
Test Scheduling Across Heterogeneous Machines

While Balancing Running Time, Price, and

Flakiness

Hengchen Yuan*1, Jiefang Lin*1, Wing Lam2, August Shi1

1 The University of Texas at Austin, USA

{hcyuan,jiefang,august}@utexas.edu
2 George Mason University, USA

winglam@gmu.edu

Abstract—Scheduling tests to run in parallel across different
machines is an effective way to reduce overall test running time.
Prior work has focused on scheduling tests across homogeneous
machines, namely, machines all of the same configuration. How-
ever, using all the same configuration may not be the most cost-
effective way to reduce test running time.

We propose scheduling tests across machines with different
configurations, namely heterogeneous machines. Doing so allows
us to balance various factors, e.g., price, as tests may have
similar running times on different machine configurations but
result in drastically different monetary prices. Furthermore,
there can be flaky tests that fail more often on different
machine configurations, so scheduling them across heterogeneous
machines gives better control over their flaky-failure rates. Our
approach, GASearch, leverages genetic algorithms and a fitness
function to balance running time and price to efficiently generate
a heterogeneous machine configuration on which to run tests. We
also model flaky-failure rate of tests on different machines within
the fitness function as a factor of running time, where a failing
flaky test would be rerun until it passes (or to a maximum number
of runs) to confirm if it is a flaky failure, so we can balance all
factors at once. We evaluate our approach on test suites from
24 modules in open-source Maven projects. Compared against
baselines that schedule across homogeneous machines, we find
that scheduling across heterogeneous ones can achieve a lower
running time and price.

Index Terms—Test scheduling, heterogeneous machines,
resource-dependent flakiness.

I. INTRODUCTION

Testing is an important part of the software development

process, but it can be very costly due to the large number

of tests to run [1]–[5]. Test parallelization is an effective

way to speed up testing, by scheduling the tests to run in

parallel and distributed across different machines [6]–[12].

When a developer determines a set number of machines on

which they can schedule tests, they typically consider the

same configuration for each machine, i.e., machines with the

same number of CPUs, RAM, and disk memory [13]. We

consider scheduling tests across machines all with the same

configuration as scheduling across homogeneous machines.

Homogeneous machines may be easier to manage, given that

*These authors contributed equally to this work.

all the machines are of the same configuration, but restricting

to use only one configuration can limit test parallelization.

When scheduling tests, a developer needs to consider several

factors: how many machines and which configurations to use.

On one extreme, a developer may choose to optimize for

running time, choosing the machines that allow the tests to

run the fastest. However, these machines tend to be more

expensive, so a developer will pay a high price. On the other

hand, a developer may choose to optimize for price, opting

for the cheapest machines on which to run tests, even though

the tests can run longer. In addition, a developer also needs

to consider the flakiness of tests. A flaky test is a test that can

pass or fail when run on the same version of code [14, 15].

Developers rerun failing tests to check for flakiness, e.g.,

Google developers automatically rerun failing tests to see

whether they are flakily failing [16], which adds to the running

time. Prior work studied resource-affected flaky tests, whose

flaky flaky-failure rates change depending on the resources,

such as RAM, available on the machine on which tests are

run [17]. Resource-affected tests add an extra factor when

considering the machine configurations to use.

In this work, we propose to schedule tests across hetero-

geneous machines. Unlike homogeneous machines, we allow

machines to have different configurations from each other.

Heterogeneous machines allow for more flexibility in how tests

can be scheduled so the scheduling algorithm can schedule

tests to result in more optimal test running time, machine price,

or flaky-failure rate.

We propose GASearch to schedule tests across heteroge-

neous machines. GASearch uses a genetic algorithm, with

a fitness function that combines both test running time and

machine price, with a weighting mechanism to control which

factor has a bigger effect. Furthermore, we encode the flaky-

failure rate of tests on different machine configurations into

our fitness function by modeling their effect on test running

time: the higher the flaky-failure rate of a test when run on

a specific configuration, the more likely it is rerun when it

fails, therefore increasing overall running time. Our fitness

function models flaky-failure rate effect on running time using



the flaky-failure rate of each test and the cost of reruns (up

to 10) to get a passing result if such tests were to fail.

GASearch first uses a genetic algorithm approach to determine

the heterogeneous machines on which to schedule the tests,

and then uses a greedy algorithm to produce an allocation

scheme of tests across those machines, where the greedy

choice is to schedule a test on a machine that minimizes

the fitness function. Developers interested in scheduling their

tests across heterogeneous machines will need to provide

an arbitrary number of test runs on configurations that are

available to them along with the weights on how much the

developers care about the running time and price. Once the

optimal heterogeneous machines to use is obtained, developers

can run tests using those machine configurations for future

code changes, optimizing for their important factors.

We conduct an empirical study on the effectiveness of

scheduling tests across heterogeneous machines. We evalu-

ate GASearch on 24 modules from 22 open-source Maven

projects, taken from a public dataset of test outcomes and their

running times on different machine configurations [17,18]. We

compare GASearch against two baselines that schedule tests

on homogeneous machines: (1) the GitHub baseline that uses

the same configuration used by the GitHub Actions continuous

integration service [19], representing a common usage scenario

where developers use the machines provided by GitHub and

(2) the smart baseline that finds the optimal homogeneous

machines [20]. We also compare against the random baseline

that randomly chooses machine configurations before greedily

allocating tests, allowing for a simple way of getting het-

erogeneous machines. We find that GASearch can achieve

a lower running time and price over that of the baselines.

