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Abstract—When developers run tests after making code
changes, they may encounter test failures from flaky tests, which
are tests that can non-deterministically pass or fail on the same
version of code. Prior work has found ‘“timing dependence” to
be a top cause of this non-determinism, i.e., tests may pass or fail
depending on the timing of asynchronous callbacks or different
thread interleavings that can occur when thread executions run
faster or slower relative to others. Similar to how one debugs and
fixes normal test failures, developers need to be able to reliably
reproduce flaky-test failures. However, many of these failures can
be extremely unlikely to occur (e.g., failing only once out of 10,000
runs in prior work), making it costly for developers to reproduce
the failures. We present FlakeRake, an automated approach
for reproducing timing-dependent (TD) flaky-test failures by
inserting well-placed sleep calls, which temporarily pauses one
thread or task and allows another to overtake it. When applied
to an existing dataset of known flaky-test failures, FlakeRake
is able to reproduce the exact same failure at least once for
136 failures, whereas simply rerunning each test 10,000 times
reproduces only 115 failures or rerunning the entire test suites
10,000 times reproduces only 127 failures. For each failure that
can be reproduced, we find that FlakeRake can reliably reproduce
(>50% of the time) 107 failures, while rerunning just the flaky
test or the entire test suite could not reliably reproduce any
failure. We also find that if a developer needs to reproduce a
failure six or more times, using FlakeRake (including the one-
time cost to search for sleep calls) takes less time to reproduce
that many failures than continually rerunning just the flaky test.
Lastly, we inspect the sleep locations that FlakeRake outputs and
provide insights for how one should cope with TD flaky tests.

I. INTRODUCTION

After a developer makes a change to their code, the
tests might fail, not because of any fault introduced in that
change but because of flakiness [1], [2] — the tests are non-
deterministic, and they can pass and fail regardless of any
change. Flaky tests are a growing interest in research literature,
with a wealth of new approaches [3]-[11] recently proposed
to detect which tests might be prone to flaky-test failures.
Meanwhile, reports from industry via blogs (e.g., Gradle [12],
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Fitbit [13], Saucelabs [14], and Thoughtworks [15]) and re-
search papers (e.g., Apple [16], Ericsson [17], Facebook [18],
[19], Google [20]-[23], Huawei [24], Microsoft [25]-[28], and
Mozilla [29], [30]) highlight the difficulties that developers
face when dealing with flaky tests. One concern highlighted
in these reports is that, despite the increasing interest from
the research community to detect and root cause flaky tests,
simply detecting which tests might be flaky and root causing
the flakiness category can still be inadequate, i.e., although
a developer may know that a test is flaky and the category
of the flaky test (e.g., concurrency), the developer still may
not be able to recreate the environment (e.g., the particular
thread interleaving) to reproduce the flaky-test failure. More
specifically, several surveys [31]-[33] have found that the
reproduction of flaky-test failures to (1) debug and understand
the failures and (2) verify that any patches actually repair or
mitigate the flakiness is one of the most difficult challenges
related to flaky tests.

Given that modern continuous integration workflows may
execute a single test hundreds or thousands of times per
day, a flaky-test failure that rarely occurs (e.g., once in 1000
executions) will still fail at least once a day (resulting in a
failed build that incorrectly requires a developer’s attention)
and be a challenge for a developer to reproduce. Alshammari et
al. [5] studied flaky tests in 24 open-source projects, executing
each test suite 10,000 times and identifying 811 flaky tests.
We analyzed this dataset to determine how often each unique
failure (by stack trace) occurred, finding a total of 1,167 unique
failures, of which 737 (63%) occurred in fewer than 10 runs.

Reproducing infrequent flaky-test failures is often challeng-
ing, yet necessary. In fact, prior work [31] found that 77% of
developers often run flaky tests multiple times when debugging
a flaky-test failure to reproduce the failure, log different parts
of code, and vary the context in which the test is run. To help
detect and reproduce flaky-test failures, prior work [3], [4] has
proposed tools for detecting and reproducing failures caused
by test-order dependency (OD), by controlling the order of
test execution. Although OD is a prominent cause of flakiness



and many tools [3], [4], [34]-[36] have been developed to help
with these flaky tests, it is not the most prominent cause of
flakiness. In fact, when we run a state-of-the-art OD tool [3]
on the projects in Alshammari et al.’s dataset [5], we find that
only 12% (96) of the projects’ 811 flaky tests are OD.

Prior work [1], [31] identified that one of the most promi-
nent causes of flakiness is timing-dependence (TD), i.e., tests
that depend on execution timing. Yet, there are no publicly
available tools to help reproduce TD-test failures.

To address this problem, we present FlakeRake, an auto-
mated approach for reproducing TD-test failures. FlakeRake
outputs configurations that a developer can use to run tests to
more reliably reproduce TD-test failures, debug them, and fix
them without needing to repeatedly rerun tests. We implement
FlakeRake for Java and evaluate its efficacy in reproducing
TD-test failures by applying it to the entire FlakeFlagger
dataset, consisting of 811 flaky tests and 1,167 unique test
failures. Compared to two state-of-the-practice baselines, we
find that FlakeRake is more effective at reproducing the
same failures (by matching stack traces) in the FlakeFlagger
dataset. We conducted repeated trials with each approach to
measure how reliably these failures were reproduced, finding
that FlakeRake can reproduce most failures in at least 50% of
the time. We evaluate FlakeRake’s execution time in a use-
case (e.g., a debugging session) where a developer needs to
reproduce a given flaky-test failure multiple times. While there
is a one-time cost to generate the configurations, reproducing
the flaky failure is fast afterwards (adding a delay of just a
few seconds per-test run). Specifically, we find that FlakeRake
is overall faster at reproducing a failure six or more times
compared to simply rerunning the test normally (as the test
does not reliably fail every time it is run normally).

We inspect the configurations that FlakeRake generates to
reproduce TD-test failures and find that certain code charac-
teristics are more likely to be associated with these failures.
Our findings can be used to help developers further optimize
tools to reproduce TD-test failures. We also study the flaky-test
failures that were never reproduced in any of our experiments,
finding several common root causes and yielding insights for
future research. To enable others to use FlakeRake, we make
the tool and our list of Java, timing-related APIs publicly
available, along with the results of our evaluations [37].

This paper makes the following main contributions:
Approach. We present FlakeRake, an automated approach for
finding failure-inducing configurations that reproduce TD-test
failures. We implement our approach for Java and make our
tool publicly available [37].

Evaluation. We evaluate FlakeRake on a dataset of flaky tests
and find that FlakeRake is able to reproduce more flaky-test
failures and reproduce them more reliably and faster compared
to two state-of-the-practice techniques.

