡ τY/γY and

�(γ ) ≡
f ′X(ρX)f ′Y(ρY)

γXγY
. (2.13)

We are now ready to state the following non-null CLT for the generalized kernel distance covariance
dCov2∗(X,Y; f , γ ); its proof can be found in Appendix F.

THEOREM 2.6. Suppose that Assumptions A and B hold, and that (i) the spectrum of Σ (ii) ρX , ρY are
contained in [1/M,M] for some M > 1. Then there exists some C = C( f ,M,Z1) > 0 such that

dKol

(
dCov2∗(X,Y; f , γ ) − dCov2(X,Y; f , γ )

σn(X,Y; f , γ )
,N (0, 1)

)
≤

C

(n ∧ p ∧ q)1/6
.

Here σn(X,Y; f , γ ) = �(γ )σn(X,Y), where σn(X,Y) is defined in Theorem 2.2. In the case X = Y , the
conclusion continues to hold if (i) is replaced by (i’) the spectrum of ΣX is contained in [1/M,M] for
some M > 1.

We note that the conditions posed in the above theorem are not the weakest possible; for instance
one may relax all the conditions on the kernels f = ( fX , fY) and (ρX , ρY) to some growth conditions
involving n, p, q at the cost of a more involved error bound, but we have stated the current formulation
to avoid unnecessary digressions.

The key step in the proof of Theorem 2.6 is to reduce the analysis of dCov2∗(X,Y; f , γ ) with general
kernels f to that of the canonical dCov2∗(X,Y). Analogous to the quantities U,V defined in (2.1) for the
canonical distance covariance, let

UfX ,γX (x1, x2) ≡ fX
(
‖x1 − x2‖/γX

)
− EfX

(
‖x1 − X‖/γX

)

− EfX
(
‖X − x2‖/γX

)
+ EfX

(
‖X − X′‖/γX

)
,

VfY ,γY (y1, y2) ≡ fY
(
‖y1 − y2‖/γY

)
− EfY

(
‖y1 − Y‖/γY

)

− EfY
(
‖Y − y2‖/γY

)
+ EfY

(
‖Y − Y ′‖/γY

)
.

Then it is shown in Lemma F.5 that

UfX ,γX ≈ −
f ′X(ρX)

γX
U, VfY ,γY ≈ −

f ′Y(ρY)

γY
V ,

hence with appropriate control on the remainder terms, it follows from the U-statistic representation in
(2.7) that

dCov2∗(X,Y; f , γ ) ≈
f ′X(ρX)

γX

f ′Y(ρY)

γY
dCov2∗(X,Y) = �(γ ) dCov2∗(X,Y).

Following this line of arguments, we are then able to study the asymptotics of dCov2∗(X,Y; f , γ ) and
dCov2∗(X,Y) in a unified manner; see Appendix F for detailed arguments.
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2.4 Local CLTs

As a corollary of the non-null CLT in Theorem 2.2, we state below a local CLT that will be important
to obtain the power formula for the distance correlation test introduced in (1.6). Its proof is presented in
Section 12.

THEOREM 2.7. Suppose that Assumption A holds, and that the spectrum of Σ is contained in [1/M,M]
for some M > 1. Let

A(Σ) ≡
n‖ΣXY‖2F

‖ΣX‖F‖ΣY‖F
. (2.14)

Then there exists some constant C = C(M,Z1) > 0 such that

dKol

(
n
(
τXτY dCov2∗(X,Y) − ‖ΣXY‖2F

)
√
2‖ΣX‖F‖ΣY‖F

,N (0, 1)

)
≤ C

[
1
∧(

1 ∨ A(Σ)2

n ∧ p ∧ q

)1/6]
.

If Assumption B holds and ρX , ρY are contained in [1/M,M] for someM > 1, then the above conclusion
holds with dCov2∗(X,Y) replaced by dCov2∗(X,Y; f , γ )/�(γ ) and C replaced by C′ = C′(M, f ,Z1).

The definition of the local (contiguity) parameter A(Σ) is motivated by the critical parameter in the
power expansion formula of the (generalized kernel) distance correlation test in Theorem 3.1 below. The
interesting phenomenon in the local CLT above is that in the local (contiguity) regime lim supA(Σ) <

∞, a CLT holds for dCov2∗(X,Y) and dCov2∗(X,Y; f , γ )/�(γ ) with the null variance σ 2
null in (1.5), i.e.

the variance under ΣXY = 0. Of course, this necessarily implies that (recall σ̄ 2
n ≡ σ̄ 2

n (X,Y) defined in
Theorem 2.2)

σ̄ 2
n

σ 2
null

→ 1, if lim supA(Σ) < ∞, (2.15)

which can be verified via elementary calculations (see e.g. (12.1) ahead). This fact will be crucial in
Theorem 3.1 ahead, where we obtain the asymptotic exact power formula for the distance correlation
test using the distance correlation itself (or equivalently, A(Σ)) as the critical parameter.

3. Generalized kernel distance correlation tests

In this section, we study the performance of the distance correlation testΨ (X,Y;α) in (1.6) and its kernel
generalizations for the null hypothesis H0 : Xis independent ofY , or equivalently under our Gaussian
assumption, ΣXY = 0.

Let us start with a motivation for the test Ψ (X,Y;α) in (1.6) by explaining its connection to the
non-null CLT derived in Theorem 2.2 for the sample distance covariance dCov2∗(X,Y). The null part of
Theorem 2.2 (i.e. the case of independent X and Y) motivates the following ‘oracle’ independence test:
for any prescribed size α ∈ (0, 1),

Ψ̃ (X,Y;α) ≡ 1

(∣∣∣∣
dCov2∗(X,Y)

σnull

∣∣∣∣ > zα/2

)
, (3.1)
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where σ 2
null is the variance of dCov2∗(X,Y) under the null in (1.5). Since dCov2(X,Y) = 0 under the null,

Theorem 2.2 implies immediately that the above test has an asymptotic size of α. The test Ψ̃ (X,Y;α),
however, is not practical because even under the null, σ 2

null might still depend on the unknown marginal
distributions of X and Y . To see the connection between Ψ̃ (X,Y;α) in (3.1) and Ψ (X,Y;α) in (1.6),
note that by some preliminary variance bounds, dCov2∗(X) and dCov2∗(Y) appearing in the denominator
of Ψ (X,Y;α) in (1.6) will concentrate around their mean values dCov2(X) and dCov2(Y), respectively
(cf. Lemma 13.1). Furthermore, by the mean and variance formula in (1.4) and (1.5) (cf. Theorems 8.4
and 9.12),

σ 2
null =

2
(
1 + o(1)

)

n2
dCov2(X)dCov2(Y).

The above identity implies the asymptotic equivalence between Ψ̃ (X,Y;α) in (3.1) and Ψ (X,Y;α) in
(1.6) under the null, showing in particular thatΨ (X,Y;α)will also have an asymptotic size of α. The rest
of the section is devoted to studying the power asymptotics of Ψ (X,Y;α) and its kernel generalizations.

3.1 Power universality

Recall the generalized kernel distance covariance in (2.12) with kernel functions f = ( fX , fY) and
bandwidth parameters γ = (γX , γY). Let the generalized kernel distance correlation test, i.e. a kernelized
version of Ψ (X,Y;α), be defined by

Ψf ,γ (X,Y;α) ≡ 1

(∣∣∣∣
n · dCov2∗(X,Y; f , γ )√

2dCov2∗(X; f , γ ) · dCov2∗(Y; f , γ )

∣∣∣∣ > zα/2

)
. (3.2)

The factor n in the definition above is sometimes replaced by
√
n(n− 1) (e.g. [17]), but this will make

no difference in the theory below. Using the (local) CLTs derived in Theorem 2.7, the following result
gives a unified power expansion formula for the distance correlation test Ψ (X,Y;α) and the generalized
kernel distance correlation test Ψf ,γ (X,Y;α). Its proof can be found in Section 13.

THEOREM 3.1. Suppose that Assumption A holds, and that the spectrum of Σ is contained in [1/M,M]
for some M > 1. Then there exists some constant C = C(α,M,Z1) > 0 such that

∣∣∣∣EΣΨ (X,Y;α) − P
(∣∣N

(
mn(Σ), 1

)∣∣ > zα/2

)∣∣∣∣ ≤
C

(n ∧ p ∧ q)1/7
.

Here mn(Σ) can be either

ndCov2(X,Y)√
2dCov2(X,X)dCov2(Y ,Y)

=
ndCor2(X,Y)

√
2

or
n‖ΣXY‖2F√

2‖ΣX‖F‖ΣY‖F
=
A(Σ)
√
2

.

If Assumption B holds and ρX , ρY are contained in [1/M,M] for someM > 1, then the above conclusion
holds with Ψ (X,Y;α) replaced by Ψf ,γ (X,Y;α) and C replaced by C′ = C′(α,M, f ,Z1) > 0.

A direct message of the above theorem is that, interestingly, for a large class of kernels f = ( fX , fY)
and bandwidth parameters γ = (γX , γY), the generalized kernel distance correlation test Ψf ,γ (X,Y;α)
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in (3.2) exhibits exactly the same power behaviour with the distance correlation test Ψ (X,Y;α) in (1.6)
in the high-dimensional limit n∧ p∧ q → ∞. Here we have focused on deterministic choices of γX , γY
merely for simplicity of exposition, but following [52], analogous results for data driven choices of γX , γY
can also be proved with further concentration arguments, for instance for the popular choice

γX ≡ median
{
‖Xs − Xt‖ : s 	= t

}
, γY ≡ median

{
‖Ys − Yt‖ : s 	= t

}
.