When optimizing purely for price, it achieves a price that is

on average 45% of the GitHub baseline and 81% of the smart

baseline. When optimizing purely for running time, it achieves

a running time that is on average 91% of the GitHub baseline

and 99% of the smart baseline. GASearch also outperforms

the random baseline on all fronts, but interestingly, the random

baseline does outperform the other baselines when optimizing

for price, on average. Note that GASearch can improve one

metric at the expense of the other, i.e., improved running time

comes at the cost of increased price. When we adjust the

fitness function to better balance between the two metrics,

we find that GASearch schedule tests such that the tradeoff is

more favorable, e.g., having a slightly higher running time but

a much larger reduction in price.

This paper makes the following main contributions:

• We propose scheduling tests across heterogeneous ma-

chines to provide more optimal test running time and

machine price over homogeneous machines.

• We implement GASearch, a genetic algorithm approach

to schedule tests across heterogeneous machines, balanc-

ing running time, price, and flaky-failure rate.

• We evaluate GASearch against baselines that schedule

tests across homogeneous machines and a random base-

line for heterogeneous machines. We find that GASearch

can improve further upon running time and price over

the baselines, and the tradeoff between the two factors is

much better when balancing both within the fitness func-

tion, with both running time and price reduced against the

baselines. Our artifact with experiment scripts and data

is publicly available [21].

II. EXAMPLE

Consider tests from the javadelight/delight-

-nashorn-sandbox project in our dataset: TestInacc-

essible.test_file, TestIssue34.testIssue34-

_Scenario2, and TestMemoryLimit.test; for conve-

nience, we refer to them as t1, t2, and t3, respectively.

Assume the following: (1) we want to schedule these tests

to run across two machines, which can be of C1 and C2

configurations, each comprised of a different numbers of CPUs

and amount of RAM (Section IV has more details on these

configurations), (2) t1, t2 and t3 take 5.22s, 7.53s, and

5.00s, respectively, to run on C1, while the tests take 4.24s,

6.17s, and 4.58s, respectively, to run on C2, (3) t3 is a flaky

test that can flakily fail on both C1 and C2, though with a

different, non-zero flaky-failure rate on each. Developers tend

to rerun tests that fail to check that they are flaky [3]. Test

reruns are stopped once the test passes and it is clear that

there is a flaky failure (and not a real fault).

Based on these assumptions, we can compute an expected

running time for a test based on the expected number of times

it should be rerun. To be more specific, suppose our strategy is

to rerun a failed test as long as it keeps failing, up to 10 times.

If the flaky-failure rate of t3 on C1 is 0.56, then the expected

number of times it will be rerun is
(

1 +
∑10

i=1 0.56
i
)

= 2.268.

(See Section III for detailed calculation.) As it takes 5.00s to

run on C1, we can expect the running time for t3 to be 11.34s

on C1. The flaky-failure rate of t3 on C2 is 0.64, which leads

to the expected number of times to rerun the test to be 2.722.

As t3 takes 4.58s to run on C2, the expected running time

for t3 on C2 then becomes 12.47s.

If we restrict ourselves to using homogeneous machines

where all machines are of the same configuration, the best

option would be to use two C2 machines, where we schedule

tests t1 and t2 to one machine and t3 to the other. The

overall running time of tests scheduled across these machines

is the longest running time of the tests on a single machine

(as tests are run in parallel across different machines). The

overall running time is 12.47s, as t1 and t2 take a combined

4.24 + 6.17 = 10.41s to run on a C2 machine and t3 takes

12.47s to run on its own on the other machine.

However, we see that there can be a more optimal way to

schedule tests to achieve a faster overall test running time if

we use heterogeneous machines, where we can use different

configurations for different machines. If we allow one machine

to use configuration C1, while the other one uses C2, we can

schedule test t3 on the C1 machine and put the remaining

tests on the other machine. Scheduling tests this way results

in an overall running time of 11.34s, which is the running time

of t3 on C1 (the other two tests continue to take a total of

4.24 + 6.17 = 10.41s to run on the other machine).



III. SCHEDULING TESTS ACROSS HETEROGENEOUS

MACHINES

We propose scheduling tests across heterogeneous ma-

chines, i.e., machines that can have different configurations

from each other. The number of possible combinations of

machines increases exponentially from homogeneous (all ma-

chines are of the same configuration), making the search for

an optimal combination of machines much more expensive.

We implement a genetic algorithm [22] to search for the

heterogeneous machines on which to schedule tests, while

optimizing for relevant metrics, such as running time, price,

and flaky-failure rate. We refer to this approach as GASearch.

The input to GASearch is the set of tests, the number of

machines available, a set of C machine configurations to select

from, the time to run each test on each of the C configurations,

and the flaky-failure rate of each test when run on each of

the C configurations (computed by the number of times the

test fails out of the number of times the test was rerun on a

machine with the configuration). The output is an allocation

scheme, which consists of a set of mappings of which tests

to run on which machines, where each machine has a defined

configuration and the number of unique machines matches the

number specified in the input.

A. Genetic Algorithms

Genetic algorithms are metaheuristic search methods that

draw inspiration from natural evolution and genetics to op-

timize solutions for complex problems [22]. In genetic al-

gorithms, a population of candidate solutions is iteratively

evolved towards better regions of the search space through

selection, crossover, and mutation. To guide this search,

genetic algorithms rely on a fitness function that measures

the quality of each individual in the population, producing

a fitness value. The overall goal is to create new individuals

that improve upon the fitness value.

