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Abstract—Heartbeat signals are useful to disease prediction,
sub-health diagnosis, fatigue warning, and even emotion esti-
mation. There is a compelling need for contactless, easy-to-
deploy, and long-term heartbeat monitoring. This paper presents
a contactless Radio Frequency Identification (RFID) based system
for heartbeat monitoring that leverages the insight that RFID
signal fluctuations induced by chest motion are synchronous with
both respiration and heartbeat. The proposed system collects the
temporal phase information from the tag pair on the body to
extract heartbeat signals using a sequence of signal processing
techniques. We propose a signal separation method based on
empirical mode decomposition (EMD) to obtain heart rate after
preprocessing. Furthermore, the estimated signal is input to
an enhanced variational autoencoder (VAE) model to recover
the heartbeat waveform. Implemented with commercial off-
the-shelf (COTS) RFID devices, the system achieves accurate
heart rate monitoring with less than 3% relative errors. The
detected waveform exhibits a median cosine similarity of 0.83
as compared with the ground truth, which validate the system’s
wide applicability and high reliability for fine-grained, contactless
heartbeat monitoring.

Index Terms—Radio Frequency Identification (RFID), vital
sign monitoring, contact-free sensing, variational autoencoder.

I. INTRODUCTION

Vital signs such as respiration rate and heart rate are funda-
mental physiological parameters for health diagnosis and mon-
itoring general well-being. Traditionally, techniques such as
Photoplethysmography (PPG) and Electromyography (EMG)
have been widely used for monitoring heartbeat signals [1], [2].
However, both methods require expensive, heavy, and power-
consuming equipment that is inconvenient for continuous daily
use, especially during sleep. As a result, there is a growing
demand for contactless vital sign monitoring solutions from
both academia and industry to enable non-invasive long-term
tracking of vital signs.

By leveraging the selected signals to capture body micro-
movements, contactless sensing provides a promising means
to monitor vital signs. Among the research in recent years,
several wireless techniques have been studied for monitoring
heartbeat, including radar [3], Wi-Fi [4], acoustics [5], and
camera [6], etc. Some of the wireless systems depend on
expensive or dedicated equipment that uses a large bandwidth,
such as ultra-wideband (UWB) radar [7] and frequency mod-
ulated continuous wave (FMCW) radar [8], which has been
a hindering factor to their large-scale deployment and long-
term use. Some devices are dependent on the environment

and they need a line-of-sight (LOS) path to obtain accurate
measurements, such as Zigbee [9].

In contrast, Radio Frequency Identification (RFID) systems
can mitigate the impact caused by multiple users as well
as multi-path propagation, where the RFID reader receives
signals reflected from passively tags to obtain information
about the target for different Internet of Things (IoT) sensing
applications (e.g., localization, action recognition, and vital
sign monitoring). In addition, the tags are small, low-cost,
and battery-free, making them to be easily and unobtrusively
deployed to users. Furthermore, their nature of identification
can be used to effectively and easily distinguish different hu-
man subjects. In this paper, we exploit the backscattered RFID
signal modulated by the chest motion caused by respiration and
heartbeat. We show that the commercial off-the-shelf (COTS)
RFID is adequate for monitoring heartbeat because its reading
rate per tag (almost 50 Hz) is much higher than the normal
heart rate (50 ~ 90 beats per minute (bpm) [10]) for a healthy
adult at rest. Zhao et al. [11] have succeeded in implementing
a multi-tag empirical mode decomposition (EMD) method
to detect heartbeat from the RFID phase. Wang et al. also
utilize wavelet transform to extract the heartbeat from RFID
signals [12]. Although the rationale behind such works sounds
fairly intuitive, it is still challenging to monitor both respiration
and heartbeat reliably and robustly, becuase

1) COTS RFID devices, due to inherent limitations in their
configuration, have the problem caused by frequency
hopping, i.e., their interrogation frequencies rapidly and
randomly hopping among multiple channels during com-
munication with tags.

