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ABSTRACT. We study random permutations corresponding to pipe dreams. Our main model
is motivated by the Grothendieck polynomials with parameter 5 = 1 arising in the K-theory
of the flag variety. The probability weight of a permutation is proportional to the principal
specialization (setting all variables to 1) of the corresponding Grothendieck polynomial. By
mapping this random permutation to a version of TASEP (Totally Asymmetric Simple Exclusion
Process), we describe the limiting permuton and fluctuations around it as the order n of the

permutation grows to infinity. The fluctuations are of order n3 and have the Tracy—Widom
GUE distribution, which places this algebraic (K-theoretic) model into the Kardar—Parisi-Zhang
universality class. As an application, we find the expected number of inversions in this random
permutation, and contrast it with the case of non-reduced pipe dreams.

Inspired by Stanley’s question for the maximal value of principal specializations of Schubert
polynomials, we resolve the analogous question for f = 1 Grothendieck polynomials, and provide
bounds for general 8. This analysis uses a correspondence with the free fermion six-vertex model,
and the frozen boundary of the Aztec diamond.

1. INTRODUCTION

1.1. A story from Algebra to Probability. Algebraic Combinatorics established itself as
a field that uses combinatorial methods to understand algebraic behavior in problems ranging
from Group Theory to Algebraic Geometry. It started with stark exact formulas, like the cele-
brated hook-length formula for the dimension of irreducible modules of the symmetric group Sy;
beautiful interpretations, such as the Littlewood—Richardson rule for the structure constants of
representations of the general linear group GL,; powerful and intricate bijections, such as the
Robinson—Schensted—Knuth correspondence. However, exact answers only go so far, leaving room
for questions like “approximately how many”, “what are the typical objects”, and “what is the
typical behavior”. These questions lead us into the realm of Asymptotic Algebraic Combinatorics,
which aims to answer them with the help of tools originating outside of Combinatorics. In the
present work, we employ Integrable Probability, a rapidly evolving field focused on developing
and analyzing interacting particle systems and random growth models possessing a certain degree
of structure or symmetry. The arising probabilistic models exhibit rich structure leading to new
permutons representing the typical permutations. The connection between the algebraic model
and statistical mechanics is multi-fold via a correspondence between the so-called bumpless pipe
dream models for Schubert/Grothendieck and the six-vertex model. The well studied free fermion
six-vertex model and the frozen boundary of the Aztec diamond are key to understanding the
maximal permutations.

On the algebro-combinatorial side, many significant questions concerning exact formulas and
combinatorial interpretations in the cohomology and K-theory of the flag variety remain open.
Understanding their asymptotic behavior is thus even more natural. Stanley [Stal7] asked the
most basic question on the principal specializations of Schubert polynomials &,, (representing
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cohomology classes of the flag variety): does the following limit exist

i 1
nh_r}rolo 3 log, ggg)ﬁ Guw (1, e 1),
n

and if so, what is it and for which permutations w is this achieved. This question (including the
existence of the limit) is still open. In [MPP19], a lower bound of about 0.29 was established for
layered permutations. An upper bound of about 0.37 comes from a remarkable connection with
Alternating Sign Matrices and the six-vertex model (see Remark 6.8). As we shall see later, this
question has an even more interesting interpretation from the Probability /Statistical Mechanics
side as it is asking for the asymptotic growth of the energy in a model with long-range interactions
(pipes are not allowed to cross more than once), and for such models no general tools are known.

A natural one-parameter generalization of Schubert polynomials are the Grothendieck poly-
nomials Qﬁ’g, which represent K-theoretic classes of the flag variety. Extending Stanley’s ques-
tions, we would like to understand the asymptotic behavior of maximal principal specializations
maxyes, G (1") of Grothendieck polynomials. This question was first touched on in [MPP22],
[Den22]. Establishing a family of such maximal permutations would shed light on the Schubert
questions as S — 0, as well as on the corresponding long-range interaction model.

Thanks to a combinatorial model for Grothendieck and Schubert polynomials, these questions
have very natural statistical mechanics interpretations. Namely, both polynomials are partition
functions of tilings into crosses and elbows of a size n triangle (staircase) shape, which result
in a configuration of n “pipes”. Such pipe configurations are often called pipe dreams. In the
Schubert case, the only valid tilings are the ones where no two pipes cross more than once. This
is a global (long-range interaction) condition, which makes the model much less tractable. In the
Grothendieck case for 8 = 1, all tilings are allowed, but the pipes must be resolved (reduced)
to obtain a permutation. One of the key ideas leading to our analysis is that this model can be
mapped to a colored stochastic six-vertex model (and furter to TASEP, the Totally Asymmetric
Simple Exclusion Process). The resulting interacting particle systems have only local (short-
range) interactions, and are amenable to techniques from Integrable Probability.

In this work, we investigate the asymptotics of the typical B = 1 Grothendieck random per-
mutations and characterize their limit shape which is described by a permuton. We also study
fluctuations of Grothendieck random permutations around the limiting permuton. They are of
order n3 and asymptotically have the Tracy—Widom GUE distribution. This distribution was
first observed in the fluctuations of the largest eigenvalue of Gaussian random matrices with
unitary symmetry. By now, having Tracy—Widom fluctuations is an indication that a model is
within the Kardar—Parisi-Zhang (KPZ) universality class [Cor12], which includes a wide range
of random growth models and interacting particle systems. We also derive the expected number

of inversions, which are of order n?.

We also study the natural, yet not as algebraically motivated, model, where the staircase is
tiled with crosses with probability p and elbows with probability 1 — p, and the pipes follow the
tiles without any reductions or reassignments. Using simple random walks, we show that the
resulting random permutation is close to the identity, and, moreover, that the total displacement
S |i —w;| and length (number of inversions) of this permutation are of order n%2. This was
motivated by, and partially resolves, an open problem of Colin Defant.

Returning to the original question, we investigate the asymptotics of max,eg, 65(1"). When

B = 1, this maximum is known to be 0(2(;)) Using the correspondence with 2-enumerated
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Alternating Sign Matrices (equivalently, the six-vertex model with domain wall boundary condi-
tions and free-fermion weights; or the model of uniform domino tilings of the Aztec diamond),
we show that a large family of layered permutations also achieve this asymptotic maximum. For
general 3, we establish certain bounds for the maximal principal specialization.

1.2. Pipe dreams and permutations. We denote by S, the set permutations of {1,2,...,n}
that we write in the one-line notation w = wjws - - - w, unless indicated otherwise. We also denote
the image of ¢ under w by w(i), and use the notation w; = w(i) interchangeably when this does
not lead to confusion. The longest permutation nn — 1...21 is denoted by wg = wpy(n). For
a permutation w of length ¢, we denote by R(w) the set of reduced words of w, that is, tuples
(r1,...,7¢) such that s, ---s,, is a reduced decomposition of w, where s; = (4,7 + 1) are the
simple transpositions.

Grothendieck polynomials can be defined combinatorially via pipe dreams (equivalently, rc-
graphs), as partition functions of the following model.

A pipe dream of order n is a tiling of the staircase shape (having n — 1 boxes in the first row,
n— 2 boxes in the second row, and so on, with boxes left-justified) by tiles of two types: bumps VA
and crossings HH. The n-th diagonal below the staircase is equipped with half bumps V] (whose

boundary we do not draw). Each of the boxes can have a tile of any type, so there are 2(3) pipe
dreams of order n. See Figure 1, left, for an example of a pipe dream of order 6.

2 1 1 5

/.

4 4

J —/

FI1GURE 1. Left: A pipe dream D of order 6. Right: A reduction of the pipe dream leading
to the permutation w(D) = 241653. The right image appears in color online. Dashing is
added for the printed version and accessibility.

A pipe dream (a tiling of the staircase shape) forms a collection of strands (or pipes) labeled 1
to n from the row where they start. A pipe dream is called reduced if any two pipes cross through
each other at most once.