For our problem, we treat a combination of machines as an

individual in the population, composed of different machine

configurations. Further, we restrict the search to consider

combinations of machines of length L, where we choose L

from {1, 2, 4, 6, 8, 10, 12}. We essentially search for the

optimal combination of machines of each length L and then

report the most optimal one among them.

B. Initial Setup

We construct an initial population of N combinations of

machines. This initial population contains C combinations of

machines, each of length L, where each of these combinations

of machines contains L identical configurations, corresponding

to each of the possible C available configurations. Essentially,

we start with all possible homogeneous combinations of

machines of length L. We want to include these combinations

of machines initially, because we want to eventually construct

a heterogeneous combination of machines that improves upon

the possible homogeneous combinations of machines. If we

cannot find a heterogeneous combination of machines that im-

proves upon the homogeneous combinations of machines, the

best homogeneous combination of machines will be outputted

as the most optimal solution. Aside from all the homogeneous

combinations of machines, we fill in the remaining initial

population with randomly generated combinations of machines

of length L taken from the C configurations.

C. Fitness Function

We define a fitness function that evaluates the effectiveness

of a given allocation scheme for a combination of machines.

Our fitness function models both the overall running time of

tests scheduled across the combination of machines and the

monetary price involved with running these machines:

Fitness(A) = αβTimepara(A) + (1− α)Price(A) (1)

where T imepara and Price are functions that model the

overall test running time and monetary price, respectively, for

a given allocation scheme A representing the mapping from

tests to machines of specific configurations. We also define a

parameter α to control the weight that running time and price

has towards the overall fitness value. Specifically, when α is

0, we optimize for minimum price only, while when α is 1,

we optimize for minimum running time only. As our goal is to

minimize running time and price, the lower the fitness value,

the better. β is a scaling factor defined in Equation (7).

Running time and flaky-failure rate. We first define how

to compute the running time of tests on a single machine.

Let testtime(t,m) be a function that returns the running

time for test t on a specific machine m. Normally, all tests

should be run once on the machine. However, if the test fails,

developers rerun the test to check whether the failure is a

flaky failure [16], rerunning up to some maximum r number

of times. If the test passes, then the developer is sure that

the failure is a flaky failure and stops rerunning the test. If

the flaky-failure rate of the test is high, then the likelihood of

needing to rerun goes up, resulting in a higher running time.

To model the effect of flaky-failure rate on running time,

we compute an expected running time per test based on the

scenario that the developer reruns the test if it fails:

exptime(t,m) = (1 +

r−1
∑

i=1

fr(t,m)i) ∗ testtime(t,m) (2)

where fr(t,m) is the flaky-failure rate of test t on machine

m. We also set r to be 10 in this study. The summation

term
∑r−1

i=1 fr(t,m)i encapsulates the cumulative probability

of flaky failures occurring across test reruns. Each fr(t,m)i

represents the probability of the test failing i times consecu-

tively. We multiply by the test’s running time on the machine

to compute the expected running time.

The overall running time of all tests on a machine m is

therefore the sum of exptime(t,m) for all tests t on m:

MachT ime(A,m) =
∑

t∈tests(A,m)

exptime(t,m) (3)



where tests(A,m) returns the tests scheduled to machine m

in the allocation scheme A.

Overall running time. We define the function T imepara to

take as input the allocation scheme A and compute the time

to run all the tests scheduled across the machines represented

in A in parallel (tests scheduled on different machines can be

run in parallel):

T imepara(A) = max
m∈machines(A)

MachT ime(A,m) (4)

where machines(A) represents the machines on which A

operates. Essentially, this running time is the longest time

needed to run the tests scheduled to a single machine by A.

Another consideration is whether there should be a setup

time applied per machine. This setup time corresponds to

needing each machine to separately rebuild the project code,

which can vary between different machine configurations.

Currently, our running time metrics assume a use scenario

where the developers do not explicitly build code on each

machine (especially redundant given that each machine has the

same code on which tests will run), but rather the code is built

“offline” and quickly uploaded to each machine, minimizing

setup time. If we consider setup time as part of the running

time, we can compute the running time per machine as:

MachT imest(A,m) = ST (m) +
∑

t∈tests(A,m)

exptime(t,m)

(5)

where ST (m) represents that setup time on machine m. We

evaluate both with and without setup time in our evaluation.

Price. The price of running tests for a given allocation scheme

involves the time needed to run the tests on the machines.

Price(A) =
∑

(t,m)∈A

price(t,m) (6)

where price(t,m) is the price of running test t on m.

Scaling factor. We observe that the running time value is

consistently much larger than price in absolute terms. As such,

weighting the two together in a single fitness function will be

biased towards running time. We introduce a scaling factor β

to better balance the two. For our evaluation, we compute β as

the average price-to-time ratio of all tests on all configurations

in our dataset, namely:

β =

∑

(t,m)∈Dataset price(t,m)
∑

(t,m)∈Dataset exptime(t,m)
(7)

D. Allocating Tests

The fitness value is defined w.r.t. some allocation scheme,

namely which tests are scheduled on which machines. This

allocation scheme problem is similar to the Multiprocessor

Scheduling Problem, known to be NP-hard [23,24]. We utilize

a LPT (Longest Process Time)-based greedy algorithm [25] to

perform the allocation scheme.