2) Small movements of the chest cavity caused by heartbeat
signals are difficult to capture due to the relatively
larger body movements associated with unconscious
body movements and respiratory activity of the subject.

3) Heartbeat signal obtained indirectly through chest move-
ments are quite different from that detect by accurate
medical electrocardiogram (ECG) equipment, while the
latter is more useful from the medical perspective.

In this paper, we leverage two COTS RFID tags to set up an
RFID heartbeat monitoring system, which aims to recover the
heartbeat signal with similar accuracy as that from traditional
ECG devices. Due to the sampling frequency of RFID system,
we can ensure the same frequency of interrogation for both tags
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within a short period of time, and the difference between their
phases will only contain the movement signals of the subject.
Thus the influence of frequency hopping can be mitigated.

To deal with the impact of body movements, we utilize one
of the tags as a reference tag, through which to construct a
relative coordinate system. Specifically, we attach two COTS
RFID tags to the chest area of the human subject. One is
attached near the chest cavity and the other near the collarbone.
A COTS RFID reader is used to continuously interrogate
these tags by issuing a continuous wave and collecting their
backscattered RF signals within the effective scanning range
(0.25 ~ 1m). We utilize the readily available measured RFID
phase data to extract the rhythmic pattern associated with
heartbeat. Similar to traditional testing methods, the environ-
ment is controlled to be relatively quiet and the test subjects
are supposed to remain still during the measurement.

Generally, heartbeat waveform is considered significantly
more useful than heartrate, as it depicts the entire cardiac
cycles with much richer information [13]. To detect the heart-
beat waveform from the RFID signal, we propose using a
variational autoencoder (VAE) with an enhanced loss function.
In particular, the traditional loss function contains only the
mean square error (MSE) derived relative to the ground truth
but ignores the physical boundaries in the experiment. There-
fore, better performance can be achieved by adding physical
constraints to the loss function.

The main contributions made in this paper include:

1) To the best of our knowledge, this is the first work
that harnesses the COTS RFID system to monitor the
heartbeat waveform. Compared to traditional methods,
we obtain waveforms that approximate ECG signals by
utilizing a series of signal processing techniques coupled
with a deep learning model.

2) We also propose a novel technique to deal with the
frequency hopping offset, which is a phase difference
calibration method. The proposed scheme is simple but
effective in mitigating the frequency hopping offset as
well as constructing a relative coordinate system to
eliminate the effects of other body movements and
displacements.

3) In order to estimate the heartbeat waveform, a method
of using a modified VAE with physically bounded loss
function is proposed.

4) We implement the system with COTS RFID devices,
which can obtain accurate heart rate monitoring with less
than 3% relative errors. The recovered waveform shows
a median cosine similarity of 0.83 compared with the
ground truth.

The remainder of this paper is organized as follows. Sec-
tion II provides the preliminaries and motivation. The proposed
system design is presented in detail and analyzed in Section III.
The experimental study is discussed in Section IV. Section V
concludes this paper.

II. PRELIMINARIES AND MOTIVATION

In this section, we will first introduce the frequency hopping
problem, which is a key issue that appears in all RFID research.
It is caused by the regulations of the Federal Communications
Commission (FCC) in the interest of communications security.
Then, we explain the rationale of contact-free cardiac moni-
toring. We will establish the connection between the physical
phenomenon of heartbeat and the phase of RF signal, and
deduce how to obtain the heartbeat signal. After that, the
principle and a feasibility analysis of heartbeat monitoring via
RF signals will be presented.

A. Frequency Hopping

Under the requirements set by the FCC, in order to prevent
co-channel interference, ultra high frequency (UHF) RFID
readers need to adopt a channel hopping strategy. The spec-
trum, from 902.5 MHz to 927.5 MHz, has been divided into
50 non-overlapping channels. According to the regulations,
the reader should occupy every allocated channel for 200 ms
before transitioning to the subsequent channel. Although this
regulation improves communication robustness and security,
it introduces an additional phase shift in the RFID signal,
which can lead to significant inaccuracies in RFID-based
measurements and sensing.