Dataset. We make publicly available a dataset of categorized
TD flaky tests and how one can reliably reproduce the failures
of these tests. Our dataset includes the failures, how often they
occur, and the execution times of FlakeRake and the baseline
approaches [37].

I @Test public void testCustomBufferSize() {
startSMTPServer (NO_SSL) ;
configure(...);
logger.error ("hello");
waitUntilEmailIsSent () ;

6 MimeMultipart mp = verifyMultipart("..." + this.
getClass () .getName () + " - " + msqg);
}
8  MimeMultipart verifyMultipart(...) {
9 waitToReceiveEmails (1) ;
10 assertEquals (1, server.getMessages () .length);

11 }

2 class SenderRunnable implements Runnable {

13 void run() { sendBuffer(...); } // sends e-mail
14 }

Fig. 1. Example TD test from SMTPAppender_GreenTest class in
the 1logback project [38].

II. BACKGROUND

Prior work on flaky tests [1], [28], [31] have identified
more than 10 causes for flaky tests, including dependency
on asynchronous code, test order, thread interleavings, system
time, etc. These pieces of work find that dependencies on
asynchronous code and specific thread interleavings are the
most prominent causes of flaky tests. We refer to all such
tests as timing-dependent (TD) tests.

Figure 1 shows an example of a TD test from the FlakeFlag-
ger dataset [5] that FlakeRake reliably reproduces. The goal of
the test is to check whether emails are properly sent when the
framework logs an error. testCustomBufferSize is flaky
because of an assertion failure inside verifyMultipart on
Line 10. The assertion checks whether the number of emails
sent is 1 or not. Depending on the result of an asynchronous
call, this test can fail with the message AssertionError:
expected:<1> but was:<0>. The assertion sometimes
fails because Line 4 logs an error and the configured email
server from lines 2 and 3 begins to send an email about
the error asynchronously in another thread, eventually calling
Line 13. Line 9 on the main thread then waits up to five
seconds for this other thread to send the email. If Line 13
takes longer than five seconds to finish, then the assertion on
Line 10 fails. Based on the complexity of the operations that
the test performs, it is possible for the test to take longer than
five seconds to send the email. Prior work [5] found that this
test failed only once in 10,000 test-suite runs. If a developer
tries to debug this flaky test, the developer may need to run
this test many times to reproduce the failure. When we run just
this test 10,000 times, we find that this test never fails. On the
other hand, FlakeRake can help reproduce the exact failure
(same stack trace) observed in prior work by automatically
suggesting the insertion of a sleep (a Thread.sleep call and
value to use) right before Line 13. This suggestion reproduces
the failure reliably (100% of the time in 10,000 runs).

III. FLAKERAKE

Figure 2 shows an overview of FlakeRake, an approach
to automatically reproduce TD flaky-test failures. At a high
level, FlakeRake takes as input a known flaky test, and it
outputs a configuration, which defines a set of locations along
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Fig. 2. Overview of FlakeRake’s approach to automatically generate scripts to reliably reproduce timing-dependent flaky-test failures. FlakeRake profiles a test’s
usage of timing-dependent (TD) APIs, and then searches for failure-inducing configurations of sleepyLines for that test. These failure-inducing configurations

are then confirmed, enabling reliable reproduction of flaky-test failures.

with a particular thread associated with each location where
inserting delays (sleeps) at these location/thread pairs should
reliably reproduce a specific TD failure. FlakeRake is meant
to be used to reproduce a failure after a test is detected to
be flaky. More details for when and how developers should
use FlakeRake is in Section V-A. To generate configurations,
FlakeRake has three main steps: Timing Dependent (TD) API
Execution Profiling, Configuration Search, and Confirmation.

A. TD API Execution Profiling

To reproduce TD flaky-test failures, FlakeRake inserts
delays around calls to APIs that are timing-dependent. In
general, TD APIs are those that implicitly affect timing-related
operations, such as methods that read the system clock or
acquire a lock (e.g., beginning of a Java synchronized block,
which permits only one thread to enter the block at a time).

We construct a list of TD APIs for Java applications by
collecting the API methods in the standard Java Development
Kit (JDK) that may affect timing of code executions, especially
across multiple threads or concurrent operations on data.
We first inspected all APIs in the java.util.concurrent
and java.nio packages. The former package contains a
collection of classes with APIs for thread concurrency, while
the latter contains a collection of classes with APIs for non-
blocking, asynchronous IO operations. We also inspected all
APIs that have the keywords “thread”, “lock”, “socket”, or
“time” in their API documentation from the following pack-
ages: java.io, java.lang, java.net, and javax.net.
Our intuition is that such APIs are likely to affect thread
executions or asynchronous services (e.g., network connec-
tions via sockets). In the end, we obtain 1955 APIs from
java.util.concurrent, 565 from java.nio, 17 from
java.net and javax.net, and 54 from other packages in the
JIDK (e.g., System.currentTimeMillis). These methods
are the TD APIs we use. We further study the relevance of
these APIs in our evaluation (Section IV-D). We store the
list of TD APIs in a configuration file that developers can
change as needed, and make our list publicly available [37].
We use only methods from the JDK as the TD APIs because
any other methods from the tests, system-under-test, or third-
party library code that perform timing-related operations are
likely to eventually use these APIs from the standard JDK.

In its first phase, FlakeRake dynamically profiles the test’s
execution to find where it makes calls to any of the TD APIs.
FlakeRake dynamically instruments the code to track calls to
TD APIs, regardless of whether the calls are made directly

or indirectly (e.g., by an external dependency) by the test.
This step executes the test multiple times to record which
APIs get called. The instrumented executions produce a list
of sleepyLines — the list of candidate lines to sleep at. As
each TD API might be invoked in multiple threads, FlakeRake
also records a threadID for each sleepyLine. We compute a
stable identifier for the thread by generating a hash of the stack
trace at the location that spawned the thread, the number of
times that location has spawned a thread, and the threadlD
that spawned the thread. FlakeRake gives the initial, “main”
thread the consistent identifier (.

There may not always be the same consistent TD APIs
called during a test execution due to inherent non-determinism
of the execution. To mitigate the issues of non-determinism,
FlakeRake executes this profiling step multiple times and
aggregates the set of TD API calls made across all executions.
When we perform this profiling step 10 times on the flaky tests
in the FlakeFlagger dataset [5], we find that the first profiling
run already contributes 84% of the TD API calls that can be
found in 10 runs. By the fifth run, no TD APIs found by our
profiling were needed to reproduce the flaky-test failures in
the FlakeFlagger dataset. Therefore, we set and recommend
the default number of executions for this step to be five.

