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Abstract—Heartbeat signals are useful to disease prediction,
sub-health diagnosis, fatigue warning, and even emotion esti-
mation. There is a compelling need for contactless, easy-to-
deploy, and long-term heartbeat monitoring. This paper presents
a contactless Radio Frequency Identification (RFID) based system
for heartbeat monitoring that leverages the insight that RFID
signal fluctuations induced by chest motion are synchronous with
both respiration and heartbeat. The proposed system collects the
temporal phase information from the tag pair on the body to
extract heartbeat signals using a sequence of signal processing
techniques. We propose a signal separation method based on
empirical mode decomposition (EMD) to obtain heart rate after
preprocessing. Furthermore, the estimated signal is input to
an enhanced variational autoencoder (VAE) model to recover
the heartbeat waveform. Implemented with commercial off-
the-shelf (COTS) RFID devices, the system achieves accurate
heart rate monitoring with less than 3% relative errors. The
detected waveform exhibits a median cosine similarity of 0.83

as compared with the ground truth, which validate the system’s
wide applicability and high reliability for fine-grained, contactless
heartbeat monitoring.

Index Terms—Radio Frequency Identification (RFID), vital
sign monitoring, contact-free sensing, variational autoencoder.

I. INTRODUCTION

Vital signs such as respiration rate and heart rate are funda-

mental physiological parameters for health diagnosis and mon-

itoring general well-being. Traditionally, techniques such as

Photoplethysmography (PPG) and Electromyography (EMG)

have been widely used for monitoring heartbeat signals [1], [2].

However, both methods require expensive, heavy, and power-

consuming equipment that is inconvenient for continuous daily

use, especially during sleep. As a result, there is a growing

demand for contactless vital sign monitoring solutions from

both academia and industry to enable non-invasive long-term

tracking of vital signs.

By leveraging the selected signals to capture body micro-

movements, contactless sensing provides a promising means

to monitor vital signs. Among the research in recent years,

several wireless techniques have been studied for monitoring

heartbeat, including radar [3], Wi-Fi [4], acoustics [5], and

camera [6], etc. Some of the wireless systems depend on

expensive or dedicated equipment that uses a large bandwidth,

such as ultra-wideband (UWB) radar [7] and frequency mod-

ulated continuous wave (FMCW) radar [8], which has been

a hindering factor to their large-scale deployment and long-

term use. Some devices are dependent on the environment

and they need a line-of-sight (LOS) path to obtain accurate

measurements, such as Zigbee [9].

In contrast, Radio Frequency Identification (RFID) systems

can mitigate the impact caused by multiple users as well

as multi-path propagation, where the RFID reader receives

signals reflected from passively tags to obtain information

about the target for different Internet of Things (IoT) sensing

applications (e.g., localization, action recognition, and vital

sign monitoring). In addition, the tags are small, low-cost,

and battery-free, making them to be easily and unobtrusively

deployed to users. Furthermore, their nature of identification

can be used to effectively and easily distinguish different hu-

man subjects. In this paper, we exploit the backscattered RFID

signal modulated by the chest motion caused by respiration and

heartbeat. We show that the commercial off-the-shelf (COTS)

RFID is adequate for monitoring heartbeat because its reading

rate per tag (almost 50 Hz) is much higher than the normal

heart rate (50 ∼ 90 beats per minute (bpm) [10]) for a healthy

adult at rest. Zhao et al. [11] have succeeded in implementing

a multi-tag empirical mode decomposition (EMD) method

to detect heartbeat from the RFID phase. Wang et al. also

utilize wavelet transform to extract the heartbeat from RFID

signals [12]. Although the rationale behind such works sounds

fairly intuitive, it is still challenging to monitor both respiration

and heartbeat reliably and robustly, becuase

1) COTS RFID devices, due to inherent limitations in their

configuration, have the problem caused by frequency

hopping, i.e., their interrogation frequencies rapidly and

randomly hopping among multiple channels during com-

munication with tags.

