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Abstract—Federated learning (FL), an emerging distributed
machine learning paradigm, has been applied to various privacy-
preserving scenarios. However, due to its distributed nature,
FL faces two key issues: the non-independent and identical
distribution (non-IID) of user data and vulnerability to Byzantine
threats. To address these challenges, in this paper, we propose
FedCAP, a robust FL framework against both data heterogeneity
and Byzantine attacks. The core of FedCAP is a model update
calibration mechanism to help a server capture the differences
in the direction and magnitude of model updates among clients.
Furthermore, we design a customized model aggregation rule
that facilitates collaborative training among similar clients while
accelerating the model deterioration of malicious clients. With a
Euclidean norm-based anomaly detection mechanism, the server
can quickly identify and permanently remove malicious clients.
Moreover, the impact of data heterogeneity and Byzantine attacks
can be further mitigated through personalization on the client
side. We conduct extensive experiments, comparing multiple
state-of-the-art baselines, to demonstrate that FedCAP performs
well in several non-IID settings and shows strong robustness
under a series of poisoning attacks.

Index Terms—federated learning, data heterogeneity,
Byzantine-robustness

I. INTRODUCTION

With the emergence of large foundation models [1], model

performance increasingly relies on high-quality and high-

volume data. In fields such as Internet of Things (IoT) [2]–[4]

and healthcare [5], [6], user data often contains a large amount

of sensitive information. Various privacy-preserving policies

such as the General Data Protection Regulation (GDPR) [7],

[8] restrict the collection of user data by a central server. As

an emerging distributed machine learning paradigm, federated

learning (FL) [9] allows user data to remain local while coor-

dinating clients to train a global model. Due to its distributed

nature, FL faces two key issues. First, statistical heterogeneity

exists in user data. In real-world FL applications, such as

Google’s next word prediction, training a single global model

that caters to the individual needs of all users is challenging

due to their diverse language habits and regional cultures [10].

Second, FL systems are vulnerable to Byzantine threats [11],

[12], with malicious clients uploading arbitrary model updates
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to the server, which can greatly degrade model performance

on any test inputs (i.e., untargeted poisoning attack [13]).

To mitigate the impact of data heterogeneity, the concept of

personalized FL is introduced [14], where each client holds

a personalized model to fit its own data distribution better.

However, most personalized FL algorithms [15]–[17] fail to

adapt to non-independent and identically distributed (non-IID)

settings. Therefore, we need to address Challenge 1:

• How to design a personalized FL framework that exhibits

adaptiveness in various heterogeneous data settings?

To defend against poisoning attacks, existing robust FL

methods adopt diverse strategies, with some focusing on

the server side such as detection [18], [19] and robust ag-

gregation [20]–[23], while others concentrate on the client

side through personalization [15]. However, the above robust

FL methods are less effective against attacks in non-IID

settings [24], [25], due to the difficulties in distinguishing

malicious behavior from clients. This leads to varying degrees

of aggregation knowledge loss while defending against attacks,

which in turn results in model performance degradation.

Moreover, in settings with strong attacks [26]–[28], malicious

clients can camouflage themselves as benign, making it more

difficult for robust FL methods to detect them and causing

further deterioration in the benign models. Therefore, it is

imperative to tackle Challenge 2:

• How can we design a Byzantine-robust FL framework that

precisely distinguishes between benign and malicious clients

in non-IID settings without causing a significant loss in

model accuracy?

For real-world applications, a unified FL framework con-

sidering both challenges is needed, but few studies focus on

this. Although Ditto [15] mitigates the impact of data hetero-

geneity and attacks via personalization, one of its limitations

is that it does not directly detect malicious clients and instead

requires a trade-off between model utility and robustness. A

naive strategy is to combine robust aggregation rules (AGRs)

(e.g., Median, Trimmed Mean [20], and ClusteredFL [22])

with client personalization (e.g., Ditto), but their inherent

limitations lead to combinations that fail to improve model

performance (see empirical results in Fig. 8).
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Motivated by the limitations of the above approaches,

we propose FedCAP, a robust FL framework against both

data heterogeneity and Byzantine attacks. FedCAP mainly

includes four components. A model calibration mechanism

helps distinguish malicious model updates from benign ones

in non-IID settings. A customized aggregation rule can then

facilitate collaboration among similar clients and accelerate

malicious model deterioration. With the incorporation of an

anomaly detection mechanism, the server is able to identify

and permanently remove malicious clients. A personalized

training module can further mitigate the impact of data hetero-

geneity and attacks, building on the relatively clean customized

models. These components enable FedCAP to adapt to various

non-IID settings and types of attacks.

FedCAP utilizes two key insights observed and analyzed

through experiments in Section III-C. First, following the

principle of ”good becomes better and bad becomes worse”,

we can promote collaboration among similar clients in benign

scenarios and inhibit cooperation between benign and mali-

cious clients in attack scenarios. Second, we observe abnormal

behavior from malicious clients when they intrude into FL

training. Specifically, we observe that as the number of global

rounds increases, the average Euclidean norm of the model

updates from malicious clients gradually rises, thus degrading

the model performance of benign clients.

Building upon the above insights, we design the customized

aggregation rule to address Challenge 1. The server assigns

each client a customized model that closely matches its

data distribution, determined by the contributions from other

clients. Specifically, we use the normalized cosine similarity

of model updates among clients as aggregation weights to

customize the models. By adjusting the scale factor of nor-

malization, FedCAP achieves adaptation for various non-IID

settings. To tackle Challenge 2, we propose the model update

calibration mechanism and the anomaly detection mechanism

based on the Euclidean norm of calibrated model updates.

Specifically, by calibrating the uploaded model updates, Fed-

CAP effectively captures differences in the magnitude and

direction of model updates between benign and malicious

clients. Combining this with the customized aggregation, Fed-

CAP accelerates the model deterioration of malicious clients,

leading to a significant increase in the Euclidean norm of their

calibrated model updates. This triggers the anomaly detec-

tion mechanism, allowing the server to identify and remove

malicious clients. Therefore, FedCAP excels in distinguishing

between benign and malicious clients in non-IID settings.

Our main contributions are summarized as follows:

• We propose FedCAP, a robust FL framework against both

data heterogeneity and attacks, which adapts to various non-

IID settings and different types of attacks.

• We propose a model update calibration mechanism that

excels in capturing the difference in the direction and

magnitude of client model updates in non-IID settings.

• We design a customized model aggregation rule, which fa-

cilitates collaboration among similar clients while accelerat-

ing the model deterioration of malicious clients, helping the

server identify and remove them permanently by triggering

an anomaly detection mechanism based on the Euclidean

norm of calibrated model updates.

• We perform extensive experiments indicating that the pro-

posed FedCAP outperforms the state-of-the-art (SOTA) FL

baselines in terms of model accuracy and robustness.

Open science. The source code and data artifacts of FedCAP

have been open-sourced at Github.

II. RELATED WORK

Federated Learning with Non-IID Data. FL can be broadly

categorized into two types: single-model FL and multi-model

FL. In single-model FL, clients collaboratively train a single

global model [9]. Existing research primarily focuses on

two key aspects: enhancing the generalizability of the global

model [16], [29], [30] and developing personalized FL algo-

rithms to mitigate the impact of data heterogeneity [15]–[17],

[31]. For example, FedRoD [16] improves the generalizability

of the global model by using balanced softmax loss to mitigate

the effect of label distribution skew. FedAvg-FT [32] treats

clients’ updated local models as personalized models and

evaluates their performance. Ditto [15] trains a personalized

model for each client while locally updating the global model.