B. Configuration Search

While there are many possible TD API lines to sleep at to

reproduce a TD failure (sleepyLines), only a few of them may
be needed. FlakeRake explores these lines by repeatedly run-
ning the test under different configurations involving subsets of
the sleepyLines. Although FlakeRake’s process to repeatedly
run the test can have a high cost, this cost is per test and not
per failure, i.e., once FlakeRake produces a configuration, a
test’s TD failure can be trivially reproduced. Details on how
the efficiency of FlakeRake compares to other approaches is
in Section IV-C. If a test is found to fail under the initial
configuration consisting of all sleepyLines, FlakeRake notes
the stack trace of that failure, and it then attempts to minimize
the set of sleepyLines, with the goal of finding a simpler
configuration to reproduce that same failure. We implement
and evaluate two heuristic-based algorithms to partition the
set of sleepyLines into smaller sets:
One-by-one (OBO): For each identified sleepyLine, OBO pro-
duces a configuration for each line. For example, given sleep-
yLines and corresponding threadIDs (s1,¢1), (s2,t1), (s3,t2),
OBO produces three configurations: < (s1,t1) >, <
(52,t1) >, and < (83,2) >.



|—> 2a. Run tests with FlakeRake

with FlakeRake
1. Collect ground-

_ | 2b. Reproduce failures

RQ2 How reliably are
failures reproduced?

RQ1 How many failures
are reproduced?

truth flaky CI failures

2c¢. Run tests with Rerun-Repl

& Isolated Rerun

RQ3 How long to
reproduce failures?

RQ4 Characteristics of
Configurations?

3. Match
Failures
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Bisection: Inspired by the bisection algorithm commonly used
in mathematics [39] and similar to binary search (except the
values need not be sorted), this algorithm identifies com-
binations of sleepyLines that could induce test failures by
repeatedly bisecting the sleepyLine values and then selecting
values under which the test outcome changes (i.e., changing
from non-failure-inducing to failure-inducing). For example,
given sleepyLines (s1,t1), (s2,¢1), (s3,¢2) in order of appear-
ance during execution, Bisection produces four configurations:
< (s1,t1),(s2,t1) >, < (sl,t1) >, < (s2,t1) >, and
< (s3,t2) >. FlakeRake’s bisection will not explore subsets
of configurations if the union of the sub-sets does not reliably
reproduce a failure. This algorithm does not try configurations
such as < (s1,t1),(s3,t2) > and < (s2,t1),(s3,t2) > to
minimize the cost of configuration search. Future work should
evaluate the trade-offs of OBO and bisection compared to
other algorithms like delta-debugging [40].

Ultimately, we find that OBO finds slightly fewer failures
than Bisection, while being only 2.4% faster than Bisection
(Section IV-A provides more details). Given OBO’s minimal
time savings, we set FlakeRake to use Bisection as the default
for our other experiments.

To determine whether a configuration is failure-inducing,
FlakeRake performs an exploratory check for each of the
configurations produced by the algorithms. For each sleepy-
Line in the configuration, FlakeRake injects a sleep call of
initSleepTime for the corresponding threadID. The sleep
time at a sleepyLine is calculated as |initSleepTime* ()],
where ¢ is the number of times that specific sleepyLine had
previously suspended the corresponding threadID’s execution.
Intuitively, the more times the same sleepyLine is executed,
e.g., in a loop, the less we sleep at that location. To determine
the initSleepTime, we performed a preliminary study where
we explored initSleepTime values of 5, 10, and 15 seconds
on the FlakeFlagger dataset [5]. We find that initSleepTime
set to 5 and 15 seconds reproduces the same number (136) of
failures from the FlakeFlagger dataset, while initSleepTime
set to 10 seconds reproduces one more failure (137). As
initSleepTime set to 5 seconds reproduces a similar amount
of failures as the other values and a lower initSleepTime
means less time needed to search for configurations and
reproduce failures, we set the default initSleepTime to be
5 seconds and use this value for our experiments.

C. Confirmation

For each failure-inducing configuration, FlakeRake reruns
the test five times, and outputs the configuration only if it
produced the same failure (i.e., same failure stack trace) at

least three times. We rerun five times because prior work [41]
found that rerunning a test five times is generally sufficient
to observe both passing and failing results from a flaky test
(Section IV-B shows our results rerunning 100 times).

FlakeRake might generate a failure-inducing configuration
that results in a test getting stuck, e.g., in a deadlock or
livelock. Similar to techniques used by mutation analysis tools,
such as PITest [42], FlakeRake sets a per-test timeout based
on the average run time of the test run normally, the total
amount of sleep added, and a constant offset. If applying
a configuration leads to the test execution time exceeding
the expected time, then FlakeRake discards the configuration.
FlakeRake can be configured to explore and confirm all
failures (as we evaluate in Section IV), or to confirm only
a specific failure that a developer is interested in debugging.

FlakeRake produces a reproduction script using the failure-
inducing configurations outputted by the previous steps. This
script includes (1) the failure, represented as the exception
message and stack trace, and (2) the failure-inducing config-
uration, represented as a set of sleepyLines and their corre-
sponding threadIDs for reproducing the specific failure. Flak-
eRake uses these scripts to dynamically apply the appropriate
sleeps when re-running the test. Alternatively, developers can
use the information to manually reproduce the failure.

IV. EVALUATION

Figure 3 shows a high-level overview of our evaluation
methodology and research questions. Our experimental design
takes as input a set of known flaky tests along with their re-
spective logs generated by Alshammari et al.’s experiments [5];
we refer to this dataset as the FlakeFlagger dataset. These logs
contain the failing exception and stack trace for each flaky-
test failure, which serves as the ground truth of flaky tests and
flaky-test failures that we aim to reproduce (Step 1 in Fig. 3).
Their dataset was constructed by executing each test suite as
developers would in a continuous integration environment —
repeatedly running the test suite by executing mvn test. We
run FlakeRake on each of the flaky tests (Step 2a) to output a
list of failures and the configurations to reproduce them. Then
we run each of the configurations 100 times to see whether
the failures can be reliably (>50%) reproduced (Step 2b).

We consider two standard baseline approaches for reproduc-
ing flaky-test failures: Rerun-Repl and Isolated Rerun (Step
2c). Rerun-Repl is an exact replication of Alshammari et
al’s experiment [5], which invokes the entire test suite for
each project 10,000 times. To reduce the differences in our
replication, we use the same projects and scripts released by
Alshammari et al. Isolated Rerun runs each flaky test 10,000



TABLE I
NUMBER OF FLAKY TESTS AND UNIQUE FAILURES DETECTED BY EACH APPROACH AND INTERSECTION OF THOSE FAILURES WITH RERUN FROM [5].
Unique failures are identified by stack trace. This table contains only the tests known to be flaky by Rerun from [5].

