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PCA-based Maximum Correntropy Kalman Filter Application for
Agricultural Unmanned Aerial Vehicle

Fethi Candan'?* and Johnny Lil*

Abstract— This paper addresses challenges in agricultural
unmanned aerial vehicle (A-UAV) positioning, emphasizing the
significance of accurate position estimation for applications like
coverage path planning under depended noises. The study intro-
duces a solution involving a PCA-based maximum correntropy
Kalman filter (PCA-MCKF) to mitigate issues such as low-
altitude flight control, inaccurate position estimation due to
coloured noise, and non-Gaussian distribution, including wind
effects. Comparative analysis with traditional methods, such as
Kalman filter (KF), PCA-KF, and PCA-MCKEF, is conducted
using four rotor-wing UAVs with linear and nonlinear dynam-
ical models. The paper employs interval type-2 Fuzzy PID as
an intelligent controller method and constant acceleration and
constant velocity manoeuvre models for estimation. Root mean
square error is used as the accuracy metric, and real-time sim-
ulations in Webots demonstrate the superiority of the proposed
PCA-MCKEF in enhancing agricultural UAV applications.

I. INTRODUCTION

Smart agriculture is a potential solution to the issues
that negatively impact farming and make some cropland
useless. Unmanned Aerial Vehicles (UAVs) are beneficial for
smart agriculture. UAVs are low-cost, modifiable equipment
solutions and manoeuvre capability, and they can control
teleoperators or autonomous based. They have many advan-
tages; their battery capacities and weights may be a problem.
Considering the performances of the UAVs, the Time of
Flight (ToF) for UAVs is below 40 minutes. For example,
if a farming area is more than 100 acres, the UAV may fly
multiple times, or a UAV swarm may be another solution.

Generally, UAVs have been used for inspection, crop
detection, treating crop health, and spreading pesticides.
Even with human-based control or autonomous control,
getting high accuracy/precision in agriculture has remained a
problem [2], [13]. The accuracy/precision is directly related
to position and localization; on the other hand, Global
Positioning System (GNSS/GPS) and Inertial Navigation
System (INS) play essential roles at this stage. The ex-
ample of target tracking with radar illustrates how even if
measurement noise is independent of an object’s motion,
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the sampling process introduces additional noise, creating
dependence [11]. The discussion emphasises the impact of
down-sampling dynamics in filtering problems and points to
its relevance in various practical applications, as discussed
in the referenced literature.

In literature, in ref [12], it has been presented a novel
quaternion-based attitude estimation algorithm aiming to
enhance accuracy, numerical stability, and computational
efficiency. In the research, there are some contributions
and one of them is directly related to extending state-
dependent noise properties based on Choukroun et al.’s
work and deriving comprehensive expressions for covari-
ance matrices inspired by a generalized approach outlined
in [7]. In ref [15], it has been introduced a significant
contribution: a generalized extended Kalman filter designed
for estimating the state of discrete-time dynamical processes
affected by state-dependent measurement noise. The pro-
posed algorithm facilitates the consistent treatment of control
problems, particularly those involving sensors with state-
dependent measurement noise, like bearing-only sensors [6],
[15], [16]. The effectiveness of the filter is demonstrated
through numerical simulations in the context of a control and
estimation problem featuring a mobile bearing-only sensor.

This paper aims to enhance the accuracy of the Kalman es-
timator in the presence of both coloured and white measure-
ment noise using Principal Component Analysis (PCA) [1].
PCA, a technique in multivariate statistical methods [14], is
known for data whitening, approximation, and compression,
finding applications in various fields like Wireless Sensor
Network (WSN) data analysis, process control, fault detec-
tion, and disturbance diagnosis [14]. The key advantage of
PCA lies in its capacity to transform correlated variables
into a new set of uncorrelated orthogonal variables. The
proposed approach introduces an online PCA-based Kalman
filter estimator, where sensor measurements with coloured
noise serve as inputs to a PCA block. The PCA outputs
are then utilized to propagate states and the error covariance
matrix in the Kalman estimator, aiming to mitigate the impact
of correlated variables and enhance estimation accuracy.

The paper is structured as follows: In Section II, we
explained the problem definition. The subsequent section
delves into the Kalman filter and maximum correntropy
Kalman filter with principal component analysis. Section IV
provides the simulation results in terms of numerical analysis
and Webots simulation environment. Finally, the concluding
remarks and avenues for future research are presented in the
last section.