Given the limitation of generalizability of the single global

model, the concept of multi-model FL, which refers to the

server holding multiple models, is introduced. For example, in

clustering-based FL algorithms [22], [33], the server divides

clients into multiple clusters, and within each cluster, the

clients collaborate to train a group model. Unlike clustering,

FedFomo [17] probabilistically selects batches of uploaded

models and distributes them to clients, which each calculate

model weights and perform weighted aggregation to obtain

tailored models. However, sending multiple models to the

clients in each communication round introduces high commu-

nication overhead. Compared to FedFomo, FedCAP performs

customized aggregation on the server side without incurring

any additional communication overhead.

Byzantine-robust Federated Learning. Given the distributed

nature of FL, it is vulnerable to Byzantine threats [13], [34],

[35]. To defend against Byzantine attacks, a series of server-

side AGRs built on top of averaged aggregation have been

proposed (e.g., Krum [21], Multi-Krum [21], Median [20],

RFA [36], Trimmed Mean [20], etc.). Since these AGRs

assume that all clients’ data are IID, their robustness is

less effective in non-IID settings. For non-IID defenses, in

FLTrust [18], the server filters or processes abnormal model

updates by checking the magnitude and direction of the

client-uploaded model updates. However, FLTrust assumes the

server holds a clean dataset to boost trust, which violates

FL’s privacy principles. To mitigate gradient heterogeneity,

Karimireddy et al. [24] suggested dividing the uploaded model

updates into several buckets before aggregation, averaging s

model updates within each bucket, and then using AGRs to

aggregate the updates across buckets. To address the issue

of the curse of dimensionality [37], which enables malicious

gradients to circumvent defenses that aggregate all honest



gradients, GAS [25] splits high-dimensional gradients into p

low-dimensional sub-vectors, scores them with a robust AGR,

and aggregates the gradients identified as honest based on low

gradient scores.

For client-side defenses, by training a personalized model

for each client with a regularizer controlling the distance be-

tween the personalized model and the global model, Ditto [15]

mitigates the impact of data heterogeneity and attacks to some

extent. However, Ditto cannot generalize well across various

non-IID settings and different types of attacks due to the

difficulty in balancing client personalization and learning from

global knowledge.

A naive combination of server-side AGRs and client person-

alization (e.g., Ditto) cannot fully mitigate the impact of data

heterogeneity and attacks in non-IID settings. Compared to the

aforementioned methods, FedCAP is proposed for ensuring

unified robustness against both data heterogeneity and attacks

in non-IID settings.

III. BACKGROUND AND MOTIVATION

A. Federated Learning

The original goal of FL is to maintain user data locally

while coordinating clients to train a single global model. The

vanilla FL algorithm (i.e., FedAvg [9]) consists of three steps:

In each round t, the server distributes the global model wt to

participating clients, which then perform local training with

their private data, uploading their updated models to the server.

The server performs weighted averaging aggregation to get

the updated global model wt+1. The optimization problem of

FedAvg can be expressed as follows:

w
t

k = argmin
w

Lk(w) (initialized with w
t), (1)

where Lk = 1
|Dk|

∑
i
ℓ(xi, yi;w), w

t+1 ←
∑N

k=1 pkw
t

k
.

Here, S(k∈S) represents the set of clients, N is the number of

participants in each round, Dk denotes the training dataset of

client k, ℓ is the loss function, (xi, yi) denotes a sample pair,

and pk = |Dk|
|D| represents the aggregation weight assigned to

client k. However, real-world user data often exhibits non-IID

characteristics with various distribution skews [10], making it

challenging for a single global model to effectively generalize

across heterogeneous data.

Personalized Federated Learning. To tackle the challenge of

data heterogeneity, several personalized FL algorithms have

been proposed. The optimization objective of the personalized

model can be formulated in a general form as:

v
t+1 = argmin

v

L(v) + ¼R(v,w∗), (2)

where v is initialized with v
t and represents the personalized

model, w∗ denotes the global knowledge, such as the global

model w
t [15], R denotes the regularizer, and ¼ denotes

the regularization factor controlling the extent to which the

personalized model v references the global knowledge w
∗.
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Fig. 1. Model performance comparison of SOTA FL methods

B. Limitations of the SOTA

1) Limitations of Existing Personalized FL Methods: To ex-

plore the limitations of representative FL approaches discussed

in the related work, we evaluate the performance of FedAvg-

FT [32], Ditto [15], and FedRoD [16] in benign scenarios

using both CIFAR-10 [38] and EMNIST [39]. For CIFAR-10,

we adopt the pathological non-IID setting [9] to divide the

data into 20 clients with a participating ratio of 1.0, where

each client’s data contains only two class types. For EMNIST,

following a previous study [30], we distribute the data across

100 clients with a participation ratio of 0.2, allocating 20% of

the data as IID to each client and sorting the remaining 80%

based on labels.1 To simulate a realistic setting, the size of

each client’s sample is limited to a few hundred. We report

the average test accuracy of personalized models. From Fig. 1,

we summarize as follows:

• In benign scenarios, the performance of the above person-

alized FL methods is comparable to or even worse than

FedAvg-FT. This suggests that they are effective only in

specific non-IID settings and struggle to adapt well to

various non-IID settings with different distribution skew.

Similar statements can be found in [16], [32].
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Fig. 2. Model performance comparison of robust FL methods

2) Limitations of Existing Robust FL Methods: To assess

the robustness of existing robust FL methods, we evaluate

the test accuracy of the global model on CIFAR-10 [38].

Specifically, we examine the performance of FedAvg [9],

FLTrust [18], and AGRs including Krum [21], Median [20],

Trimmed Mean [20], and ClusteredFL [22] under Sign Flip-

ping (SF) and Model Replacement (MR) attacks [40] detailed

in Section VI-A4. Fig. 2 shows that:

1If not specifically mentioned, these parameter settings are used by default
for all experiments in Section III.



• Existing robust FL methods exhibit varying degrees of de-

fense against attacks but often sacrifice valuable knowledge,

as they struggle to distinguish malicious clients from benign

ones in non-IID settings. Similar conclusions have been

made in [24], [25].

C. Insights and Motivations

1) Good Becomes Better; Bad Becomes Worse: Despite

the statistical heterogeneity of data among clients, inherent

similarities (e.g., common features) in data distributions still

exist among some clients [41]. Hence, promoting collaboration

among similar clients can be advantageous. As the number of

global rounds increases, models among similar clients become

more similar and are less influenced by data heterogeneity.

Moreover, by identifying anomalies in malicious behaviors,

we can inhibit the cooperation between benign and malicious

clients, safeguarding benign models from attacks. With more

global rounds, malicious models are updated in a worse

direction, accelerating their deterioration.

2) Abnormal Euclidean Norm of Malicious Model Updates:

To investigate the impact of Byzantine attacks on FL training,

we evaluate FedAvg [9] under SF [40] and MR [15] attacks

using CIFAR-10 [38]. Fig. 3 illustrates that in both attack

scenarios, the Euclidean norm of model updates uploaded

by malicious clients increases dramatically as the number of

global rounds increases, deepening the impact of attacks on

the global model. Ultimately, FL training becomes dominated

by attacks, resulting in a substantial decrease in the model

performance of benign clients.