According to the official RFID reader manual [14], the phase
¢ of the received RFID response signal can be expressed as

47l
¢ = mod (W—l—aT—i-aR—i-oTag,ZW) , (D)

A
where ¢ is the distance between the tag and reader antenna,
A is the wavelength of the current interrogation signal, o7,
or and o7,y are phase offsets caused by the transmitter
circuit, receiver circuit, and tag’s reflection characteristics,
respectively.

Channel hopping causes the ¢ to change as the wavelength
of the interrogation signal changes, even if the distance remains
constant. In addition, wavelength is not the only factor that
causes the phase change. o7, or and o7, are the phase offsets
irrelevant to the distance ¢, which are also influenced by the
channel frequency. We rewrite (1) as follows:

(ﬁ(fl,g) = mod (471—0'” + oy, 27T> s (2)
where f; is the channel frequency, ¢ is a constant value
representing the speed of light, and o; = o7 + or + 0744
is the hardware induced phase offset on channel frequency f;.

From (2), it can be seen that the phase offset has a big
effect on the received signal. Fig. 1 presents the received signal
from an RFID tag that contains such substantial noise that it
is impossible to extract the target information directly from
the signal. Recently, the problem of frequency hopping has
been studied and a calibration method based on the reference
channel has been proposed [15]. When calibrating a multi-
channel signal, researchers often employ a reference chan-
nel approach to maintain phase coherence across frequency
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Fig. 1. Measured raw RFID phase data.

changes. The methodology involves the following steps. First,
one of the channels is designated as the reference channel.
Then, as the frequency switches from one channel to the next,
a small set of phase values are recorded from the previous
channel frequency, and a small set of the first phase values
from the current channel frequency are recorded as well. Next,
these two sets of phase values are averaged separately, and
the phase difference between the averaged values from the
previous and current channel frequencies is calculated. This
phase difference is then used as the phase offset caused by
the current frequency hopping. By applying this phase offset,
the phase information across all channels can be converted to
be around the reference frequency, effectively calibrating the
signal. This technique allows effectively preserve the phase
relationship between channels despite changes in the operating
frequency, thus ensuring the integrity of the overall signal
during analysis and processing.

Fig. 2 shows the calibrated phase data corresponding to that
in Fig. 1 and calibrated with the AutoTag method [15]. It
can be observed that this method does remove most of the
noise compared to the original signal. However, it does not
completely eliminate the phase error by simply calculating the
mean. The residual error may still cause the signal to lose
some of its useful information. In order to better mitigate the
frequency hopping effect, we propose a new method in the
proposed RFID system, to remove the phase offset o;, which
will be discussed in Section III.

B. Contact-free Heartbeat Monitoring

The normal heart rate for a healthy adult at rest is 50 ~ 90
beats per minute (bpm) [10], while the contraction and diastole
of the heartbeat are not done uniformly in each frequency
cycle. The spike waveform in the ECG is caused by the rapid
contraction and diastole of the heart. With each heartbeat, the
chest movements cause a small rise and fall trend. As shown in

0 5 10 15 20 25 30
Time(s)

Fig. 2. The AutoTag method for calibration of the raw RFID phase data [15].

Fig. 3, the heart’s movement generates a continuous wave that
is captured by RFID signals and backscattered to the RFID
reader [16]. Simultaneously, the chest’s movements due to
respiration also affect the RF signals, known as the moving
effect of the tag pair. Consequently, the RFID reader receives
a composite signal comprising the heartbeat, respiration, and
ambient noise.