II. PROBLEM DEFINITION

There are several advantages to using UAVs in agriculture
areas [13], but they have some limitations regarding battery
consumption and autonomous decisions. When connections
with multiple sensors, the ToF of the UAV will be decreased
dramatically because of energy consumption; also, when the
position sensors are out of communication, the UAVs must
guarantee stability and follow the reference trajectory in
an emergency. At this point, positioning of the UAVs and
communication between UAVs and teleoperators or UAVs
and UAVs are significant. Using more accurate and expensive
sensors, noise distribution may be calculated.
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Gaussian and non-Gaussian Distributions [18]

Considering these expensive and high-accuracy sensors,
their datasheets give calculation values for estimation. These
values can be defined as internal noises. However, every
sensor has a different distribution, and the external noises
directly affect the sensors negatively. If given an example
for external noises, climate change, wind effects and other
weather conditions are defined as external noises, and these
calculations are highly challenging topics. That means the
sensor noises could be Gaussian-based or non-Gaussian-
based distributions. In addition, covariance and standard
deviation calculations of the distribution are not the same
with Gaussian models. Therefore, it is a challenging problem
to predict/estimate values.

x(t) = Ax(t) + Bou(t) + B1d(¢) W
y(t) = Cx(t) + w(t)

wy = Fi_1wi—1 + &1 )

Generally, Weibull and Student’s T distribution have been
used for camera-based positioning data estimation, spectral
camera, and wind modelling. Therefore, they will be essential
to design and implement a model-free sensor estimation
algorithm. This proposal focuses on external non-Gaussian
and Gaussian noises.

III. METHODOLOGY

In this section, we present the main structure of our
methods. The Coverage Path Planning (CPP) reference points

are generated via GPS coordinates, and subsequently, the
interval type-2 Fuzzy PID (IT2-FPID) is implemented into
the UAV as a position controller [5]. Sensor values are then
collected from GPS data, which is able to include Gaussian
and non-Gaussian noises [19]. To achieve high accuracy
in position data, we employ the Maximum Correntropy
Kalman Filter (MCKF) [4]. However, varying levels of
noise and disturbance significantly impact UAV performance,
despite the MCKF’s favourable results under non-Gaussian
distributions. To address this, we propose merging adaptive
state estimation and multi-kernel methods with MCKF while
employing PCA-based regression to classify noises affecting
the UAV [14], [20]. This integration results in the PCA-based
MCKEF (PCA-MCKF), showcasing the innovative ”Adaptive
State Estimation with Multi-Kernel Approach” feature. In
the PCA aspect, the number of samples and the distinction
between dependent and independent noise play a crucial role
in the estimation process.

A. Kalman Filter

Conventional Kalman Filter (KF) has been widely used
for state estimation [4], [6]. In this project, the conventional
KF and PCA-KF have been implemented. In Algorithm 1,
KF formula has been written. States, state error covariance,
model process covariance, and measurement noise covari-
ance have been defined as x, P, Q and R, respectively. In
the algorithm, (.);, is represented as an iteration value.

Algorithm 1 The implementation pseudocode for one time-
step of the KF
Inputs: X, 1, Pr_1, Qr—1, Rk
Prediction: (Time Update)
1) X, =Fxp 1
2) P, =FP, F' + Qi
Estimation: (Measurement update)
) K= PkHT(HPkHT + R)—]
2) x5, =X, + Ki(yr — Hxyg)
3) P = - Ky)Py
Outputs: X, Py.

B. Maximum Correntropy Kalman Filter

Maximum correntropy Kalman filter (MCKF) gives better-
estimated results under non-Gaussian or mixed noises. In
Algorithm 2, the initial values are the same with KF and also
degrees of freedom for distributions (v), correntropy small
positive threshold (¢) number and kernel bandwidth (o) have
been added. In [6], The MCKF formula and its application
have been detailed and it is represented in Algorithm. 2.

After the explanation of the algorithms, the principal
component analysis has been explained in the section.

C. Principal Component Analysis Block Diagram

1: Involves generating a zero-mean dataset from Y7, .
To ensure the proper functioning of Principal Com-
ponent Analysis (PCA), it is essential to subtract the
mean from each dimension of the data.



Algorithm 2 The implementation pseudocode for one time-
step of the MCKF

Inputs: x;,_1, Pr_1, Qr—1, Ry, v, €, 0
Prediction: (Time Update)

1)
2)

Xr = FXp_1
P, =FP,_1F'+ Q4

Estimation: (Measurement update)

1)
2)
3)

4)
5)
6)
7

8)

gk = dk — Wi

B, = Chol(P;_1), B, = Chol(R)

M:vak: — diag(GU(elak )7 e 7Go(en7k ))
Myak = diag(GU(en-i-lak )a T vGU(en-Hmk ))
Pr1 =By -1 (Myx) "B} ko1,