We omit here formal developments along these lines.
The proof of Theorem 3.1 crucially depends on the local CLT in Theorem 2.7. An interesting feature

of Theorem 3.1 is that although one may expect that the power formula of the distance correlation test
Ψ (X,Y;α) in (1.6) and the generalized kernel distance correlation testΨf ,γ (X,Y;α) in (3.2) involves the

complicated expression of the variance σ̄ 2
n in Theorem 2.2, in fact only the null variance plays a role as

in Theorem 2.7. The main reason for this phenomenon to occur is due to the fact that the regime in which
the local central theorem in Theorem 2.7 with the null variance holds covers the entire local contiguity

regime lim supA(Σ) < ∞. In other words:

• In the contiguity regime lim supA(Σ) < ∞, the ratio of the non-null variance and the null variance
is asymptotically 1, cf. (2.15).

• In the large departure regime A(Σ) → ∞, both the distance correlation test Ψ (X,Y;α) in (1.6)
and the generalized kernel distance correlation test Ψf ,γ (X,Y;α) in (3.2) achieve asymptotically full
power.

As a result, the ‘driving parameter’ ndCor2(X,Y)/
√
2 (or equivalently A(Σ)/

√
2) in the power

formula for the distance correlation test Ψ (X,Y;α) in (1.6) and its kernelized version Ψf ,γ (X,Y;α)

in (3.2), inherited from the local CLT in Theorem 2.7 is in a similar form of the test itself, although its
proof to reach such a conclusion is far from being obvious.

3.2 Minimax optimality

Theorems 3.1 directly implies a separation rate for the (generalized) distance correlation test in the
Frobenius norm ‖·‖F in a minimax framework. To formulate this, for any ζ > 0, M > 1 and
Σ0 ≡ diag(ΣX ,ΣY), consider the alternative class

Θ(ζ ,Σ0;M) ≡
{
Σ =

(
ΣX ΣXY

ΣYX ΣY

)
∈ R

(p+q)×(p+q) : ‖ΣXY‖2F ≥ ζ
√
pq/n,M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ M

}
.

A direct consequence of Theorem 3.1 is the following (for simplicity we only state the result for the
distance correlation test Ψ (X,Y;α) in (1.6)).

COROLLARY 3.2. Fix α ∈ (0, 1). Suppose that Assumption A holds. Then there exists some constant
C = C(α,M,Z1) > 0 such that the distance correlation test (1.6) satisfies

sup
Σ∈Θ(ζ ,Σ0;M)

(
EΣ0

Ψ (X,Y;α) + EΣ (1 − Ψ (X,Y;α))
)

≤ α + C

[
e−ζ 2/C +

1

(n ∧ p ∧ q)1/7

]
.

In particular, the above corollary shows that the distance correlation test (1.6) gives a separation
rate in ‖·‖F of order (pq)1/4/n1/2, i.e. the testing error (Type I + Type II error) on the left side is
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bounded by any prescribed α for ζ → ∞ in the regime (1.2). In view of the power universality derived in
Theorem 3.1, the above results continues to hold when the distance correlation test Ψ (X,Y;α) in (1.6) is
replaced by the generalized kernel distance correlation test Ψf ,γ (X,Y;α) in (3.2) under the assumption
that Assumption B holds and ρX , ρY are contained in [1/M,M] for some M > 1.

The separation rate (pq)1/4/n1/2 in ‖·‖F , as will be shown in the following theorem, cannot be
improved in a minimax sense. While previous covariance testing literature has mostly focused on the
likelihood-ratio test [10,13,23,24,33], this implies that the (generalized) distance correlation tests (1.6)
and (3.2) are rate-optimal in thisminimax sense.We prove the lower bound in the special case of Gaussian
distribution in (2.8).

THEOREM 3.3. Suppose that Z1
d= N (0, 1), and

√
pq/n ≤ M for some M > 1. Then for any small

δ ∈ (0, 1), there exists some positive constant ζ = ζ(δ,M) such that

inf
ψ

sup
Σ∈Θ(ζ ,Σ0;M)

(
EΣ0

ψ(X,Y) + EΣ (1 − ψ(X,Y))
)

≥ 1 − δ,

where the infimum is taken over all measurable test functions.

The above theorem improves [34, Theorem 1] by requiring
√
pq/n � 1 rather than (p + q)/n � 1

therein. Note that this improvement in terms of a single condition on
√
pq/n is particularly compatible

with alternative class Θ(ζ ,Σ0,M) defined above.
The proof of Theorem 3.3 follows a standardminimax reduction in that we only need to find a priorΠ

on Θ(ζ ,Σ0;M) with sufficient separation from Σ0, while at the same time the chi-squared divergence
between the posterior density corresponding to Π and the density corresponding to Σ0 is small. For
Σ0 = I, the prior Π we construct takes the form

Σu,v(a) =
(

Ip ãũv�

ãṽu� Iq

)
,

with component-wise independent priors ũi ∼i.i.d.
√
q ·Unif{±1} for ũ ∈ R

p and ṽj ∼i.i.d.
√
p ·Unif{±1}

for ṽ ∈ R
q, and some a > 0 to be chosen in the end. The calculations of the chi-squared divergence

require an exact evaluation of the eigenvalues of certain inverse of Σu,v(a), which eventually leads
to a bound of order a4n2p3q3. So under the constraint that the chi-squared distance is bounded by
some sufficiently small constant, the maximal choice a = a∗ � n−1/2p−3/4q−3/4 leads to a minimax
separation rate in ‖·‖2F of the order ‖Σu,v(a∗)− I‖2F � ‖a∗̃ũv

�‖2F = a2∗‖̃u‖2‖̃v‖2 = a2∗p
2q2 � (pq)1/2/n.

Details of the arguments can be found in Section 14 in the supplement.

REMARK 3.4. In Theorem 3.3 above, the growth condition
√
pq/n ≤ M for some M > 1 is similar

to the condition ‘p/n ≤ M’ in the covariance testing literature (e.g. [8]), under which the lower
bound construction mentioned above is valid. Whether this condition can be removed (and similarly
the condition in [8]) remains open.

4. Simulation studies

In this section, we perform a small-scale simulation study to validate the theoretical results established
in previous sections. We consider the balanced case p = q under the following data-generating scheme:
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FIG. 1. Verification of CLTs. The solid lines correspond to the standard normal quantiles, and the dashed lines correspond to
sample quantiles with the identity, Gaussian and Laplace kernels, respectively. Simulation parameters: (n, p, q) = (1000, 100, 100),
B = 200 replications, bandwidth choices ρX = ρY =

√
2 for both Gaussian and Laplace kernels.

i.i.d. across j ∈ [p],

(Xj,Yj)
d= (

√
ρZ1 +

√
1 − ρZ2,

√
ρZ1 +

√
1 − ρZ3), (4.1)

where ρ ∈ (0, 1) is the dependence parameter, and Z1,Z2,Z3 are independent variables with mean zero
and variance one. We carry out the simulation primarily in the case where Z1-Z3 are standard normal,
which is a special case of (2.8) with ΣX = ΣY = Ip and ΣXY = ρIp. Non-Gaussianity is examined in
Fig. 3.

We start by verifying the CLTs derived in Theorems 2.2 and 2.7 in Fig. 1. We take ρ = 0 for the
null case and ρ = 0.1 for the non-null case, and compare the normal quantiles with the corresponding
sample quantiles. Normal approximation appears to be accurate in all three cases.

Figure 2 verifies power universality demonstrated via Theorem 3.1 in two aspects: (i) the choice of
kernel; (ii) the choice of bandwidth parameters γX , γY when using the Gaussian and Laplace kernels.
The first two figures illustrates the second point, where the Gaussian and Laplace kernels are used with
different bandwidth parameters ρX = ρY ∈ {0.5, 1,

√
2, 5}. The third figure uses a fixed bandwidth

ρX = ρY =
√
2 for both Gaussian and Laplace kernels and compares the performances of different

kernels.
Finally we examine the robustness of our theory for non-Gaussian data. We take two choices for

Z1-Z3 in the set-up (4.1): (i) uniform distribution on [−
√
3,

√
3]; (ii) t-distribution with four degrees of

freedom scaled by
√
2. These parameters are chosen such that Z1-Z3 have mean zero and variance one.

Normal approximation and power universality are examined in Fig. 3 for the uniform distribution and
the (rescaled) t-distribution. These figures suggest that our theory continues to hold for a broader class
of data distributions.

5. Concluding remarks and open questions

In this paper, we establish in Theorem 2.2 a general non-null CLT for the sample distance covariance
dCov2∗(X,Y) in the high-dimensional regime n ∧ p ∧ q → ∞ under a separable covariance structure of
(X,Y) and a spectral condition on its covariance Σ . The non-null CLT then applies to obtain a first-order
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FIG. 2. Verification of power universality in choice of bandwidth parameter (left and middle) and choice of kernel (right). The
solid lines correspond to the standard normal quantiles, and the dashed lines correspond to sample quantiles.