2) Small movements of the chest cavity caused by heartbeat

signals are difficult to capture due to the relatively

larger body movements associated with unconscious

body movements and respiratory activity of the subject.

3) Heartbeat signal obtained indirectly through chest move-

ments are quite different from that detect by accurate

medical electrocardiogram (ECG) equipment, while the

latter is more useful from the medical perspective.

In this paper, we leverage two COTS RFID tags to set up an

RFID heartbeat monitoring system, which aims to recover the

heartbeat signal with similar accuracy as that from traditional

ECG devices. Due to the sampling frequency of RFID system,

we can ensure the same frequency of interrogation for both tags
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within a short period of time, and the difference between their

phases will only contain the movement signals of the subject.

Thus the influence of frequency hopping can be mitigated.

To deal with the impact of body movements, we utilize one

of the tags as a reference tag, through which to construct a

relative coordinate system. Specifically, we attach two COTS

RFID tags to the chest area of the human subject. One is

attached near the chest cavity and the other near the collarbone.

A COTS RFID reader is used to continuously interrogate

these tags by issuing a continuous wave and collecting their

backscattered RF signals within the effective scanning range

(0.25 ∼ 1m). We utilize the readily available measured RFID

phase data to extract the rhythmic pattern associated with

heartbeat. Similar to traditional testing methods, the environ-

ment is controlled to be relatively quiet and the test subjects

are supposed to remain still during the measurement.

Generally, heartbeat waveform is considered significantly

more useful than heartrate, as it depicts the entire cardiac

cycles with much richer information [13]. To detect the heart-

beat waveform from the RFID signal, we propose using a

variational autoencoder (VAE) with an enhanced loss function.

In particular, the traditional loss function contains only the

mean square error (MSE) derived relative to the ground truth

but ignores the physical boundaries in the experiment. There-

fore, better performance can be achieved by adding physical

constraints to the loss function.

The main contributions made in this paper include:

1) To the best of our knowledge, this is the first work

that harnesses the COTS RFID system to monitor the

heartbeat waveform. Compared to traditional methods,

we obtain waveforms that approximate ECG signals by

utilizing a series of signal processing techniques coupled

with a deep learning model.

2) We also propose a novel technique to deal with the

frequency hopping offset, which is a phase difference

calibration method. The proposed scheme is simple but

effective in mitigating the frequency hopping offset as

well as constructing a relative coordinate system to

eliminate the effects of other body movements and

displacements.

3) In order to estimate the heartbeat waveform, a method

of using a modified VAE with physically bounded loss

function is proposed.

4) We implement the system with COTS RFID devices,

which can obtain accurate heart rate monitoring with less

than 3% relative errors. The recovered waveform shows

a median cosine similarity of 0.83 compared with the

ground truth.

The remainder of this paper is organized as follows. Sec-

tion II provides the preliminaries and motivation. The proposed

system design is presented in detail and analyzed in Section III.

The experimental study is discussed in Section IV. Section V

concludes this paper.

II. PRELIMINARIES AND MOTIVATION

In this section, we will first introduce the frequency hopping

problem, which is a key issue that appears in all RFID research.

It is caused by the regulations of the Federal Communications

Commission (FCC) in the interest of communications security.

Then, we explain the rationale of contact-free cardiac moni-

toring. We will establish the connection between the physical

phenomenon of heartbeat and the phase of RF signal, and

deduce how to obtain the heartbeat signal. After that, the

principle and a feasibility analysis of heartbeat monitoring via

RF signals will be presented.

A. Frequency Hopping

Under the requirements set by the FCC, in order to prevent

co-channel interference, ultra high frequency (UHF) RFID

readers need to adopt a channel hopping strategy. The spec-

trum, from 902.5 MHz to 927.5 MHz, has been divided into

50 non-overlapping channels. According to the regulations,

the reader should occupy every allocated channel for 200 ms

before transitioning to the subsequent channel. Although this

regulation improves communication robustness and security,

it introduces an additional phase shift in the RFID signal,

which can lead to significant inaccuracies in RFID-based

measurements and sensing.