Algorithm 1: Greedy Tests Allocation

Input : α, β, tests, machine list,

tests attribute mapping

Output: allocation

1 allocation ← ∅
2 foreach t in sorted(tests) do

3 min fitness ← inf

4 min machine ← None

5 foreach m in machine list do

6 temp allocation ← allocation.add(t, m)

7 fitness ← fitness(α, β, temp allocation,

tests attribute mapping)

8 if fitness < min fitness then

9 min fitness ← fitness

10 min machine ← m

11 end

12 end

13 allocation ← allocation.add(t, min machine)

14 end

15 return allocation

Algorithm 1 shows our greedy algorithm. Given a set of

tests and the machines on which to schedule those tests, we

sort the tests in descending order by their running time on their

fastest machine (Line 2). We iterate through the tests in this

order and compute the fitness value after trying to schedule the

test on each machine (Lines 3-4). We schedule the test on the

machine that results in the lowest fitness value (Lines 5-13)

before moving to the next test. We output the final allocation

scheme after processing all tests.

E. Search Operators

In each iteration of the genetic algorithm, we compute the

fitness value for each individual, i.e., combination of machines

(and its corresponding allocation scheme), in the population.

We first apply a selection operator that selects the top 35% of

the individuals based on their fitness values. We then apply

a crossover operator on the selected individuals by randomly

pairing up the individuals and crossing the machines contained

in each one. For each pair, we set a random crossover point to

swap machines between the parents, creating two new children

individuals from those machines taken from the parents. We

continue applying this crossover operator on random pairs of

selected individuals until achieving a new population of size

N . We set N = 100 in our experiments. Next, we apply

a mutation operator on each new individual. The mutation

operator iterates through each machine within and mutates the

machine to a different machine with probability 1/L (the length

of the combination of machines).

After applying selection, crossover, and mutation operators

to generate a new pool of N individuals, we have completed

one iteration of the genetic algorithm. We repeat for I iter-

ations. After the final iteration, we take the individual and



corresponding allocation scheme that provides the best fitness

value and report them as the final output.

F. Implementation

To implement GASearch, we use the DEAP framework [26],

which provides support for quickly implementing genetic

algorithms. We use the built-in data structures and APIs from

DEAP to encode our problem. We configure the search to run

for 50 generations, i.e., setting I = 50.

IV. EVALUATION SETUP

We answer the following research questions:

• RQ1: How does scheduling tests on heterogeneous ma-

chines compare against homogeneous machines?

• RQ2: How does changing the weight factor affect the

tradeoffs between running time and price?

• RQ3: What are the flaky-failure rates from using

GASearch’s allocation schemes?

• RQ4: How does GASearch’s allocation scheme compare

against a brute-force search that finds the optimal alloca-

tion scheme?

• RQ5: How well would GASearch perform if using just

a subset of test data?

We address RQ1 to see whether using heterogeneous ma-

chines can achieve better test running time and machine price

than using homogeneous machines. We address RQ2 to show

the effects of the weight factor in obtaining better tradeoffs

between running time and price. We address RQ3 to show

the expected chance of a build failure with a GASearch

allocation scheme. While we can encode the flaky-failure rate

of tests as rerunning failing tests, we still want to show the

probability of the test suite flakily failing. We address RQ4

to see whether GASearch is more effective than a brute-

force approach at finding the most optimal allocation scheme.

Finally, we address RQ5 to see whether GASearch performs

just as well if it is guided by just a subset of test information,

i.e., running time and flaky-failure rate, collected from a fewer

number of runs across different configurations. This RQ helps

check the practicality of GASearch in the scenario where a

developer does not have much data for guiding GASearch.

A. Dataset

We use a publicly available dataset taken from prior work by

Silva et al. on evaluating test flakiness when run on different

machine configurations [17,18]1. Their data includes the run-

ning times of each test on 12 different machine configurations.

A machine configuration is defined by the number of CPUs

and the amount of RAM available to the machine. Table I

shows a description of each of these configurations. The

dataset also provides the flaky-failure rate of each test on each

machine configuration, i.e., the number of times each test fails

when rerun up to 300 times on each machine configuration.

Starting with the 32 modules2 from 27 projects in Silva et

al.’s dataset, we filter out modules with insufficient data.

1Obtained June 2023.
2A Maven project may contain multiple modules, each with its own tests.

TABLE I
MACHINE CONFIGURATIONS FROM [17]. “# CPU” WITH NON-INTEGER

VALUE MEANS A CORE IS SHARED ACROSS MULTIPLE TASKS [27].
HOURLY COSTS ARE SPECIFIED ON AWS FARGATE [28]

ConfigID # CPU Mem (GB) Price (USD/Hour)

C1 0.1 1 0.002548
C2 0.1 2 0.003881
C3 0.25 2 0.005703
C4 0.5 2 0.008739
C5 0.5 4 0.011406
C6 1 4 0.017478
C7 1 8 0.022812
C8 2 4 0.029622
C9 2 8 0.034956
C10 2 16 0.045624
C11 4 8 0.059244
C12 4 16 0.069912

Silva et al. collected their data by running the tests in each

module for 30 “rounds”, where in each round they run the

tests 10 times on each of the 12 configurations. We observe

that for some modules, the dataset has “incomplete” rounds,

i.e., rounds without data for all tests or all tests are not run

10 times. We filter out projects with fewer than 10 complete

rounds for all tests; we observe the remaining modules have at

least 27 complete rounds of data. We notice that the dataset has

some tests duplicated across different modules, so we filter out

modules that contain a subset of the tests from other (parent)

modules. Finally, we obtain 24 modules across 22 projects.