Rk = Brak (Myak )71B?;k

K, = Pkle};(HPkle}; + R)71

X, = Xp—1 + Ky — Hxp_g

=il o

-
[

P, = (I - K;H)P,_ (] - K, H)T + K R KT

Outputs: X, Py.
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The process involves calculating the eigenvectors and
eigenvalues of the covariance matrix. Initially, the
covariance matrix is derived from Yy = Y — Y.
The transformation occurs through the eigenvectors of
this covariance matrix, also referred to as loadings
or weights. Each eigenvector comprises loadings for
the original data, facilitating their transformation into
the new dataset. The information captured by the new
data is quantified by their corresponding eigenvalues.
Consequently, the new data represented by the first
eigenvector, associated with the largest eigenvalue,
encapsulates the most information from the original
dataset. Mathematically, this can be expressed as:

_YY
COoV = N1 (4)
(cov—A)P=0

The focus is on selecting eigenvectors and constructing
a feature matrix. As previously mentioned, the eigen-
values indicate the amount of information contained in
the new data, with the greatest information captured by
the eigenvectors associated with the largest eigenval-
ues. These eigenvectors are the principal components
of the dataset. To extract the original data from the
presence of noise, an appropriate number of eigenvec-
tors must be chosen, effectively discarding the noise.
This is achieved by selecting (m) eigenvectors with
the largest eigenvalues and forming a matrix, (Piym),
with these eigenvectors as columns. The first column
corresponds to the eigenvector with the largest eigen-
value (z1), and the one with the smallest eigenvalue is
in the last column (z,,).

plxm:{zl7227"' 7Zm} (5)

¢ After selecting the principal components to retain

and forming the feature matrix (P), the next step
involves projecting the data Y into the subspace (R™)
spanned by P. The resulting projected data (P n) is
expressed as:

YV =PTY (6)

This transformation effectively represents the original
data in a reduced-dimensional space spanned by the
chosen principal components.

: The objective is not merely to reduce dimensionality

but to eliminate noise from the original data. To
achieve this, the data (Y) is reconstructed in the space
RI using the projected data set (Y). The final data in
the Rl space can be computed as follows:

Yiun =PY +Y (7
This step completes the process of denoising and
reconstructing the original data in a lower-dimensional

subspace, resulting in a final dataset that effectively
represents the noise-free information.

: The process involves extracting the modified sensor

measurements at the N time step (§(N)) from the

Nt column of the modified data set (V).

: Entails executing the Kalman estimator based on the

modified data. Specifically, the noiseless sensor mea-
surements at the Nth time step are utilized to esti-
mate states and propagate the error covariance matrix
through the standard Kalman or Maximum Corren-
tropy Kalman Filter (MCKF) estimator. This step com-
pletes the integration of denoised sensor measurements
into the estimation process, contributing to improved
accuracy and reliability.
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Fig. 2. PCA Block diagram

IV. EXPERIMENTAL RESULTS

For the experiments, Webots Real-time simulation and
Matlab simulation environments have been used to com-
pare the conventional Kalman Filter (KF) and the proposed
method. The University of Idaho Campus has been used for



the UAV spraying area. Moreover, the DJI Matrice 350RTK
solid model has been provided by the DJI company, and
then it has been remodelled to apply to Webots. After that,
all systems have been tested under dependent noises. That
means the defined noises are not based on the Markov
chain. It directly depends on previous data value. The first
test results show that KF has a faster computation time,
but its performance results are not good on the Matlab
simulation. The computation time results in 0.002s and 0.01s,
respectively. However, computation is the negligible criterion
for the UAV. Therefore, total task time and root mean
square error (RMSE) have been selected for the comparison
criteria. Under different levels of noise, PCA-MCKF gives
better RMSE value and faster task compilation. Moreover,
a different number of samples have been applied to show
performance results.

A. Numerical Experiment Results

For numerical experiments, a constant velocity motion
model has been used. The sampling time (7) has been set as
0.05s. The selected motion model has been written in Eq. 8.
It is noted that, Matlab environment has been used for the
numerical analysis [17].

1 005 0 O
0o 1 0 O

F= 0 0 1 005 ®)
0O 0 0 1

Then, the model process covariance Q have been written
in Eq. 9

1.562e — 05 0 0 0
0 0.025 0 0
Q= 0 0 1.562e — 05 0 ©)
0 0 0 0.025

The last matrices, measurement and measurement noise
covariance, have been defined in Eq. 10 and Eq. 11.

100 0

H:{o 01 0} (19)
10 0

R:[o 100} an

The outcomes of the numerical analysis are depicted in
Fig. 3. In the figure below, the Coverage Path Planning
(CPP) reference trajectory is depicted by the black line.
Subsequently, various levels and types of noise were intro-
duced (Grey line). The proposed approach (PCA-MCKF) and
the compared methods (KF, MCKF, and PCA-KF) are also
presented. The findings indicate that PCA-MCKF exhibits
a superior reference trajectory and smoother performance
compared to the other methods. Furthermore, the results
of KF and MCKF without PCA reveal a higher degree of
oscillation compared to the others.