According to the official RFID reader manual [14], the phase

φ of the received RFID response signal can be expressed as

φ = mod

(

4π�

λ
+ σT + σR + σTag, 2π

)

, (1)

where � is the distance between the tag and reader antenna,

λ is the wavelength of the current interrogation signal, σT ,

σR and σTag are phase offsets caused by the transmitter

circuit, receiver circuit, and tag’s reflection characteristics,

respectively.

Channel hopping causes the φ to change as the wavelength

of the interrogation signal changes, even if the distance remains

constant. In addition, wavelength is not the only factor that

causes the phase change. σT , σR and σTag are the phase offsets

irrelevant to the distance �, which are also influenced by the

channel frequency. We rewrite (1) as follows:

φ(fi, �) = mod

(

4πfi�

c
+ σi, 2π

)

, (2)

where fi is the channel frequency, c is a constant value

representing the speed of light, and σi = σT + σR + σTag

is the hardware induced phase offset on channel frequency fi.

From (2), it can be seen that the phase offset has a big

effect on the received signal. Fig. 1 presents the received signal

from an RFID tag that contains such substantial noise that it

is impossible to extract the target information directly from

the signal. Recently, the problem of frequency hopping has

been studied and a calibration method based on the reference

channel has been proposed [15]. When calibrating a multi-

channel signal, researchers often employ a reference chan-

nel approach to maintain phase coherence across frequency
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Fig. 1. Measured raw RFID phase data.

changes. The methodology involves the following steps. First,

one of the channels is designated as the reference channel.

Then, as the frequency switches from one channel to the next,

a small set of phase values are recorded from the previous

channel frequency, and a small set of the first phase values

from the current channel frequency are recorded as well. Next,

these two sets of phase values are averaged separately, and

the phase difference between the averaged values from the

previous and current channel frequencies is calculated. This

phase difference is then used as the phase offset caused by

the current frequency hopping. By applying this phase offset,

the phase information across all channels can be converted to

be around the reference frequency, effectively calibrating the

signal. This technique allows effectively preserve the phase

relationship between channels despite changes in the operating

frequency, thus ensuring the integrity of the overall signal

during analysis and processing.

Fig. 2 shows the calibrated phase data corresponding to that

in Fig. 1 and calibrated with the AutoTag method [15]. It

can be observed that this method does remove most of the

noise compared to the original signal. However, it does not

completely eliminate the phase error by simply calculating the

mean. The residual error may still cause the signal to lose

some of its useful information. In order to better mitigate the

frequency hopping effect, we propose a new method in the

proposed RFID system, to remove the phase offset σi, which

will be discussed in Section III.

B. Contact-free Heartbeat Monitoring

The normal heart rate for a healthy adult at rest is 50 ∼ 90
beats per minute (bpm) [10], while the contraction and diastole

of the heartbeat are not done uniformly in each frequency

cycle. The spike waveform in the ECG is caused by the rapid

contraction and diastole of the heart. With each heartbeat, the

chest movements cause a small rise and fall trend. As shown in

Fig. 2. The AutoTag method for calibration of the raw RFID phase data [15].

Fig. 3, the heart’s movement generates a continuous wave that

is captured by RFID signals and backscattered to the RFID

reader [16]. Simultaneously, the chest’s movements due to

respiration also affect the RF signals, known as the moving

effect of the tag pair. Consequently, the RFID reader receives

a composite signal comprising the heartbeat, respiration, and

ambient noise.

In order to better show how to extract the reflection signal of

heartbeat from the received RFID signal, we introduce a signal

propagation model to help explain the principle as illustrated

in Fig. 3. The model uses two RFID tags: a reference tag and

the target tag. We use A, T , R and H to indicate the locations

of antenna, target tag, reference tag, and heart, respectively.