Table II shows a breakdown of the modules. Column “ID”

is a module ID we use to refer to the module in future tables

and figures, “Project” is the name of the project in the form

of a GitHub username/repository identifier, “Module” is the

name of the module as marked in the dataset. “# Test” is the

number of tests in the module, and “Avg. Running Time (s)”

is the average test suite running time across all configurations.

“Flaky-Failure Rate Range (%)” is the range of flaky-failure

rate. Note that each test may have different flaky-failure rates

on different configurations. We say a test is flaky if it has

a non-zero flaky-failure rate on at least one configuration.

The minimum value of the range refers to the lowest flaky-

failure rate of all the flaky tests of this module on all the

configurations. The maximum value is similarly the highest

flaky-failure rate for a flaky test across all configurations.

B. Baselines

We compare GASearch against three baselines. The first

baseline is what we call the GitHub baseline, where we use

only the machine configuration that matches the standard avail-

able machines for the GitHub Actions continuous integration

service [19], namely a configuration that uses 2 CPUs and

8GB of RAM (effectively C9 from Table I). We choose this

baseline to match the scenario where developers of open-

source GitHub projects use only those available machines. We

use the same number of machines that GASearch proposes

for the same module, to ensure fair comparison, because the

GitHub baseline does not search for the number of machines.

The second baseline is what we call the smart baseline,

where we search for the homogeneous machines based on the



TABLE II
STATISTICS OF THE PROJECTS AND MODULES IN OUR EVALUATION

ID Project Module # Test Flaky-Failure Rate Range (%) Avg. Running Time (s)

M1 activiti/activiti . 2047 0.0 - 91.1 0.44

M2 alibaba/fastjson . 4459 0.0 - 09.0 0.02

M3 apache/commons-exec . 55 0.0 - 03.0 0.54

M4 apache/httpcore . 713 0.0 - 12.8 0.04

M5 apache/incubator-dubbo dubbo-remoting-netty 14 0.0 - 10.7 3.44

M6 apache/incubator-dubbo dubbo-rpc-dubbo 66 0.0 - 05.9 2.24

M7 davidmoten/rxjava2-extras . 390 0.0 - 01.0 0.22

M8 elasticjob/elastic-job-lite . 560 0.0 - 00.0 0.09

M9 flaxsearch/luwak luwak 202 0.0 - 04.0 0.16

M10 fluent/fluent-logger-java . 18 0.0 - 41.0 2.61

M11 javadelight/delight-nashorn-sandbox . 79 0.0 - 63.7 1.53

M12 jknack/handlebars.java . 412 0.3 - 03.4 0.03

M13 joel-costigliola/assertj-core . 6267 0.0 - 80.3 0.00

M14 kagkarlsson/db-scheduler . 25 0.0 - 29.0 0.60

M15 kevinsawicki/http-request . 163 0.0 - 01.0 0.02

M16 nationalsecurityagency/timely server 144 0.3 - 03.7 0.31

M17 ninjaframework/ninja . 305 1.3 - 90.0 0.17

M18 orbit/orbit . 83 0.0 - 34.7 0.52

M19 qos-ch/logback . 863 0.0 - 84.5 0.24

M20 spring-projects/spring-boot . 1689 0.0 - 00.7 0.21

M21 square/retrofit retrofit 297 0.0 - 00.3 0.04

M22 square/retrofit retrofit-adapters.rxjava 80 0.0 - 00.0 0.07

M23 wro4j/wro4j wro4j-extensions 308 0.0 - 00.7 0.81

M24 zxing/zxing . 345 2.1 - 05.5 0.61

Average 816 0.2 - 24.0 0.62

same fitness function that GASearch uses. Due to using the

same configuration for all machines, we can find the optimal

homogeneous machines by trying all possibilities and choosing

the one that produces the best fitness value.

The third baseline is what we call the random baseline,

where we randomly choose the heterogeneous machines. We

use this baseline as a simple and straightforward way to

schedule tests across heterogeneous machines as comparison,

to show whether a more sophisticated solution like GASearch

is needed and whether just using heterogeneous machines can

be better than using homogeneous machines. After randomly

choosing the machines, we use the same greedy algorithm as

GASearch to map tests to the specific machines.

For RQ4, we define a brute-force search that finds the

optimal solution based on the fitness function. The brute-force

search explores all possible combinations of machines. With

L machines and C configurations, there are LC possibilities.

With this exponential search space, we restrict brute-force

search to consider up to six machines. We apply the same

restriction to GASearch for comparison. We use the same

greedy algorithm to schedule tests across machines for both.

C. Metrics

We compare GASearch against each baseline by measuring

the ratio of GASearch’s allocation scheme’s running time

and price over a baseline’s allocation scheme’s running time

and price, respectively. More specifically, we compute the

running time ratio as:
Timepara(AG)
Timepara(AB) . Similarly, the price

ratio is:
Price(AG)
Price(AB) . AG represents the allocation scheme

that GASearch produces and AB represents the allocation

scheme that the baseline produces. A ratio of 1 indicates that

GASearch produces an allocation scheme that achieves the

same running time or price as the baseline, whereas a value

higher than 1 indicates that GASearch’s result is worse than the

baseline and a value lower than 1 indicates that GASearch’s

result is better than the baseline.