Definition 1.1 (Reduction of a pipe dream). Given a pipe dream D that is not necessarily
reduced, the reduction of D is a unique reduced pipe dream D’ obtained as follows: starting at
the bottom left tile traverse the pipe dream upwards along columns and to the right. For each
encountered crossing, replace it with a bump if the pipes have already crossed in the already
traversed squares. The labeling of pipes together with a reduction is indicated by colored paths
in Figure 1, right.
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Definition 1.2 (Permutation from a pipe dream). One can associate a permutation w(D) € Sy,
to a pipe dream of order n as follows. If D is reduced then w(D)j_1 is the column where the pipe

j ends up in.! Equivalently, the column j contains the exiting pipe of color w(D);. Note that to
capture the column number for the pipe j, we need the inverse permutation w(D)™!.
If D is not reduced, then w(D) is the permutation associated to the reduction D’ of D.

Remark 1.3. Alternatively, the permutation w(D) from a non-reduced pipe dream can be defined
using the Demazure product [Dem74]. Namely, for an elementary transposition s; = (i,i+1) (with
1 <i<n-—1)and a permutation w € S,,, the Demazure (or 0-Hecke) product is defined as

6w {wsi, if l(ws;) > l(w), (11)

w, otherwise.

Here £(-) is the length of a permutation, that is, its number of inversions.

To each cross in D, associate a transposition s;. Reading from the bottom left to top right,
we obtain a (not necessarily reduced) word. For example, the pipe dream in Figure 1, left,
corresponds to the word s55553545152545554. Replacing this product of elementary transpositions
by the Demazure product, we obtain the permutation w(D)~!. For our example, the Demazure
product is

S5 % S5k S§3 K S4 Kk S1 X 89 * S4 * S5 * S4 = S55251545355 = 316254,

which is the inverse of w(D) given in Figure 1, right.

Let PD(n) and RPD(n) be the sets of pipe dreams and reduced pipe dreams of size n. For
each w € S, let PD(w) and RPD(w) be, respectively, the sets of pipe dreams and reduced

pipe dreams D such that w(D) = w. Note that # PD(n) = 2(3), whereas there is no simple
known formula for # RPD(n) [OEI, A331920]. Given a pipe dream D, let cross(D) be the set of

coordinates (i, ) of the cross tiles. The weight of D is the monomial wt(D) := [] x;.

For example, for the pipe dream in Figure 1, left, we have wt(D) = x?x%x%m%.

The nonsymmetric Grothendieck polynomials generalize the Schubert and the Schur polyno-
mials, and capture the K-theory of the flag variety. They can be defined or interpreted in a
number of ways, including via divided difference operators [Las90], see Section 1.3, pipe dreams
[BBY3], bumpless pipe dreams [Wei21], [LLS23], and solvable lattice models [BFH23], [BS22].
We can also define them as the partition functions of this model, via the the following result due
to [FK96], [FK94], and [BB93].

i,j)Ecross(D)

Theorem 1.4 (Grothendieck polynomials as sums over pipe dreams). For any w € S, we have

O (w1, an) = Y pFeesDITWgy(D), (1.2)
DePD(w)

In particular, setting 8 = 0 forbids non-reduced pipe dreams, so the Schubert polynomial is

Gu(x)= Y  wt(D). (1.3)

DERPD(w)

1Throughou‘c the paper, the column coordinate j increases from left to right, and the row coordinate i increases
from top to bottom.
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1.3. The origins of Grothendieck polynomials. The (single) Grothendieck polynomials were
introduced by Lascoux and Schiitzenberger [L.S82], [Las90] to study the K-theory of flag varieties.
Their original recursive definition is as follows. Let m; : Z[f][x] — Z[F][x] denote the isobaric
divided difference operator:

mif e & BT) f = (L= Bri)si- |

T — Ti41

where s; acts on a polynomial f by permuting z; and x;11. The Grothendieck polynomials QSQBU
are recursively determined by the following conditions:

e For the longest permutation, we have 65;0(71) = m’fflmgd c T

e Forallwe S, and i =1,...,n— 1 such that £(ws;) = £(w) + 1, we have &% = m;B5, .

Setting 8 = 0 in (’55}, we obtain a Schubert polynomial &,, which represents cohomology classes
of Schubert cycles in the flag variety [BGGT73], [Dem74], [LS82]. Note that some authors use the
parameter (—/) instead of 5. Our choice of the sign of 3 is dictated by having positive coefficients
in combinatorial formulas for the Grothendieck polynomials.

1.4. Grothendieck random permutations from reduced pipe dreams. Fix p € [0,1].
Equip the set of all pipe dreams with a probability measure by independently placing the tiles in
each box:

HH with probability p, E with probability 1 — p. (1.4)

In particular, for p = %, we have the uniform measure on the set of pipe dreams.

By reducing this random pipe dream as in Definition 1.1, we obtain a random permutation
w € S, which we call the Grothendieck random permutation (of order n and with parameter p;
we suppress the dependence on n and p in the notation). The name is justified by a connection

with the polynomials 055:1. Indeed, we have for any w € S,,:

Pw=w)= pCf°SS<D><1—p>elb°W<D>=<1—p><3>®5,1(1f S ) (L5)
DePD(w) p p

where the first equality is simply the definition of the measure (1.4), and the second immediately
follows from Theorem 1.4 with § = 1. In Section 6.2 below, we explain how the same distribution
on permutations arises from the six-vertex model with domain wall boundary conditions and
free-fermion weights (corresponding to 2-enumeration of Alternating Sign Matrices).

When p =0 or p = 1, we almost surely have w = id or w = (n,n—1, ..., 1), respectively. These
cases are trivial, and in the rest of the paper we assume that p € (0,1). Individual samples of
Grothendieck random permutations with p = % and p = % and a plot constructed from averaging
over many samples are given in Figure 2.

1.5. Asymptotics of Grothendieck random permutations. For w € S, define its height
function by

H(z,y) = # ({w_l(a;),w_l(x +1),.. .,w_l(n)} N{y,y+1,... ,n}) ,

where 1 < z,y < n. In terms of the pipe dream as in Figure 1, right, H(z,y) is the number of
pipes of color > = which exit through the positions > y at the top. In the example in Figure 1,
right, we have H(4,3) = 2. See also Figure 5 for an interpretation in terms of the permutation
matrix of w, where H(x,y) gives the number of 1s in the rectangle with lower left corner at (x,y).
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F1GURE 2. Left and center: A sample of a Grothendieck random permutation of order
n = 2000 with p = % and p = %, respectively. Right: An average of Grothendieck random
permutations with n = 2000 and p = % over 2000 samples. We take a sum of permutation
matrices, and coarse-grain the result into 8 x8 blocks. The plot is the heat map of the resulting
matrix, which approximates the Grothendieck permuton. The C code for these simulations is

available on the arXiv as an ancillary file. An interactive simulation is available at [Pet25].

Let now w € S, be the Grothendieck random permutation with parameter p € (0,1) which
we assume fixed. This makes the height function H(z,y) random, too. We show that H(z,y)
satisfies the law of large numbers, and characterize its asymptotic fluctuations:

Theorem 1.5. 1. There exists a limiting height function h® such that
lim n~ ! H([nx), [ny]) =h°(xy),  (xy) €[0,1]%
n—oo

where the convergence is in probability. The function h°(x,y) is explicit, see (4.5). It is
continuous and depends only on p. The graph of h® is given in Figure 10, right.
2. The fluctuations of H(x,y) around h® belong to the KPZ universality class:

. H(|nx], [ny]) —nh®(x,y)
lim P ( v(xy) pYE

where Fy is the cumulative distribution function of the Tracy—Widom GUE distribution, and
v(x,y) is given in (4.16).