The numerical experiments were conducted in both numer-
ical and offline modes, where the effects of the controller and
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Fig. 3.

Numerical Experiments Results

other uncertainties were eliminated. Consequently, the pro-
posed and compared methods underwent testing in Webots
Simulation environments to assess their performance under
more realistic conditions.

B. Webots Environment Results

In this section, the proposed and the compared estimation
methods have been tested on Webots environments. Unlike
numerical experiments, the drone has been modelled and the
interval type-2 Fuzzy PID (IT2-FPID) controller has been
implemented. After the implementation, coefficients of the
controllers has been tuned using the Big Bang-Big Crunch
optimisation algorithm [10]. For experiments, the selected
UAV, DJI Matrice 350RTK has been converted to URDF
model [8] and imported to Webots [9]. In Fig. 4, the designed
UAV, its position and its orientation can be seen.

Fig. 4. DIJI Matrice 350RTK URDF Model for Webots

Considering the UAV dynamical equations [3], the position
(p) of the UAV is defined as [z,y,2]T. After that, the
acceleration (v) is written in Eq. 12. It is noticed that UAV
motion and dynamical equations have been determined as X
form.
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It is remarked that s(.) and ¢(.) are abbreviated from sine
and cosine, respectively. Moreover, is the velocity of the
UAV rotor, b is the thrust coefficient, m is the mass of the
UAV and also, g defines gravity.

The above equations have been used to find optimal
control parameters for the Webots simulation environment.
In this paper, IT2-FPID has been used and implemented
into the defined UAV as a high-level controller. To find
optimal parameters of the controller, the Big-Bang Big-
Crunch algorithm has been used [10] and the tuned parameter
has been shown in Table. 1.

TABLE I
THE OPTIMISED IT2-FPID CONTROLLER PARAMETERS

Ke Kq Ko K1 el ¢
0.0034 0.003 0.001 65 025 0.5

IT2-FPID

In Fig. 5, Webots simulation environment has been repre-
sented. The selected area is the golf zone in the University
of Idaho. The selected UAV have had pesticide spraying
tasks in this area. For spraying, coverage path planning
(CPP) has been applied and each point has been generated
as reference signals. In Fig. 5, pesticide spraying area and
designed coverage path planning have been shown.

In Fig. 6, the simulation results of the pesticide spraying
have been plotted. When focusing one of edges on CPP,
the proposed method, PCA-MCKF, has the most accurate
results in terms of tracking the reference. Also, without PCA,
MCKEF is better than both KFs.

C. Performance Results

The designed numerical and simulation environments have
been tested 100 times repeated independently. After that,
root mean square (RMSE) values have been calculated as
performance criteria. In Table II, the performance results and
computation times have been represented. The results show
that PCA-MCKF and MCKF have better results than PCA-
KF and KF under dependent noise and mixed distributions.
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Fig. 6. Simulation Results on Webots Simulation Environment

Both simulation parts, PCA-MCKF is three timeS better
accuracy than PCA-KF and four times better than KF.
However, computation time is a big problem for MCKFs.
PCA-MCKEF is the slowest and it is slower three times than
KF

TABLE II
TEST RESULTS OF KF AND PCA-MCKF

Model Webots Computer (Matlab)
Time RMSE Time RMSE
MCKF 7850 sec  0.198 6880 sec 0.137
KF 3250 sec 0.415 2415 sec 0.328
PCA-MCKF 9615 sec 0.113 7530 sec 0.068
PCA-KF 3580 sec  0.365 2865 sec 0.343

V. CONCLUSION AND FUTURE WORKS

This paper addresses challenges in agricultural unmanned
aerial vehicles (A-UAVs), particularly in low-altitude flight
control and accurate position estimation essential for cov-
erage path planning. The focus is on handling coloured
noise, specifically noise dependent on the previous value and
influenced by factors like wind disturbance and GPS sensor



acceleration. The proposed solution involves a PCA-based
maximum correntropy Kalman filter (MCKF) to enhance
stability, mitigate oscillations, and address uncertainties. The
method is compared with traditional Kalman filter (KF),
PCA- KF, and PCA- MCKEF. The study involves the design of
four rotor-wing UAVs with linear and nonlinear dynamical
models, and a Fuzzy PID controller is chosen as the in-
telligent control method. Constant acceleration and constant
velocity manoeuvre models are employed for estimation
to simplify model effects and reduce computation time.
Performance criteria are evaluated using root mean square
error, and real-time simulations in the Webots environment
demonstrate that the proposed PCA- MCKF outperforms
other methods, showcasing its potential for improving ac-
curacy in agricultural UAV applications.
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