FIG. 3. Verification of CLTs and power expansion for uniform (top three figures) and t- (bottom three figures) distributed data.
Simulation parameters: (n, p, q) = (100, 100, 100), B = 200 replications, bandwidth choices ρX = ρY =

√
2 for both Gaussian

and Laplace kernels.

power expansion for the distance correlation test Ψ (X,Y;α) in (1.6):

EΨ (X,Y;α) ∼ P

(∣∣∣∣N
(
ndCor2(X,Y)

√
2

, 1

)∣∣∣∣ > zα/2

)
. (5.1)

The non-null CLT and the power expansion (5.1) are also established for a more general class of
Hilbert–Schmidt kernel distance covariance, and the associated generalized kernel distance correlation
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test Ψf ,γ (X,Y;α) in (3.2), under mild conditions on the kernels and the bandwidth parameters. This
result in particular implies that the generalized kernel distance correlation test admits a universal power
behaviour with respect to a wide range of choices of kernels and bandwidth parameters.

An important open question is the universality of the power expansion formula (5.1) and the non-
null CLT with respect to more general distributions of (X,Y). The first question of power universality,
recorded below, is motivated by the fact that the power expansion formula in the form of (5.1) does not
explicitly involve any specific form of (X,Y) assumed in (2.8).

PROBLEM 5.1. Establish the universality of (5.1) for general data distributions.

Note that in this paper we established (5.1) by a precise mean and variance expansion for the sample
distance covariance dCov2∗(X,Y). This is the place where the specific form of the data generating
distribution in (2.8) is crucially used. As a preliminary step towards both power asymptotics and non-null
CLT, it is therefore of great interest to investigate:

PROBLEM 5.2. Obtain (asymptotic) mean and variance formulae for dCov2∗(X,Y) for general data
distributions in the entire high-dimensional regime n ∧ p ∧ q → ∞.

In principle, one can obtain ‘some’ mean and variance formulae for general data distributions by
expanding the square root ‖X� − Xk‖, ‖Y� − Yk‖ to further sufficient many ‘higher order terms’ in (6.1)
below. However, it seems likely this approach will suffer from significant deficiencies in certain regimes
within n ∧ p ∧ q → ∞ as a cost of handling the ‘residual term’ of the highest order. In fact, even with
the current distributional form in (2.8), it is already a fairly complicated task to handle the residual terms
sharply enough to allow amean and variance expansion in the entire regime n∧p∧q → ∞; see Section 6
below for an outline of the complications involved. A new approach may be needed for this problem.

6. Proof road-map of Theorem 2.2

We give a road-map for the proof of the main Theorem 2.2. The basic strategy is to identify the ‘main
terms’ in the Hoeffding decomposition of the fourth-order U-statistics representation in Proposition 2.1.
An immediate problem is that the U,V functions in (2.1) involve the square root of the squared �2 norm
which causes differentiability problems. A simple idea is to use the expansion

‖X1 − X2‖
τX

=
(
1 +

‖X1 − X2‖2 − τ 2X

τ 2X

)1/2

≈
‖X1 − X2‖2 − τ 2X

2τ 2X
,

‖Y1 − Y2‖
τY

=
(
1 +

‖Y1 − Y2‖2 − τ 2Y

τ 2Y

)1/2

≈
‖Y1 − Y2‖2 − τ 2Y

2τ 2Y
, (6.1)

as the fluctuation of ‖X1 − X2‖2 (resp. ‖Y1 − Y2‖2) around τ 2X (resp. τ 2Y ) is expected to be of smaller
order than τ 2X (resp. τ 2Y ) in high dimensions. Proceeding with this heuristic, with some book-keeping
calculations, we may obtain the following approximation of U,V functions:

U(x1, x2) ≈ −x�1 x2/τX , V(y1, y2) ≈ −y�1 y2/τY . (6.2)

Now if we replace U,V in the k function defined in (2.7) with the above approximation (6.2), the
approximate first- and second-order kernels g1,∗, g2,∗ associated with the k function may be computed
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as follows:

g1,∗(x1, y1) ≡
1

2τXτY

[(
x�1 ΣXYy1 − ‖ΣXY‖

2
F

)]
,

g2,∗
(
(x1, y1), (x2, y2)

)
≡

1

6τXτY

[(
x�1 x2y

�
1 y2 − x�1 ΣXYy1 − x�2 ΣXYy2 + ‖ΣXY‖

2
F

)

−
(
x�1 ΣXYy2 + x�2 ΣXYy1

)]
.

Although the heuristic so far seems plausible, it turns out that the above approximation falls short of
fully capturing the behaviour of the sample distance covariance, even pretending that the effect of higher
order kernels can be neglected. In fact, the approximation (6.2) is not good enough, in a somewhat subtle
way, in the entire high-dimensional regime p∧q → ∞: The first-order kernel g1,∗ requires the following
correction:

g̃1,∗(x1, y1) ≡ g1,∗(x1, y1)

−
1

2τXτY

[‖ΣXY‖2F
2τ 2X

(‖x1‖
2 − tr(ΣX)) +

‖ΣXY‖2F
2τ 2Y

(‖y1‖
2 − tr(ΣY))

]
,

whereas, interestingly, no correction is required for the second-order kernel g2,∗. The underlying
reason for the correction terms in the first-order kernel appears to be non-negligible interaction of the
approximation of U,V in (6.1), while such interaction is of a strict smaller order in the second-order
kernel approximation. In fact, the correction terms in g̃1,∗(x1, y1) above contributes to the difficult terms
of negative signs in the first-order variance σ̄ 2

n,1(X,Y) in Theorem 2.2. As a consequence, the variance
of g1,∗ and g̃1,∗ are of the same order but not asymptotically equivalent. Of course, at this point there
is no apriori reason to explain why the correction terms must take this form—they come out of exact
calculations.

From here, a road-map of the proof of Theorem 2.2 can be outlined:

1. Derive sharp enough estimates for the approximation errors ofU,V in (6.2) and their interactions.
This will be detailed in Section 8. These sharp enough estimates will immediately give a mean
expansion for the sample distance covariance in Theorem 8.4.

2. Using the estimates in (1), validate that the corrected first-order kernel g̃1,∗ and the vanilla second-
order kernel g2,∗ are indeed ‘good enough main terms’ to approximate the sample distance
covariance. This is done via variance considerations detailed in Section 9. As a result, a sharp
variance expansion of the sample distance covariance is obtained in Theorem 9.12.

3. Using the mean and variance expansion established in (1)–(2), we establish a non-null CLT for
the ‘good enough main terms’ involving the kernels g̃1,∗ and g2,∗. The main tool is Chatterjee’s
discrete second-order Poincaré inequality [9]. This is accomplished in Section 10.

Finally Section 11 assemblies all these steps to complete the proof for Theorem 2.2. In the Section 7,
we record some further notations and preliminary results that will be used throughout the proofs.
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7. Proof preliminaries

7.1 G[··] and H[··]

Recall the definition of the matrices G[··],H[··] in (2.11). We summarize some basic properties of these
matrices below.

LEMMA 7.1. The following hold.

1. H2
[11] = G[11],H

2
[22] = G[22], H[11]H[22] = G[12], H[22]H[11] = G[21].

2. ‖G[11]‖2F = ‖Σ2
X‖2F , ‖G[22]‖2F = ‖Σ2

Y‖
2
F , ‖G[12]‖2F = ‖G[21]‖2F = ‖ΣXYΣYX‖2F .

3. tr(G[11]) = ‖ΣX‖2F , tr(G[22]) = ‖ΣY‖2F , tr(G[12]) = tr(G[21]) = ‖ΣXY‖2F .

4. ‖H[11]‖2F = ‖ΣX‖2F , ‖H[22]‖2F = ‖ΣY‖2F , ‖H[12]‖2F = ‖H[21]‖2F = ‖ΣXY‖2F .

5. tr(H[11]) = tr(ΣX), tr(H[22]) = tr(ΣY), tr(G[12]) = tr(G[21]) = tr(ΣXY).

6. tr(G[11]G[22]) = tr(G[12]G[21]) = tr(ΣXΣXYΣYΣYX).

Proof. These claims follow from direct calculations so we omit the details. �

The following lemma will be useful in the second moment part of Proposition 8.2 ahead.

LEMMA 7.2. Suppose that the spectrum ofΣ is contained in [M−1,M] for someM > 1, then the following
hold.

1. tr(G[12] ◦ G[12]) ∨ tr(H2
[11] ◦ H2

[22]) ∨ ‖H[11] ◦ H[22]‖2F �M ‖ΣX‖2F‖ΣY‖2F/(τX ∧ τY)
2.

2. ‖G[11] ◦ G[22]‖F �M ‖ΣXY‖2F .

Proof. (Proof of Lemma 7.2)See Appendix B. �

7.2 The function h

Let for u > −1

h(u) ≡
√
1 + u− 1 −

u

2
= −

u2

4

∫ 1

0

(1 − s)

(1 + su)3/2
ds. (7.1)

We summarize below some basic properties of h.

LEMMA 7.3. We have |h(u)| � u2 and |h′(u)| � |u|/(1 + u)1/2. Furthermore,

h(u) = −
u2

8
+ u3

∫ 1

0

3(1 − s)2

16(1 + su)5/2
ds

= −
u2

8
+
u3

16
− u4

∫ 1

0

5(1 − s)3

32(1 + su)7/2
ds ≡ −

u2

8
+ h3(u).