§7°) = Fy(r), r € R,

n—oo

Theorem 1.5 justifies the simulations in Figure 2. We prove it in Section 4 by realizing H (x,y)
as an observable of a discrete time TASEP with parallel geometrically distributed jumps started
from the densely packed (step) initial configuration. Here we omit the technical details of this
coupling, and refer to Theorem 3.2 in the text. By employing known techniques from Integrable
Probability and passing back to the Grothendieck random permutation, we obtain the limit shape
and fluctuations.

The law of large numbers in the first part of Theorem 1.5 means that the Grothendieck
random permutations w € S, converge to a deterministic permuton. Recall that permutons
are Borel probability measures p on [0,1]? with uniform marginals, that is, p ([0, 1] x [a,b]) =
w([a,b] x [0,1]) = b — a. For details on permutons and their connection to pattern frequen-
cies in permutations, we refer to [HKM™13], [BBF*20], and the survey [Grii24]. Our limiting
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Grothendieck permuton is completely determined by the limiting height function via

p (1] x [y, 1]) = h°(x,y).

Note that the “complementary” function pu ([0,x] x [0,y]) is often referred to as copula in the
literature, cf. [Grii24]. Our limiting permuton has a singular part, that is, a positive portion of
its mass is concentrated along the curve

&= {(0y): (y =x?*/p+(y+x—1?/1-p) =1 1-p<x<1} 0,1

The total mass supported on this curve is equal to (Proposition 4.4)

1—
Ypi=1—4/ pp arccos \/1 — p. (1.6)

As a corollary of the permuton convergence of Theorem 1.5, one can also obtain laws of
large numbers for arbitrary pattern counts in Grothendieck random permutations. The simplest
example is the number of inversions:

jus

In particular, v1 =1~ 7

Proposition 1.6 (Proposition 4.5). Let w = w(n) € S,, be the Grothendieck random permuta-
tions with a fized parameter p € (0,1). We have

. inv(w(n))
lim —— 2 — 1.7
oo (1) K (1.7)

where 7y s given by (1.6).

The fact that the scaled number of inversions converges to 7,, the singular part of the Grothen-
dieck permuton, is surprising. Besides exact computations given in Section 4.2, we do not have
a conceptual explanation for this phenomenon.

Remark 1.7. In Sections 6.1 and 6.2, we connect Grothendieck random permutations to 2-
enumerated Alternating Sign Matrices (bijectively corresponding to the six-vertex model with
domain wall boundary conditions and free-fermion weights, and also to domino tilings of the Aztec
diamond). The connection between Grothendieck polynomials and the six-vertex model goes back
to [Las02], see also [Wei2l]. Equivalences between 2-enumerated Alternating Sign Matrices, six-
vertex models, and domino tilings of the Aztec diamond are well-known in statistical mechanics
and integrable probability, see, for example, [CEP96], [CKPO01], and [EKLP92], [ZJ00], [FS06].

Via this connection, our asymptotic results (Theorem 1.5) can be recast as results about a
random permutation coming from the free-fermion six-vertex model with domain wall boundary
conditions. Moreover, there is a vast amount of asymptotic results about domino tilings and
free-fermion six-vertex models, and in Section 6.2 we show how some of them lead to further
asymptotic properties of Grothendieck random permutations.

1.6. A deformation and random non-reduced pipe dreams. Let us discuss a deformation
of the Grothendieck random permutation by means of a new parameter ¢ € [0,1]. Take a pipe
dream of order n obtained by randomly placing the tiles in the same way as in (1.4) (depending on
p € (0,1)). However, instead of reduction (Definition 1.1), let us apply a modified (g-randomized)
procedure:

Definition 1.8 (¢-Reduction of a pipe dream). Assume that D is a pipe dream that is not
necessarily reduced. For each crossing tile, consider the incoming pipes. There are two cases:
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e If the lower colored pipe enters from the left (and the higher colored one from the bottom),
then the pipes cross through each other with probability 1.

e Otherwise, if the lower colored pipe enters from the bottom (and the higher colored one from
the left), then the pipes cross through each other with probability ¢. That is, with probability
1 — g we replace the crossing with a bump.

The random g¢-reduction steps are done independently at each crossing tile when reading the
staircase diagonal by diagonal starting from the bottom left. See Section 2.2 below for a detailed
definition of the Markov process for ¢ = 0, which has the same order of reduction steps. Denote
the random permutation obtained by the ¢-reduction of a random pipe dream with the measure
(1.4) by w(@ € S,,. See Figure 3 for simulations.

Remark 1.9. For ¢ = 0, the g-reduction procedure becomes the usual reduction from Defini-
tion 1.1. For ¢ > 0, the g-reduction no longer tracks whether the pipes have crossed before.
Instead, it simply applies the local ¢-reduction rule at each crossing tile, based on the relative
colors of the incoming pipes.

Remark 1.10. The g-reduction of a pipe dream can be viewed as applying the ¢g-Hecke product
instead of the Demazure (0-Hecke) product as in Remark 1.3. Now, instead of the symmetric
group S,, we need to pass to the corresponding (Iwahori-)Hecke algebra H,(q), and the g¢-
reduction of a pipe dream becomes a linear combination of the Hecke elements T, corresponding
to various permutations w € S,,. By choosing the Hecke product in a “stochastic” way (as in
[Buf20]), namely,

T T — (1—=q) Ty + qTws,, if lL(ws;) > L(w),
s Tow, otherwise,

the linear combination of the elements T, becomes convex, and thus corresponds to a probability
distribution on S,,. This distribution is the law of the inverse (w(®)=1,

The asymptotic analysis of w(? for ¢ € (0,1] may be performed similarly to the case ¢ = 0.
The underlying particle system is a certain g-deformation of TASEP which allows both left
and right jumps (governed by different rules). Setting ¢ = 1 removes the asymmetry, which
changes the normalization in the law of large numbers and fluctuations (as well as the fluctuation
distribution). This behavior parallels the different scales of laws of large numbers in the KPZ and
the Edwards—Wilkinson (EW) universality classes. The KPZ class asymptotics arise in TASEP
and its asymmetric deformations, while symmetric versions of TASEP fall into the EW class. We
refer to [Cor12] for a detailed discussion of these two universality classes.

In this paper, we mainly focus on the case ¢ = 0, and obtain results outlined in Section 1.5.
In Section 5, we also treat the case ¢ = 1. In the latter model, the g-reduction does not change
the pipe dream at all. Probabilistically, this is the most natural way to associate a permutation
to a random pipe dream with distribution (1.4). On the other hand, the ¢ = 1 model apparently
lacks a rich algebraic underpinning.

Finding the asymptotic number of inversions of w) = w()(n) € S, as n — oo was posed as
an open problem by Colin Defant at the Richard Stanley’s 80th birthday conference.? We show
the following asymptotics:

2Conference “The Many Combinatorial Legacies of Richard P. Stanley: Immense Birthday Glory of the Epic
Catalonian Rascal,” https://www.math.harvard.edu/event/math-conference-honoring-richard-p-stanley/.

Accessed: 07/23/2024.
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Theorem 1.11 (Theorem 5.4 and Proposition 5.6). For p € [0,1) and any € > 0, the expected
number of inversions satisfies for all sufficiently large n:

%(1 _ 5)n3/2 llp%p < E[inv(w(l)(n))] < %(1 + 5)713/2, / 1’%}9 (1.8)

Moreover, the random permutations W(l)(n) converge in distribution to the identity permuton
supported on the diagonal of [0,1]%.

Based on simulations (see Figure 3 for examples) and supporting numerics, we make further
conjectures about the behavior of w(®@. (1.8):

Conjecture 1.12 (Conjecture 5.5; settled in [Def24]). For any p € [0,1), we have convergence

in probability:
n=3% inv(wM) = 5, llL, n — oo,
-P

where s is a constant independent of p whose value is near 0.53.3

Theorem 1.11 implies that s (if it exists) must satisfy 2/(3/7) < » < 4/(3y/7), and the
approximate value 0.53 is conjectured based on numerical data.