As the target tag is attached on the test subject’s chest, it

will move in response to heartbeats, as well as breathing and

body movements. In Fig. 3, d is used to represent the distance

change caused by contraction and diastole of the heart, and

the displacement positions of the target tag and heart are

denoted as T ′ and H ′, respectively. The angle formed by the

reflected signals at location T and T ′ and the horizontal ground

is denoted as α and β, respectively. The antenna transmits

a continuous radio wave to activate the tags. Due to the

movement of heart, the round-trip diatance of the LOS path

Sr will be time varying which can be expressed as

Sr = SAT + STA, (3)

S′

r = SAT ′ + ST ′A, (4)

STA = DTA cosα, (5)

ST ′A = DT ′A cosβ, (6)

DT ′A ≈ d+DTA, (7)

where SAT is the distance from the antenna to the target tag,

STA is the distance from the target tag to antenna, S′

r is the

round-trip distance of the LOS path between the antenna and

target tag at location T ′, and DTA (DT ′A) is the horizontal
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Fig. 3. Movement model of heartbeat induced tag displacements.

Fig. 4. The heartbeat detection RFID system design.

distance between the antenna and target tag at location T (T ′).

Since DTA is much larger than d, we can simplify the formula

into the following form:

S′

r = Sr + 2d. (8)

Eq. (8) indicates that we can obtain the heartbeat frequency

from the displacement variations of the target tag. Since the

reference tag is attached on the collarbone of the test subject,

the displacement of the reference tag can be ignored. We

could subtract the reflected signal of the tag pair to obtain

the displacement changes in the target tag.

III. SYSTEM DESIGN

The RFID system is designed to monitor human heartbeat

and recover the waveform of the heartbeat using two RFID

tags attached to the test subject. As shown in Fig. 4, the phase

information collected by an RFID reader is a function of the

distance between the corresponding tag and the reader antenna.

The proposed system can be divided into three parts: signal

extraction data processing, and heartbeat monitoring, which

will be elaborated on in the remainder of this section.

A. Signal Extraction

The signal extraction module consists of RFID tags, an

RFID reader, an antenna, and a computer. When tags are

attached to the human body, its distance to the antenna changes

periodically following the chest movement caused by the

subject’s breathing and heartbeat. As mentioned in Section II,

we can leverage the RFID phase information to recover the

periodic signal of heartbeat.

The low-level data from the tags shall be collected during

breathing and heartbeats, while the data contains both chest

and abdomen movements. It is not easy to directly obtain

any useful information from the raw data. To increase the

robustness of the system, we attach two passive RFID tags

on the upper body of the subject. One is on the subject’s

chest, and the other is on the collarbone. The reader uses

a special antenna to interrogate the tags. The data collected

from the reflected signals from these tags includes phase,

received signal strength indicator (RSSI), Doppler shift, and

time stamp. The signals can capture the breathing and heartbeat

patterns. However, correctly detecting heartbeat through RSSI

and Doppler shift is not easy. This is because that RSSI lacks

precision, and Doppler shift is not sufficiently reliable due to

the slow movements of the subject’s chest while breathing.

As a result, the proposed system mainly leverages phase

information to monitor heartbeat.

B. Data Processing

Fig. 1 illustrates the raw phase data collected from a tag

over an interval of 30 seconds. It is observed that significant

fluctuations are present in the phase data as the system

cycles through different channels, spending 0.2 seconds on

each channel. Furthermore, the phase data does not transition

smoothly from one channel to another but rather changes

abruptly. Consequentially, it is quite difficult to directly derive

the heatbeat signal from received phase data. For a successful

extraction of the breathing signal, it is required to pre-process

the raw phase data as described in the following steps.

1) Frequency Hopping Offset: The output of phase data

ranges from 0 to 2π. Because the tag movements are always

continuous in time, two consecutive phase samples usually do

not change by more than π. In the actual experiment, the phase

can change from 0.1π to −0.1π over the previous sample, but

the corresponding phase information at the output becomes

0.1π and 1.9π due to the modulo operation. Thus, we unwrap

the phase data to remove the modulo operation.