These insights motivate us to propose the customized model

aggregation rule, design the model update calibration mech-

anism, and develop the anomaly detection module. These

innovations facilitate collaboration among similar clients, ac-

curately capture differences in model updates between benign

and malicious clients, and empower the server to identify and

remove malicious clients.
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Fig. 3. Impact of model poisoning attacks on Euclidean norm of updates

IV. PROBLEM FORMULATION

A. Aggregation Function

In Eq. 1, the aggregation rule ignores the contributions of

clients to each other, leading to the global model that unfairly

favors clients with more samples. Our approach falls into

the category of multi-model FL, where the server aggregates

multiple models. Unlike Eq. 1, FedCAP customizes the aggre-

gation weights for each client. The aggregation of client k’s

customized model ŵk can be expressed as:

ŵk ←

N∑

i=1

pkiwi, (3)

where pki denotes the contribution between client k and i.

Eq. 3 takes into account inter-client contributions, enabling

the customized model of client k to better match its data

distribution. Further details are discussed in Section V-A.

B. Threat Model

In this work, our focus is on enhancing Byzantine-

robustness in FL against poisoning attacks.

Adversary’s Goal. The objective of the attack is to disrupt

the FL training process, resulting in a significant degradation

in model performance on any test inputs (i.e., untargeted

poisoning attack [13]). In real-world scenarios, such attacks

could cause FL systems to crash, leading to inaccurate model

inference in downstream tasks (e.g., disease diagnosis), which

could result in immeasurable losses [42].

Adversary’s Capabilities. Adversaries may intrude into FL

systems by injecting fake clients or compromising benign

ones. Considering the attack’s cost and feasibility in real-world

scenarios, the proportion of malicious clients typically does not

exceed 50% [13]. Given their known knowledge, adversaries

can manipulate the FL training process by uploading arbitrary

or finely crafted malicious model updates to the server, affect-

ing the model aggregation.

Adversary’s Knowledge. We consider attack scenarios where

adversaries have partial knowledge, including model updates,

local data, and local update rules from malicious clients.

Despite its limited practical applicability, we further introduce

a full-knowledge scenario to explore the upper bound of

Byzantine robustness in our method. Under this assumption,

adversaries have full knowledge of all clients, including benign

ones, enabling them to design stronger and adaptive attacks.

V. DESIGN OF FEDCAP
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Fig. 4. Workflow of FedCAP



Fig. 4 presents the workflow of FedCAP, comprising three

main modules highlighted in red: model customization, per-

sonalized training, and model update calibration and detection.

In each round, the server begins by customizing the models

based on historical knowledge, which includes a recovered

model pool and a calibrated update pool, along with the model

updates uploaded by the clients (V-A). Subsequently, these

customized models are distributed to the participating clients.

Upon receiving their respective customized models, the clients

perform local updating and personalized training using their

private data (V-B). The server then calibrates the uploaded

model updates to capture differences between clients, checks

the calibrated model updates to detect malicious behavior,

and updates historical knowledge (V-C). This iterative process

continues for a certain number of rounds until the target

accuracy is achieved or a pre-set number of rounds is reached.

A. Model Customization
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w̃

t−1

0

Calibrated

Update Pool
d̃
t−1

0 d̃
t−1

1
d̃
t−1
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Fig. 5. Model customization

We assume that FL training has progressed to round t(t >
0) and client k is joining FL training, where k ∈ St and

|St| = N . The model customization for client k includes the

following steps:

Collection. The server collects the model update d
t−1
k from

client k (as shown in w-x in Fig. 5). Depending on whether

client k participated in the previous round or is a new client,

the server handles it differently:

• If client k participated in round t − 1 (i.e., k ∈
St−1), the server locally keeps the calibrated update pool

{d̃
t−1

i }i∈St−1
. In this case, there is no need to collect

the model update d
t−1
k from client k for round t (i.e.,

d
t−1
k = d̃

t−1

k ), which helps save communication overhead.

Since we cannot directly calculate the contribution of client

k to itself, we define the contribution of client k to itself

(i.e., p′k,k in Eq. 5) as the weight factor φ, and the remaining

1 − φ is assigned based on Eq. 4 and Eq. 5. The impact

of φ’s value on model performance will be analyzed in

Section VI-D2.

• If client k did not join in round t − 1 or is a new client,

the server sends the global model wt−1 to client k, and the

client returns the model update d
t−1
k to the server, where

d
t−1
k = wt−1

k −wt−1.

Customized Aggregation. Then, the server performs the

customized model aggregation (as shown in y-z in Fig. 5).

It first computes the cosine similarity (Eq. 4) between d
t−1
k

and the calibrated update pool {d̃
t−1

i }i∈St−1
:

pk,i(k ̸=i) =
< d

t−1
k , d̃

t−1

i >

||dt−1
k || · ||d̃

t−1

i ||
, (4)

where the contribution pk,i between client k and i is deter-

mined by the similarity between calibrated model updates. The

reason is that the similarity between model updates reflects

the similarity of user data distribution [22], [33]. Clients

with higher similarity contribute more valuable knowledge to

each other. Therefore, when customizing aggregation weights,

larger weights will be assigned to similar clients. In this way,

the impact of data heterogeneity on customized models is

mitigated by customized aggregation.

Since the cosine similarity takes values in the range of

[−1, 1], the softmax function is introduced for normalization

(Eq. 5) to ensure that the sum of aggregation weights is 1, and

the weight of each client is non-negative.

p′k,i(k ̸=i) =
eαpk,i

∑N

i eαpk,i

. (5)

The scale factor α in Eq. 5 controls the sensitivity of

the weight vector p′
k to the similarity vector pk. When

α = 0, p′k,i = 1/N , and all participants have the same

weight. Thus, by controlling the value of scaling factor α,

our customized aggregation can adapt to various degrees of

data heterogeneity. Moreover, in attack scenarios, due to the

low similarity between the model updates of malicious and

benign clients, a large α is suggested to amplify the penalty

for malicious clients, ensuring that the corresponding weights

of the malicious clients after normalization converge to 0. This

prevents the aggregation process of the customized models of

benign clients from being interfered with by malicious clients.

Once the aggregation weight vector p′
k is obtained, the

server aggregates the recovered model pool {w̃t−1
i }i∈St−1

based on p′
k to customize the model ŵt

k for client k (Eq. 3).

Global Model Updating. At the same time, the server ag-

gregates the recovered model pool {w̃t−1
i }i∈St−1

to update

the global model (as shown in { in Fig. 5). Even though

FedCAP provides the customized model for each client, it

still aggregates the global model in each round for subsequent

model update calibration (see Section V-C). The aggregation

of the global model is formulated as follows:



wt ←

St−1∑

i

|Di|

|D|
w̃

t−1
i . (6)

B. Personalized Training

Unlike the global model aggregated in single-model FL,

the customized model ŵt
k better matches the data distribution

of client k. However, considering that the customized model

may still be affected by slight data heterogeneity or attacks

in situations where no explicit similarity relationship exists

among clients, we additionally train a personalized model for

each client to further mitigate the impact of heterogeneity or

attacks. The optimization objective for personalized model of

client k is formulated as follows:

vt+1
k = argmin

v

Lk(v) +
λ

2
∥v − ŵ

t
k∥

2
2, (7)

where v is initialized with vt
k. Eq. 7 follows the general

form of objective functions for personalized FL (Eq. 2).