The proof of the above lemma can be found in Appendix B.
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7.3 LX ,LY and RX ,RY

Let

LX(x1, x2) ≡
‖x1 − x2‖2 − τ 2X

τ 2X

≥ −1, RX(x1, x2) ≡ h
(
LX(x1, x2)

)

LY(y1, y2) ≡
‖y1 − y2‖2 − τ 2Y

τ 2Y

≥ −1, RY(y1, y2) ≡ h
(
LY(y1, y2)

)
, (7.2)

and the double-centred quantities

R̄X(x1, x2) ≡ RX(x1, x2) − E
[
RX(x1,X)

]
− E

[
RX(X, x2)

]
+ E

[
RX(X,X′)

]
,

R̄Y(y1, y2) ≡ RY(y1, y2) − E
[
RY(y1,Y)

]
− E

[
RY(Y , y2)

]
+ E

[
RY(Y ,Y

′)
]
.

Using these quantities, we may represent the square root of the Euclidean distance as follows.

LEMMA 7.4. The following hold:

‖x1 − x2‖
τX

≡ 1 +
LX(x1, x2)

2
+ RX(x1, x2) = 1 +

LX(x1, x2)

2
+ h

(
LX(x1, x2)

)
,

‖y1 − y2‖
τY

≡ 1 +
LY(y1, y2)

2
+ RY(y1, y2) = 1 +

LY(y1, y2)

2
+ h

(
LY(y1, y2)

)
,

and

U(x1, x2) = −
1

τX

(
x�1 x2 − τ 2XR̄X(x1, x2)

)
,

V(y1, y2) = −
1

τY

(
y�1 y2 − τ 2Y R̄Y(y1, y2)

)
. (7.3)

The following moment estimate will be used repeatedly.

LEMMA 7.5. Suppose that the spectrum of Σ lies in [M−1,M] for some M > 1. Fix any positive integer
s ∈ N, there exists some C = C(s,M,Z1) > 0 such that the following moment estimates hold.

1. For any positive integer s ∈ N,

ELsX(X1,X2) �s τ−2s
X ‖ΣX‖sF , ELsY(Y1,Y2) �s τ−2s

Y ‖ΣY‖
s
F .

2. For any positive integer s ∈ N,

ERsX(X1,X2) �s τ−4s
X ‖ΣX‖2sF , ERsY(Y1,Y2) �s τ−4s

Y ‖ΣY‖
2s
F .

Consequently the same estimates hold with ERsX(X1,X2),ER
s
Y(Y1,Y2) replaced by their double-

centred analogues ER̄sX(X1,X2),ER̄
s
Y(Y1,Y2).
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3. Suppose the spectrum of ΣX ,ΣY is contained in [1/M,M] for someM > 1. Then for any positive
integer s ∈ N, for p ∧ q ≥ 2s+ 1,

Eh′(LX(X1,X2))
s �M,s τ−s

X , Eh′(LY(Y1,Y2))
s �M,s τ−s

Y .

The proofs of the above lemmas can be found in Appendix B.

8. Residual estimates and mean expansion

8.1 Residual estimates

Let

ψX(x1, y1) ≡ EX2,Y2 [R̄X(x1,X2)Y
�
2 y1],

ψY(x1, y1) ≡ EX2,Y2 [R̄Y(y1,Y2)X
�
2 x1],

ψX,Y(x1, y1) ≡ EX2,Y2 [R̄X(x1,X2)R̄Y(y1,Y2)]. (8.1)

In view of Lemma 7.4, these terms appear naturally as the interaction error termswhenU(x1, x2)V(y1, y2)
is approximated using (6.2). As mentioned in Section 6, sharply controlling these ‘residual terms’
constitutes the first crucial step in the proof of Theorem 2.2.

First, we have the following representation of ψX(x1, y1),ψY(x1, y1).

LEMMA 8.1. The following decomposition holds:

ψX(x1, y1) = A1,X(x1, y1) + A2,X(x1, y1), ψY(x1, y1) = A1,Y(x1, y1) + A2,Y(x1, y1).

Here

A1,X(x1, y1) =
1

2τ 4X

[(
‖x1‖

2 − tr(ΣX)
)
x�1 ΣXYy1 + 2x�1 ΣXΣXYy1 + κ tr(H[11] ◦ QX)

]
,

A1,Y(x1, y1) =
1

2τ 4Y

[(
‖y1‖

2 − tr(ΣY)
)
x�1 ΣXYy1 + 2x�1 ΣXYΣYy1 + κ tr(H[22] ◦ QY)

]
,

and

A2,X(x1, y1) ≡ E
[
h3
(
LX(x1,X)

)
(Y�y1)

]
, A2,Y(x1, y1) ≡ E

[
h3
(
LY(y1,Y)

)
(X�x1)

]
,

with h3 defined in Lemma 7.3 and

QX = H[11]z1z
�
1 H[22], QY = H[22]z1z

�
1 H[11], (8.2)

with z1 = (x�1 , y
�
1 )� and H[··] given in (2.11).

PROPOSITION 8.2. Suppose that the spectrum of Σ is contained in [1/M,M] for some M > 1, and that
p, q are larger than a big enough absolute constant.



26 Q. HAN AND Y. SHEN

1. (First moments) The following hold:

τ 4X|EψX(X1,Y1)|
∨

τ 4Y |EψY(X1,Y1)|
∨

τ 2Xτ 2Y (τX ∧ τY)|EψX,Y(X1,Y1)| � ‖ΣXY‖
2
F .

2. (Second moments) The following hold:

τ 6XEψ2
X(X1,Y1)

∨
τ 6YEψ2

Y(X1,Y1)
∨

τ 4Xτ 4Y (τX ∧ τY)
2
Eψ2

X,Y(X1,Y1) � ‖ΣXY‖
2
F

(
1 ∨ ‖ΣXY‖

2
F

)
.

The constants in � only depend on M and the distribution of Z1 via its Poincaré constant c∗ and ε0
prescribed in Assumption A. The claims remain valid with X = Y when the spectrum of ΣX = ΣY is
contained in [1/M,M] for some M > 1.

The role and sharpness of these bounds will be gradually clear in later sections. In particular, these
bounds will be essential in the proof of the mean expansion Theorem 8.4 and the variance expansion
Theorem 9.12 ahead.

Note that here the first moment bounds in Proposition 8.2 do not follow directly by the stated second
moment bounds, as the ‘first moments’ here are obtained by first taking expectation followed by the
absolute value. In fact, these first moment estimates are stronger by those derived directly from the
second moment estimates, indicating the essential role of the order of taking expectation and absolute
value in this setting.

An important feature of the bounds in Proposition 8.2 above is that when ΣXY = 0, all estimates
reduce to 0. Furthermore the exponent in ‖ΣXY‖F , τX , τY also need be correct to allow precise mean and
variance expansions in Theorems 8.4 and 9.12, and therefore the non-null CLT in Theorem 2.2, under the
entire high-dimensional regime n ∧ p ∧ q → ∞. It is for this reason that the proof of Proposition 8.2 is
rather involved, the details of which can be found in Appendix C. The following lemma is representative
in terms of an interpolation technique in proving Proposition 8.2 and may be of broader interest.

LEMMA 8.3. Suppose the spectrum of Σ is contained in [1/M,M] for someM > 1. Let hX , hY : R → R

be smooth functions. For any k, k′, �, �′ ∈ {1, 2}, define

ψhX ,hY (ΣXY) ≡ E

[
hX
(
LX(Xk,X�)

)
hY
(
LY(Yk′ ,Y�′)

)∣∣X1,Y1
]
.

Then

E
(
ψhX ,hY (ΣXY) − ψhX ,hY (0)

)2
� ‖ΣXY‖

2
F(1 ∨ ‖ΣXY‖

2
F)

×
(

τ−4
X · E1/4(h′

X ◦ LX)8 · E1/4(hY ◦ LY)
8 + τ−4

Y · E1/4(h′
Y ◦ LY)

8 · E1/4(hX ◦ LX)8
)
.

The constants in � only depend on M. The claims remain valid with X = Y when the spectrum of
ΣX = ΣY is contained in [1/M,M] for some M > 1.

Lemma 8.3 gives a general recipe of bounding the second moment, in terms of the dependence
measure ‖ΣXY‖F . Details see Appendix C.
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8.2 Mean expansion

As a quick application of the residual estimates in Proposition 8.2, we may get the following mean
expansion.

THEOREM 8.4. Suppose that the spectrum of Σ is contained in [1/M,M] for some M > 1. Then the
following expansion holds for the distance covariance:

mΣ = EΣ dCov2∗(X,Y) = dCov2(X,Y) =
‖ΣXY‖2F

τXτY

[
1 + O

(
(τX ∧ τY)

−1)].

The constants in O only depend on M and the distribution of Z1 via its Poincaré constant c∗ and ε0
prescribed in Assumption A. The claims remain valid with X = Y when the spectrum of ΣX = ΣY is
contained in [1/M,M] for some M > 1.

Proof. Note that

dCov2(X,Y) = E
[
U(X1,X2)V(Y1,Y2)

]

=
1

τXτY

[
‖ΣXY‖

2
F − τ 2XE

(
R̄X(X1,X2)Y

�
1 Y2

)

− τ 2XE
(
R̄Y(Y1,Y2)X

�
1 X2

)
+ τ 2Xτ 2YE

(
R̄X(X1,X2)R̄Y(Y1,Y2)

)]

≡
1

τXτY

[
‖ΣXY‖

2
F − τ 2XEψX(X1,X2) − τ 2YEψY(Y1,Y2) + τ 2Xτ 2YEψX,Y(X1,Y1)

]
.