However, unwrapping cannot completely solve the fre-

quency hopping problem, because it can only be used for

consecutive phase samples collected from the same channel.

In order to mitigate the frequency hopping effect, we propose

to use two RFID tags as a pair. Both tags are of the same

type. One is attached on the chest, and the other to a location

that hardly ever changes. Since the sampling rate of the

reader is higher than 100 Hz, and the reader remains on each

channel for up to 200 ms, we can guarantee that the channel

frequency received by each tag is the same. From (2), we have

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 01,2025 at 04:48:25 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Phase difference between the pair of RFID tags.

demonstrated that the factors affecting the phase information

are determined by the channel frequency, and that different

channel frequencies result in different frequencies of reflected

waves from the tag, as determined by the structure of the

tag itself. Therefore, the same channel frequency can result

in the same phase offset σi. Fig. 5 illustrates the result of our

proposed method. The phase information in Fig. 5 contains

much clearer waveform data compared to the method shown

in Fig. 2.

2) Movement Detection: Either in Fig. 2 or Fig. 5, we can

see that the human body has a small displacement during the

experiment, which also causes a phase change. Since our target

signal is the relatively much weaker heartbeat, avoiding the

interference introduced by the relatively larger movements of

human body is necessary.

Traditional methods usually utilize a sliding window to

mitigate the impact of human body movement. For each

window, the mean absolute deviation of the phase samples

from all tags will be calculated. If the subject is not stationary,

the phase values will exhibit large variations. Therefore, by

setting a threshold of 0.9, the human body movement can

be detected if the mean absolute deviation is larger than the

threshold value.

In our proposed method, we attach the reference tag on

the collarbone for two reasons. First, the collarbone is relative

more stationary and is virtually unaffected by the movement of

the chest. Second, the tag pair can form a relative coordinate

system. The tags move with the body movement. The phase

difference can be considered as a function of the distance of

the target tag with respect to the reference tag. Thereby, we

can effectively mitigate errors caused by body movement by

using the phase difference.

Although the frequency hopping offset can be effectively

mitigated by using phase difference, the initial phase offset is

still a random value that introduces a random DC component

in the phase data. To remove the random DC component, we

Fig. 6. The calibrated phase signal after removing the DC component.

utilize a polynomial to fit the resulting phase information and

then subtract the predicted phase information from the col-

lected samples, thus calibrating the phase data. The calibrated

signal is plotted in Fig. 6. It can be seen that the calibrated

signal is now centered at zero and the breathing cycles are also

more obviously visible.

3) Signal Decomposition: After mitigating the frequency

hopping offset and calibrating the phase information, the phase

data mainly contains three types of information, i.e., respira-

tion, heartbeat, and noise, the first two of which are more

dominant and have different frequency ranges for subjects.

The respiration signal contains the most energy. In contrast,

heartbeat signals are mixed with noise signals, which are

difficult to distinguish and only approximate frequency ranges

could be obtained from some fluctuations. It can be observed

in Fig. 7 for the reported phase with fast Fourier transform

(FFT) from one experiment. In order to separate the heartbeat

signal from the phase data, a signal decomposition method is

implemented to achieve this goal.

The frequency range of respiration and heartbeat are mainly

within 0.1 ∼ 0.5 Hz and 0.8 ∼ 2.5 Hz, respectively. The peak

in the frequency domain of these signals can be regarded as

the coarse respiration rate or heartbeat rate. In this module, the

EMD approach is leveraged to extract the heartbeat frequency

from the phase information. EMD is based on data, and does

not require a pre-set mother wavelet. It is also a type of blind

source separation (BSS) technique, which means that EMD

operates effectively even when there are more source signals

than the recorded signals. More importantly, EMD is a process

that decomposes a signal into components known as intrinsic

mode functions (IMF), along with a trend. The key advantage

of EMD is that it operates well with data that is constantly

changing and does not follow a linear pattern. This is because

EMD operates based on the local, specific time scale of the

data, ensuring that the changing frequency characteristics are

preserved [17].
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Fig. 7. FFT of reported phase in one experiment. The vertical line and the
circle indicate the ground truth respiration and heart rate, respectively.