In order to better show how to extract the reflection signal of
heartbeat from the received RFID signal, we introduce a signal
propagation model to help explain the principle as illustrated
in Fig. 3. The model uses two RFID tags: a reference tag and
the target tag. We use A, 7', R and H to indicate the locations
of antenna, target tag, reference tag, and heart, respectively.
As the target tag is attached on the test subject’s chest, it
will move in response to heartbeats, as well as breathing and
body movements. In Fig. 3, d is used to represent the distance
change caused by contraction and diastole of the heart, and
the displacement positions of the target tag and heart are
denoted as 7" and H’, respectively. The angle formed by the
reflected signals at location 7" and 7" and the horizontal ground
is denoted as « and [, respectively. The antenna transmits
a continuous radio wave to activate the tags. Due to the
movement of heart, the round-trip diatance of the LOS path
S, will be time varying which can be expressed as

Sy = Sar + Sta, (3)
S = Sar + Srra, 4)
Sta = Dracosa, 5)
Stra = Dyry cos 3, (6)
Dria~d+ Dra, (7

where S a7 is the distance from the antenna to the target tag,
St.4 is the distance from the target tag to antenna, S, is the
round-trip distance of the LOS path between the antenna and
target tag at location T”, and D14 (D7 4) is the horizontal
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Fig. 4. The heartbeat detection RFID system design.

distance between the antenna and target tag at location 7' (7).
Since Dt 4 is much larger than d, we can simplify the formula
into the following form:

S/ =S, +2d. (8)

Eq. (8) indicates that we can obtain the heartbeat frequency
from the displacement variations of the target tag. Since the
reference tag is attached on the collarbone of the test subject,
the displacement of the reference tag can be ignored. We
could subtract the reflected signal of the tag pair to obtain
the displacement changes in the target tag.

III. SYSTEM DESIGN

The RFID system is designed to monitor human heartbeat
and recover the waveform of the heartbeat using two RFID
tags attached to the test subject. As shown in Fig. 4, the phase
information collected by an RFID reader is a function of the
distance between the corresponding tag and the reader antenna.
The proposed system can be divided into three parts: signal
extraction data processing, and heartbeat monitoring, which
will be elaborated on in the remainder of this section.

A. Signal Extraction

The signal extraction module consists of RFID tags, an
RFID reader, an antenna, and a computer. When tags are
attached to the human body, its distance to the antenna changes
periodically following the chest movement caused by the
subject’s breathing and heartbeat. As mentioned in Section II,
we can leverage the RFID phase information to recover the
periodic signal of heartbeat.

The low-level data from the tags shall be collected during
breathing and heartbeats, while the data contains both chest
and abdomen movements. It is not easy to directly obtain
any useful information from the raw data. To increase the
robustness of the system, we attach two passive RFID tags
on the upper body of the subject. One is on the subject’s
chest, and the other is on the collarbone. The reader uses
a special antenna to interrogate the tags. The data collected
from the reflected signals from these tags includes phase,
received signal strength indicator (RSSI), Doppler shift, and
time stamp. The signals can capture the breathing and heartbeat
patterns. However, correctly detecting heartbeat through RSSI
and Doppler shift is not easy. This is because that RSSI lacks
precision, and Doppler shift is not sufficiently reliable due to
the slow movements of the subject’s chest while breathing.
As a result, the proposed system mainly leverages phase
information to monitor heartbeat.

B. Data Processing

Fig. 1 illustrates the raw phase data collected from a tag
over an interval of 30 seconds. It is observed that significant
fluctuations are present in the phase data as the system
cycles through different channels, spending 0.2 seconds on
each channel. Furthermore, the phase data does not transition
smoothly from one channel to another but rather changes
abruptly. Consequentially, it is quite difficult to directly derive
the heatbeat signal from received phase data. For a successful
extraction of the breathing signal, it is required to pre-process
the raw phase data as described in the following steps.

1) Frequency Hopping Offset: The output of phase data
ranges from 0 to 27. Because the tag movements are always
continuous in time, two consecutive phase samples usually do
not change by more than 7. In the actual experiment, the phase
can change from 0.17 to —0.17 over the previous sample, but
the corresponding phase information at the output becomes
0.17 and 1.97 due to the modulo operation. Thus, we unwrap
the phase data to remove the modulo operation.