The claim now follows by invoking Proposition 8.2-(1). �

A stochastic version of the above theorem was previously derived in [52, Theorem 2.1.1], where the
main term ‖ΣXY‖2F/(τXτY)was replaced by an unbiased estimator and the remainder termwas controlled
at the order (p∧q)−1/2. In comparison, due to the sharp residual estimates in Proposition 8.2, our bound
for the remainder term ismuchmore refined in that it contains an important multiplicative factor ‖ΣXY‖2F ,
which makes it asymptotically negligible in the null case as well.

9. Hoeffding decomposition and variance expansion

We first review the basics of Hoeffding decomposition that will be relevant to our purpose. Following
[38, Section 5.1.5, pp. 177], for a generic fourth-order U-statistic with symmetric kernel k : Z

4 → R,
let

kc(z1, . . . , zc) ≡ E[k(z1, . . . , zc,Zc+1, . . . ,Z4)], z1, . . . , zc ∈ Z,
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and for any z1, z2, z3, z4 ∈ Z,

g0 ≡ Ek(Z), g1(z1) ≡ k1(z1) − Ek(Z),

g2(z1, z2) ≡ k2(z1, z2) − k1(z1) − k2(z2) + Ek(Z),

g3(z1, z2, z3) ≡ k3(z1, z2, z3) − Ek(Z) −
3∑

�=1

g1(z�) −
∑

1≤�1<�2≤3

g2
(
z�1 , z�2

)
,

g4(z1, z2, z3, z4) ≡ k4
(
z1, z2, z3, z4

)
− Ek(Z) −

3∑

�=1

g1(z�)

−
∑

1≤�1<�2≤3

g2
(
z�1 , z�2

)
−

∑

1≤�1<�2<�3≤4

g3
(
z�1 , z�2 , z�3

)
. (9.1)

Then the Hoeffding decomposition says that

Un(k) =
4∑

c=0

(
4

c

)
Un(gc).

Here for a generic symmetric kernel g : Z
c → R,

Un(g) ≡

{(
n
c

)−1∑
i1<...<ic

g
(
zi1 , . . . , zic

)
, c ≥ 1;

g c = 0.

For c = 0, g is understood as a real number. In what follows, we will take Z ≡ X × Y, and k as the
kernel defined in Proposition 2.1. We will evaluate the variance of dCov2∗(X,Y) = Un(k) by evaluating
the variance of g1, g2, g3, g4 associated with k as defined above.

9.1 Hoeffding decomposition: first order

The goal of this subsection is to prove the following variance expansion for the first-order kernel
associated with k.

PROPOSITION 9.1. Suppose the spectrum of Σ is contained in [1/M,M] for some M > 1. Then for any
ε > 0, the first-order variance is given by

(
4

1

)2(
n

1

)−1

Eg21(X1,Y1) = (1 ± ε) · σ̄ 2
n,1(X,Y) ·

[
1 + O

( 1

ε · (τX ∧ τY)

)]
.

Here σ̄ 2
n,1(X,Y) is as defined in Theorem 2.2, and the constants inO only depend onM and the distribution

of Z1 only via its Poincaré constant c∗, excess kurtosis κ and ε0 prescribed in Assumption A. The claim
remains valid with X = Y when the spectrum of ΣX = ΣY is contained in [1/M,M] for some M > 1.

The proof of the above proposition will be presented towards the end of this subsection. First, we
may compute:
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LEMMA 9.2. The first-order kernel is given by

k1(z1) = Ek(z1,Z2,Z3,Z4) =
1

2

[
EU(x1,X)V(y1,Y) + dCov2(X,Y)

]
,

g1(z1) = k1(z1) − Ek(Z) =
1

2

[
EU(x1,X)V(y1,Y) − dCov2(X,Y)

]
.

We will use the above lemma to devise an expansion for g1. From the approximation ofU,V in (6.2),
onemay hope that themain term for g1 would be 2

−1
EU(x1,X)V(y1,Y) ≈ (x�1 ΣXYy1−‖ΣXY‖2F)/2τXτY .

As announced in Section 6, this is however not the case. Let the ‘main term’ be defined as

ḡ1(x1, y1) ≡
1

2τXτY

[(
x�1 ΣXYy1 − ‖ΣXY‖

2
F

)
+ A1,X(x1, y1) + A1,Y(x1, y1)

]
, (9.2)

where

A1,X(x1, y1) ≡ −
‖ΣXY‖2F
2τ 2X

(
‖x1‖

2 − tr(ΣX)
)
, A1,Y(x1, y1) ≡ −

‖ΣXY‖2F
2τ 2Y

(
‖y1‖

2 − tr(ΣY)
)
.

The terms A1,X(x1, y1),A1,Y(x1, y1) are essential to correct the naive approximation (6.2), in that
these terms contribute to the somewhat difficult terms of negative sign in the variance expansion of ḡ1
in Lemma 9.4, which cannot be neglected as they may have the same order as that of the leading terms.

With the main term defined above, let the ‘residual term’ be defined by

R̄1(x1, y1) ≡ −τ 2Xψ̄X(x1, y1) − τ 2Y ψ̄Y(x1, y1) + τ 2Xτ 2YψX,Y(x1, y1), (9.3)

where ψX,Y is defined in (8.1), and

ψ̄X(x1, y1) ≡
1

2τ 4X

[(
‖x1‖

2 − tr(ΣX)
)(
x�1 ΣXYy1 − ‖ΣXY‖

2
F

)
+ 2x�1 ΣXΣXYy1

+ κ tr(H[11] ◦ QX)

]
+ A2,X(x1, y1),

ψ̄Y(x1, y1) ≡
1

2τ 4Y

[(
‖y1‖

2 − tr(ΣY)
)(
x�1 ΣXYy1 − ‖ΣXY‖

2
F

)
+ 2x�1 ΣXYΣYy1

+ κ tr(H[22] ◦ QY)
]
A2,Y(x1, y1). (9.4)

Here QX ,QY ,A2,X ,A2,Y are defined in Lemma 8.1. Using ḡ1, R̄1 defined above, we may expand g1 into
the sum of main and residual terms as follows.
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LEMMA 9.3. The following expansion holds:

g1(x1, y1) = ḡ1(x1, y1) +
1

2τXτY

(
R̄1(x1, y1) − ER̄1(X1,Y1)

)
. (9.5)

Now we will evaluate the variance of ḡ1 and R̄1. The variance of ḡ1 is given by the following.

LEMMA 9.4. We have Eḡ21(X,Y) = 4−2n · σ̄ 2
n,1, where σ̄ 2

n,1 is given in Theorem 2.2.

As mentioned above, the variance of ḡ1 as above involves terms with a negative sign that are
contributed by the ‘correction terms’ A1,X(x1, y1),A1,Y(x1, y1). These terms can be of the same order
as the main terms. It is therefore important to have a lower bound on this quantity.

LEMMA 9.5.

1. Suppose ‖Σ−1‖op ≤ M for some M > 1. Then Eḡ21(X,Y) � τ−2
X τ−2

Y ‖ΣXY‖2F . If furthermore

‖Σ‖op ≤ M, then Eḡ21(X,Y) � τ−2
X τ−2

Y ‖ΣXY‖2F .

2. Suppose X = Y , and ‖Σ−1
X ‖op ≤ M for some M > 1. Then Eḡ21(X,X) � τ−8

X · p‖ΣX‖4F . If
furthermore ‖ΣX‖op ≤ M, then Eḡ21(X,X) � τ−2

X .

The constants in �,� only depend on M and the distribution of Z1 via its excess kurtosis κ in
Assumption A.

Lemma 9.5 above is an important result, showing that the negative contributions of the ‘correction
terms’A1,X(x1, y1),A1,Y(x1, y1)will not affect the order the variance ḡ1. In other words, these terms will
contribute a non-vanishing but small proportion of the main terms.

Next to the variance of the main term ḡ1, an important step to obtain variance bound for the residual
term R̄1 is to obtain variance bounds for ψ̄X , ψ̄Y defined in (9.4).

LEMMA 9.6. Suppose that the spectrum of ΣX ,ΣY is contained in [1/M,M] for some M > 1. Then

τ 6X Var
(
ψ̄X(X,Y)

)∨
τ 6Y Var

(
ψ̄Y(X,Y)

)
�M,Z1 ‖ΣXY‖

2
F .

Here the dependence of � on Z1 is via its Poincaré constant c∗ and ε0 prescribed by Assumption A.

This variance bound plays an important role to keep the residual terms small when ‖ΣXY‖F is large. In
particular, if one uses the vanilla versionsψX ,ψY defined in (8.1), the right-hand side of the above display
scales as ‖ΣXY‖4F that would lead to essential difficulties in controlling the residuals. In other words, the
reduction from ‖ΣXY‖4F to ‖ΣXY‖2F is made possible by the ‘correction terms’ A1,X(x1, y1),A1,Y(x1, y1)
that, in a certain sense, ‘centre’ the vanilla versions ψX ,ψY to reduce the variance.

Detailed proofs of Lemmas 9.2–9.6 are deferred to Appendix D. Now we are in a good position to
prove Proposition 9.1.