We also expect that as p = p(n) — 1 with n, the random permutations w()(n) converge
in distribution to a nontrivial deterministic permuton (which depends on the speed and the
parameters in p(n) — 1).

In the intermediate cases g € (0,1), let H@(x,y) be the height function of w(%), defined in the
same way as in Section 1.5 above.

Conjecture 1.13. For any fized p,q € (0,1), the random permutations w'?(n) € S,, converge
to a permuton determined by a height function h(@(x,y) on [0,1]2. That is, we have the limit in
probability:

lim nilﬂ(q)(LnxJ, Iny|) = h(q)(x,y), (x,y) € [0,1]%

n—oo

Fluctuations of H(@ (z,y) around h(@ should be governed by one of the laws appearing in

the KPZ universality class in the presence of a boundary (Tracy—Widom GUE distribution, its
GOE/GSE counterparts and crossovers, or Gaussian fluctuations on scale n'/?). We refer to
[BBCS18], [BBCW18] for further discussion of fluctuations in half-space models from the KPZ
universality class.

1.7. Asymptotics and maxima of Grothendieck principal specializations. We are inter-
ested in the following principal specializations of the Grothendieck polynomials:

Tow(B) = &5 (1,1,...,1), w € Sy. (1.9)

n
In particular, T, (0) is the principal specialization of the Schubert polynomial. For 5 = 1, these
quantities are the (unnormalized) probability weights of the Grothendieck random permutation w
with p = 1, see (1.5).
Set
vn(B) =D Tu(B),  un(B) = max Tu(B). (1.10)
wESH "

2v/2

3After this article appeared on the arXiv, Defant settled this conjecture in [Def24] and showed that » = ——.

3y
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FIGURE 3. Simulations of w(?, from left to right: (1) An average over 2000 samples with
n = 1000, p = 0.7, and ¢ = 0.5. We see curved boundary in the top right, similarly to
g = 0. (2) An average over 2000 samples with n = 1000, p = 0.5, and ¢ = 1. The random
permutation w(? is close to the identity (and converges to it, see Theorem 1.11). (3) An
average over 2000 samples with n = 1000, p = 0.9985, and ¢ = 1. The permutation has a
positive mass close to the anti-diagonal. (4) A single sample with n = 1000, p = 0.9985, and
q = 1, with the anti-diagonal clearly visible. The latter two simulations suggest a permuton
limit as p = p(n) — 1. The C code for these simulations is available on the arXiv as an
ancillary file.

From Theorem 1.4, we have:
on(1) =20), (1) =23)en g (1.11)
The first equality is exact, while the second one is asymptotic. This asymptotic behavior follows
from the cardinality n! ~ e?logn+0(n) « 2(3) of the set over which we take the maximum.
For u € Sk, w € Sy, we denote

uxw:=(u(l),...,u(k),wd)+k,...,w(m) + k) € Sktrm. (1.12)

For a composition b = (by,...,b1) of n = by + --- + by, the layered permutation w(b) € S, is
defined as follows:

w(b) = wo(be) x - -+ x wo(b1), (1.13)
where wy(k) is the full reversal permutation of order k. Denote by L, C S,, the subset of layered
permutations, and let

1Y
u, (1) = max Tu(1). (1.14)

In Section 6.4, we prove that on layered permutations, the 5 = 1 Grothendieck polynomials
attain their asymptotic maximum:

Theorem 1.14 (Theorem 6.16). There are sequences of layered permutations w(b™) € S, so

that ) )
lim ) IOgQ Tw(b("))(l) = —.

n—oco N 2

Theorem 1.14 implies that in leading order, ], (1) asymptotically behaves in the same way as
vp(1) and wu,(1) (1.11).

Explicit constructions of such sequences of layered permutations are given in Theorem 6.16.
In particular, we can take the parts of the compositions b(™ = (...,b2,b1) to be geometric
b; ~ (1 —a)a’tn for any a € [1/v/2,1). See Figure 4 for an illustration. Note, however that we
do not know in the limit what compositions b of size n yield the global maximum of T, over all
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b b f(n)

4 2 0.175460

8007 6 2 0.215599
9 3 0.279931

13 4 0.328982

600 19 6 0.375242

27 8 0.406540
39 12 0.433385
55 16 0.450935
78 23 0.464651
110 32 0.474448
156 46 0.481823
200 220 64 0.486974
311 91 0.490735
439 128 0.493404
621 182 0.495329
: e pa 500 800 877 256 0.496684

400 A

FIGURE 4. Left: Permutation matrix of a layered permutation w(b) € Ss77, where the com-
position is b = (256,182, 128,91, 64, 46, 32, 23,16, 12,8,6,4,3,2,2,1,1). Note that b;/bi41 ~
1/4/2. Right: Table of exact values for 3 < k < 19 of layered permutations w(b) with
bi/biy1 ~ 1/v/2. The third column is f(n) = n% logy Ty (1), where n =3, b;.

layered permutations. For Schubert polynomials, the analogous question was settled in [MPP19].
We present numerics for principal specializations of the § = 1 Grothendieck polynomials in
Appendix A, and explain the difference between the (numerically) optimal layered permutations
and the ones constructed in the proof of Theorem 6.16.

Regarding Stanley’s problem on permutations achieving the maximal Schubert specialization
un(0) (the case § = 0), the Merzon-Smirnov conjecture [MS16] states that the mazimum is
attained on layered permutations. On one hand, our Theorem 1.14 establishes that an asymptotic
analog of this conjecture holds for the § = 1 Grothendieck polynomials. On the other hand,
the typical shape of Grothendieck random permutations (Figure 2, center and right; see also
Theorem 1.5) suggests that the global maximum w,(1) may be achieved on permutations whose
shape is far from layered. In Section 6.5, we obtain new bounds on the quantities v, () and w, ()
for general values of 8, but do not consider the relation of maximal principal specializations to
layered permutations.

1.8. Outline. In the Introduction, we defined the model and formulated our main results. In
Section 2, we explain how the Grothendieck random permutation w from Section 1.4 is sampled
by running a Markov chain, more precisely, the colored stochastic six-vertex model. In Section 3,
we connect the vertex model to a discrete time TASEP with parallel update and geometrically
distributed jumps. This process is well-studied within Integrable Probability, which leads to law
of large numbers and Tracy—Widom fluctuation results. In Section 4, we recast the asymptotic
results about TASEP into limiting properties of Grothendieck random permutations. In Sec-
tion 5, we consider a variant of our model coming from non-reduced pipe dreams (described in
Section 1.6). In Section 6, we address the question of asymptotics of principal specializations
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of B = 1 Grothendieck polynomials, and show that they are asymptotically the largest on lay-
ered permutations. We also obtain new bounds on the principal specializations for general [,
based on an interpretation of Grothendieck polynomials in terms of Alternating Sign Matrices.
In Section 7, we discuss further directions and a few open problems.