As optimizing for one metric can come at the expense of

the other, e.g., optimizing for lower running time can lead to

a higher price, we introduce a new metric to capture whether

the tradeoff between the two is fair. For an allocation scheme

AG produced by GASearch and another allocation scheme AB

produced by a baseline, we compute the tradeoff as a product

of the two running time and price ratios comparing the two:

Tradeoff(AG, AB) =
T imepara(AG)

T imepara(AB)
×

Price(AG)

Price(AB)
(8)

For example, if the running time achieved by AG is twice as

fast as that achieved by AB (i.e., the ratio is 50%) but comes

at twice the price, that tradeoff is somewhat fair, and it results

in a tradeoff value of 1. Having a value greater than 1 would

indicate that the tradeoff is unfair, e.g., the running time is

twice as fast but costs relatively more, while a value less than

1 would indicate that the tradeoff is better, e.g., the running

time is twice as fast yet requires less than twice the price.

For RQ2, we evaluate the effects of changing the weight

parameter α in the fitness function, going from 0 to 1 in steps

of 0.05. At each value of α, we measure the same running time

and price ratios, and compare GASearch against the GitHub

baseline and smart baseline, where smart baseline uses the

same fitness function with the same α.



For RQ3, we measure the overall build failure probability

for an allocation scheme based on the flaky-failure rates of

each test on the machines on which they are scheduled.

Essentially, we are interested in knowing the likelihood of

the entire build failing, which occurs when at least one test

fails. We compute this likelihood by computing the probability

of all tests passing and subtracting that probability from 1.

Given an allocation scheme A, the build failure probability

BuildFail(A) under this allocation scheme is:

BuildFail(A) = 1−
∏

(t,m)∈A

(1− fr(t,m)) (9)

GASearch may not consistently compute the same allo-

cation schemes for the same input information, due to the

nondeterministic nature of the genetic algorithm. As such,

we rerun GASearch five times to obtain different allocation

schemes. We compute the metrics comparing each allocation

scheme against the baselines and report the average across the

allocation schemes for each metric in our evaluation. For the

random baseline, we also rerun it five times to obtain multiple

allocation schemes, and we compare each GASearch allocation

scheme against each one, reporting a final average.

V. EVALUATION

A. RQ1: Heterogeneous vs Homogeneous Machines

Figure 1 compares GASearch against the GitHub baseline,

smart baseline and random baseline for each module in terms

of running time and price, computed considering no setup time

per machine (Section III-C). For each module, we show the

running time ratio and price ratio compared against the three

baselines, with a line representing the average ratios across all

modules. The top figure shows the results when optimizing for

running time only (α = 1) while the bottom figure shows the

results when optimizing for price only (α = 0).

When optimizing for running time only, GASearch outper-

forms the GitHub baseline in 23 modules, with the lowest

running time ratio of 0.33 and an average running time ratio of

0.91. GASearch outperforms the smart baseline in 10 modules,

meaning 14 modules work best with homogeneous machines.

The lowest ratio running time ratio is 0.85, and the average

running time ratio is 0.99. GASearch outperforms the random

baseline in 22 modules, with the range of running time ratio

from 0.41 to 1 and an average running time ratio of 0.83.

When optimizing for price only, for the GitHub baseline,

the range of price ratios is from 0.04 to 0.84, with an average

ratio of 0.45. For the smart baseline, the range of price ratios

is from 0.54 to 1.00, with an average ratio of 0.81. For the

random baseline, the range of price ratios is from 0.61 to

1.00, with an average ratio of 0.88. Note that the random

baseline results in a lower price than the other two baselines,

suggesting that simply using heterogeneous machines, even if

determined randomly, can result in having lower price than

using homogeneous machines.

In general, GASearch does not improve running time as

much over the baselines as compared with price. We find

that tests in a module tend to always run faster on expensive

configurations. Further, the difference in running times of

individual tests does not differ too much across configura-

tions. As we measure the parallel running time, this metric

is largely dominated by the tests with the longest running

times. For example, in module M8, the running time of

test ZookeeperRegistryCenterInitFailureTest-

.assertInitFailure is about 10s on each configuration,

and when using more than 4 machines, the sum of the

running time of all tests on the other machines is less than

the running time of this one test. In this case, GASearch

cannot produce a better heterogeneous solution, because there

is no change to the parallel running time when considering

different configurations for other machines, as those other

tests matter very little. When optimizing for running time, the

homogeneous machines tend to remain the best. On the other

hand, when optimizing for price, there is larger variance in

price between tests across different configurations, allowing

for more space to explore for reducing price.

Figure 2 also compares GASearch against the baselines, but

with the scenario of including a setup time per machine (Sec-

tion III-C). When optimizing for running time only, GASearch

achieves improved running time over the GitHub baseline

across all modules, but the average running time ratio is 0.92.

Compared against the smart baseline, the average running time

ratio is 1.00, as most modules result in the two producing

allocation schemes that have the same running time. For the

random baseline, the average running time ratio is 0.35, much

worse than without setup cost.

When optimizing for price only, GASearch performs better

on all modules with the average ratio of 0.56 compared to the

GitHub baseline. When compared to the smart baseline, the

average price ratio is 0.97, where once again both GASearch

and the baseline result in allocation schemes that have the

same price. GASearch and the smart baseline commonly

propose using just one or two machines to reduce price, so

they tend to propose the same machines. Compared to the

random baseline, the average price ratio is 0.57.

In projects with tests that run relatively fast compared to

machine setup time, any deviations in their running time

is overshadowed by the machine setup time. As such, the

best homogeneous and heterogeneous machines ultimately end

up with the same running time and price, with the setup

time being the most important factor. The lower the setup

time, the more relevant it becomes to schedule tests across

heterogeneous machines, to the limit of having no setup time

(effectively copying instead of rebuilding code on machines).