Proof. (Proof of Proposition 9.1)By (9.3),

Var
(
R̄1(X1,Y1)

)

� τ 4X Var
(
ψ̄X(X1,Y1)

)
+ τ 4Y Var

(
ψ̄Y(X1,Y1)

)
+ τ 4Xτ 4YEψ2

X,Y(X1,Y1).
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The first two terms can be handled by Lemma 9.6, while the last term can be bounded by

Eψ2
X,Y(X1,Y1) �M τ−4

X τ−4
Y

[
‖ΣXY‖2F + ‖ΣXY‖4F

(τX ∧ τY)
2

∧
1

]
.

This follows by Proposition 8.2-(2) and the simple bound

Eψ2
X,Y(X1,Y1) ≤ ER̄2X · ER̄2Y �M τ−4

X τ−4
Y

using Lemma 7.5. Summarizing the estimates, we have

Var
(
R̄1(X1,Y1)

)
�

‖ΣXY‖2F
(τX ∧ τY)

2
+

‖ΣXY‖4F
(τX ∧ τY)

2

∧
1.

AsVar(g1) = (1±ε) Var(ḡ1)+O
(
ε−1 ·τ−2

X τ−2
Y Var(R̄1(X,Y)

)
for any ε > 0, the proof is now complete

by noting that

Var(R̄1(X,Y))

τ 2Xτ 2Y Var(ḡ1)
�M

‖ΣXY‖2F
(τX∧τY )2

+ ‖ΣXY‖4F
(τX∧τY )2

∧
1

‖ΣXY‖2F
�

1

τX ∧ τY
,

using Lemma 9.5 in the first inequality. �

9.2 Hoeffding decomposition: second order

The goal of this subsection is to prove the following variance expansion for the second-order kernel
associated with k.

PROPOSITION 9.7. Suppose that the spectrum of Σ is contained in [1/M,M] for some M > 1. For any
ε > 0, the second-order variance is given by

(
4

2

)2(
n

2

)−1

Eg22
(
(X1,Y1), (X2,Y2)

)
= (1 ± ε) · σ̄ 2

n,2(X,Y) ·
[
1 + O

( 1

ε · (τX ∧ τY)
2

)]
.

Here σ̄ 2
n,2(X,Y) is as defined in Theorem 2.2, the constant in O depends on M and the distribution of

Z1 only via its Poincaré constant c∗, excess kurtosis κ and ε0 prescribed by Assumption A. The claim
remains valid with X = Y when the spectrum of ΣX = ΣY is contained in [1/M,M] for some M > 1.

The prove Proposition 9.7, we will first get an expansion for g2, which requires a calculation of k2:
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LEMMA 9.8. The second-order kernel is given by

k2(z1, z2) = Ek(z1, z2,Z3,Z4)

=
1

6

[
U(x1, x2)V(y1, y2) + 2EU(x1,X)V(y1,Y) + 2EU(x2,X)V(y2,Y) + dCov2(X,Y)

− EU(x1,X)V(y2,Y) − EU(x2,X)V(y1,Y)

]
.

Wewill use the above lemma to devise an expansion for g2. In the first-order expansion in the previous
subsection, we have seen that the approximation of U,V in (6.2) is not enough to get a precise variance
expansion of g1. Somewhat interestingly, as announced in Section 6 such approximation is good enough
in the second-order expansion. Formally, let the ‘main term’ of g2 be defined by

ḡ2
(
(x1, y1), (x2, y2)

)
≡

1

6τXτY

[(
x�1 x2y

�
1 y2 − x�1 ΣXYy1 − x�2 ΣXYy2 + ‖ΣXY‖

2
F

)

−
(
x�1 ΣXYy2 + x�2 ΣXYy1

)]
, (9.6)

and the ‘residual term’ be defined by [recall the definitions of R̄X , R̄Y after (7.2)]

R̄2
(
(x1, y1), (x2, y2)

)

= −τ 2Yx
�
1 x2R̄Y(y1, y2) − τ 2Xy

�
1 y2R̄X(x1, x2) + τ 2Xτ 2Y R̄X(x1, x2)R̄Y(y1, y2)

− R1(x1, y1) − R1(x2, y2) − R1(x1, y2) − R1(x2, y1),

with R1 defined by [recall the definitions of ψX ,ψY ,ψX,Y in (8.1)]

R1(x1, y1) ≡ −τ 2XψX(x1, y1) − τ 2YψY(x1, y1) + τ 2Xτ 2YψX,Y(x1, y1). (9.7)

The following lemma gives an expansion of g2 into the sum of the main term ḡ2 and the centred
residual term R̄2.

LEMMA 9.9. The following expansion holds:

g2
(
(x1, y1), (x2, y2)

)

= ḡ2
(
(x1, y1), (x2, y2)

)
+

1

6τXτY

[
R̄2
(
(x1, y1), (x2, y2)

)
− ER̄2

(
(X1,Y1), (X2,Y2)

)]
.

Proofs of the proceeding lemmas can be found in Appendix D. Using the above decomposition, we
only need to compute the variance for the two terms ḡ2, R̄2 on the right-hand side of the above display for
the proof of Proposition 9.7. Clearly the variance of ḡ2 can be evaluated by a book-keeping calculation,
and the variance of R̄2 can be handled by the residual estimates in Proposition 8.2. The proof below
illustrates the strength of the bounds obtained in Proposition 8.2.
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Proof. (Proof of Proposition 9.7) First note that we may expand 36τ 2Xτ 2YEḡ
2
2

(
(X1,Y1), (X2,Y2)

)
as

E

[
X�
1 X2Y

�
1 Y2 − X�

1 ΣXYY1 − X�
2 ΣXYY2 + ‖ΣXY‖

2
F

]2
+ E

[
X�
1 ΣXYY2 + X�

2 ΣXYY1

]2
≡ E1 + E2.

This follows as the cross term has expectation 0 due to the symmetry of the distribution of (X,Y). After
expansion, we have

E1 = E(X�
1 X2Y

�
1 Y2)

2 + 2E(X�
1 ΣXYY1)

2 + ‖ΣXY‖
4
F − 4E(X�

1 X2Y
�
1 Y2X

�
1 ΣXYY1)

+ 2‖ΣXY‖
4
F + 2E(X�

1 ΣXYY1X
�
2 ΣXYY2) − 4‖ΣXY‖

4
F .

The above terms can be calculated using Lemma G.3:

• The first term is

E(X�
1 X2Y

�
1 Y2)

2 = 2
(
‖ΣXY‖

4
F + tr(ΣXYΣYXΣXYΣYX) + 2 tr(ΣXYΣYΣYXΣX)

)

+ ‖ΣX‖2F‖ΣY‖
2
F + 2κ ·

[
2 tr(G[12] ◦ G[12]) + tr(H2

[11] ◦ H2
[22])

]

+ κ2 · ‖H[11] ◦ H[22]‖
2
F .

• The second term is

2E(X�
1 ΣXYY1)

2 = 2
(
‖ΣXY‖

4
F + ‖ΣXYΣYX‖2F + tr(ΣXYΣYΣYXΣX) + κ · tr(G[12] ◦ G[12])

)
.

• The fourth term is

− 4E(X�
1 X2Y

�
1 Y2X

�
1 ΣXYY1) = −4E(X�

1 ΣXYY1)
2

= −4
(
‖ΣXY‖

4
F + ‖ΣXYΣYX‖2F + tr(ΣXYΣYΣYXΣX) + κ · tr(G[12] ◦ G[12])

)
.

• The sixth term is 2E(X�
1 ΣXYY1X

�
2 ΣXYY2) = 2‖ΣXY‖4F .

In summary, we have

E1 = ‖ΣX‖2F‖ΣY‖
2
F + ‖ΣXY‖

4
F + 2 tr(ΣXYΣYΣYXΣX)

+ 2κ ·
(
tr(G[12] ◦ G[12]) + tr(H2

[11] ◦ H2
[22])

)
+ κ2 · ‖H[11] ◦ H[22]‖

2
F .

Similarly, we have

E2 = 2E(X�
1 ΣXYY2)

2 + 2E(X�
1 ΣXYY2X

�
2 ΣXYY1) = 2 tr(ΣXYΣYΣYXΣX) + 2‖ΣXYΣYX‖2F .
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Combining the identities and applying Lemmas 7.2 and G.5 yields that

Eḡ22
(
(X1,Y1), (X2,Y2)

)

=
1

36τ 2Xτ 2Y

[(
‖ΣX‖2F‖ΣY‖

2
F + 4 tr(ΣXYΣYΣYXΣX) + ‖ΣXY‖

4
F + 2‖ΣXYΣYX‖2F

)

+ 2κ ·
(
tr(G[12] ◦ G[12]) + tr(H2

[11] ◦ H2
[22])

)
+ κ2 · ‖H[11] ◦ H[22]‖

2
F

]

=
1

36τ 2Xτ 2Y

(
‖ΣX‖2F‖ΣY‖

2
F + ‖ΣXY‖

4
F)

[
1 + OM,κ

( 1

(τX ∧ τY)
2

)]
.

For the residual term, it can be bounded as follows:

ER̄22
(
(X1,Y1), (X2,Y2)

)
� τ 4YE

1/2(X�
1 X2)

4 · E1/2R̄4Y + τ 4XE
1/2(Y�

1 Y2)
4 · E1/2R̄4X

+ τ 4Xτ 4YE
1/2R̄4X · E1/2R̄4Y + ER21.

Using Proposition 8.2-(2), it follows that

ER21 � τ 4XEψ2
X + τ 4YEψ2

Y + τ 4Xτ 4YEψ2
X,Y �M

‖ΣXY‖2F(1 ∨ ‖ΣXY‖2F)

(τX ∧ τY)
2

.