In Appendix A, we provide tables of maximal principal specializations of 8 = 1 Grothendieck
polynomials on layered permutations. In Appendix B, we provide the steepest descent computa-
tions leading to the asymptotics in TASEP. While these computations are standard by now, we
include them to justify the exact values of the constants in TASEP limit shape and fluctuations.
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2. FROM PIPE DREAMS TO THE COLORED STOCHASTIC SIX-VERTEX MODEL

2.1. Colored stochastic six-vertex model. Introduce the vertex weights

wp(a,b;c,d) = wp( bi|—d ),

where a,b,c,d € {0,1,...,n}. Here 0 represents the absence of a pipe, and positive numbers
indicate the pipes’ colors. We view (a, b) and (¢, d) as incoming and outgoing pipes, respectively.
The weights are defined as follows:

wp(a,a;a,a) =1;

wp(b,a;b,a) = p, wp(b,a;a,b) =1 —p; (2.1)

wp(a,b;a,b) =0, wp(a,b;b,a) =1,
where 0 < @ < b < n. The weights of all other configurations not listed in (2.1) are zero. Let us
indicate a few crucial properties of the weights:
e The weights conserve the pipes: wpy(a,b;c,d) = 0 unless {a,b} = {c,d} as sets.
e The weights are stochastic:

n
wp(a,b;e,d) >0, Z wp(a,b;c,d) =1 for all a,b.
¢,d=0
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Remark 2.1. The weights w, come from the fundamental stochastic R-matrix for the quantum

group Uy (5@) [Jim86], see also [BW22, Section 2.1] for a brief overview. For the application to
random pipe dreams, we specialize the quantum parameter q to zero (equivalently, to infinity in
the normalization of [BW22] — this choice depends only on the order in which colors correspond
to basis vectors of the fundamental representation of sl,,11). The remaining parameter p is related
to the spectral parameter in an integrable vertex model.

2.2. Matching random pipe dreams to the stochastic vertex model. Attach coordinates
(i,7) € Zél to boxes of the staircase shape, with 7 increasing down, and j increasing to the right.
The staircase shape is then &, = {(4,7): i + j < n}.

Place a stochastic vertex with the weight w, at each box (i, j) € §,,. Let the initial condition
along the left boundary of ,, be the rainbow one, with colors 1 to n from top to bottom. Then
we can sample a random configuration of pipes as in Figure 1, right, by running a discrete time
Markov chain with time 7 = j — 4, where —(n — 1) < 7 < n — 1. At each step 7 — 7+ 1, the
configuration with j—i < 7 is already sampled, which determines the incoming colors at all boxes
(i,j) € &, with j —i = 74+ 1. The next step 7 — 7 + 1 consists in an independent update of
the outgoing colors at all boxes (i,j) € 8, with j —i = 7+ 1, using the stochastic vertex weights
wp(a,b;-,-) (2.1), 1 < a,b < n. Here we view each wy(a,b;-,-) as a probability distribution on
possible outputs, (a,b) or (b,a). Reading off the outgoing colors at the top boundary of §,,, we
arrive at a random permutation w € S,.

Proposition 2.2. The random permutation w € S, obtained from the colored stochastic siz-
vertex model as described above has the same distribution as the Grothendieck random permutation
defined in Section 1.4.

Proof. The Markov evolution of the stochastic vertex model is equivalent to a simultaneous ex-
ploration of a random pipe dream (that is, determining the state HH or PA at each box), and its
reduction by following the pipes. Indeed, in the evolution of the stochastic vertex model, in each
box (i,7), two strands of different colors meet as incoming pipes. There are two possibilities:

e If the pipe of the lower numbered color is below, then these pipes have already met and crossed
through each other (which is allowed only once in a reduced pipe dream). Thus, regardless of
the state HH or P4 at (i,7), the pipes must bump off each other. In (2.1), this corresponds to
the vertex weight wy(a, b;b,a) =1, where 1 <a <b < n.

e If the pipe of the lower numbered color is to the left, then the pipes have not yet crossed
through each other (but they may have bumped off at an elbow). Then, we place the tile
HH or P4 at (i,7) with probability p or 1 — p, respectively. After placing the tile, the strands
deterministically follow the paths drawn on it. The choice of the tile is equivalent to using the
stochastic vertex weights w, (b, a;b,a) = p or wy(b,a;a,b) =1 —p, where 1 <a <b<n.

We see by induction that the vertex model (2.1) produces the same random permutation as
reducing the random pipe dream. [l

2.3. Height function and color forgetting. Let z,y € {1,...,n}. For a fixed pipe dream D
and the corresponding permutation w = w(D) (see Definition 1.2), define the permutation height
function as

H(z,y) = #{pipes of colors > x which exit through positions j > y at the top}

=# ({w (@), w Nz +1),..., 0 M)} N {y,y+1,...,n}). (22)
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Observe that H(z,y) depends only on the permutation w and not on the structure of crossings
and bumps in the pipe dream. For a fixed w, the function H (z,y) decreases in x and y. When the
pipe dream and the permutation w are random, the height function H(z,y) becomes a random
variable.

In the permutation matrix of w € Sy, H(x,y) is the number of entries in the rectangle [y, n] x
[z,7n]. Recall that the pipe of color i exits at w™!(i), so the rectangle is transposed. See Figure 5
for an illustration. This interpretation of H(x,y) implies that

H(z,y) < min(n — z,n —y). (2.3)

In colored stochastic six-vertex models, quantities like H(z,y) are referred to as colored height
functions, cf. [BW20].

e R S I
o

L
1 2 3 4 5 6

FIGURE 5. Permutation matrix of w = (2,4,1,6,5,3) coming from the pipe dream in Fig-
ure 1, right (dots indicate 1’s). The highlighted rectangle has H(4,3) = 2 entries.

Remark 2.3. The color-position symmetry [BB21] of the colored stochastic six-vertex model
implies that the distribution of H(z,y) corresponding to the Grothendieck random permutation
w is symmetric in z,y. Indeed, by the color-position symmetry, w and w~! have the same
distribution. Therefore,

= I)ITNED 55 SEMIE T}

Zl‘]y Zij

However, we can access the distribution of H(z,y) directly using color forgetting (Proposition 2.4
below), and do not rely on color-position symmetry.

Consider an uncolored (color-blind) stochastic vertex model with all pipes of the same color.
We indicate pipes and empty edges by 0 and 1, respectively. The weights of the color-blind model
are defined as

wy(0,0;0,0) =1, wp(1,1;1,1) =1,
wy(1,0;1,0) =p,  wp(1,0;0,1) =1~ p, (2.4)
wy(0,1;0,1) =0, wp(0,1;1,0) =1

Proposition 2.4. Fiz 1 < x < n. In the colored stochastic vertex model of Sections 2.1 and 2.2,
erase all pipes of colors < x, and identify all the remaining pipes for colors > x. The resulting

random conﬁgumtion of uncolored pipes evolves according to the color-blind stochastic vertex
model wy, (2.4).
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Proof. This is a standard property of the colored stochastic six-vertex model, see [BW22, Sec-
tion 2.4] and references therein. In interacting particle systems, this property is known as the
basic coupling, cf. [Lig76], [Lig05]. Let us provide an idea of the proof.

The crucial property is that the weights w, (2.1) depend only on the relative order of colors
of the incoming pipes, and not the actual colors. Therefore, when we identify all colors > x, the
resolution of the pipe crossings does not affect the behavior of the color-blind system. In detail,
one can consider four cases for the incoming pipes (a,b), 1 < a,b < n, depending on whether
a > = and/or b > x. The resulting probability distribution on possible outputs, (a,b) or (b, a),
depends only on these cases, and not on the actual values of a,b. These four cases correspond to

the color-blind incoming pipes in wy (2.4). O
By Proposition 2.4, the permutation height function H(z,y) can be identified with an observ-
able of the model wy with initial occupied configuration {z,z+1,...,n} along the left boundary

(that is, the sites {1,...,x — 1} are empty). Indeed, in this color-blind model, H(x,y) is simply
the number of pipes exiting through the top boundary at positions > y. We see that under the
color forgetting, the color parameter = in H (z,y) became a parameter of the initial configuration.

Remark 2.5. One can similarly forget the colors > x, and the resulting color-blind system evolves
according to different weights (obtained from wy by swapping 0 <> 1). It is more convenient for
us to work with the model wy, which we directly relate to an interacting particle system in the
next Section 3.2.

