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ABSTRACT

Regression testing is important but costly due to the large number

of tests to run over frequent changes. Techniques to speed up re-

gression testing such as regression test selection run fewer tests,

but they risk missing to run some key tests that detect true faults.

In this work, we investigate the effect of running tests in different

test-orders on overall test runtime in Java projects. Variance in

runtime across different test-orders can be due to various reasons,

such as due to dependencies between tests. In our evaluation, we

run tests in different, random test-orders, and we find on average

that the slowest test-order per project can be slower than the fastest

test-order by 31.17%. We also develop a technique for guiding a

search for the fastest test-orders by clustering test-orders based

on their runtimes and generating test-orders based on observed

in-common relations between tests in the fastest test-orders.
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1 INTRODUCTION

Regression testing is an essential part of the software development

lifecycle, where developers run tests after every change, ensuring

their recent code changes do not break existing functionalities [49].

Despite its importance, regression testing is often time-consuming

and resource-intensive, especially as software systems and their

test suites grow in size and complexity [10, 28, 31].

Prior work proposed various regression testing techniques to ad-

dress the high cost of regression testing, such as test-suite reduction

(TSR), regression test selection (RTS), and test-case prioritization

(TCP) [49]. TSR and RTS both aim to speed up regression testing by

running fewer tests after every change. TSR reduces the test suite

size by removing redundant tests based on some heuristics, such

as code coverage [5, 7, 11, 13, 17, 19, 38, 41, 52]. RTS analyzes the

code changes and selects to run only the subset of tests affected

by those changes [9, 10, 12, 14, 15, 22, 28, 36, 37, 43, 45, 46, 50].

Since both TSR and RTS run a subset of the full test suite, there

is risk of missing to run some key tests that would fail and detect

newly-introduced faults [36, 42, 54].

Meanwhile, TCP aims to reorder tests to run in a different, better

order, where techniques prioritize the tests to first run those that

are more likely to detect faults, based on various metrics like code

coverage or diversity between tests [6, 16, 18, 25–27, 30, 35, 40,

47, 51]. As soon as a test fails, developers can immediately start

debugging even as other tests are still running. TCP still runs all

tests, so there is no risk of missing to run any test that can detect

newly-introduced faults, but all tests still need to be run, so even as

developers can debug earlier upon a failure, there is still machine

cost needed for running all tests. The general consensus is that the

time needed to run all tests in any order remains the same.

We propose a different means of reordering tests to speed up

testing even while running all tests. We intuit that there are other

reasons for why a full test suite can have varying runtimes when

run in different test-orders, such as due to dependencies between

tests [53] or machine properties. For example, Stratis and Rajan

previously studied how running tests in different test-orders can

have an effect on code caching and cache locality in C programs,

which in turn affects the overall runtime [48]. If there is variation

in runtime between different test-orders, then it stands to reason

that there are test-orders that run faster than others, and so a

developer would prefer to run the tests in that test-order while still

maintaining full fault-detection capability by running all tests.

In this work, we first demonstrate the variation in runtime be-

tween test-orders in Java projects through a preliminary study

where we randomize test-orders across 12 Java projects’ test suites,

running each test-order five times to collect a distribution of run-

times for each test-order. We find that the runtime indeed varies, on

average by 31.17% when comparing the fastest test-order’s runtime

to the slowest test-order’s runtime. We then propose a technique

for reordering tests to search for the fastest test-order by focus-

ing on relative positioning between test classes in the test-order.

Our technique is based on the intuition that a major reason for

differences in test-order runtimes is due to dependencies between

tests [20, 44, 53]. Our approach generates different test-orders by

following the relative ordering between tests found in-common

among already observed fastest test-orders. While this approach

is effective at generating the fastest test-orders for some projects,

likely due to there being dependencies between tests related to

performance, there are still other reasons for runtime variances in

different projects. Future work can focus on developing different

techniques for reordering tests based on these other factors.

2 PRELIMINARY STUDY

For our preliminary study, we want to measure the variation in

runtime across different test-orders. We evaluate on 12 open-source

Maven Java projects from GitHub, sampled from prior research on

software testing [23, 24, 33, 46]. If the project contains multiple

modules, we randomly take one module from the project and evalu-

ate on its test suite, as long as the test suite has more than five test

classes and runs longer than 15 seconds. Table 1 shows our evalua-

tion modules, where “ID” is an ID we give to each module for ease

of future presentation, “Project” is the name of the project, “Module”

is the name of the module in the project we use for evaluation, and

“TC” is the number of test classes in that module.

For each module, we randomly shuffle the test classes in the

test suite to form different test-orders. We generate 30 test-orders
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Table 1: Project characteristics and evaluation results.