Flaky Tests & Failures by Technique |

Intersection of Failures

Rerun from [5] Rerun-Repl Isolated Rerun FlakeRake F]akeRake—OBO‘

with Rerun from [5]

Project Tests Failures Tests Failures Tests Failures Tests Failures Tests — Failures \ Rerun-Repl Iso. Rerun FlakeRake FlakeRake-OBO
activiti-activiti 32 32 15 15 6 6 28 95 28 72 15 6 24 24
Alluxio-alluxio 116 183 2 2 2 2 55 157 53 122 2 2 28 24
apache-ambari 52 53 0 0 0 0 1 3 1 3 0 0 2 2
apache-commons-exec 1 1 0 0 0 0 0 0 0 0 0 0 0 0
apache-hbase 145 250 42 42 72 121 89 165 73 91 13 14 15 6
apache-httpcore 22 22 5 5 2 2 16 22 16 17 5 2 4 1
apache-incubator-dubbo 19 21 8 8 1 3 6 29 6 27 0 0 0 0
doanduyhai-Achilles 4 4 2 2 2 2 0 0 0 0 2 2 0 0
elasticjob-elastic-job-lite 3 4 0 0 0 0 1 2 1 2 0 0 0 0
hector-client-hector 33 33 0 0 0 0 1 1 1 1 0 0 0 0
jknack-handlebars.java 1 1 1 1 1 1 1 1 1 1 1 1 1 1
joel-costigliola-assertj-core 1 1 0 0 0 0 0 0 0 0 0 0 0 0
kevinsawicki-http-request 18 18 18 18 0 0 0 0 1 1 18 0 0 0
ninjaframework-ninja 1 1 0 0 1 1 0 0 0 0 0 1 0 0
orbit-orbit 7 7 2 2 5 5 6 18 7 20 2 5 3 5
qos-ch-logback 22 23 2 2 2 2 16 22 16 22 2 2 12 12
spring-projects-spring-boot 163 287 0 0 30 31 5 24 6 14 0 24 0 1
square-okhttp 100 121 15 24 12 18 26 41 23 38 22 17 17 13
tootallnate-java-websocket 23 45 22 41 21 36 22 26 21 21 41 36 22 21
undertow-io-undertow 7 12 1 1 0 0 7 19 7 19 1 0 4 4
wildfly-wildfly 23 23 0 0 0 0 0 0 0 0 0 0 0 0
wro4j-wro4j 16 23 2 2 1 1 4 5 4 4 1 1 4 4
zxing-zxing 2 2 2 2 2 2 0 0 0 0 2 2 0 0
Total 811 1,167 139 167 160 233 284 630 265 475| 127 115 136 118

times in isolation and most closely mirrors what is typically
done by developers when reproducing flaky-test failures.

The list of flaky-test failures found by each approach is
passed into a matching script (Step 3), which considers two
failures as matched if they have the exact same stack trace. We
set FlakeRake’s reproduction to require a failure be reproduced
at least three times, therefore we also set a similar goal for
the baseline approaches: an approach reproduces the failure if
it reports the failure at least three times. We use this failure
data to evaluate our research questions:

RQ1: How effective are FlakeRake, Rerun-Repl, and Isolated
Rerun at reproducing flaky-test failures at least three times?
RQ2: How reliably can FlakeRake, Rerun-Repl, and Isolated
Rerun reproduce flaky-test failures?

RQ3: How efficient are FlakeRake, Rerun-Repl, and Isolated
Rerun at reproducing flaky-test failures multiple times?
RQ4: What are the characteristics of the failure-inducing
configurations outputted by FlakeRake?

Dataset and Environment: We use the same FlakeFlagger
dataset from Alshammari et al. [5]. We conducted our ex-
periments using virtual machines, each running Ubuntu 20
and Oracle’s Java 1.8.0_301, with 16GB RAM and 4 virtual
CPU cores. We use this same environment to run all of our
experiments (Rerun-Repl, Isolated Rerun, and FlakeRake).

A. RQI: Number of reproduced failures

Our first research question leads us to examine which known
flaky tests could be reproduced as flaky by each approach,
and how many unique failures we observe. Table I shows
the number of tests detected as flaky and the number of

unique failures detected by each approach. We find that the
distribution of failures can vary dramatically between projects.
That is, in some cases (e.g., activiti, commons-exec,
orbit, wildfly), the number of unique failures matched the
number of tests exactly: each flaky test always failed with
the same failure stack trace. However, in other cases (e.g.,
alluxio, hbase, spring-boot), some flaky tests fail with
many different stack traces.

Comparing the results from Rerun (Alshammari et al’s
data [5] - extracted from their Table 1 and supplemental data)
with Rerun-Repl and Isolated Rerun, we observe that approx-
imately 80% of the flaky tests from the FlakeFlagger dataset
could not be reproduced as flaky. Given the non-determinism
of flaky tests, it is understandably difficult to reliably repro-
duce them. Alshammari et al. conducted experiments several
years before ours, so although we use the same versions of the
same tests, SNAPSHOT versions of dependencies could have
changed, resulting in different behaviors.

Comparing FlakeRake with Bisection partition (columns
FlakeRake) and FlakeRake with OBO partition (columns
FlakeRake-OBO), we find that the default Bisection partition
was slightly more effective than the OBO partition. In total,
the two partition schemes could together reproduce failures
for 290 flaky tests. Overall, FlakeRake reproduced failures for
more tests than Rerun-Repl or Isolated Rerun (284 compared
to 139 and 160, respectively), and also reproduced more
unique failures (630 compared to 167 and 233, respectively).
FlakeRake’s performance per-project was quite consistent,
detecting at-least-as-many flaky tests as the baselines in 17
of the 23 projects.
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Fig. 4. Intersection of failures detected by each technique. Of the techniques
evaluated, FlakeRake was most successful at reproducing failures from the
original Rerun dataset (136 failures), compared to Rerun-Repl (127 failures)
and Isolated Rerun (115 failures).