3. FROM VERTEX MODELS TO TASEP
3.1. TASEP with moving exit boundary.

Definition 3.1. Let k& > 1. Let £(¢) :=(&(t) > ... > &(t)) C Z be the k-particle discrete time
TASEP (Totally Asymmetric Simple Exclusion Process) having parallel updates and geometri-
cally distributed jumps. In detail, {(t), t € Z>o, is a discrete time Markov chain on particle
configurations in Z which at each time step ¢ — ¢ + 1 evolves as follows:

Gi(t+1) =&(t) + min (Gi(t +1),§-1(1) — &() — 1), 1<i<k, (3.1)
where G;(t 4 1) are independent geometric random variables with parameter p € (0, 1), that is,
P(Gi(t+1)=m)=(1-p)p", m € Zxo. (3.2)

The update (3.1) occurs in parallel for all particles 1 < i < k, that is, the new positions & (¢ + 1)
depend only on the configuration £(¢) at the previous time step, and new independent random
variables. By agreement, we have &y(t) = +o0, so that the first particle & (¢) performs an
independent random walk with geometrically distributed jumps. See Figure 6 for an illustration.

e

€4

L 2

&2 &1

FIGURE 6. One step of the TASEP with parallel updates and geometric jumps. Here the
independent geometric random variables could be G = 0, Go = 3, G3 = 1, G4 = 2 (there is
more than one choice of the G;’s leading to the same update). For these G;’s, the jumps of
&3 and &4 are blocked by the preceding particles.
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Start the TASEP from the densely packed (also called step) initial configuration {1,2,..., k},
that is, &(0) = k+1—14, 1 < ¢ < k. Fix n > k, and introduce a moving exit boundary which
starts at n + 3, and deterministically moves to the left with speed 1. The erit time of a particle
&i(t) is defined by

Texit (1) == min{t: §(t) > n+1—1t}. (3.3)
For example, if n = k, then the first particle starting at n exits at time ¢ = 1 (but have not exited
at the initial time ¢ = 0). The exit times are almost surely ordered:

1 < Toxit(1) < Toxie(2) < ... < Toie (k) < . (3.4)

Note that tor any n > k, all particles have exited the system by the time t = n. See Figures 7
and 8 for an illustration and simulations.

2~_ «——— moving exit boundary
510|®@ O @ @ O
1170 @ I& ® 6O
310 @ O|®@ @ O
:1+@® O @ O I ® O
1+@® @ O O @]|0O
o900 oo obh”
0
1 2 3 4 5 6

FiGURE 7. Left: Trajectory of TASEP with moving exit boundary for £k = 3 and n = 6.
Particles do not jump anymore after they exit (though the behavior beyond the boundary
is irrelevant). The exit times are Texit(1) = 2, Texit(2) = 3, and Teit(3) = 5. Right: A
fragment (close to the left boundary) of the simulation with n = 2000, & = 400, and p = 0.8.
The last particle £k (t) globally follows a nonlinear trajectory that is a quadratic parabola
near the point of tangence with the left boundary.

Integrability of TASEP with parallel updates, geometric jumps, and densely packed initial
configuration can be traced back to [VK86], see also [DMOO05], [DW08, Case C|, and [BF14]. We
recall the necessary integrability results in Section 3.3 below after connecting TASEP to vertex
models and Grothendieck random permutations in the next Section 3.2.

3.2. Identification with vertex models. Fix n and 1 < x,y < n. Recall the observables
H(z,y) defined by (2.2). That is, H(x,y) are random variables which are functions of the
Grothendieck random permutation (equivalently, of the colored stochastic six-vertex model). In
Proposition 2.4, we identified H (z,y) with observables of a color-blind vertex model with weights
wy (2.4).
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FiGURE 8. Simulations of TASEP with moving exit boundary for n = 200, p = 0.5, and
k = 110 (left) or £k = 70 (right). Particles beyond the diagonal exit boundary are not
shown. In both cases, the first particle £;(¢) (performing a random walk) globally follows a
linear trajectory. In the left simulation, the last particle & did not have time to move before
the exit boundary caught up with it. In the right simulation, the last particle & follows a
nonlinear trajectory. See also Figure 7, right, for a close-up in a larger simulation.

Theorem 3.2. Forany l <z, y<nand0 < h<n—x+1, we have
Pw(H(z,y) < h) =Prasep (Texit(n —z +1—h) <y —1)

(3.5)
= Prasep (bn—at1-n(y — 1) = n—y +2).

Here Py, corresponds to the Grothendieck random permutation of order n, and Prasgp is the
probability distribution of the TASEP with k = n — x + 1 particles and moving exit boundary. In
(3.5) we have, by agreement, Texit(m) = 0 and &, (t) = 400 for all m < 0.

Proof. The second identity in (3.5) immediately follows from the definition of the exit times (3.3).
Let us focus on the first identity.

By Proposition 2.4, let us consider the color-blind vertex model with £k = n — x + 1 identical
pipes entering the left boundary of the staircase shape 8, at locations {z,z+1,...,n}. The
event { H(z,y) < h} means that at most h of these pipes exit the top boundary at positions > y.
Note that the color-blind model has indistinguishable pipes, and thus the “resolution” of their
crossings does not change the behavior of the system (see the proof of Proposition 2.4 for more
detail).

View the horizontal coordinate j as time t = 0,1,...,n, and record the pipes’ coordinates as

771(t)<...<77k(t), t=0,1,...,n.

The initial condition is Nx—m+1(0) =n—m+1, 1 <m < k.

At each time step, according to the wp (2.4), each pipe first deterministically turns up. When
a pipe faces up, it can travel up a further distance distributed as a geometric random variable
with parameter p, see (3.2). However, during a time step t — ¢ + 1, each pipe 7, cannot travel



GROTHENDIECK SHENANIGANS 18

further than the previous pipe’ location 7,,—1(t) (this is the exclusion mechanism). When a pipe
stops moving up, it turns right and waits till the next time step. Once a pipe reaches the top
boundary, it exits the system. See Figure 9, left, for an illustration.

tl\

1+ 54+0

T ++0 @

51 3+O0 @ O
71— 1@ O @ O
o 1+1@® @ O O ©®

- PNIPNIPSE - N
M3 . . o7

" " ' ' —s " 2 3 4 5 6
v o234 s & & &

FIGURE 9. Left: The evolution of the uncolored pipes 7(t). Here n = 6 and x = 4, so k = 3.
At time t = 2, we have 12(2) = 2, 13(2) = 4, and the pipe 71 has exited before ¢t = 2. We
have H(4,3) = 2. Right: The evolution of the process £(¢) which is in bijection with the
pipe configuration on the left (that is, §,(t) = n+1—t — ny,(t)). In detail, a move of the
particle & by r > 0 steps corresponds to the pipe moving r + 1 steps up (at the same time
increment). Two pairs of corresponding moves are highlighted.

Setting &, (t) == n+1—t—mn(t), one readily verifies that the evolution of & (t) > ... > & (1) is
the same as that of the TASEP with kK = n — x + 1 particles defined in Section 3.1. In particular,
subtracting ¢ from n + 1 — 7,,,(¢) eliminates the deterministic up movement of the pipes by one
at each time step.

The top boundary for pipes (as in Figure 9, left) becomes the moving exit boundary for TASEP.
The event {H(x,y) < h} for pipes is equivalent to the event that at least k —h =n—x+1—h of
the TASEP particles have exited before time y— 1. Because the exit times are ordered as in (3.4),
we get the desired first identity in (3.5). O

3.3. Integrability of TASEP. Fix m >0, and let A = (A1 > ... > A, = 0) be a partition with
at most m parts. The Schur symmetric polynomial in m variables indexed by A is defined as

det [a;‘j tm=g |Ke

ij=1
det[a;" 17", ’

sx(at,...,am) =

where a; are variables. The denominator is the Vandermonde determinant [[,;;<,,(a;i — a;).