# Clusters # Clusters Fastest Avg. gen. # Rnd. gen.

ID Project Module # TC (Random) (Guided) rank time (s) orders

M1 admiral compute 74 13 4 5 1.54 0

M2 incubator-dubbo dubbo-rpc/dubbo-rpc-dubbo 15 9 7 20 0.09 0

M3 commons-math commons-math-legacy 315 2 2 1 156.92 0

M4 hazelcast-jet hazelcast-jet-sql 90 2 4 1 2.00 1

M5 rocketmq acl 9 2 6 10 0.06 2

M6 Achilles integration-test-2_1 40 2 2 1 0.24 5

M7 languagetool languagetool-language-modules/uk 27 2 2 23 0.20 0

M8 jitwatch core 32 3 2 2 0.46 0

M9 flink flink-table/flink-table-runtime 123 8 2 6 5.44 0

M10 Openfire xmppserver 69 7 6 1 2.54 0

M11 commons-io . 200 7 2 1 37.58 0

M12 elastic-job-lite elasticjob-lite/elasticjob-lite-core 51 2 2 2 1.05 0
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Figure 1: Runtimes of different randomly generated test-orders

for project apache/incubator-dubbo.

per module, while ensuring each test-order to be unique and have

the same test outcomes (different test outcomes can be due to test-

order-dependencies [21, 53]; we generate a new test-order if tests

have different outcomes. We then run each test-order five times

to collect a spread of runtimes, obtaining a median runtime per

test-order. We run all our experiments in a Docker container built

from an Ubuntu 20.04 Docker image with JDK 17 and a modified

version of the Maven Surefire plugin that allows us to control the

test-order [3]. We run each module’s tests in its own container, and

we limit the container to use 2 CPUs and 8GB of RAM, similar to

resources available in continuous integration services [2, 4].

Figure 1 shows the spread of runtimes across these different

test-orders generated for tests in a module from project apache/-

incubator-dubbo. Each box represents the variation in runtime

(across five reruns) for a test-order. We see a wide range of runtimes,

with the fastest test-order having a median runtime of 144.72 sec-

onds, and the slowest having a median runtime of 236.70 seconds.

We can essentially compute a similar plot for all modules.

Figure 2 shows a violin plot of the median runtimes for all the 30

test-orders, per module. The red plots represent the distribution of

runtimes from the randomly generated test-orders. We observe that

most of the modules show variation in runtimes, especially modules

M1, M2, M3, and M4. We also observe that the average difference in

runtime across all test-orders per module is 23.04 seconds, where

on average the slowest test-order’s runtime is 31.17% slower than

the fastest test-order. Furthermore, we find all these differences

between fastest and slowest test-orders’ runtimes to be statistically

significantly different based on the Mann-Whitney u-test [29].

Note that several test-orders may have similar runtimes as each

other. We cluster the runtimes of different test-orders together and

observe how many clusters there are. We use the K-means clus-

tering algorithm from sklearn [34] while controlling for different

sizes of K (from 2 to the number of test-orders), and we find which

size K results in the highest silhouette score [39], an indicator of

how good the clustering is. The column “# Clusters (Random)” in

Table 1 shows the number of clusters computed this way across

the randomly generated test-orders. We see that each module has

at least two clusters, all with silhouette score higher than 0.5, indi-

cating the clustering is decent. Moreover, there are five modules

where the number of clusters is seven or more, indicating a wide

variety of runtimes across different test-orders for these modules.

To better understand some reason for why there can be differ-

ent runtimes per test-order, we looked into the relative ordering

of test classes across the different test-orders for the module in

project apache/incubator-dubbo (Figure 1), as the the results for

this module (M2) show the greatest variance in runtimes between

test-orders. We find that some test classes run longer when spe-

cific other test classes run first, despite having the same test out-

comes. For example, ChangeTelnetHandlerTest takes about 1 sec-

ond to runwhen it runs before ExplicitCallbackTest, but it takes

about 40 seconds when it runs after. Upon further investigation,

we found that tests in ExplicitCallbackTest add elements to a

shared global Map. The tests in ChangeTelnetHandlerTest would

use this shared Map, but they first clear the contents of this Map to

ensure proper test independence. While this action ensures the out-

come remains the same regardless of ordering between these two
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1 # OGOrder: arbitrary test suite order

2 # S: size of initial set

3 # N: # of random orders to generate and run

4 def random_cluster_and_solve(OGOrder , N):

5 # Run OGOrder and save its test outcomes

6 OG_test_results = run_order(OGOrder)

7 order_to_runtimes = collections.OrderedDict ()