TABLE II
TOP 4 CATEGORIES OF FAILURES BY DETECTION SOURCE

Detected By Category Number of Failures
UnknownHostException 224

Onlv Rerun AssertionError 148
y [OException 144
ArtifactResolutionException 104

AssertionError 124

Timeout 117

Only FlakeRake yop s ception 113
ConcurrentUpdate 67

Rerun-Repl or  Address in use 60
Isolated Rerun IllegalArgumentException 34
(not TableNotFoundException 29
FlakeRake) AssertionError 28

Not only does FlakeRake reproduce more flaky-test failures
than the alternative techniques, it also reproduces more of
the exact same failures that appeared in the FlakeFlagger
dataset [S]. Specifically, FlakeRake reproduced 136 failures,
while Rerun-Repl reproduced 127 and Isolated Rerun repro-
duced 115 failures. This result shows that, despite perturbing
the specified test behavior (by inserting sleeps), FlakeRake still
reproduces more of the same failures that were reported in the
original dataset than simply rerunning the tests normally.

Figure 4 is a four-way Venn diagram that shows the number
of failures that were matched between each of the four flaky-
test reproduction approaches that we presented in Table L
To gain more insights into our results, we categorize each
of the failures in our dataset by the exception type, showing
the top four exception types in Table II (our supplementary
material contains the complete result). While some categories
are somewhat generic (e.g., “AssertionError”), others provide
more insights as to the failure cause, such as “Unknown-
HostException.” Through this analysis, we find that many
(472/787) of the failures from the FlakeFlagger dataset that
we could not reproduce are caused by transient network
or disk conditions (“UnknownHostException”, “IOException”
and “ArtifactResolutionException™). We also run a state-of-
the-art OD test detector, iDFlakies [43], on the entire dataset
with 100 random orders, identifying 96 OD tests in the
FlakeFlagger dataset (which cannot be detected by FlakeRake
or Isolated Rerun). Reproducing these non-TD failures is

outside the scope of this work.

Of the failures detected only by FlakeRake, roughly 24%
(117/481) were related to a test exceeding a timeout, which we
expect FlakeRake to be effective at reproducing, given that it
inserts sleeps. Other than generic “AssertionError”s, the largest
category of failures produced by Rerun-Repl or Isolated Rerun,
but not by FlakeRake are “Address in use” errors. These errors
occur when a test binds to a free network port but races with
the operating system that is working on releasing the port.
These errors are most common when using Isolated Rerun,
which repeatedly executes the same test in quick succession,
preventing cleanups common in other approaches.

Note that FlakeRake should be used to reproduce all flaky-
test failures even without knowing the test category, because
FlakeRake is quick to know if a test can be TD, i.e., FlakeRake
requires just one instrumented test run to know if a test
involves multiple threads or not. In our evaluation, we evaluate
FlakeRake on all flaky tests from the FlakeFlagger dataset,
without knowing whether a test is TD or not, and we still
find that FlakeRake reproduces more flaky-test failures than
any baseline. Future work can incorporate flaky-test category
predictions [44] to determine if a test is likely TD before even
using FlakeRake.

B. RQ2: Reliability of failure reproduction

Our RQ1 experiments find that there are 247 failures that ei-
ther FlakeRake or the baseline approaches (either Isolated Re-
run or Rerun-Repl) reproduced from the FlakeFlagger dataset.
To evaluate FlakeRake’s ability to create scripts that allow
developers to more reliably reproduce flaky-test failures, we
attempt to reproduce each unique failure (in the FlakeFlagger
dataset that we reproduced in RQ1) 100 times. Specifically, we
run FlakeRake and the baselines in their reproduction mode
100 times, and compare FlakeRake’s reproduction rate with
the reproduction rate of the best baseline for that failure.

For each configuration that FlakeRake’s exploration phase
reports as a likely candidate (failing at least three out of five
runs) for reproducing a specific flaky-test failure, we measure
what percentage of 100 runs can reproduce the same failure
(its reproduction rate). For failures that either Isolated Rerun
or Rerun-Repl reproduced in RQ1, we also run the corre-
sponding baseline approach 100 times and measure how often
the approach can reproduce that failure. This measure helps
estimate how effective FlakeRake and the baseline approaches
are for a developer aiming to repeatedly reproduce a flaky test
for debugging (e.g., logging different parts of code [31], fault
localization [45]) or validating patches.

Table III compares the reproduction rate of each failure for
FlakeRake and the baseline approaches: each cell shows the
number of failures that were reproduced by FlakeRake at the
rate specified in the left column and also reproduced by the
baseline approach at the rate specified in the top row. The table
shows that Isolated Rerun and Rerun-Repl are very ineffective
at reproducing failures, with most failures reproduced less
than 10% of the time and only a handful between 10-50% of
the time. More importantly, these baseline approaches cannot



TABLE III
COMPARISON OF FAILURE REPRODUCTION RATES FOR FLAKERAKE
COMPARED TO THE BEST OF RERUN-REPL AND ISOLATED RERUN WHEN
ALL APPROACHES ATTEMPT TO REPRODUCE FAILURES 100 TIMES.
Rerun-Repl and Isolated Rerun had no failures with a rate greater than 50%.

Best of Rerun-Repl and Isolated Rerun
FlakeRake Repro 0 (0%, 10%] (10%, 25%] (25%, 50%] | Total

0 25 61 23 5| 114
(0%, 10%] 7 13 0 o 20
(10%, 25%] 1 2 0 0 3
(25%, 50%] 2 1 0 0 3
(50%, 75%] 3 5 0 0 8
(75%, 99%] 1 5 0 0 6
(99%, 100%] 35 52 4 21 93
Total 74 139 27 7‘ 247
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Fig. 5. RQ3 Results: Average execution cost to reproduce a failure a varied

number of times with each approach. For each of the 28 failures detected
by all five approaches, we compute the time to reproduce each failure N
times, normalized to the time to execute that test in isolation once. After 6
reproductions, FlakeRake is faster than Isolated Rerun.

reproduce any failure >50% of the time. In contrast, of the 136
failures that FlakeRake reproduced (Table I), 107 (8+6+93)
of these failures are reliably reproduced >50% of the time.
In fact, many (93) of these failures are extremely reliably
reproduced — in over 99% of the 100 runs. We conclude that
FlakeRake can more reliably reproduce failures than state-of-
practice approaches, helping developers repeatedly reproduce
TD failures for debugging and fixing.

C. RQ3: Efficiency of reproducing failures multiple times

Reproducing a flaky-test failure multiple times is an integral
step to debugging the failure [31], [32]. As such, we aim to
understand the runtime cost needed to reproduce the same set
of failures multiple times for tests known to be flaky.