Let m,t > 1. The Schur measure [OkoO1] is a probability measure on partitions with at most
min(m, t) parts depending on parameters ai, . .., Gy, b1, ..., b;. Its probability weights are defined
as

m t
P(\) = H H(l —aibj) - sx(ar, ..., am)sa(bi, ..., by). (3.6)
i=1j=1

J
When m = t = 1, the weights (3.6) define the geometric distribution on A = (A1 > 0) with
parameter a1by. In general, the form of the normalizing constant in (3.6) follows from the Cauchy
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summation identity for Schur polynomials. The infinite sum for the normalizing constant runs
over all A of length < min(m,t) and converges if |a;b;| < 1 for all 7, j.

The next statement connects TASEP to Schur measure, which provides the necessary integra-
bility structure for the former.

Proposition 3.3. For any t,m > 1, the displacement of the m-th particle in the TASEP with
parallel updates, geometric jumps with parameter p, and densely packed initial configuration (as
in Section 3.1) has the same distribution as An,, the last part of a partition under the Schur
measure (3.6) witha; =...=apm=1andb; = ... =b, = p:

En(®) — Em(0) L A, A~ (1—p)™sa(L,...,1)sx(p, ..., D). (3.7)
m t

Proposition 3.3 is a well-known result in Integrable Probability. It follows either from the
Robinson—Schensted—Knuth (RSK) correspondence with column insertion, or by representing the
TASEP as a marginally Markovian evolution of a process on the space of semistandard Young
tableaux (equivalently, interlacing arrays / Gelfand-Tsetlin patterns).

For the simpler continuous time TASEP (when each particle waits an exponentially distributed
time and jumps to the right by 1 if the destination is unoccupied), the connection to Schur
measures is exploited in the celebrated work [Joh00] via last-passage percolation, which is related
to the row RSK. The RSK approach can be traced back to [VK86]. Dynamics on interlacing
arrays are constructed later in [BF14] using a non-RSK approach.

For our discrete time TASEP with geometric jumps, the RSK was explicitly used in [DMOO5,
Section 5] to establish Proposition 3.3. A systematic treatment of discrete time dynamics on
interlacing arrays connected to Schur measures leading to various TASEPs and PushTASEPs may
be found in [MP17, Section 4]. It includes RSK-type and other dynamics on interlacing arrays
under one roof, as well as a generalization of the Schur structure to the level of g-Whittaker
symmetric polynomials.

3.4. Determinantal structure. The connection to Schur measures (Proposition 3.3) allows to
extract law of large numbers and fluctuation results for the TASEP particles. The key property
of Schur measures which makes this possible is the fact that they form a determinantal point
process.

Fix m,t > 1, and define a random point configuration X (A) := {A; +m — j}T*; on Zz¢, where
A is distributed as (3.7). If A has less parts than m, append it by zeros. These zeros translate
into a part of X () of the form {0,1,...,l} for some .

Proposition 3.4. The random point configuration X (\) on Z=g is a determinantal point process.

This means that for any r > 1 and pairwise distinct points uy,...,u, € Zxq, the correlation
functions have the form
P(X(A) contains all of the points u1,...,u,) = det [K (u;, uj)]; ;_, - (3.8)

The correlation kernel K is given by a double contour integral:

1 # dzdw w*2™™ (1 —p/z)™ (1 —w)!

Q2ri)2 JJ z—wzm—mtl (1—2)t (1 —p/w)™’

where the contours are positively oriented simple closed curves satisfying p < |w| < |z| < 1.

K(ul, UQ) = Ui, Uz € Z>0, (3.9)

Proposition 3.4 is due to [Oko01], see also [BR0O5]. General discussions and many examples of
determinantal point processes may be found in [Sos00], [Borll], or [HKPV06].
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3.5. Asymptotics of TASEP. Determinantal structure powers the asymptotic behavior of the
TASEP particles. We are interested in probabilities of the form

Prasep (Em(t) > u), where  &,(t) i= &n(t) — En(0). (3.10)

Indeed, since Theorem 3.2 reduces the distribution of H(x,y) to probabilities of the form (3.10),
we can forget about the moving exit boundary in TASEP. Indeed, the parameter n of the moving
boundary is absorbed into m and w.

Let the parameters ¢, m,u grow to infinity proportionally to each other:
m = |Lm], t=|Lt], u=|Lu], L — . (3.11)

First, let us heuristically discuss the law of large numbers and fluctuations of Ppasgp (& (t) = u),
without providing exact constants. The latter are given in Definition 3.6 below, and we formu-
late the asymptotic results in Theorem 3.7. The proof of Theorem 3.7 using the determinantal
structure is a standard application of the steepest descent method for double contour integrals.
We provide the computations (leading to the constants in Definition 3.6) in Appendix B.

At the “hydrodynamic” scale (3.11), TASEP has a limit shape (first observed in the continuous
time TASEP in [Ros81], see also [AD95]). That is, there exists a function c(m,t) such that for
any € > (0, we have

lim Pragep (&m(t) > Le(m,t) +¢) =0, lim Prasep(§m(t) = Le(m,t) —e) =1, (3.12)
L—oo L—oo
In other words, we have convergence in probability:
lm L7 m (|Lt]) = c(m,t). (3.13)
L—oo
Let us note a certain a priori property of the limit shape:
Lemma 3.5. Ift < m/p, we have c(m,t) = 0.

Proof. This follows from the fact that the leftmost hole in the TASEP configuration (which starts
immediately to the right of £ (0) at time ¢ = 0) travels left by at most 1 at each time step. The
probability that the hole moves is p = P(G > 0), where G is the geometric random variable (3.2).
Therefore, if t < m/p, then the hole has not reached the m-th particle by time ¢ with probability
1 —e L for some C' > 0. This implies the claim. O

Next, since TASEP belongs to the Kardar-Parisi-Zhang (KPZ) universality class [Corl2], we
expect fluctuations of order L'/3 provided that t > m /p. More precisely, modifying m and u on

the scale L3 probes the scaling window in the law of large numbers (3.12). That is, there exist
constants vi(m,t),va(m,t) > 0, such that

Tim Praser (£ m-ssan(moy (L)) = Le(m,t) = LY g ) = B (a+6)  (314)

for all a, B € R. Here, F5 denotes the cumulative distribution function of the Tracy—Widom GUE
distribution. The plus signs by a and $ in the right-hand side of (3.14) are straightforward from
the monotonicity of the pre-limit probabilities.

The distribution function F5 was first discovered in connection with the fluctuations of the
largest eigenvalue in large complex Hermitian random matrices exhibiting unitary symmetry
[TWO93]. Subsequently, F; was put into a larger class of limiting distributions arising in random
growth models and interacting particle systems, known as the KPZ universality class. We refer
to the surveys [Corl2], [QS15], [HT15] for a detailed exposition. The appearance of Fy in the
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fluctuations (out of several candidates in the KPZ universality class) is a feature of the step initial
configuration in our TASEP.

Definition 3.6. Let m,t > 0. Define

0, ift<m/p;
c(m,t) == ¢ (/pt — y/m)? it m/p (3.15)
1 7p b = .

If t > m/p, set

vi(m,t) = VI (ST R (1) = YEWPE= Vm)?B(y/t/p — ym)*/8
L E = 7176 (\/pt — /m)1/3 " 20t = (mOUS(1 —p) )

(3.16)

Theorem 3.7. Let the constants c(m,t) and vi2(m,t) be given in Definition 3.6. Then

e The law of large numbers (3.13) holds for all m,t > 0.
o The Tracy-Widom fluctuation result (3.14) holds under the condition t > m/p > 0.

The proof of Theorem 3.7 is given in Appendix B.