8 order_to_runtimes[OGOrder] = OG_test_results

9

10 # Create and run initial set

11 while len(order_to_runtimes) < S:

12 new_order = generate_random_order(OGORder)

13 new_order_results = run_order(new_order)

14 if new_order_results == OG_test_results:

15 order_to_runtimes[new_order] = new_order_results

16

17 # Cluster , solve and run

18 while len(order_to_runtimes) < N:

19 best_n_clusters , score = find_kmeans_n_clusters(

order_to_runtimes)

20 if score < 0.5: # If we cannot cluster

21 new_order = generate_random_order(OGORder)

22 else:

23 # Cluster using Kmeans

24 fast_set , slow_set = find_fast_and_slow_sets(

order_to_runtimes , best_n_clusters)

25 # Extract constraints

26 constraints = extract_constraints(fast_set ,

slow_set)

27 if len(constraints) > 0:

28 # Mutate constraints

29 mutated_constraints = mutate(constraints)

30 # Generate a new order using Z3 solver

31 new_order = generate_using_constraints(OGOrder ,

mutated_constraints)

32 else:

33 new_order = generate_random_order(OGOrder)

34 new_order_results = run_order(new_order)

35 if new_order_results == OG_test_results:

36 order_to_runtimes[new_order] = new_order_results

37

38 return order_to_runtimes

Figure 3: Clustering and constrains solving pseudocode.

new test-order (Line 31). If at any point when we generate a new

test-order and the test outcomes are not consistent with previous

outcomes, we throw the test-order away and generate a new one.

We rerun test-orders five times to obtain a distribution of runtimes.

Figure 2 shows the spread of runtimes across different test-orders

generated by this guided search, in the green-colored plots. We ob-

serve for somemodules that the distribution of most of the runtimes

of test-orders generated using the guided search bunch up at the

bottom of the violin plot, namely for M1, M2, and M3. This charac-

teristic means that most of the test-orders are fast, which suggests

that the search is being guided towards the faster test-orders. We

also observe that for the modules M5, M7, M8, M9, M10, M11, and

M12, the distribution of the runtimes from the guided search mostly

overlaps with the distribution from random generation. As such,

both random test-orders and guided search test-orders have similar

runtime results for these modules.

In Table 1, we show under column “# Clusters (Guided)” the

number of clusters across the guided search test-orders, similar

to how we compute the number of clusters across the randomly

generated test-orders (Section 3). We observe that 5 modules have

the same number of clusters and 3 modules have more clusters.

We would also like to see whether the guided search can find

test-orders that have faster runtimes sooner, i.e., trying out fewer

test-orders to find the fastest test-order. If guided search is faster

at finding the fastest test-order, we could run that search fewer

iterations. The column “Fastest rank” in Table 1 shows at which

iteration does the guided search find a test-order that is in the same

cluster as the fastest cluster of test-orders. We notice that 3 modules

have their fastest test-order found later after the randomly gener-

ated initial set of test-orders (rank > 6). This result suggests that

the guidance from the constraints are useful in helping construct

faster test-orders. We also find that the guided search finds faster

test-orders than random generation (both the guided search and

random generation generate the same number of test-orders), for

modules M3 andM6. These results suggest that their tests’ runtimes

are likely affected by dependencies between tests, so our approach

at leveraging orderings between tests helps find faster test-orders.

Unfortunately, the approach is not as effective for other modules.

In Table 1, we also show under column “Avg. gen. time (s)” the

average time in seconds the guided search takes to generate a test-

order, with overall average time of 17.34 seconds. Modules with a

high number of test classes generally take more time to generate

test-orders due to the large number of constraints. The “# Rnd. gen.

orders” column shows the number of random test-orders the guided

search generated, excluding the 6 initial ones. In most cases, guided

search does not resort to generating a random test-order.

4 CONCLUSIONS AND FUTUREWORK

In this work, we investigate the effects of running tests in differ-

ent test-orders on the runtime. Our study on 12 open-source Java

projects’ test suites show significant variance in runtime between

test-orders, where the slowest test-order is on average 31.17% slower

than the fastest test-order. We develop a new approach that gen-

erates faster test-orders by clustering existing test-orders based

on runtime and constructing new test-orders based on in-common

relative orderings between test classes among the test-orders in the

clusters. This approach was effective at generating faster test-orders

than random generation for two projects.

In the future, we plan on developing an improved approach to

search for the fastest test-orders, with the goal to find the fastest

test-orders more efficiently than simply randomly generating test-

orders, as well as to generate test-orders that are even faster. We

plan on investigating further the various reasons for why tests run

faster in certain test-orders, such as due to JIT optimizations or

memory usage during testing, beyond the dependencies between

tests reason that was the focus of our proposed approach.
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