For each of the 28 failures reproduced by all three ap-
proaches (Fig. 4), we compute the expected amount of times a
developer needs to use that approach to reproduce the failure
at least NV times, ranging N from 1 to 50. For FlakeRake,
this time is computed as the time to generate the reproduction
script (namely, to search for the failure-inducing configura-
tion), followed by the time needed to run with the failure-
inducing configuration enough times to reproduce the failure
at least N times. Note that running the reproduction script

involves using inserted delays, so each run is slower than when
run normally, but each run is also more likely at reproducing
a failure, requiring fewer runs to reproduce the same number
of failures. We also consider the runtime cost of “FlakeRake
(offline)”, which excludes the up-front time needed to generate
the reproduction script. Excluding the up-front time simulates
the use-case where FlakeRake is executed in the cloud before a
developer begins rerunning the test to observe the same failure
multiple times as part of debugging (i.e., the “offline” refers
to process of generating the reproduction script happening
offline, not on the critical path of developer debugging). For
the baseline approaches, we calculate the E(N), the expected
number of executions needed to witness N failures, as the ratio
of executions in which the approach reproduced that failure.
Then, the time is computed as the time needed to run the test
(or test suite, for Rerun-Repl), multiplied by E(N). For each
failure, we normalize the reproduction cost relative to the time
needed to run that test a single time (in isolation), showing the
normalized cost to reproduce each failure relative to how long
it would take to run that test a single time. This normalization
allows us to aggregate the time to reproduce some number of
failures in a single figure for all approaches.

Figure 5 shows the relation between the number of desired
reproduced failures and the normalized runtime cost to achieve
that many failures for each approach. We see that FlakeRake
(offline) is the fastest approach, regardless of the number of
reproductions needed, by excluding the one-time cost of gen-
erating a reproduction script while still reliably reproducing a
failure for each run.

If we disregard FlakeRake (offline), we see that using Iso-
lated Rerun would be the fastest approach if the developer only
needs to reproduce the failure fewer than six times. However, if
a developer needs more than six failure reproductions, FlakeR-
ake quickly surpasses Isolated Rerun in terms of performance,
as each additional failure can be reproduced very quickly (as
RQ2 showed, nearly every run with FlakeRake’s reproduction
script reproduces the failure). This finding suggests that if a
developer wishes to reproduce a failure fewer than six times,
it may be faster to just use Isolated Rerun, with the given
risk that Isolated Rerun is the least likely to reproduce the
failure at least once (reproducing 21 fewer failures in RQ1).
A recent study [46, Table 4] also found that developers run
tests an average of six times and a maximum of 32 times
when debugging normal test failures that fail deterministically.
Developers likely require a similar or even larger number of
times to observe a failure when debugging flaky-test failures.

As developers cannot know a priori how many times they
need to reproduce a failure before finalizing a patch, we
recommend a combination of Isolated Rerun and FlakeRake.
A developer can run FlakeRake in the background to generate
a reproduction script while using Isolated Rerun to reproduce
failures. If they still need to observe more failures for debug-
ging, and FlakeRake has generated the reproduction script,
the developer can switch to the reproduction script to more
reliably and efficiently reproduce failures going forward.

When comparing Rerun (blue line) with Rerun-Repl (pink



TABLE IV
TOP FIVE TIMING-DEPENDENT (TD) APIS OCCURRING IN SLEEP
CONFIGURATIONS THAT INDUCED FAILURES MATCHING THE
FLAKEFLAGGER DATASET FAILURES. For each TD API, we show the
number and percentage of tests in which that API was called, unique
failures that the API reproduced, and failure-inducing configurations that
were a part of the failures that were reproduced.

Timing-Dependent API Tests (%) Failures (%) Configs. (%)
ExitSyncBlock 240 (85%) 492 (79%) 2706 (18%)
ExitSyncMethod 239 (85%) 436 (70%) 2368 (16%)
EnterSyncBlock 238 (85%) 478 (76%) 2648 (18%)
EnterSyncMethod 226 (80%) 426 (68%) 2276 (16%)

System.currentTimeMillis 219 (78%) 369 (59%) 2190 (15%)

TABLE V
TOP FIVE TIMING-DEPENDENT APIS THAT CAN BE USED TO INDUCE THE
SAME FAILURE, MATCHING THE FLAKEFLAGGER DATASET. For each pair
of TD APIs, we show the Pearson correlation coefficient R, indicating the
frequency with which two APIs co-occur. A score of 1 indicates that two
APIs can always be interchanged.

Timing-Dependent API R

Timing-Dependent API

ByteBuffer.allocate ByteBuffer.array 1.00
EnterSyncBlock ExitSyncBlock .99
EnterSyncMethod ExitSyncMethod 99
Selector.wakeup Thread.currentThread .96
System.currentTimeMillis ~ Thread.currentThread .93

line), Rerun-Repl is projected to be slower. On average, we
find tests failed more frequently in the FlakeFlagger dataset
than in our Rerun-Repl, suggesting that reproduction would be
faster using the environment that was used to build the dataset.
We conducted Rerun-Repl with 16GB RAM per VM, while
Alshammari et al. reported using 8GB RAM per VM [5]. We
leave it to future work to further study the impact of system
configurations on flaky-test failure reproduction [47].

D. RQ4: Characteristics of configurations

To better understand why FlakeRake is effective, we study
the characteristics of the failure-inducing configurations found
by FlakeRake that reproduced failures from the FlakeFlagger
dataset. We study the TD APIs methods (Section III-A) that
are a part of the failure-inducing configurations.

Overall, we find 270 unique TD APIs that appear in the
reported failure-inducing configurations. These 270 TD APIs
are used in a mean of 201 and a median of 75 failure-
inducing configurations. The most frequently occurring API is
ExitSyncBlock, which represents the exit of a synchronized
block, appearing in 2,706 or 18% of failure-inducing con-
figurations. Table IV shows the top five TD APIs that are
part of failure-inducing configurations. Our supplemental data
archive includes each of the failure-inducing configurations
that FlakeRake produced, in addition to a listing of the 270
unique TD APIs that appeared in those configurations [37].
Our results suggest that if developers are manually reproducing
TD flaky-test failures, inserting sleeps around APIs such as
ExitSyncBlock can help reproduce a failure in 85% of the
tests for which FlakeRake can reproduce a failure.

Of the 2,591 TD APIs in FlakeRake’s pre-configured list
(Section III-A), we find that only 394 TD APIs were used
in the tests we ran. Of these 394 TD APIs, we find that

there are 124 APIs that FlakeRake found, but these APIs
are not part of any minimal failure-inducing configuration.
Future work might study how FlakeRake’s results would be
affected if we remove the 2,197 unused TD APIs and the
124 used but unnecessary APIs, as doing so may simplify
FlakeRake’s search process. Overall, the number of unique
sleepyLines (call sites to TD APIs) invoked by any given
test is on average 76.33. Manually investigating all of those
call sites to understand whether they are related to a flaky-
test failure can be incredibly time consuming. FlakeRake
automates this process, generating minimized failure-inducing
configurations. Our findings suggest that developers looking
for a quick-fix before deploying FlakeRake might first try to
insert sleeps around some of the top TD APIs in Table IV,
such as ExitSyncBlock.