As the order of the IMF gets higher, the related signal

frequency drops. We can estimate the strength and frequency of

each IMF through the Hilbert Transform. The decomposition

process can stop once the frequency of an IMF falls below

the threshold frequency of either the breathing or heartbeat

signal. The IMF corresponding to respiration and heartbeat are

usually the two strongest ones while others represent noise.

The respiratory signal is not significantly affected by noise

because the respiratory frequency has most of the energy

compared to other signals (i.e., the strongest component).

However, during our attempt to isolate the heartbeat signal,

we find that the harmonic waves and background noise make

it difficult to clearly distinguish the heartbeat signal within the

decomposed component of the IMF signal.

In order to achieve our target, we first obtain the spectral

distribution of the compound signal. Next, we identify the IMF

signal that possesses the highest energy, which is considered as

the breathing signal’s spectrum. Then we obtain the spectral

distribution of the heartbeat signal and part of noise signal

by subtracting the spectrum of the breathing signal from

the overall signal. Due to the presence of harmonics, the

spectrum we obtain still shows high amplitude at the breathing-

induced frequencies. To address this issue, we adjust our

target frequency domain to the range of 0.8 ∼ 2.5 Hz. We

then reduce the signal to its average value, making the signal

symmetrical around zero. To minimize noise interference, we

employ a Savitzky-Golay filter to smooth the spectrum. We

then disregard the most prominent peak frequency, opting

instead for the second peak. This is because the third harmonic

related to breathing is stronger than the heartbeat signal. We

then identify the frequency through this method as the central

heartbeat signal frequency. We choose the frequency interval

to be within ± 0.1 Hz of this central frequency.

The signal decomposition is illustrated in Fig. 8. The solid

line represents the residual spectrum, obtained by subtracting

1.25Hz

Fig. 8. Filtered spectrum and target frequency.

the domain frequency spectrum from the original phase signal.

The dotted line, on the other hand, represents the spectrum that

has been processed through the Savitzky-Golay filter. Notably,

there are two distinct peaks that present in the curve. The

first peak is influenced by the breathing signal. Our target

frequency, however, is indicated by the second peak. In this

specific experiment, the target frequency sits at 1.25 Hz. It is

important to note that there is a slight frequency shift from the

ground truth of 1.28 Hz in this experiment.

4) Downsampling and Filtering: After the range of heart-

beat rate is determined, we employ the Butterworth filter to

extract the heartbeat signal from the phase information. The

result is shown in Fig. 9. Due to the filtering performed, the

spectrum of the obtained signal is not exactly the same as

the ground truth, as can be seen in Fig. 8, where the wave

peaks of the estimated signal and the ground truth are not

exactly identical. Nevertheless, it is noted that the extracted

signal basically achieves peak alignment compared to the

ground truth, verifying the accuracy of the extracted heartbeat

signal. The relative error of the distance between heartbeats,

also known as the RR interval, which is commonly used in

medicine, is also less than 2%. To better match the data from

the ground truth, the obtained data needs to be downsampled

with a sampling frequency of 50 Hz.

C. Heartbeat Monitoring

Simply obtaining the frequency of the heartbeat signal

does not yield sufficient useful information for some practical

applications. As mentioned in the last subsection, the estimated

signal only shows the heart rate, but without other critical

information. In this study, we utilize the method of deep

learning to obtain the heartbeat waveform. In this subsection,

we first motivate our approach and introduce the VAE model to

be adopted, followed by presenting the modified loss function

with physical boundaries as well as the rationale of the

enhanced loss function.
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Fig. 9. Signal decomposition result (top subfigure) vs. the ECG ground truth
(lower subfigure).

1) VAE Model: In order to recover the waveform of the

heartbeat signal, a VAE model is adopted in our proposed

system. First, we clarify why we select the proposed method

and present the rationale behind our VAE model’s design. Then

we provide a brief overview of its structure, followed by an

exploration of the functionality and training process of each

component. The goal is to offer a clear understanding of our

method and its individual parts.