If a developer is running tests in this kind of scenario, then

they would benefit from using heterogeneous machines. For

subsequent RQs, we show only the results when setup time

is not included, to illustrate further this scenario and how

heterogeneous machines may help.

B. RQ2: Effect of Fitness Function Weight

A change in the weight parameter α allows GASearch

to consider both factors simultaneously, leading to better







TABLE III
COMPARING GASEARCH AGAINST BRUTE-FORCE SEARCH

Fitness Value When α= 0.5

Calculation Time (s) Ratio
ID GASearch Brute-Force Fitness Value

M1 47.33 650.41 1.00
M2 113.90 864.52 1.00
M3 1.52 478.73 1.00
M4 19.08 528.19 1.00
M5 0.61 479.49 1.00
M6 1.55 470.58 1.00
M7 9.90 500.51 1.00
M8 14.57 519.32 1.00
M9 5.24 490.40 1.00
M10 0.74 472.51 1.00
M11 1.79 476.38 1.00
M12 10.70 504.43 1.00
M13 106.20 1042.12 1.00
M14 1.01 471.17 1.00
M15 3.31 488.55 1.00
M16 3.04 495.45 1.00
M17 7.24 495.40 1.00
M18 2.41 474.58 1.00
M19 23.52 543.88 1.00
M20 37.49 618.51 1.00
M21 7.91 494.49 1.00
M22 2.56 476.08 1.00
M23 5.57 496.19 1.00
M24 6.20 495.79 1.00

Average 18.06 542.82 1.00

GASearch runs much faster compared against brute-force

search, needing only about 3% of the time that brute-force

search needs. Also, recall that we could not have brute-force

search schedule using more than six machines (Section IV-B).

E. RQ5: Effect of Guidance Data

Figure 6 illustrates the tradeoff between one-round data

guided GASearch and full-data guided GASearch (full-data

guided GASearch is the baseline). For 16 modules, we see that

the tradeoff is close to 1 (less than 0.1 difference), suggesting

that using just one round of data (i.e., 10 reruns) can produce

solutions with tradeoffs just as good as when using all data,

so a developer may not need to spend as much time collecting

data as we did before they can schedule tests.

On average, the tradeoff between one-round data guided

GASearch and full-data guided GASearch is 1.53. We observe

some modules with very bad tradeoffs. They contain many

tests whose running times and flaky-failure rates differ greatly

in a single round of data compared against using all.

VI. DISCUSSION

This study delves into the implications of using hetero-

geneous machines for test scheduling, focusing on running

time, price, and flaky-failure rate. This approach still faces

similar challenges faced by traditional strategies that use

homogeneous machines. As code evolves, if test running

times change substantially or flaky-failure rate changes, the

allocation scheme may become worse. We assume such factors

remain stable, so the same allocation scheme can be reused

for a period of time. If there are substantial changes, e.g.,

newly added tests, or enough accumulated changes over time,

developers can re-collect running information for the tests

substantially affected by changes. Developers can then use this

new running information to recompute the allocation scheme.

Our current evaluation assumes no order-dependent tests,

i.e., tests whose outcome depends on other tests [14, 29]. We

assume test dependencies will be provided. Similar to Lam et

al.’s work on order-dependent-test-aware regression testing

techniques [30], we can group tests with their dependencies

as one “unit” and schedule them together.

A technique to schedule tests across heterogeneous ma-

chines requires collecting test running information across var-

ious machine configurations a priori. The smart baseline also

needs to collect that information despite using homogeneous

machines (it needs to know which configuration to use for

all tests), whereas the GitHub baseline only needs to collect

this information for tests on the one configuration it considers.

Regardless, collecting running information can be expensive,

and we imagine developers can run tests across different

machine configurations during off-hours when they are not

actively developing (e.g., during the weekend). This upfront

cost is amortized by future savings in running time and price

from using the determined optimal heterogeneous machines.

We can estimate at what point this upfront cost is worth it.

For example, if we consider just the price, we can compute the

price of collecting running information across the 12 machine

configurations by running the tests on all configurations 10

times (the fewer reruns, as evaluated in RQ5). The GitHub

baseline will require a lower cost, simply rerunning the tests

on the same machine configuration. As GASearch proposes

using heterogeneous machines that result in a lower price

than the GitHub baseline, we can compute after how many

test runs in the future will GASearch result in a lower price

than the GitHub baseline, i.e., if we let R be the number of

test runs when the two have the same price, we solve for R

in the equation R ∗ GitHubPrice + GitHubSetupPrice =
R ∗ GASearchPrice + GASearchSetupPrice, where

GitHubPrice is the price from using the GitHub baseline

proposed homogeneous machines, GASearchPrice is the

price from using the GASearch proposed heterogeneous ma-

chines, and GitHubSetupPrice and GASearchSetupPrice

represent the price needed for running tests to collect running

information for the GitHub baseline and GASearch, respec-

tively, across different configurations. If we use the average

values for each of these variables we collected from our study,

we estimate R to be around 151, meaning a developer should

expect to see that using GASearch to produce heterogeneous

machines pays off over the GitHub baseline after 151 test runs.

Given that developers in companies are frequently making

changes that require running tests, e.g., Microsoft reports

hundreds of builds per day for some projects [31], developers

can very quickly break even and save.