Beyond looking at statistics of individual TD APIs, we also
study how often two APIs occur together (i.e., they both can
independently reliably reproduce the same test failure). By
understanding which APIs occur together, developers or tools
can better prioritize which APIs to explore, depending on the
APIs that have been explored already. Table V shows the five
pairs of APIs from Table IV with the highest correlation score.
With a correlation of 1, we find that ByteBuffer.allocate and
ByteBuffer.array can always be interchanged — the same set
of test failures can be reproduced by sleeping at both or just
one of these API calls. Based on the failures observed and
description of these methods, we find that they tend to co-
occur in the same basic block. Hence, sleeping at one may
have comparable effects to sleeping at the other.

To better understand some of the less obviously correlated
pairs, we manually inspected the failures of one pair: Sys-
tem.currentTimeMillis and Thread.currentThread. We find that
these two APIs are a part of failure-inducing configurations
for 199 test failures. Of these 199 failures, we find that 53%
of these failures are because FlakeRake slept in a logging
framework (the LoggingEvent class from 1og47 [48]) used
by the test and code under test. These failures originate from
tests belonging to 14 different projects. When we further
inspect, we find that the failures are likely unrelated to these
APIs specifically, but the failures occur because the tests
expect logging to only take some limited amount of time.
This finding suggests that many flaky tests may be timing-
dependent because they depend on asynchronous code (e.g.,
logging events) unrelated to the test code or code under test.
In the future, we can optimize FlakeRake to look for certain
library dependencies instead of just a pre-configured list of
APIs found from searching in the standard JDK. Alternatively,
future work can consider how to automatically refine this list
for specific developers and their projects.

V. DISCUSSION AND THREATS TO VALIDITY
A. When and How to use FlakeRake

Many companies have management systems for dealing
with flaky tests [8], [28], [49], [50] (e.g., Microsoft uses
Flakes [28] to keep track of flaky tests), suppress their failures
during continuous integration, and report flaky-test failures to



developers to be fixed later. When developers do have time
to debug and fix flaky tests, they need to first reproduce
the flaky-test failures, which is essential to debugging [31],
[45]. Based on our findings, we suggest that developers at-
tempting to reproduce flaky-test failures follow this workflow:
1) Determine if the test is TD or OD: run FlakeRake (to
detect TD failures) and OD detection tools (to detect OD
failures). Both of these tools are fully automated, and if they
succeed, will produce a script to deterministically reproduce
that failure. 2) As automated tools run in the background,
re-run the test in isolation roughly six times. Continue to use
isolated reruns until the test is sufficiently debugged and fixed.
Our reproduction attempts found that isolation is not very
effective at reproducing a failure even once (§IV-A), but when
it can reproduce failures, isolation is efficient at doing so for
a few failures (§IV-C). 3) If more failures are needed and the
automated tools have produced a reproduction script, switch
to the script to more reliably reproduce failures.

Our preliminary results suggest that FlakeRake can be
useful not only for reproducing a flaky-test failure, but also
for repairing flakiness. Specifically, prior work [17], [28] has
investigated the use of delay injection for reducing flakiness,
but the work often required rerunning tests many times to
identify the delays needed to reduce flakiness. FlakeRake can
be used to reduce the cost of prior work by having FlakeRake
insert delays to reliably reproduce flaky-test failures so that
prior work can more quickly derive the fix needed to reduce
flakiness. Once a fix is found, there is no need for FlakeRake
to insert delays anymore. We evaluate this idea by randomly
sampling one test from each module of each project in our
dataset for which FlakeRake could reproduce at least one fail-
ure. Our automated approach uses the flaky test reproduction
script to reliably cause the test to fail and, while using the
script, inserts a delay at each API call. We iteratively increase
the delays until either the test reliably passes (five out of five
trials), or we reach a maximum delay of 10 seconds.

Of the 20 tests that we examined, this prototype approach
suggested a patch for 12 tests. Our prototype was incompatible
with three of the tests and it could not find a patch in the
code under test or test code for the remaining five. We plan
to improve the compatibility of our prototype and expand
its reach into library code in the future. We inspected the
12 patches and observed cases with simple read-after-write
data races where one thread writes to an object while another
thread reads from it. If the first thread does not write to
the object within a certain timeframe, then another thread
throws a NullPointerException or an assertion failure. In
this scenario, FlakeRake finds the thread and location where
inserting delays during the writing of the object would cause
a failure to deterministically occur. The patch to reduce the
flakiness, then, is effectively the dual of the reproduction
script: inserting a delay before reading the object. We used
this information to create patches for 12 tests. The patch for
one test was closed without comments, the patch for another
test was merged, with developers saying “LGTM, thanks”, and
developers suggested changes for the patches of two other

tests. The results of our prototype showcases how FlakeRake
can help not only reproduce failures but also help future work
automatically repair TD flaky tests.

B. Threats to Validity

As FlakeRake modifies code, one important question to
consider is: does FlakeRake reproduce flaky-test failures that
developers care about? There are many ways to unpack
this question, and while perhaps the strongest evidence can
be provided by a user study, we focus our experiments
on reproducing flaky-test failures that prior work observed
without applying any specialized flaky-test detection strat-
egy. For example, the Shaker tool detects concurrency-related
flaky tests by executing tests while placing a very heavy
compute load on the CPU [9]. This approach might reveal
many flaky-test failures that occur in extreme environments,
which might over-approximate the set of flaky-test failures
that would be witnessed by developers running their tests in
a “normal” continuous integration environment. We carefully
design our evaluation to avoid such problems by matching
failure stack traces produced by reproducing flaky-test failures
from a previously-collected dataset. The instrumentation that
FlakeRake introduces for reproducing flaky-test failures may
hide some existing failures. As such, our results may be a
lower-bound on the number of reproducible flaky-test failures.

We were unable to find a dataset besides the FlakeFlagger
dataset [5] that has flaky tests detected in a “normal” running
scenario, along with the stack traces of each failure. While
it was initially concerning to find that we were unable to
reproduce many of the failures in the FlakeFlagger dataset,
our detailed analysis has demonstrated that those failures were
due to platform-related flakiness (e.g., DNS failures and disks
running out of space). This fact about the dataset is supported
by the publicly available failing test reports [51]. Future work
may apply FlakeRake to other projects beyond Java.