Essentially, obtaining the heartbeat waveform from the RF

signal is like creating a model that represents the conditional

distribution of the heartbeat waveform, which relies on the

phase information. These methods, which are motivated by

raw RF signals and actual waveform data, can automatically

identify the complex relationship between the input and output.

A recent example of this method is to learn this relationship

through deep neural networks [8].

In our model shown in Fig. 10, the encoder learns the feature

from the input data and encodes it into a latent space structure.

The internal structure of the multidimensional latent space

for a well-learned model defines its properties. The decoder

component then reconstructs the input using this information.

The key idea of VAE is to compress a random vector x in

a high-dimensional space into a latent variable z in a low-

dimensional space by variational encoding. This process can

be simplified and expressed as follows:

Pθ(x, z) = Pθ(x|z)Pθ(z), (9)

where Pθ(z) denotes the prior distribution of the latent variable

z, which is generally set to the standard Gaussian distribution;

Pθ(x|z) denotes the conditional probability density function

of the input variable x when z is known; and θ denotes

the variable parameter. The posterior distribution Pθ(z|x) is

intractable since the parameters θ and the latent variable z
are unknown. The standard VAE uses a recognition model

qφ(z|x) as an approximation to the true posterior Pθ(z|x).
VAE generates two outputs in the encoder including a mean

Fig. 10. The architecture of the VAE model used in our system. The encoder
takes processed phase data and encodes it to respective latent probability
distributions. Latent vectors are then sampled from the distributions and fed
to the decoder for recovering the heartbeat waveform.

vector and a standard deviation vector. These two vectors form

the parameters of the latent variable z. This mechanism allows

the encoder to learn different mean values corresponding to

each potential class, and the standard deviation reduces the

overlap of feature classes.

2) Loss Function Based on Physical Boundaries: The com-

monly used loss function in the VAE model is a combination

of reconstruction loss (lr) and the Kullback-Leibler (KL) di-

vergence (lk). However, this loss function ignores the physical

boundaries in practical applications. The experimental data of

the target have distinctive features, and each set of data has a

relatively fixed peak-to-peak spacing as well as the number of

wave crests. While the commonly used loss functions do not

take such physical characteristics into account, we propose an

enhanced loss function to improve the overall performance of

the model by incorporating physical boundaries.

Algorithm 1 Loss Function Based on Physical Boundaries

Algorithm

Require: Target, Input, µ, σ
1: Calculate ∇Target
2: Target gradients ← ∇TargetMax[0 : 25]
3: for each i in index do

4: Get neighborhood of i from Target gradients with

sample points N
5: max value ← maximum value in the neighborhood

6: if max value is not in peaks then

7: Append max value to peaks

8: Append i to locations

9: end if

10: end for

11: Sort locations
12: distance ←

∑
diff(locations)/(num(peaks)− 1)

13: Calculate std(peaks) and num(peaks)
14: repeat 1-13 with Input
15: Compute gradient loss as the sum of MSE losses of

distance, std(peaks), and num(peaks) of input and

target

16: Compute V AE loss by calling VAE loss function with

Target, Input, µ, and σ
17: total loss = ω1 · gradient loss + ω2 · V AE loss
18: return total loss

Our loss function can be obtained through Algorithm 1,

where Target is the ground truth data, Input is the phase

information; µ and σ are the mean value and standard variance
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of value x, respectively. They are calculated by encoder eθ(x).
∇ means the gradients of the data. N is the sample points

which depends on the sampling rate. distance is the mean

value of the distance of the RR waves. std(peaks) means the

standard deviation of the heartbeat peaks. ω1 and ω2 are the

weights used in the loss function. In Algorithm 1, we first

find the possible heartbeat peaks by calculating the gradient

of the input data, and then obtain the exact heartbeat peaks

and the corresponding indices by finding the local maxima.