However, unwrapping cannot completely solve the fre-
quency hopping problem, because it can only be used for
consecutive phase samples collected from the same channel.
In order to mitigate the frequency hopping effect, we propose
to use two RFID tags as a pair. Both tags are of the same
type. One is attached on the chest, and the other to a location
that hardly ever changes. Since the sampling rate of the
reader is higher than 100 Hz, and the reader remains on each
channel for up to 200 ms, we can guarantee that the channel
frequency received by each tag is the same. From (2), we have
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Fig. 5. Phase difference between the pair of RFID tags.

demonstrated that the factors affecting the phase information
are determined by the channel frequency, and that different
channel frequencies result in different frequencies of reflected
waves from the tag, as determined by the structure of the
tag itself. Therefore, the same channel frequency can result
in the same phase offset o;. Fig. 5 illustrates the result of our
proposed method. The phase information in Fig. 5 contains
much clearer waveform data compared to the method shown
in Fig. 2.

2) Movement Detection: Either in Fig. 2 or Fig. 5, we can
see that the human body has a small displacement during the
experiment, which also causes a phase change. Since our target
signal is the relatively much weaker heartbeat, avoiding the
interference introduced by the relatively larger movements of
human body is necessary.

Traditional methods usually utilize a sliding window to
mitigate the impact of human body movement. For each
window, the mean absolute deviation of the phase samples
from all tags will be calculated. If the subject is not stationary,
the phase values will exhibit large variations. Therefore, by
setting a threshold of 0.9, the human body movement can
be detected if the mean absolute deviation is larger than the
threshold value.

In our proposed method, we attach the reference tag on
the collarbone for two reasons. First, the collarbone is relative
more stationary and is virtually unaffected by the movement of
the chest. Second, the tag pair can form a relative coordinate
system. The tags move with the body movement. The phase
difference can be considered as a function of the distance of
the target tag with respect to the reference tag. Thereby, we
can effectively mitigate errors caused by body movement by
using the phase difference.

Although the frequency hopping offset can be effectively
mitigated by using phase difference, the initial phase offset is
still a random value that introduces a random DC component
in the phase data. To remove the random DC component, we
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Fig. 6. The calibrated phase signal after removing the DC component.

utilize a polynomial to fit the resulting phase information and
then subtract the predicted phase information from the col-
lected samples, thus calibrating the phase data. The calibrated
signal is plotted in Fig. 6. It can be seen that the calibrated
signal is now centered at zero and the breathing cycles are also
more obviously visible.

3) Signal Decomposition: After mitigating the frequency
hopping offset and calibrating the phase information, the phase
data mainly contains three types of information, i.e., respira-
tion, heartbeat, and noise, the first two of which are more
dominant and have different frequency ranges for subjects.
The respiration signal contains the most energy. In contrast,
heartbeat signals are mixed with noise signals, which are
difficult to distinguish and only approximate frequency ranges
could be obtained from some fluctuations. It can be observed
in Fig. 7 for the reported phase with fast Fourier transform
(FFT) from one experiment. In order to separate the heartbeat
signal from the phase data, a signal decomposition method is
implemented to achieve this goal.

The frequency range of respiration and heartbeat are mainly
within 0.1 ~ 0.5 Hz and 0.8 ~ 2.5 Hz, respectively. The peak
in the frequency domain of these signals can be regarded as
the coarse respiration rate or heartbeat rate. In this module, the
EMD approach is leveraged to extract the heartbeat frequency
from the phase information. EMD is based on data, and does
not require a pre-set mother wavelet. It is also a type of blind
source separation (BSS) technique, which means that EMD
operates effectively even when there are more source signals
than the recorded signals. More importantly, EMD is a process
that decomposes a signal into components known as intrinsic
mode functions (IMF), along with a trend. The key advantage
of EMD is that it operates well with data that is constantly
changing and does not follow a linear pattern. This is because
EMD operates based on the local, specific time scale of the
data, ensuring that the changing frequency characteristics are
preserved [17].
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Fig. 7. FFT of reported phase in one experiment. The vertical line and the
circle indicate the ground truth respiration and heart rate, respectively.