Distinguishing from the global model wt, here, w∗ in Eq. 2

denotes the customized model ŵt
k, and the regularizer R uses

the square of the L2-norm. The regularization factor λ controls

the extent to which client k’s personalized model v references

the customized model ŵ
t
k, further mitigating the impact of

data heterogeneity or attacks.

In our implementation, client k iteratively updates the

personalized model vt
k and the customized model ŵt

k. When

updating vt
k with Eq. 7, the parameters of ŵ

t
k are frozen.

Then, ŵ
t
k is updated in the same mini-batch SGD: wt

k =
argmin

w

Lk(w), where w is initialized with ŵ
t
k.

C. Model Update Calibration and Detection
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Fig. 6. Model update calibration and detection

After client k finishes updating the customized model, it

returns the model update d
t
k to the server, where d

t
k =

w
t
k − ŵ

t
k (as shown in w in Fig. 6). In FedCAP, since the

server customizes a unique model for each participating client,

the starting points of local model updating in each round

differ among clients2, making it challenging for the server

to directly use the uploaded model updates {dt
k}k∈St

to mea-

sure similarity relationships among clients during customized

aggregation. To eliminate this inconsistency, we propose the

model update calibration mechanism (as shown in y in Fig. 6)

that leverages the global model aggregated in each round (see

Eq. 6 in Section V-A for details) as a common reference point

to calibrate the model updates uploaded by the clients.

Recovery. Before calibration, the server needs to recover the

locally updated model w̃t
k of client k based on the customized

model ŵt
k and the uploaded model update d

t
k (as shown in x

in Fig. 6), which can be formulated as w̃
t
k = ŵ

t
k + d

t
k.

Calibration. The calibration process of the model update d
t
k

uploaded by client k can be represented as d̃
t

k = w̃
t
k − w

t.

After calibration, the server can not only accurately capture

the similarity relationships among benign clients, but it can

also differentiate malicious model updates from benign ones in

non-IID settings. Here are some insights into the functionality

of calibration in attack scenarios.

Specifically, we find that cosine similarity can only measure

the directional differences of the uploaded model updates,

which is why FLTrust [18] and ClusteredFL [22] struggle to

resist attacks targeting the magnitude of model updates (e.g.,

MR attack) in non-IID settings, as shown in Section III-B2.

However, even though FedCAP also employs the same dis-

tance measurement criterion, it can effectively resist attacks

targeting either the magnitude or direction of model updates.

For example, when an adversary launches the model poisoning

attack targeting the magnitude of the model update (e.g., MR

attack), after calibration, the direction of the uploaded model

update will be changed. This enables the distance measurement

(i.e., cosine similarity) to capture the difference in calibrated

model updates between benign and malicious clients.

Detection. For detection, the server calculates the Euclidean

norm of the calibrated model update d̃
t

k for client k (as shown

in z in Fig. 6). If the predetermined detection threshold Tnorm

is exceeded, the server will recognize client k as a malicious

client and remove it permanently.

D. Algorithm of FedCAP

Alg. 1 outlines the entire training process of FedCAP.

When t = 0, the server initializes the customized models

{ŵ0
k}k∈S0

with w
0 and distributes them to the corresponding

participants S0 (Line 9-12). Clients perform local updating to

obtain updated local models {wt
k}k∈St

and personalized mod-

els {vt+1
k }k∈St

(Line 14). Subsequently, clients upload their

model updates {dt
k}k∈St

to the server (Line 15). The server

recovers the updated models of clients, calibrates uploaded

2In FedAvg, the starting points of local model updating in each round are
the same global model for all clients.



Algorithm 1: FedCAP

1 Input: communication rounds T , client set S, initial global

model w0 and personalized models {v0
k}k∈S .

2 Output: model pool {w̃T−1
k
}k∈ST−1

, calibrated model

update pool {d̃
T−1

k }k∈ST−1
, global model wT−1 and

personalized models {vT

k }k∈S .
3 for t = 0, . . . , T − 1 do
4 /* Server randomly selects a subset of clients St.*/
5 if t ̸= 0 then

6 {ŵt

k} ← Customize(wt−1, {d̃
t−1

i }, {w̃t−1
i
})

7 w
t ← GlobalModelUpdating({w̃t−1

i
})

8 else
9 /* Server initializes customized models*/

10 {ŵ0
k}(k∈S0), where ŵ

0
k ← w

0.
11 end

12 /* Server distributes {ŵt

k}(k∈St) to clients St.*/
13 for each client k ∈ St do

14 w
t

k,v
t+1
k
← ClientUpdate(ŵt

k,v
t

k)

15 d
t

k ←Poison(wt

k − ŵ
t

k)
16 end
17 /* Server calibrates uploaded model updates and detects

whether client k is malicious.*/
18 {w̃t

k} ← Recover({ŵt

k}, {d
t

k})

19 {d̃
t

k} ← Detect(Calibrate({w̃t

k},w
t))

20 end

model updates, calculates the Euclidean norm of the calibrated

model updates to detect whether the clients are malicious or

benign, and updates the recovered model pool {w̃t
k}k∈St

and

the calibrated update pool {d̃
t

k}k∈St
(Line 18-19).

It’s noteworthy that when t = 0, all participants have

identical parameters for the customized models {ŵ0
k}k∈S0

.

Therefore, the parameters of the calibrated model update of

client k are identical to those of its uploaded model update

(i.e., d̃
t

k = d
t
k). When t > 0, the server customizes models

for clients through Section V-A. The subsequent steps remain

consistent with those at t = 0. Upon FL training, the server

holds the recovered model pool {w̃T−1
k }k∈ST−1

, the calibrated

update pool {d̃
T−1

k }k∈ST−1
, and the global model wT−1.

VI. EXPERIMENT EVALUATIONS

A. Experiment Setups

1) Datasets: We use two image classification datasets,

CIFAR-10 [38] and EMNIST [39], as well as a human activity

recognition dataset, WISDM [41]. The CIFAR-10 dataset

contains images from 10 classes. We adopt a pathological

non-IID setting [9] that introduces label distribution skew.

Specifically, we define 20 clients, each with a balanced number

of samples but imbalanced classes (2 classes per client). The

EMNIST dataset comprises images of 62 different digits and

letters. Following previous studies [30], [43], we employ a

non-IID setting to divide the data (commonly seen in cross-

silo settings). Specifically, we define 100 clients and allocate

data based on digits, lowercase letters, and uppercase letters,

forming 3 distinct groups. Within each group, client data con-

sists of 80% samples from dominant classes and 20% samples

from all classes, leading to imbalanced sample distributions

among the groups. The WISDM data is collected from 36

user devices and 6 activity classes. We employ the default

data distribution setting as the user-specific physiological and

environmental variations introduce statistical heterogeneity

(i.e., feature distribution skew) in the collected activity data.

For all datasets, we split the client data into training and

test sets with a ratio of 0.75. To simulate scenarios where user

sample sizes are limited, we restrict the number of samples for

all clients to be on the order of hundreds.