Our evaluation results could also be biased due to faults
in FlakeRake, or in the scripts that we wrote to collect and
process the results. We have mitigated these threats through
code review, with each component reviewed by an author of
this paper who did not author that component. In critical steps
of our analysis, we also employed differential testing, with
different authors implementing the same high-level analysis,
and then comparing the final outputs to ensure that analyses
were correctly implemented. To aid future research, we include
the code for FlakeRake, all of our intermediate and final
results, and our evaluation scripts in our data archive [37].

VI. RELATED WORK

Developer Reactions to Flaky Tests. Luo et al. [1], Eck et
al. [31], and Gruber and Fraser [52] performed studies to
better understand developers’ perceptions of flaky tests. They
found that “Concurrency” and “Async Wait” were among
the most common causes of flakiness, accounting for up to
roughly half of all flaky tests studied, and that flaky tests are
time-consuming to debug and repair, because reproducing the
failure can be difficult. Similarly, Habchi et al. [32] and Parry



et al. [33] performed a study on the sources, impacts, and
mitigation strategies of flaky tests. They found that developers
strongly needed help root causing and reproducing flaky-test
failures. FlakeRake targets exactly this problem by helping
reproduce TD flaky-test failures. FlakeRake could also be ap-
plied as a program understanding aid in debugging and fixing.
Future work might continue on our prototype described in
Section V-A by studying how FlakeRake can help developers
understand, debug, and fix TD flaky-test failures.

Flaky Test Reproduction. Microsoft’s recent FlakeRepro work
aims to reliably reproduce TD flaky-test failures [53]. Whereas
FlakeRake uses lightweight heuristics to determine where
to insert delays, FlakeRepro uses backward slicing. When
FlakeRepro inserts a delay at a code location, all threads
execute that same delay, whereas FlakeRake associates a delay
to both a location and a specific thread. FlakeRepro is not pub-
licly available and only implemented for .NET applications,
and hence, we could not compare empirically to it. While
FlakeRepro was evaluated on 31 concurrency-related tests, we
evaluate FlakeRake on 811 flaky tests of unknown root causes,
and compare its performance to several state-of-the-practice
baseline approaches. Our evaluation also provides many useful
insights, e.g., the duration of delays inserted, the locations
where delays should be inserted, and the characteristics of
the failures that could and could not be reproduced. Other
tests might be flaky due to test-order dependencies, failing if
the order in which tests are run changes. iDFlakies automates
the process of identifying such dependencies and outputting
test orderings that induce (reliable) test failure [3]. We use
iDFlakies to filter out such order-dependent flaky tests, as
FlakeRake is not designed to reproduce their failures. In the
future, we may compare failures reproduced by FlakeRake
with failures induced by flaky-test simulation tools [54].
Flaky Test Detection. Some approaches aim to use machine
learning to classify tests as flaky based on some large training
set of known flaky tests [5], [8], [10], [11], [55]. The baseline
approach to detect flaky tests is to re-run them and to check
whether the outcome changes. Researchers have created tools
that modify the execution environment to make flaky failures
more likely to occur. For example, tools that aim to detect
OD tests modify the order in which tests are run, or perform
dataflow analysis to track data dependencies between tests [4],
[34], [36], [56]. FlakeScanner [57] induces flaky, user-interface
failures by scheduling non-deterministic (async) events such
that each test run explores different event execution orders.
FlakeRake may also be used to detect flaky tests by inserting
delays, and it additionally can also help identify the least
amount of additional sleep needed to more reliably reproduce
flaky-test failures. Shaker aims to detect flaky tests by running
many concurrent “stressor” tasks as tests are run [9]. Similarly,
Terragni et al. proposed to run tests under various resource
constraints [58]. FlakeRake differs from these approaches
in that it can reliably reproduce flaky-test failures without
changing the environment. Malm et al. [17] performed a study
on open-source concurrent programs, identifying the role that
delays play in avoiding flaky-test failures. Future work might

combine the two approaches: using FlakeRake to determine
locations to insert delays, and their work to improve the
robustness of the inserted delays.

Concurrency Bug Detection. “Controlled execution” is a
classical testing methodology for concurrent programs by
exploring different execution interleavings [59]. This approach
has been applied for detecting concurrency bugs in Java appli-
cations [60]-[64] by forcing context switches. In an approach
most comparable to FlakeRake, Eytani and Latvala applied
a minimization approach to select a minimal set of context
switches that reproduce a concurrency bug [65]. FlakeRake
builds on the core concept of controlled execution, differing
from prior work in that (1) we show the importance of in-
serting delays around TD APIs (discussed in Section IV-D) as
opposed to just synchronization primitives, and (2) FlakeRake
inserts timed sleeps, as opposed to prior work that aims to
reproduce data races by inserting calls to Thread.yield().
Prior studies on flaky tests [1], [28], [31] have studied how
often their failures indicate bugs in the test code, code under
test, etc. and found that between 27%-34% of flaky-test fixes
require changing non-test code. FlakeRake aims to reproduce
failures from TD flaky tests, regardless of the bug source, and
can therefore be helpful even in the presence of concurrency
bugs in code under test.

Event race detectors, such as EventRacer [66] and
CAFA [67], profile applications and analyze happens-before
relationships. Not all races can result in incorrect program
behavior, and hence, race detectors can be paired with a testing
system that reproduces the race and observes if the race is
harmful [68]. FlakeRake does not perform any happens-before
analysis to detect which events might race with each other,
instead it directly jumps to this testing-based approach to
identify races that result in flaky-test failures. We also could
not find a race detector for Java that scaled to the complexity of
the projects in our evaluation. Reproducing flaky-test failures
is fundamentally different from traditional concurrency bug
detection, as a flaky-test failure does not necessarily indicate
a concurrency bug in the system-under-test.

VII. CONCLUSION

We attempted to reproduce 1,167 flaky-test failures from
an existing dataset by re-running those tests 10,000 times.
We found that these approaches reproduce flaky-test failures
infrequently (typically occurring in fewer than 10% of execu-
tions), highlighting the difficulty developers face when they
attempt to debug and fix flaky tests. We introduced FlakeRake
to reliably reproduce timing-dependent flaky-test failures and
implemented it for Java applications. We found that FlakeRake
can reproduce more failures than the baseline approaches
and can reproduce failures more reliably. In the future, we
look forward to utilizing FlakeRake to fix flaky tests and
conducting user studies to understand the impact of FlakeRake
on debugging. Our supplemental data archive [37] contains
the source code for FlakeRake, a dataset of timing-dependent
flaky tests, and our experimental results.
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