As the order of the IMF gets higher, the related signal
frequency drops. We can estimate the strength and frequency of
each IMF through the Hilbert Transform. The decomposition
process can stop once the frequency of an IMF falls below
the threshold frequency of either the breathing or heartbeat
signal. The IMF corresponding to respiration and heartbeat are
usually the two strongest ones while others represent noise.
The respiratory signal is not significantly affected by noise
because the respiratory frequency has most of the energy
compared to other signals (i.e., the strongest component).
However, during our attempt to isolate the heartbeat signal,
we find that the harmonic waves and background noise make
it difficult to clearly distinguish the heartbeat signal within the
decomposed component of the IMF signal.

In order to achieve our target, we first obtain the spectral
distribution of the compound signal. Next, we identify the IMF
signal that possesses the highest energy, which is considered as
the breathing signal’s spectrum. Then we obtain the spectral
distribution of the heartbeat signal and part of noise signal
by subtracting the spectrum of the breathing signal from
the overall signal. Due to the presence of harmonics, the
spectrum we obtain still shows high amplitude at the breathing-
induced frequencies. To address this issue, we adjust our
target frequency domain to the range of 0.8 ~ 2.5 Hz. We
then reduce the signal to its average value, making the signal
symmetrical around zero. To minimize noise interference, we
employ a Savitzky-Golay filter to smooth the spectrum. We
then disregard the most prominent peak frequency, opting
instead for the second peak. This is because the third harmonic
related to breathing is stronger than the heartbeat signal. We
then identify the frequency through this method as the central
heartbeat signal frequency. We choose the frequency interval
to be within + 0.1 Hz of this central frequency.

The signal decomposition is illustrated in Fig. 8. The solid
line represents the residual spectrum, obtained by subtracting
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Fig. 8. Filtered spectrum and target frequency.

the domain frequency spectrum from the original phase signal.
The dotted line, on the other hand, represents the spectrum that
has been processed through the Savitzky-Golay filter. Notably,
there are two distinct peaks that present in the curve. The
first peak is influenced by the breathing signal. Our target
frequency, however, is indicated by the second peak. In this
specific experiment, the target frequency sits at 1.25 Hz. It is
important to note that there is a slight frequency shift from the
ground truth of 1.28 Hz in this experiment.

4) Downsampling and Filtering: After the range of heart-
beat rate is determined, we employ the Butterworth filter to
extract the heartbeat signal from the phase information. The
result is shown in Fig. 9. Due to the filtering performed, the
spectrum of the obtained signal is not exactly the same as
the ground truth, as can be seen in Fig. 8, where the wave
peaks of the estimated signal and the ground truth are not
exactly identical. Nevertheless, it is noted that the extracted
signal basically achieves peak alignment compared to the
ground truth, verifying the accuracy of the extracted heartbeat
signal. The relative error of the distance between heartbeats,
also known as the RR interval, which is commonly used in
medicine, is also less than 2%. To better match the data from
the ground truth, the obtained data needs to be downsampled
with a sampling frequency of 50 Hz.

C. Heartbeat Monitoring

Simply obtaining the frequency of the heartbeat signal
does not yield sufficient useful information for some practical
applications. As mentioned in the last subsection, the estimated
signal only shows the heart rate, but without other critical
information. In this study, we utilize the method of deep
learning to obtain the heartbeat waveform. In this subsection,
we first motivate our approach and introduce the VAE model to
be adopted, followed by presenting the modified loss function
with physical boundaries as well as the rationale of the
enhanced loss function.
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Fig. 9. Signal decomposition result (top subfigure) vs. the ECG ground truth
(lower subfigure).

1) VAE Model: In order to recover the waveform of the
heartbeat signal, a VAE model is adopted in our proposed
system. First, we clarify why we select the proposed method
and present the rationale behind our VAE model’s design. Then
we provide a brief overview of its structure, followed by an
exploration of the functionality and training process of each
component. The goal is to offer a clear understanding of our
method and its individual parts.