2) Models: For all datasets, the models consist of two

convolutional layers (with filter numbers ranging from 32

to 64 for CIFAR-10 and WISDM, and from 16 to 32 for

EMNIST), followed by a fully connected layer (with 64 units

for CIFAR-10 and WISDM, and 128 units for EMNIST), and

an output layer. Note that considering the limited resources of

user devices in real-world scenarios and the primary focus of

this work on designing an FL algorithm, we do not explore

other potentially better-performing models.

3) Attack Methods: Seven attacks are described below.

Label Flipping (LF) [40]: Malicious clients train models on

manipulated data. The original data labels are flipped by y′i ←
(yi + 1)%C, where C denotes the number of classes.

Sign Flipping (SF) [40]: Malicious clients flip the signs of

their model updates before uploading.

Model Replacement (MR) [15]: Malicious clients scale up

model updates by N times before uploading. By default, N

is the number of participants per round.

A Little is Enough (LIE) [26]: Malicious clients calculate

mean and standard deviation for each coordinate over par-

ticipant updates and set fake updates within the range of

(µi − zmax¶i, µi + zmax¶i), where zmax is obtained from

the Cumulative Standard Normal Function.

Min-Max [27]: Min-Max attack optimizes a malicious gradi-

ent, ensuring the maximum distance between it and any benign

gradient remains within the upper bound set by the largest

distance between any two benign gradients.

Min-Sum [27]: Min-Sum attack optimizes a malicious gra-

dient, ensuring the sum of squared distances of the malicious

gradient from all the benign gradients remains within the upper

bound set by the sum of squared distances of any benign

gradient from the other benign gradients. The optimization

problems for the Min-Max (Eq. 9) and Min-Sum (Eq. 10)

attacks can be formulated as follows:

dm = favg
(

d{i∈[N ]}

)

+ µdp, (8)

argmax
µ

max
i∈[N ]

∥dm − di∥2 f max
i,j∈[N ]

∥di − dj∥2 , (9)

argmax
µ

∑

i∈[N ]

∥dm − di∥
2
2 f max

i∈[N ]

∑

j∈[N ]

∥di − dj∥
2
2 , (10)

where dm represents the malicious update, and dp represents

the perturbation vector. Following a previous study [27], we

choose dp as -std(d{i∈[N ]}).

Inner Product Manipulation (IPM) [28]: IPM attack aims

to achieve a negative inner product between the true mean of



the updates and the aggregation result, ensuring that the model

update in the direction of gradient ascent.

1

N

∑

i∈[N ]

∆i =
N −M(1 + ϵ)

N(N −M)

∑

m∈[M ]

∆m, (11)

where N denotes the number of participants, and M denotes

the number of malicious clients. To ensure that
N−M(1+ϵ)
N(N−M) <

0, by default, we set ϵ to N [44].

4) Baselines: To evaluate the effectiveness of personalized

FL methods in various non-IID settings, we compare the per-

formance of FedCAP with the six baselines: Local Training,

FedAvg [9], FedAvg with Fine-tuning (FedAvg-FT [32]),

Ditto [15], FedRoD [16], and FedFomo [17] discussed in

the related work.

To further validate the robustness of FedCAP, we com-

pare it with FLTrust [18] and the following five AGRs. In

Multi-Krum (M-Krum) [21], the server averages the top Q

models with the smallest scores to obtain the updated global

model, with this work using Q = N − M . Median [20]

takes the coordinate-wise median of the participants’ client

model parameters. RFA [36] takes the geometric-wise median

of the participants’ client model parameters. In Trimmed

Mean (Trim.) [20], the server sorts the model parameters

of the participating clients by coordinates, then averages the

remaining parameters after removing the Q largest and Q

smallest values, where Q = +M2 ,. Using ClusteredFL [22],

the server identifies the optimal partitioning of clients into two

clusters, and the cluster with the fewest clients is considered

malicious. The server then aggregates the models within the

remaining cluster. Considering some AGRs are IID defenses,

we further combine them with two SOTA non-IID defenses

(i.e., GAS [25] and Bucketing [24]) to explore their robustness

in non-IID settings.

5) Parameter Settings: Unless specified otherwise, in all

experiments, we fix the batch size to 10, the learning rate to

0.01, global rounds to 100, and the epoch to 5. For CIFAR-

10 and WISDM, the proportion of participating clients per

round is set to 1.0, while for EMNIST, it is set to 0.2. In the

attack scenarios, we assume a default proportion of malicious

clients patk of 0.3. In addition, we conduct a grid search for

hyperparameters for all baselines. More specifically, for Ditto,

the search range for ¼ is {0.01, 0.1, 1, 2}. For FedFomo, we set

the number of models sent to each client to half the proportion

of participating clients [17]. For Bucketing, we set s to 2 as per

the original paper. For GAS, we search for the optimal number

of sub-vectors p in {1000, 10000, 100000}. As for FedCAP,

the search range for ¼ is {0.1, 0.5, 1}, for ϕ it is {0.1, 0.2, 0.3},
and for ³, it is {2, 5, 10}. In all attack scenarios, we fix the

value of Tnorm to 10. This is because as the global rounds

increase, the Euclidean norm of the calibrated model updates

from malicious clients gradually approaches infinity, so the

anomaly detection mechanism is not sensitive to Tnorm.

6) Evaluation Metric: In all experiments, we report the

average Test Accuracy (TAcc) of all benign client models

in the final global round. If not specifically mentioned, we

choose the model with higher average test accuracy between

customized models and personalized models.

B. Performance Comparisons

1) Comparing with SOTA FL Baselines: We use the

CIFAR-10, EMNIST, and WISDM datasets to compare the

performance of FedCAP with other SOTA baselines in the

benign scenario, and we also explore their potential defense

ability in attack scenarios (i.e., LF, SF, and MR). In Fig. 7,

FedCAP outperforms all other baselines in all cases in terms

of model accuracy. It exhibits an average accuracy gain of 2%

to 23% over other baselines in the benign scenario and an

average accuracy gain of 3% to 50% in attack scenarios.

Specifically, in benign scenarios, although Ditto and Fe-

dRoD achieve comparable model performance on WISDM to

FedCAP, their performance on CIFAR-10 and EMNIST shows

a relatively marginal gap compared to FedCAP, averaging

about 3%. These results indicate that existing personalized FL

algorithms, which rely solely on personalized training, cannot

consistently achieve satisfactory performance under varying

non-IID settings. In contrast, FedCAP adapts to different levels

of data heterogeneity through customized aggregation (with

the scale factor ³—10 for CIFAR-10 and EMNIST, and 2 for

WISDM) and further mitigates the impact of data heterogene-

ity by incorporating the personalized training mechanism.

In attack scenarios, most methods fail to defend against

attacks across heterogeneous datasets. Although FedFomo

shows some robustness against attacks, balancing model utility

and robustness through client-side personalized aggregation is

challenging given the unknown number of malicious clients

in real-world scenarios. Compared to others, FedCAP demon-

strates strong robustness against all attacks. Especially under

the MR and SF attacks, its model performance is on average

about 3% to 62% higher than others.