This, combined with Lemma 7.5-(2) and an easy calculation that E(X�
1 X2)

4 � ‖ΣX‖4F and E(Y�
1 Y2)

4 �

‖ΣY‖4F , shows that

ER̄22
(
(X1,Y1), (X2,Y2)

)
�M τ 4Y · ‖ΣX‖2F · τ−8

Y ‖ΣY‖
4
F + τ 4X · ‖ΣY‖

2
F · τ−8

X ‖ΣX‖4F

+ τ 4Xτ 4Y · τ−8
Y ‖ΣY‖

4
F · τ−8

X ‖ΣX‖4F +
‖ΣXY‖2F(1 ∨ ‖ΣXY‖2F)

(τX ∧ τY)
2

�M

‖ΣX‖2F‖ΣY‖2F + ‖ΣXY‖2F(1 ∨ ‖ΣXY‖2F)

(τX ∧ τY)
2

.

AsVar(g2) = (1±ε) Var(ḡ2)+O
(
ε−1 ·τ−2

X τ−2
Y Var(R̄2(X,Y)

)
for any ε > 0, the proof is now complete

by noting that

Var
(
R̄2(X,Y)

)

τ 2Xτ 2Y Var(ḡ2)
�M

‖ΣX‖2F‖ΣY‖2F+‖ΣXY‖2F+‖ΣXY‖4F
(τX∧τY )2

‖ΣX‖2F‖ΣY‖2F + ‖ΣXY‖4F
�M

1

(τX ∧ τY)
2
,

as desired. �

9.3 Hoeffding decomposition: higher orders

The goal of this section is to prove the following.
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PROPOSITION 9.10. Suppose that the spectrum of Σ is contained in [1/M,M] for some M > 1. Then the
third- and fourth-order variance are bounded by

Eg23 + Eg24 � τ−2
X τ−2

Y

(
‖ΣX‖2F‖ΣY‖

2
F + ‖ΣXY‖

2
F + ‖ΣXY‖

4
F

)
� Eg21 + Eg22.

Here the constants in � depend onM and the distribution of Z1 only via its Poincaré constant c∗, excess
kurtosis κ and ε0 prescribed by Assumption A. The claims remain valid with X = Y when the spectrum
of ΣX = ΣY is contained in [1/M,M] for some M > 1.

To prove this proposition, we need to evaluate k3 and k4. k4 = k is already given by Proposition 2.1,
so we only need to compute k3 as follows.

LEMMA 9.11. The third-order kernel is given by

k3(z1, z2, z3) = Ek(z1, z2, z3,Z4)

=
1

12

[
2

∑

1≤i1<i2≤3

U(xi1 , xi2)V(yi1 , yi2) + 2
∑

1≤i≤3

EU(X, xi)V(Y , yi)

−
∑

(i1,i2,i3)∈σ(1,2,3)

U(xi1 , xi2)V(yi1 , yi3) −
∑

1≤i1 	=i2≤3

EU(X, xi1)V(Y , yi2)

]
.

The proof of the above lemma can be found in Appendix D.

Proof. (Proof of Proposition 9.10)For the second moment of g3, we each term in its definition (9.1) can
be bounded as follows:

• First we have

Ek23
(
(X1,Y1), (X2,Y2), (X3,Y3)

)

� E
1/2U4(X1,X2) · E1/2V4(Y1,Y2) � τ−2

X τ−2
Y ‖ΣX‖2F‖ΣY‖

2
F .

The last inequality follows as

EU4(X1,X2) � τ−4
X

(
E(X�

1 X2)
4 + τ 8XER̄

4
X(X1,X2)

)

(∗)

� τ−4
X

(
‖ΣX‖4F + τ−8

X ‖ΣX‖8F
)
� τ−4

X ‖ΣX‖4F ,

and similarly EV4(Y1,Y2) � τ−4
Y ‖ΣY‖4F , using Lemma 7.5 in (∗).

• By Theorem 8.4,

(
dCov2(X,Y)

)2
�M τ−2

X τ−2
Y ‖ΣXY‖

4
F .
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• By Proposition 9.1 and Lemma G.5,

Eg21(X1,Y1) �M τ−2
X τ−2

Y ‖ΣXY‖
2
F .

• By Proposition 9.7,

Eg22
(
(X1,Y1), (X2,Y2)

)
�M τ−2

X τ−2
Y

(
‖ΣX‖2F‖ΣY‖

2
F + ‖ΣXY‖

4
F

)
.

Collecting the above bounds and using the variance lower bound in Lemma 9.5,

Eg23 �M τ−2
X τ−2

Y

(
‖ΣX‖2F‖ΣY‖

2
F + ‖ΣXY‖

2
F + ‖ΣXY‖

4
F

)
�M Eg21 + Eg22.

The second moment bound for g4 can be obtained in a similar way so we omit the proof. �

9.4 Variance expansion

With the groundwork laid above, we are now able to prove the following variance expansion formula.

THEOREM 9.12. Suppose that the spectrum of Σ is contained in [1/M,M] for some M > 1. Then

∣∣∣∣
Var

(
dCov2∗(X,Y)

)

σ̄ 2
n (X,Y)

− 1

∣∣∣∣ � n−1/2 + (p ∧ q)−1/4.

Here σ̄ 2
n (X,Y) is defined in Theorem 2.2, and the constant in � depends on M and the distribution

of Z1 only via its Poincaré constant c∗, excess kurtosis κ and ε0 prescribed by Assumption A. The
claims remain valid with X = Y when the spectrum of ΣX = ΣY is contained in [1/M,M] for some
M > 1.

Proof. By Hoeffding decomposition
(dCov2

∗(X,Y)=
∑4

c=0
4cUn(gc)

)
, so

σ 2
Σ ≡ VarΣ

(
dCov2∗(X,Y)

)
=

4∑

c=1

(
4

c

)2(
n

c

)−1

Eg2c .

Now we may apply Propositions 9.1, 9.7 and 9.10 to conclude that the left-hand side of the desired
inequality is bounded by

inf
ε>0

∣∣∣∣(1 + ε)

(
1 +

OM(n−1 + (p ∧ q)−1/2)

ε

)
− 1

∣∣∣∣ � n−1/2 + (p ∧ q)−1/4.

The claim follows. �
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10. Normal approximation of truncated dCov2∗

Let ḡ0 ≡ E dCov2∗(X,Y) = dCov2(X,Y). Recall ḡ1, ḡ2 defined in (9.2) and (9.6). Define the truncated
sample distance covariance:

T̄n
(
X,Y

)
=

2∑

c=0

(
4

c

)
Un(ḡc). (10.1)

The goal of this section is to prove the following non-null CLT for T̄n(X,Y).

THEOREM 10.1. Suppose that the spectrum of Σ lies in [1/M,M] for some M > 1. Then there exists
some C = C(M,Z1) > 0 such that

errn ≡ dKol

(
T̄n(X,Y) − ET̄n(X,Y)

Var1/2(T̄n(X,Y))
,N (0, 1)

)
≤ C

(
1

n
+

1

pq

)1/4

.

Here Var(T̄n(X,Y)) = σ̄ 2
n (X,Y) is defined in Theorem 2.2, and C depends on Z1 only via its Poincaré

constant c∗, excess kurtosis κ and ε0 prescribed by Assumption A.

The major tool to prove the CLT in Theorem 10.1 is the following discrete second-order Poincaré
inequality proved by Chatterjee [9].

LEMMA 10.2. (Discrete second-order Poincaré inequality). Let X = (X1, . . . ,Xn) be a vector of
independent X-valued random variables, and X′ = (X′

1, . . . ,X
′
n) be an independent copy of X. For any

A ⊂ [n], define the random variable

XAi ≡

{
X′
i , if i ∈ A,

Xi, if i /∈ A.

Define Δjf ≡ f (X) − f (X{j}), TA ≡
∑

j/∈A Δjf (X)Δjf (X
A), and

T ≡
1

2

∑

A�[n]

TA(
n

|A|
)
(n− |A|)

.

Then withW ≡ f (X) admitting finite variance σ 2,

dKol

(
W − E(W)

Var1/2(W)
,N (0, 1)

)
≤ 2

[
Var1/2

(
E(T|W)

)

σ 2
+

1

2σ 3

n∑

j=1

E|Δjf (X)|3
]1/2

.

Proof. This follows from [9, Theorem 2.2] and Lemma G.2. �

We start with the following decomposition of T̄n(X,Y). Its proof will be presented in Appendix E.1.



38 Q. HAN AND Y. SHEN

LEMMA 10.3. Let

ψ1(X,Y) ≡
∑

I2n

(
X�
i1
Xi2Y

�
i1
Yi2 − ‖ΣXY‖

2
F

)
,

ψ2(X,Y) ≡
∑

i 	=j

(
X�
i ΣXYYj + X�

j ΣXYYi
)
,

ψ3(X,Y) ≡
n∑

i=1

[‖ΣXY‖2F
τ 2X

(
‖Xi‖

2 − tr(ΣX)
)
+

‖ΣXY‖2F
τ 2Y

(
‖Yi‖

2 − tr(ΣY)
)]
.

Then

T̄n
(
X,Y

)
= dCov2(X,Y) +

1

τXτY · 2
(
n
2

)
(
ψ1

(
X,Y

)
− ψ2

(
X,Y

))
−

2

τXτYn
ψ3(X,Y).