Essentially, obtaining the heartbeat waveform from the RF
signal is like creating a model that represents the conditional
distribution of the heartbeat waveform, which relies on the
phase information. These methods, which are motivated by
raw RF signals and actual waveform data, can automatically
identify the complex relationship between the input and output.
A recent example of this method is to learn this relationship
through deep neural networks [8].

In our model shown in Fig. 10, the encoder learns the feature
from the input data and encodes it into a latent space structure.
The internal structure of the multidimensional latent space
for a well-learned model defines its properties. The decoder
component then reconstructs the input using this information.
The key idea of VAE is to compress a random vector x in
a high-dimensional space into a latent variable z in a low-
dimensional space by variational encoding. This process can
be simplified and expressed as follows:

Py(z,2z) = Py(x|2)Py(2), )

where Py(z) denotes the prior distribution of the latent variable
z, which is generally set to the standard Gaussian distribution;
Py(z|z) denotes the conditional probability density function
of the input variable x when z is known; and 6 denotes
the variable parameter. The posterior distribution Py(z|z) is
intractable since the parameters # and the latent variable z
are unknown. The standard VAE uses a recognition model
gs(z|r) as an approximation to the true posterior Py(z|x).
VAE generates two outputs in the encoder including a mean
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Fig. 10. The architecture of the VAE model used in our system. The encoder
takes processed phase data and encodes it to respective latent probability
distributions. Latent vectors are then sampled from the distributions and fed
to the decoder for recovering the heartbeat waveform.

vector and a standard deviation vector. These two vectors form
the parameters of the latent variable z. This mechanism allows
the encoder to learn different mean values corresponding to
each potential class, and the standard deviation reduces the
overlap of feature classes.

2) Loss Function Based on Physical Boundaries: The com-
monly used loss function in the VAE model is a combination
of reconstruction loss (/) and the Kullback-Leibler (KL) di-
vergence (I;;). However, this loss function ignores the physical
boundaries in practical applications. The experimental data of
the target have distinctive features, and each set of data has a
relatively fixed peak-to-peak spacing as well as the number of
wave crests. While the commonly used loss functions do not
take such physical characteristics into account, we propose an
enhanced loss function to improve the overall performance of
the model by incorporating physical boundaries.

Algorithm 1 Loss Function Based on Physical Boundaries
Algorithm
Require: Target, Input, p, o

1: Calculate VT arget

2 Target_gradients < VTargety .. [0 : 25]

3: for each ¢ in index do

4:  Get neighborhood of i from Target_gradients with

sample points [V

5 max_value <— maximum value in the neighborhood
6:  if max_value is not in peaks then

7: Append max_value to peaks

8 Append i to locations

9:  end if

10: end for

11: Sort locations

12: distance < Y dif f(locations)/(num(peaks) — 1)

13: Calculate std(peaks) and num(peaks)

14: repeat 1-13 with Input

15: Compute gradient_loss as the sum of MSE losses of
distance, std(peaks), and num(peaks) of input and
target

16: Compute VAE _loss by calling VAE loss function with
Target, Input, p, and o

17: total_loss = wy - gradient_loss + wo - VAFE _loss

18: return total_loss

Our loss function can be obtained through Algorithm 1,
where T'arget is the ground truth data, Input is the phase
information; p and o are the mean value and standard variance
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of value z, respectively. They are calculated by encoder ey (x).
V means the gradients of the data. N is the sample points
which depends on the sampling rate. distance is the mean
value of the distance of the RR waves. std(peaks) means the
standard deviation of the heartbeat peaks. w; and wsy are the
weights used in the loss function. In Algorithm 1, we first
find the possible heartbeat peaks by calculating the gradient
of the input data, and then obtain the exact heartbeat peaks
and the corresponding indices by finding the local maxima.
Furthermore, we can calculate the RR interval as well as the
number of heartbeat peaks for the corresponding data. After
calculating the physical values, we can use these parameters to
constrain the loss function, enabling it to produce results that
more closely align with the characteristics of the target data.