In summary, through the combined effects of customized

aggregation and personalized training, FedCAP not only mit-

igates the impact of data heterogeneity, but it also effectively

defends against malicious attacks by incorporating model

update calibration and anomaly detection mechanisms. The

above results show that FedCAP generalizes well to various

data heterogeneity settings and attack scenarios.

2) Comparing with Robust FL Methods: To evaluate the

robustness of FedCAP and existing robust FL methods, we

use the CIFAR-10, EMNIST, and WISDM datasets to compare

their model performances under six attack scenarios. For a fair

comparison, we report the average test accuracy of their locally

updated models. We do not consider the LF attack as it does

not significantly affect most FL baselines in Section VI-B1.

As can be seen from Table I, Median resists the attacks to

some extent in most cases. ClusteredFL and FLTrust cannot

counter the MR attack in non-IID settings because they use

cosine similarity as the distance measurement, which cannot

distinguish differences in the magnitude of model updates.

Trimmed Mean fails to defend against the IPM attack. In

contrast, FedCAP outperforms other robust FL methods in all

cases with an average of 12% to 27% without a marginal
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accuracy loss compared to benign scenarios. Especially under

the LIE attack on EMNIST, all methods except for FedCAP

fail to resist the attack. This is attributed to the model update

calibration in FedCAP, which helps capture the differences

between malicious and benign model updates in non-IID

settings, thereby aiding the server in reducing the impact of

malicious model updates during customized aggregation.

In sum, the above results demonstrate that FedCAP can

achieve superior robustness under non-IID settings and gener-

alize to various attack scenarios.

3) AGRs Augmented with Ditto: Since FedCAP includes

the server-side customized aggregation and the client-side

personalization, we use the CIFAR-10 and EMNIST datasets

to explore whether the combination of AGRs and SOTA

personalized FL method Ditto is enough to excel in defending

against attacks in non-IID settings. Fig. 8 shows that although

the combination of Ditto and ClusteredFL mitigates the impact

of attacks such as IPM to some extent, its model performance

is still on average about 13% lower than that of FedCAP.

Furthermore, in most cases, the model performance of Ditto

combined with Median or Trimmed Mean even declines com-

pared to Ditto. The reason is that these AGRs fail to detect

malicious clients in non-IID settings, so the global model is

still influenced by attacks, resulting in less valuable global

knowledge for the personalized model to reference.

TABLE I
MODEL PERFORMANCE COMPARISON OF FEDCAP WITH ROBUST FL

METHODS

Dataset Type Mean M-Krum Median RFA Trim. ClusteredFL FLTrust FedCAP

CIFAR-10

SF 10.95 80.57 78.86 78.57 74.38 79.71 82.19 84.00

MR 10.19 82.38 82.38 82.38 81.24 17.24 20.67 84.10

LIE 80.86 79.90 77.24 78.00 80.19 82.57 72.10 84.95

Min-Max 77.24 52.00 69.81 74.76 72.61 78.95 81.05 84.00

Min-Sum 78.48 67.43 66.86 73.71 72.29 78.86 80.19 84.38

IPM 10.95 82.38 75.05 36.48 10.95 42.00 81.14 84.29

EMNIST

SF 78.15 81.80 79.55 80.27 79.66 80.04 84.05 85.24

MR 12.56 83.64 84.30 84.97 4.47 2.96 3.01 85.82

LIE 2.87 2.87 2.87 2.87 2.87 2.87 2.87 85.16

Min-Max 76.86 71.08 70.31 71.55 69.59 81.28 83.01 85.39

Min-Sum 78.76 71.68 71.06 71.80 72.02 81.61 83.37 85.58

IPM 2.87 2.06 65.88 19.06 2.87 83.72 84.13 85.43

WISDM

SF 37.36 90.23 92.25 91.04 89.53 89.02 93.35 94.16

MR 37.36 93.45 93.66 93.15 91.74 37.36 37.36 95.07

LIE 94.36 94.56 92.75 92.55 93.76 94.36 37.36 94.56

Min-Max 90.13 92.35 91.44 92.65 82.78 91.84 91.54 94.06

Min-Sum 90.23 93.45 91.34 92.75 83.69 93.35 92.15 94.26

IPM 37.36 93.35 81.67 82.38 37.36 37.36 93.25 94.06

In contrast, FedCAP not only demonstrates strong robust-

ness in all cases but also converges faster than other methods.

This is due to its model update calibration and anomaly

detection mechanisms, which enable the server to detect

malicious clients and aggregate customized models based on

the contributions (i.e., similarities) among benign clients. This

allows client personalized models to reference more valuable

information from the customized models.



TABLE II
AGRS AUGMENTED WITH NON-IID DENFENSES

Method MKrum Median RFA
FedCA

Dataset Attack Bucket GAS Bucket GAS Bucket GAS

CIFAR10
LIE

80.57

+0.67

80.86

+0.96

79.43

+2.19

80.00

+2.76

80.38

+2.38

80.19

+2.19
84.95

IPM
10.95

-71.43

82.38

+0

10.95

-64.10

82.76

+7.71

10.95

-25.53

82.76

+46.28
84.29

EMNIST
LIE

25.01

+22.14

2.87

+0

27.31

+24.44

2.87

+0

30.28

+27.41

2.87

+0
85.16

IPM
10.60

+8.54

3.96

+1.90

10.60

-55.28

4.02

-61.86

10.60

-8.46

2.87

-16.19
85.43

WISDM
LIE

93.57

-0.99

94.71

+0.15

93.19

+0.44

94.14

+1.39

94.26

+1.71

94.86

+2.31
94.56

IPM
38.94

-54.41

91.49

-1.86

38.94

-42.73

92.06

+10.39

37.36

-45.02

93.55

+11.17
94.06

4) AGRs Augmented with Non-IID Denfenses: In Section II,

we introduced two SOTA non-IID defenses (i.e., Bucketing

and GAS). To evaluate the robustness of combining non-IID

defenses with AGRs in non-IID settings, we compare the

performance of M-Krum, Median, and RFA when combined

with Bucketing and GAS using three datasets. Table II presents

the model performance and the performance improvement

after combination, with negative numbers indicating a per-

formance decline. From Table II, it is evident that under

the LIE attack, both non-IID defenses lead to performance

improvements, especially on EMNIST. However, under the

IPM attack, combining non-IID defenses with AGRs even

brings negative effects on model performance, particularly

with the Bucketing method. The reason is that before using

AGRs for inter-bucket aggregation, average aggregation has

occurred in each bucket. This two-step aggregation might

cause overly aggressive cancellation, resulting in too many

beneficial model updates being excluded from model aggrega-

tion, ultimately affecting the model performance. These results

indicate that the incorporation of non-IID defenses still cannot

generalize across various attacks to assist AGRs in enhancing

the robustness.

In contrast, FedCAP withstands attacks in all cases due to its

model update calibration mechanism, which enables the server

to differentiate malicious model updates from benign ones in

non-IID settings. With the enhancement of customized ag-

gregation, FedCAP accelerates the deterioration of malicious

client models, ensuring that the anomaly detection mechanism

quickly identifies and removes malicious clients, effectively

defending against attacks.