Proof. (Outline of the proof of Theorem 10.1) Define Tψ1
(X,Y)-Tψ3

(X,Y) andΔiψ1(X,Y)-Δiψ3(X,Y)

as in the discrete second-order Poincaré inequality (cf. Lemma 10.2). The following three propositions
give variance and third moment bounds for these quantities.

PROPOSITION 10.4. (Analysis of ψ1). Assume the conditions in Theorem 10.1. Then the following hold:

1. (Variance bound)

Var
[
E(Tψ1

|X,Y)
]
� n3 · ‖ΣX‖4F‖ΣY‖

4
F + n4 · (1 ∨ ‖ΣXY‖

2
F)‖ΣX‖2F‖ΣY‖

2
F

+ n5 · (1 ∨ ‖ΣXY‖
2
F)‖ΣXY‖

2
F .

2. (Third moment bound)

n∑

i=1

E|Δiψ1(X,Y)|3 � n5/2 tr3/2(ΣX) tr3/2(ΣY) + n4‖ΣXY‖
3
F .

The constants in � depend on M and the distribution of Z1 only.

PROPOSITION 10.5. (Analysis of ψ2). Assume the conditions in Theorem 10.1. Then the following hold.

1. Var
[
E(Tψ2

|X,Y)
]
� n4‖ΣXY‖4F .

2.
∑n

i=1 E|Δjψ2(X,Y)|3 � n5/2‖ΣXY‖3F .
The constants in � depend on M and the distribution of Z1 only.

PROPOSITION 10.6. (Analysis of ψ3). Assume the conditions in Theorem 10.1. Then the following hold.

1. Var
[
E(Tψ3

|X,Y)
]
� n · ‖ΣXY‖8F(τ−4

X + τ−4
Y ).

2.
∑n

i=1 E|Δiψ3(X,Y)|3 � n · ‖ΣXY‖6F(τ−3
X + τ−3

Y ).

The constants in � depend on M and the distribution of Z1 only.
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The proofs of these propositions will be detailed in Appendix E. By the proceeding propositions and
Lemma G.5, we have

D1 ≡
Var1/2

(
E(Tψ1

|X,Y)
)
+ Var1/2

(
E(Tψ2

|X,Y)
)

n4τ 2Xτ 2Y

+
Var1/2

(
E(Tψ3

|X,Y)
)

n2τ 2Xτ 2Y

�M

[
1

n5/2
+

1 ∨ ‖ΣXY‖F
n2τXτY

+
(1 ∨ ‖ΣXY‖F)‖ΣXY‖F

n3/2τ 2Xτ 2Y

]
+

‖ΣXY‖4F
n3/2τ 2Xτ 2Y (τ 2X ∧ τ 2Y )

�M

1

n2τ 2Xτ 2Y

[
n−1/2τ 2Xτ 2Y + τXτY(1 ∨ ‖ΣXY‖F) + n1/2(1 ∨ ‖ΣXY‖F)‖ΣXY‖F

]
,

and

D2 ≡
∑n

i=1 E|Δiψ1(X,Y)|3 + E|Δiψ2(X,Y)|3

n6τ 3Xτ 3Y

+
∑n

i=1 E|Δiψ3(X,Y)|3

n3τ 3Xτ 3Y

�M

[
1

n7/2
+

‖ΣXY‖3F
n2τ 3Xτ 3Y

]
+
n‖ΣXY‖6F(τ−3

X + τ−3
Y )

n3τ 3Xτ 3Y

�M

1

n3τ 3Xτ 3Y

[
n−1/2τ 3Xτ 3Y + n‖ΣXY‖

3
F

]
.

Using Theorem 9.12 with the lower bound Lemma 9.5, we have

σ̄ 2
n = Var

(
T̄n(X,Y)

)
�M

1

n2τ 2Xτ 2Y

[
n‖ΣXY‖

2
F + τ 2Xτ 2Y + ‖ΣXY‖

4
F

]
. (10.2)

This entails that

D1

σ̄ 2
�M

n−1/2τ 2Xτ 2Y + τXτY(1 ∨ ‖ΣXY‖F) + n1/2(1 ∨ ‖ΣXY‖F)‖ΣXY‖F
n‖ΣXY‖2F + τ 2Xτ 2Y + ‖ΣXY‖4F

�
1

n1/2
+

1

τXτY
+

τXτY‖ΣXY‖F
n‖ΣXY‖2F + τ 2Xτ 2Y

+
n1/2‖ΣXY‖F

n‖ΣXY‖2F + τ 2Xτ 2Y

�
1

n1/2
+

1

τXτY
,

D2

σ̄ 3
�M

n−1/2τ 3Xτ 3Y + n‖ΣXY‖3F
n3/2‖ΣXY‖3F + τ 3Xτ 3Y + ‖ΣXY‖6F

�
1

n1/2
.

The claim follows using Lemma 10.2 in the form

errn ≤ C ·
[
D1

σ̄ 2
+
D2

σ̄ 3

]1/2
,

as desired. �
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As outlined above, the major step in the proof is to obtain good enough variance and third moment
bounds forE[Tψ1

|X,Y]-E[Tψ3
|X,Y] andΔiψ1(X,Y)-Δiψ3(X,Y), as claimed in Propositions 10.4–10.6.

The proofs to these propositions are fairly delicate and involved. The most complicated case appears to
be the control for E[Tψ1

|X,Y],Δiψ1(X,Y) associated with the first term ψ1(X,Y) due to its highest
polynomial order by definition. The structure of the bounds in Propositions 10.4–10.6 also reveals a
careful balance among the power in the terms n, ‖ΣX‖F‖ΣY‖F , ‖ΣXY‖2F . Such a balance turns out to
be crucial to reach the announced error bound in Theorem 10.1 that requires no more than a bounded
spectrum condition. See Appendix E for proof details.

11. Proof of Theorem 2.2

(Step 1) By definition of T̄n(X,Y) in (10.1), we have

Δn ≡ dCov2∗(X,Y) − T̄n(X,Y) =
2∑

c=1

Un(gc − ḡc) +
4∑

c=3

Un(gc).

This means

Var(Δn)

σ̄ 2
n (X,Y)

�

2∑

c=1

Var
[
Un
(
gc − ḡc

)]

σ̄ 2
n (X,Y)

+
4∑

c=3

Var
[
Un(gc)

]

σ̄ 2
n (X,Y)

.

For c = 1, by Lemma 9.3 and the proof of Proposition 9.1, we have

Var
[
Un(g1 − ḡ1)

]

σ̄ 2
n (X,Y)

�
Var(R̄1(X,Y))

nτ 2Xτ 2Y σ̄ 2
n (X,Y)

�
Var(R̄1)

τ 2Xτ 2Y Var(ḡ1)
�M

1

τX ∧ τY
.

For c = 2, by Lemma 9.9 and the proof of Proposition 9.7, we have

Var
[
Un(g2 − ḡ2)

]

σ̄ 2
n (X,Y)

�M

Var(R̄2)

n2τ 2Xτ 2Y σ̄ 2
n (X,Y)

�M

Var(R̄2)

τ 2Xτ 2Y Var(ḡ2)
�M

1

(τX ∧ τY)
2
.

For c = 3, 4, the proof of Proposition 9.10 yields that

Var
[
Un(g3)

]
+ Var

[
Un(g4)

]
�M

1

n3τ 2Xτ 2Y

(
‖ΣX‖2F‖ΣY‖

2
F + ‖ΣXY‖

2
F + ‖ΣXY‖

4
F

)
,

so using the variance lower bound in (10.2), we have

Var
[
Un(g3)

]
+ Var

[
Un(g4)

]

σ̄ 2
n (X,Y)

�M

1

n
.



GENERALIZED KERNEL DISTANCE COVARIANCE IN HIGH DIMENSIONS 41

Collecting the bounds, we have

Var(Δn)

σ̄ 2
n (X,Y)

�M

1

n
+

1

τX ∧ τY
. (11.1)

(Step 2) First consider normalization by σ̄n(X,Y) = Var1/2(T̄n(X,Y)). Using the decomposition

L̄n ≡
dCov2∗(X,Y) − dCov2(X,Y)

σ̄n(X,Y)
=

Δn

σ̄n(X,Y)
+
T̄n(X,Y) − ET̄n(X,Y)

Var1/2(T̄n(X,Y))
,

by Lemma G.1 and Theorem 10.1 (note that EΔn = 0),

dKol

(
dCov2∗(X,Y) − dCov2(X,Y)

σ̄n(X,Y)
,N (0, 1)

)

≤ dKol

(
T̄n(X,Y) − ET̄n(X,Y)

Var1/2(T̄n(X,Y))
,N (0, 1)

)
+ 2

(
Var(Δn)

σ̄ 2
n (X,Y)

)1/3

�M

(
1

n ∧ p ∧ q

)1/6

.

Next, with the normalization Var1/2(dCov2∗(X,Y)), consider the decomposition

dCov2∗(X,Y) − dCov2(X,Y)

Var1/2(dCov2∗(X,Y))
= L̄n + L̄n

(
σ̄n(X,Y)

Var1/2(dCov2∗(X,Y))
− 1

)
≡ L̄n + Δ̄n.

By Theorem 9.12, Var(Δ̄n) �M n−1 + (p∧ q)−1/2. The claim now follows by invoking Lemma G.1. �
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