IV. EXPERIMENTAL STUDY

In this section, we evaluate the performance of the proposed
system, and in particular, assess the enhanced VAE model’s
ability to recreate the pattern of heartbeat across various real-
world scenarios and settings.

A. Evaluation Setup

Our experiment is extensively evaluated in an office with
varying parameter settings. To obtain the ground truth of the
heartbeat signal, the Neulog NUL 208 and Heal Force Prince
180B devices are applied. Each experiment lasts one minute.
The sampling rate of the RFID reader is about 50 Hz. During
the experiment, the volunteer remains to be still. The two
tags that make up the tag pair are attached to the chest and
collarbone regions, respectively, which are 10 cm apart. To
better understand the performance of the proposed system
under various conditions, we conduct measurements when
the test subjects sit at different distances from the antenna.
Because for each test, the ground truth lasts for 30 seconds,
to ensure that the ground truth can cover the collected RFID
data, we split the data into 9-second segments.

We compare the proposed method with an ensemble EMD
(EEMD) method that is a state-of-the-art signal decomposition
method [8], [18]. To numerically measure the quality of the
waveform reconstruction, we employ cosine similarity and
relative error as the metrics.

B. Overall Performance Results

To visualize the quality of our proposed signal recovery
method, we compare the recovered data alongside the ground
truth, and the results are shown in Fig. 11. The cosine
similarity of the two curves is 0.9118 and the relative error is
within 2%. Evidently, the recovered signal has a similar trend
as the ground truth and the portion of the waveform that does
not match can also be inferred as the location of the T-wave.

We have further analyzed our findings using the previously
mentioned metrics, resulting in a more detailed evaluation. The
results, as shown in Fig. 12, demonstrate that our proposed
method consistently produces a median cosine similarity that
exceeds 0.83 for the RFID signal. On the other hand, the
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Fig. 11. Examples of the heartbeat waveform recovered from the RF signal.
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Fig. 12. Comparing the cosine similarity of recovered signal with baseline.

benchmark approach only achieves a median cosine similarity
value of 0.70.

An analysis of heart rate estimates shown in Fig. 13 also
highlights the performance of our proposed method. It shows
median errors of less than 3%, a considerable improvement
over the baseline method, which achieves median errors around
8%, while the peak errors climbing up to 15%. While the
baseline may be sufficient for some applications, our method
is clearly more desirable owing to its high-accuracy heartbeat
waveforms. This makes it more capable of handling complex
and varied application scenarios, thereby surpassing the base-
line method across all assessment metrics.

C. Impact of Practical Factors

In the following, we study the impact of different sensing
distances, while focusing on evaluating the cosine similarity
that measures the overall performance of waveform recovery.
We control the distance between the tags and antenna to be
0.25 m, 0.5 m, 0.75 m, and 1 m, respectively. The cosine
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Fig. 13. Comparing the relative error of recovered signal with baseline.

0901 | T S0
775 0.5
WX 0.75
£20.851 T
= I 1
kS|
£0.801 >
9)]
2
£ 0.751 L \
o
O
0.70 1 J_
0.651 , , J‘ -~
0.25 0.5 0.75 1

Distance (m)

Fig. 14. Impact of different sensing distances.

similarity results in Fig. 14 indicate that the distance between
the RFID tags and antenna does influence the performance of
the system. As the distance is increased, the results become
worse and more discrete. This is because the reflected signal
becomes weaker for increased distances. However, the results
are still better than the baseline, and the median cosine
similarity is still above 0.70 under our test scenario.

V. CONCLUSION

In this paper, we designed a contactless and low-cost
heartbeat monitoring system with COTS RFID devices. The
system employed a sequence of signal processing techniques
to accurately estimate the heartbeat signal, taking into account
the derived phase information, and mitigating the noise and
body movement impacts. After extraction, these signals served
as input to the enhanced VAE model to recover the heartbeat
waveform. The results demonstrated that the proposed method
was reliable and robust. Our proposed method achieves a high
performance with median relative error below 3% and median
cosine similarity above 0.83 in the device-free scenario.
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