C. Robustness of FedCAP

TABLE III
ROBUSTNESS ANALYSIS OF FEDCAP

Dataset Metrics Benign SF MR LIE Min-Max Min-Sum IPM

CIFAR-10

TAcc

DAcc

FPR

FNR

85.60

-

-

-

84.00

100

0

0

84.10

100

0

0

84.95

70

0

100

84.00

100

0

0

84.38

100

0

0

84.29

100

0

0

EMNIST

TAcc

DAcc

FPR

FNR

86.59

-

-

-

85.24

80

0

20

85.82

100

0

0

85.16

81

0

63.33

85.39

93

0

23.33

85.58

96

0

13.33

85.43

98

0

6.67

WISDM

TAcc

DAcc

FPR

FNR

93.78

-

-

-

94.16

100

0

0

95.07

100

0

0

94.56

72.22

0

100

94.06

100

0

0

94.26

100

0

0

94.06

100

0

0

To further demonstrate the robustness of FedCAP, in addi-

tion to evaluating the impact of attacks on model performance

(i.e., TAcc), we introduce three robustness metrics to measure

the detection abilities of FedCAP. Detection Accuracy (DAcc)

represents the proportion of clients that are correctly identified

as either benign or malicious. False Positive Rate (FPR) (or

False Negative Rate (FNR)) denotes the proportion of benign

(or malicious) clients that are incorrectly regarded as malicious

(or benign). As can be seen from Table III, in most cases,

FedCAP can identify and remove almost all malicious clients

without mistakenly identifying benign clients as malicious

with the FPR = 0.

In particular, FedCAP fails to identify malicious clients

under the LIE attack, with the FNR = 100 on CIFAR-10 and

WISDM. The reason is that the collaboration among malicious

clients during customized aggregation does not exacerbate the

deterioration of malicious models and the Euclidean norm of

malicious model updates does not reach the detection threshold

Tnorm, thus not triggering the anomaly detection mechanism.

Surprisingly, in this case, the model performance of FedCAP

is not significantly affected by the attack, with accuracy loss

averaging less than 1% compared to benign scenarios. This is

attributed to its ability to isolate malicious model updates from

benign ones during customized aggregation, so the aggregated

customized models of benign clients are not seriously affected

by the attack.

D. Impact of Hyperparameters
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Fig. 9. Impact of scale factor α

1) Impact of Scale Factor ³: To analyze the impact of ³ on

the model performance of FedCAP, we conduct experiments

using three datasets in both benign and attack scenarios. Here,

we only discuss the parameter analysis under the IPM attack,

as we find that the conclusions for other attacks are similar

to it. As shown in Fig. 9, for the WISDM dataset, as ³

increases, the model accuracy of FedCAP decreases. This

result is attributed to the fact that there are many shared

features among user data. For example, all users have highly

similar behavior patterns such as walking. Therefore, when

customizing aggregation weights, the server should choose a

smaller value for ³ to fairly consider all users and learn more

global features. In contrast, for the other two datasets, as ³

increases, the model accuracy of FedCAP gradually improves.

The reason is that there is a higher degree of label distribution

skew among clients’ data. In this case, choosing a larger value

for ³ allows the server to assign larger weights to clients

with similar distributions, preventing interference from other

dissimilar or malicious clients, and thus reducing the impact

of data heterogeneity or attack.
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Fig. 10. Impact of the proportion of malicious clients

It is important to note that the choice of ³’s value depends

on the degree of heterogeneity among client data distributions.

In real-world attack scenarios, given the unknown number

of malicious clients, FedCAP relies on its model update

calibration and anomaly detection mechanisms to identify

malicious clients, rather than tuning ³.

2) Impact of Weight Factor ϕ: To investigate the impact of

ϕ on the model performance of FedCAP, we conduct exper-

iments on three datasets in both benign and attack scenarios

(e.g., IPM). As shown in Fig. 11, the value of ϕ is inversely

proportional to the model accuracy. The reason is that as ϕ

increases, the weight corresponding to the client itself becomes

larger, which weakens the reference to valuable knowledge

from other client models in the model customization, thereby

affecting the model performance. Additionally, we find that

the performance of FedCAP is relatively robust to the choice

of ϕ’s value.
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Fig. 11. Impact of weight factor φ

3) Impact of Regularization Factor ¼: To explore the

impact of ¼ on model performance of FedCAP, we conduct

experiments using three datasets in both benign and attack

scenarios (e.g., IPM). As shown in Fig. 12, we conclude that

appropriately increasing ¼ not only allows the personalized

model training to reference global knowledge from the cus-

tomized model but also prevents overfitting of the personalized

model on the limited data. When ¼ is too large, the training of

the personalized model is influenced by the customized model

that may still be affected by data heterogeneity or attack,

leading to a decrease in its accuracy.

4) Impact of the Proportion of Malicious Clients: To eval-

uate the impact of the proportion of malicious clients on the

effectiveness of robust FL methods, we use the CIFAR-10 and

EMNIST datasets to conduct experiments under four strong

attacks (i.e., LIE, Min-Max, Min-Sum, and IPM). Fig. 10

shows that as the proportion of malicious clients increases,
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Fig. 12. Impact of regularization factor λ

especially to 30% and 40%, the model performance of most

robust FL baselines is significantly affected by attacks and

decreases substantially. Moreover, although FLTrust and Ditto

resist attacks to some extent on CIFAR-10, their effective-

ness significantly is suppressed on EMNIST, indicating that

they cannot demonstrate robustness across various attacks in

non-IID settings. Conversely, regardless of the proportion of

malicious clients, FedCAP exhibits strong robustness and gen-

eralizes well across various attacks while maintaining superior

model performance.

E. Ablation Study

TABLE IV
ABLATION STUDY ANALYSIS OF FEDCAP COMPONENTS

Cust. Agg. Calibration Pers. Train. Benign LIE Min-MaxMin-Sum IPM

d ✓ 83.53 78.67 48.76 56.29 83.14

e ✓ 82.73 82.10 79.33 79.33 10.95

f ✓ ✓ 85.07 84.29 83.52 83.81 83.71

g ✓ ✓ 83.60 80.10 69.81 70.95 83.14

h(FedCAP) ✓ ✓ ✓ 85.60 84.95 84.00 84.38 84.29

To verify the necessity of each main component in FedCAP

(i.e., customized aggregation, model update calibration, and

personalized training) as introduced in Section V, we con-

duct ablation experiments using CIFAR-10 under four strong

attacks and analyze the results in Table IV.

First, d’s model performance is about 2% lower than f’s

in the benign scenario and about 17% lower on average in

attack scenarios. This indicates that without the model update

calibration mechanism, the standalone customized aggregation

mechanism cannot precisely capture the similarity relation-

ships among benign clients, nor can it differentiate between

malicious and benign model updates, leading to a significant

drop in the performance of customized models due to the

impact of data heterogeneity and attacks.

Second, e’s model performance is about 3% lower than h’s

in the benign scenario, and, while it shows some robustness



to attacks other than IPM, the result indicates that the single

personalized training mechanism still lacks the robustness to

generalize across various attack scenarios.

Third, f’s model performance is on average less than 1%

lower than h’s, suggesting that the combination of customized

aggregation and model calibration mechanisms already signif-

icantly mitigates the impact of data heterogeneity and attacks,

and the addition of the personalized training further enhances

model accuracy and robustness.