Furthermore, we can calculate the RR interval as well as the

number of heartbeat peaks for the corresponding data. After

calculating the physical values, we can use these parameters to

constrain the loss function, enabling it to produce results that

more closely align with the characteristics of the target data.

IV. EXPERIMENTAL STUDY

In this section, we evaluate the performance of the proposed

system, and in particular, assess the enhanced VAE model’s

ability to recreate the pattern of heartbeat across various real-

world scenarios and settings.

A. Evaluation Setup

Our experiment is extensively evaluated in an office with

varying parameter settings. To obtain the ground truth of the

heartbeat signal, the Neulog NUL 208 and Heal Force Prince

180B devices are applied. Each experiment lasts one minute.

The sampling rate of the RFID reader is about 50 Hz. During

the experiment, the volunteer remains to be still. The two

tags that make up the tag pair are attached to the chest and

collarbone regions, respectively, which are 10 cm apart. To

better understand the performance of the proposed system

under various conditions, we conduct measurements when

the test subjects sit at different distances from the antenna.

Because for each test, the ground truth lasts for 30 seconds,

to ensure that the ground truth can cover the collected RFID

data, we split the data into 9-second segments.

We compare the proposed method with an ensemble EMD

(EEMD) method that is a state-of-the-art signal decomposition

method [8], [18]. To numerically measure the quality of the

waveform reconstruction, we employ cosine similarity and

relative error as the metrics.

B. Overall Performance Results

To visualize the quality of our proposed signal recovery

method, we compare the recovered data alongside the ground

truth, and the results are shown in Fig. 11. The cosine

similarity of the two curves is 0.9118 and the relative error is

within 2%. Evidently, the recovered signal has a similar trend

as the ground truth and the portion of the waveform that does

not match can also be inferred as the location of the T-wave.

We have further analyzed our findings using the previously

mentioned metrics, resulting in a more detailed evaluation. The

results, as shown in Fig. 12, demonstrate that our proposed

method consistently produces a median cosine similarity that

exceeds 0.83 for the RFID signal. On the other hand, the

Fig. 11. Examples of the heartbeat waveform recovered from the RF signal.

Fig. 12. Comparing the cosine similarity of recovered signal with baseline.

benchmark approach only achieves a median cosine similarity

value of 0.70.

An analysis of heart rate estimates shown in Fig. 13 also

highlights the performance of our proposed method. It shows

median errors of less than 3%, a considerable improvement

over the baseline method, which achieves median errors around

8%, while the peak errors climbing up to 15%. While the

baseline may be sufficient for some applications, our method

is clearly more desirable owing to its high-accuracy heartbeat

waveforms. This makes it more capable of handling complex

and varied application scenarios, thereby surpassing the base-

line method across all assessment metrics.

C. Impact of Practical Factors

In the following, we study the impact of different sensing

distances, while focusing on evaluating the cosine similarity

that measures the overall performance of waveform recovery.

We control the distance between the tags and antenna to be

0.25 m, 0.5 m, 0.75 m, and 1 m, respectively. The cosine
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Fig. 13. Comparing the relative error of recovered signal with baseline.

Fig. 14. Impact of different sensing distances.

similarity results in Fig. 14 indicate that the distance between

the RFID tags and antenna does influence the performance of

the system. As the distance is increased, the results become

worse and more discrete. This is because the reflected signal

becomes weaker for increased distances. However, the results

are still better than the baseline, and the median cosine

similarity is still above 0.70 under our test scenario.

V. CONCLUSION

In this paper, we designed a contactless and low-cost

heartbeat monitoring system with COTS RFID devices. The

system employed a sequence of signal processing techniques

to accurately estimate the heartbeat signal, taking into account

the derived phase information, and mitigating the noise and

body movement impacts. After extraction, these signals served

as input to the enhanced VAE model to recover the heartbeat

waveform. The results demonstrated that the proposed method

was reliable and robust. Our proposed method achieves a high

performance with median relative error below 3% and median

cosine similarity above 0.83 in the device-free scenario.
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