VII. THREATS TO VALIDITY

The results we report may not generalize beyond the

projects and tests on which we evaluate. We use data collected





REFERENCES

[1] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Journal of Software Testing, Verification and

Reliability, vol. 22, no. 2, pp. 67–120, 2012.
[2] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test

selection with dynamic file dependencies,” in International Symposium

on Software Testing and Analysis, 2015, pp. 211–222.
[3] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,

and J. Micco, “Taming Google-scale continuous testing,” in Interna-

tional Conference on Software Engineering, Software Engineering in

Practice, 2017, pp. 233–242.
[4] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving

regression testing in continuous integration development environments,”
in International Symposium on Foundations of Software Engineering,
2014, pp. 235–245.

[5] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive
test selection,” in International Conference on Software Engineering,

Software Engineering in Practice, 2019, pp. 91–100.
[6] M. Vakilian, R. Sauciuc, J. D. Morgenthaler, and V. Mirrokni, “Auto-

mated decomposition of build targets,” in International Conference on

Software Engineering, 2014, pp. 123–133.
[7] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac,

W. Schulte, N. Sanches, and S. Kandula, “CloudBuild: Microsoft’s
distributed and caching build service,” in International Conference on

Software Engineering Companion, 2016, pp. 11–20.
[8] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjørner, and J. Czerwonka,

“Optimizing test placement for module-level regression testing,” in
International Conference on Software Engineering, 2017, pp. 689–699.

[9] T. Kim, R. Chandra, and N. Zeldovich, “Optimizing unit test execution
in large software programs using dependency analysis,” in Asia-Pacific

Workshop on Systems, 2013, pp. 19:1–19:6.
[10] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and D. Marinov,

“Parallel test generation and execution with Korat,” in International

Symposium on Foundations of Software Engineering, 2006, pp. 135–
144.

[11] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in International Conference on Software

Engineering, 2002, pp. 467–477.
[12] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and

value of empirical assessments of the accuracy of coverage-based fault
locators,” in International Symposium on Software Testing and Analysis,
2013, pp. 314–324.

[13] “About GitHub-hosted runners,” https://docs.github.com/en/
actions/using-github-hosted-runners/using-github-hosted-runners/
about-github-hosted-runners, 2024.

[14] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in International Symposium on Foundations of Software

Engineering, 2014, pp. 643–653.
[15] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding

flaky tests: The developer’s perspective,” in European Software Engi-

neering Conference and Symposium on the Foundations of Software

Engineering, 2019, pp. 830–840.
[16] “Flaky tests at Google and how we mitigate them,” https://testing.

googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html, 2016.

[17] D. Silva, M. Gruber, S. Gokhale, E. Arteca, A. Turcotte, M. d’Amorim,
W. Lam, S. Winter, and J. Bell, “The effects of computational resources
on flaky tests,” arXiv preprint arXiv:2310.12132, 2023.

[18] “The effects of computational resources on flaky tests (artifact),” https:
//zenodo.org/records/10015435, 2023.

[19] “GitHub Actions,” https://github.com/features/actions, 2024.
[20] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:

An explorative analysis of Travis CI with GitHub,” in International

Conference on Mining Software Repositories, 2017, pp. 356–367.
[21] “GASearch: Test scheduling across heterogeneous machines while

balancing runtime, price, and flakiness,” https://sites.google.com/view/
gasearchartifact, 2024.

[22] M. Mitchell, An Introduction to Genetic Algorithms. The MIT Press,
1998.

[23] E. S. Hou, N. Ansari, and H. Ren, “A genetic algorithm for multiproces-
sor scheduling,” IEEE Transactions on Parallel and Distributed systems,
vol. 5, no. 2, pp. 113–120, 1994.

[24] J. Carpenter, S. H. Funk, P. Holman, A. Srinivasan, J. H. Anderson, and
S. K. Baruah, “A categorization of real-time multiprocessor scheduling
problems and algorithms.” in Handbook of Scheduling - Algorithms,

Models, and Performance Analysis, J. Y. Leung, Ed. Chapman and
Hall/CRC, 2004.

[25] C.-Y. Lee and J. D. Massey, “Multiprocessor scheduling: combining
LPT and MULTIFIT,” Discrete applied mathematics, vol. 20, no. 3, pp.
233–242, 1988.

[26] “Deap,” https://github.com/DEAP/deap, 2024.
[27] “Runtime options with Memory, CPUs, and GPUs,” https://docs.docker.

com/config/containers/resource constraints, 2024.
[28] “AWS Fargate,” https://aws.amazon.com/fargate, 2024.
[29] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A frame-

work for detecting and partially classifying flaky tests,” in International

Conference on Software Testing, Verification, and Validation, 2019, pp.
312–322.

[30] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie, “Dependent-
test-aware regression testing techniques,” in International Symposium on

Software Testing and Analysis, 2020, pp. 298–311.
[31] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study on

the lifecycle of flaky tests,” in International Conference on Software

Engineering, 2020, pp. 1471–1482.
[32] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A

generic method for automatic software repair,” IEEE Transactions on

Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.
[33] G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites,”

in International Conference on Quality Software, 2011, pp. 31–40.
[34] S. Baluja and R. Caruana, “Removing the genetics from the standard

genetic algorithm,” in International Conference on Machine Learning,
1995, pp. 38–46.

[35] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transac-

tions on Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.
[36] P. McMinn, “Search-based software test data generation: A survey,”

Journal of Software Testing, Verification and Reliability, vol. 14, no. 2,
pp. 105–156, 2004.

[37] P. Stratis and G. Brown, “Assessing the effect of device-based test
scheduling on heterogeneous test suite execution,” in International

Conference on Evaluation and Assessment in Software Engineering,
2018, pp. 193–198.