Last, g’s model performance is 2% lower than h’s in the

benign scenario and about 8% lower on average in attack

scenarios. This result shows that simply combining customized

aggregation with personalized training mechanisms cannot

achieve superior model performance. The incorporation of the

model update calibration ensures malicious model updates are

differentiated, which enables the server to isolate malicious

clients from benign ones during customized aggregation, ac-

celerate the deterioration of malicious models, and trigger

the anomaly detection mechanism to identify and remove

malicious clients permanently. Based on this, the proposed

personalized training module can further improve robustness

and model performance, building on the relatively clean cus-

tomized models.

Therefore, all the proposed modules in FedCAP are essential

and contribute to achieving superior accuracy and robustness

across various non-IID settings and attacks.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed FedCAP, a robust FL frame-

work against both data heterogeneity and Byzantine attack.

Specifically, we designed a customized model aggregation

scheme, which can facilitate collaborative training among

similar clients and accelerate the deterioration of malicious

models. In addition, we developed a model update calibration

mechanism to capture the differences in the direction and

magnitude of model updates among clients and an anomaly

detection mechanism to help the server quickly identify and

permanently remove malicious clients. Extensive experiments

demonstrated that FedCAP outperformed the SOTA baselines

in terms of model accuracy under several non-IID settings and

model robustness under various types of poisoning attacks.

Robustness Analysis. We believe that in strong attack sce-

narios [26]–[28], even if adversaries know the customized

aggregation rule and the model updates of benign clients, it

is difficult to design effective adaptive attacks. The reasons

are twofold: first, the model updates uploaded by clients are

calibrated by the server, making the knowledge adversaries

possess about the uploaded model updates outdated. Second,

the server aggregates the customized model for each client,

making it challenging for adversaries to manipulate malicious

model updates that can affect the model customization of all

benign clients. In future work, we will conduct more theo-

retical robustness analysis of FedCAP and explore potential

adaptive attack strategies.

Convergence Analysis. In FedCAP, the server’s customized

aggregation and model update calibration mechanisms dy-

namically adjust the aggregation process based on incoming

updates. This dynamic nature introduces additional layers of

complexity for theoretical analysis. In future work, we can

decompose the convergence analysis into multiple aspects,

such as studying the impact of varying customized aggregation

weights on model convergence speed and final performance,

theoretically deriving how the model update calibration mech-

anism affects model convergence, and investigating the impact

of regularization factors in the personalized objective function

on personalized model training.
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APPENDIX A

SYSTEM SCALABILITY, OVERHEAD, AND EFFICIENCY

A. Scalability

In read-world deployments, FedCAP not only customizes

models to meet participants’ personalized needs but is also

scalable for future clients. For example, when a future client

i requests the model customization service, the server sends

the global model w
T−1 to client i. Upon receiving the

model, client i conducts local updating and uploads the model

update di to the server. Afterward, the server customizes the

model ŵi using the uploaded model update di, the calibrated

update pool {d̃
T−1

k }k∈ST−1
, and the recovered model pool

{w̃T−1

k
}k∈ST−1

through Section V-A. Once client i receives

the customized model ŵi, it can directly perform model

inference or further fine-tuning.

B. Overhead

FedCAP proposes three modules: model customization,

personalized training, and model update calibration.

1) Computational Overhead: During customized aggrega-

tion, the server only needs to compute cosine similarity among

model updates of N participating clients to determine the

customized aggregation weights, where typically N << K

(the total number of clients). In the personalized training

phase, although clients need to alternately update personal-

ized models and customized models within the same mini-

batch, results from ablation experiments in Section VI-E

suggest that customized models already achieve satisfactory

model performance. In the model update calibration phase, the

computational overhead introduced is negligible compared to

model customization. Although the computational complexity

of existing AGRs (e.g., Median and RFA) can be reduced to

O(K), their combination with non-IID defenses (i.e., Buck-

eting and GAS) or personalized FL methods (e.g., Ditto)

still cannot ensure robustness across various attack scenarios

in non-IID settings (see Section VI-B4 and Section VI-B3).

Our work balances system overhead with robustness against

both data heterogeneity and Byzantine attacks. Additionally,

FedCAP is orthogonal to computation-efficient methods. For

instance, since the classification layer of the model contains

more personalized features [16], [45], future work will explore

calculating similarity only for the last layer.

2) Communication Overhead: Compared to the client-side

model customization method FedFomo, where the server needs

to send multiple models to clients in each communication

round, FedCAP only needs to send one customized model to

each client, resulting in communication overhead equivalent

to FedAvg.

3) Storage Overhead: FedCAP only requires storing model

pools and model update pools for the N participating clients.

In real-world scenarios, central servers often have abundant

storage resources [42], making storage overhead acceptable.

Additionally, FedCAP can be combined with storage-efficient

methods such as model quantization to further improve system

efficiency.

In summary, considering the improvement in robustness

against both data heterogeneity and Byzantine attacks pro-

vided by FedCAP, as well as the unsatisfactory performance

improvement of the combination of robust FL and personalized

FL methods, the introduced overhead is acceptable.

C. Efficiency Analysis

TABLE V
SYSTEM EFFICIENCY ANALYSIS OF FEDCAP

Method R2Acc(80%) Computation(clients) Computation(server) Communication

FedAvg-FT 52th 3.2min 0.2s 12MB / round

FedRoD 34th 4.0min 0.2s 12MB / round

FedFomo 11th 2.6min 0.9s 120MB / round

Ditto 44th 6.2min 0.2s 12MB / round

FedCAP 9th 6.2min 2.6s* 12MB / round

*customized aggregation: 2.47s, calibration: 0.10s, detection: 0.07s

To compare FedCAP’s system efficiency with other base-

lines, we report their Round-to-Accuracy (R2Acc), breakdown

of computation time on both server and client sides, and

communication overhead in the benign scenario using CIFAR-

10. The R2Acc represents the number of rounds required to

achieve a target accuracy (i.e., 80% on CIFAR-10), which

reflects the convergence speed of FL algorithms. The com-

munication overhead involves the data volume of models

transmitted back and forth between the server and clients, and

its value is determined by the number and size of models

transmitted each round.

As shown in Table V, FedCAP achieves the target accuracy

in the 9th round, which is on average 4 times that of others.

Although FedFomo shows comparable R2Acc (11th round), its

communication overhead is about 10 times that of FedCAP, as

its server needs to send multiple models (10 for CIFAR-10)

to each client per round to compute aggregation weights. The

client-side computation times of FedRoD, Ditto, and FedCAP

are about 1.3, 1.9, and 1.9 times that of FedAvg+FT, respec-

tively, because clients need to perform additional computations

for training personalized heads or models. Moreover, although

FedCAP’s server-side components such as customized aggre-

gation consume additional time compared to average aggrega-

tion, this is acceptable since FedCAP’s R2Acc is significantly

better than that of the others. This indicates that FedCAP can

reduce the overall computational overhead by decreasing the

number of FL training rounds (due to its high convergence

speed), thereby improving system efficiency.

In terms of scalability, FedCAP has the same communi-

cation overhead as FedAvg, increasing with the complexity

of the transmitted model. As the dataset size grows, al-

though FedCAP’s personalized training introduces additional

computation overhead compared to FedAvg, its customized

models have achieved high accuracy (see Table IV-f, h).

Therefore, in read-world deployments, a trade-off between

model performance and system efficiency can be achieved by

selecting between customized or personalized models.
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