4. LIMIT BEHAVIOR OF GROTHENDIECK RANDOM PERMUTATIONS

4.1. Law of large numbers for the permutation height function. In this section, we
obtain the asymptotic behavior of Grothendieck random permutations of growing order via the
the pre-limit identity in distribution (Theorem 3.2) and TASEP asymptotics (Theorem 3.7). As
a result, we complete the proof of Theorem 1.5 formulated in the Introduction. First, we focus
on computations involving the law of large numbers, and then add the fluctuation terms. By
Theorem 3.2, we have

Pw (H(l‘, y) < h) = Prasep (gn—w—l—l—h(y - 1) zn—y+ 2)5
where H is the height function of the Grothendieck random permutation w, and &;(¢) are the
TASEP particles with the step initial configuration £(0) =n—z—i+2, 1 <i<n—z+ 1.
Therefore,
Pw (H(2,y) < h) = Prasep (§n—ar1-n(y —1) =n -y +1—h), (4.1)
where &;(t) = & (t) — &(0) is the displacement.

Let h = [nh], where h is the scaled permutation height function. Let also x = |nx|, y = |ny],
where x,y € [0, 1] are the scaled coordinates in the permutation matrix. Note that by (2.3), we
have 0 < h < min(1 —x,1 —y).

For each x,y, h, the asymptotic location of n ™1, _,41_p(y — 1) is determined from the TASEP
law of large numbers (3.13), (3.15). Namely, this location is equal to

(VY VT2

py>1—x—h-

There are two cases. If

c(l=x—h,y)>1—y—h, (4.2)
then the probability (4.1) goes to 1. If the inequality is reversed, then this probability goes to 0.
As h increases, the left- and the right-hand sides of (4.2) increase and decrease, respectively.
Therefore, we should define

h®(x,y) =inf {h € [0, min(1 —x,1 —y)]: c(1 —x—h,y) >1—y —h}. (4.3)
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If the set in (4.3) is empty, we take the maximal possible value, h°(x,y) = min(1 —x,1 —y).
To describe h® more explicitly, introduce the northeast part of the ellipse

&= {06y): (y 0 /p+ (y+x—1?/(1-p) =1, 1-p<x< 1} C 0,12 (44)

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 10. Left: The subsets (4.5) of the unit square. Right: Graph of the limit shape
h°(x,y) defined by (4.3) and given explicitly by (4.5). The function h° is linear outside of the
curved triangle €. In both figures, the parameter is p = 3/4.

Lemma 4.1. The function h® (4.3) is given by
1—y, (xy) €A={0<x<1—p, x/(1-p) <y <1};
1 —x, (xy)€B={0<x<1, 0<y<(l-p)x};

h°(x,y) = 1+;\/m—x;+y, (ij)ee:_{o<x<17 (1—p)x<y<x/(1—p),};

(x,y) below &,

0, (x,y) € D :={(x,y) above €,}.
(4.5)
It is continuous on [0,1]%.

See Figure 10, left, for an illustration of the subsets A, B,C,D in (4.5). The graph of the
function h° is given in Figure 10, right.

Proof. In A and €, we have c(1 — x — h°)y) = 1 —y — h°. Solving this for h° leads to the
result. In D, we have ¢(1 —x—h,y) > 1 —y —h for all h > 0, so h°(x,y) = 0. In B, we have
c(l—=x—h,y)<1—y—hforall 0 <h<1-—x This means that the set over which we take the
infimum in (4.3) is empty. This implies that h°(x,y) = 1 —x in B, which completes the proof. [

Lemma 4.1 and identity (4.1) immediately imply the law of large numbers for the height
function:

lim n YH (|nx], |[ny]) = h°(x,y), x,y € [0,1], (4.6)

n—oo
with convergence in probability. This completes the proof of the first part of Theorem 1.5 from
the Introduction.
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4.2. Properties of the limiting permuton. The law of large numbers (4.6) implies that the
Grothendieck random permutations w € S,, converge, as n — oo, to a (deterministic) permuton
prescribed by h°(x,y). Recall that a permuton is a probability measure on [0, 1]> with uniform
marginals. We refer to [HKM'13], [BBF*20], [Grii24] for detailed treatment of permutons.

In detail, the permuton is connected to the height function as
h(x,y) =P(X >x,Y >y),  xye€[0,1],

where (X,Y) € [0,1]? is a random point distributed according to the permuton. Note that both
X and Y are uniformly distributed on [0, 1], while their joint distribution is nontrivial. Indeed,
from (4.5) if follows that h°(x,0) =1 —x, h°(0,y) = 1 —y, as it should be for uniform marginals
of a permuton.

Let is find the part of the permuton that is concentrated on the curve £, (4.4) (this concen-
tration is visible in simulations, see Figure 2). For small € > 0, we have

h°(x,y =€) =h°(x,y) =P(X >x, y—e <Y <y).

Dividing this by e = P(y —e < Y < y), taking the limit as ¢ — 0, and passing to the complement
event, we obtain the conditional cumulative distribution function (cdf) of X given Y =y:

0, (x,y) € A;
P(X<X|Y:y):1+§yh°(x,y): L X - (y) €BUD; (4.7)
p— + ( _p)xy, (X,y) e e
p py

This function has a jump discontinuity along the ellipse €, (4.4), that is, at the point

w0 = (VI )+ VT n) . y>1-n (1)

We conclude:

Proposition 4.2. Lety > 1 — p. The unique discontinuity of the conditional distribution of X
given' Y =y is an atom at x = xp(y), and the atom’s mass is

—p)x VI=p(vp1—y)++y(1 -p)
BOX =yfy) | ¥ =y) = 3 - Y LRully (v —— 2

where 1 —p <y < 1.
In particular, from (4.9) we have P(X =1—p|Y =1) =1, as it should be.

Remark 4.3. While conditionally on Y =y (where y > 1 — p), the distribution of X has an
atom, the permuton (that is, the joint distribution of X and Y") does not have atoms. This follows
from the fact that h°(x,y) (4.5) is continuous on [0, 1]2.

By integrating (4.9) in y from 1 — p to 1 (which is straightforward), we obtain the “singular”
mass of the permuton, that is, the mass concentrated on the curve &€, (4.4):

Proposition 4.4. Let (X,Y) € [0,1]2 be a random point distributed according to our permuton.
Then we have

P(X,Y) €& =P[X =x,(Y)] =1— I;parccos\/l—, peo,1].

In particular, for p = %, this expression is equal to 1 — 7.
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As an application, let us consider the law of large numbers of the number of inversions inv(w) :=
#{i < j: w(i) > w(j)}, where w € S, is the Grothendieck random permutation. By a result of
[HKM*13] (see also Theorem 1 in the survey [Grii24] or [BBF 20, Theorem 2.5]), the convergence
of w € S, to a permuton is equivalent to the convergence (in probability) of all pattern counting
statistics of w. The limiting pattern counts are determined by the permuton. In particular, for
inversions, we have

. inv(w)
lim —
n—oo (2)

= = P[(Xl > X0, Y1 < 1/2) or (X1 < Xo, Y1 > Yg)], pE (O, 1)./ (4.10)

where (X1,Y1) and (X2, Y>) are independent points of [0, 1]2 sampled from the limiting permuton.
Proposition 4.5 (Proposition 1.6 in the Introduction). We have v, =1 — 1}'%1” arccos+/1 — p.

The fact that the scaled number of inversions is the same as the singular mass of the permuton
is surprising, but we do not have a conceptual explanation for this coincidence.

Proof of Proposition 4.5. Fix (x,y) € [0,1]?, and let (X,Y) € [0,1]? be a random point sampled
from the permuton. We have

PI(X >x Y <y)or (X <x Y >y)]=1—h(xy) - h*(xy), (4.11)
where h°(x,y) = P(X > x, Y >y) is given by (4.5), and
h*(x,y) =P(X <x, Y <y)

is the copula [Grii24] corresponding to the permuton.
In (4.11), we used the absence of atoms (Remark 4.3) and ignored the difference between strict
and weak inequalities. The function h® can be computed using the conditional distribution (4.7):

X, (x,y) € A;
Yy y7 (X7y)€B;

he — | P(X<x|Y=w)dw=4¢p—1 2
o) = [ PO x| Y < wydw = 3 p ) + TP, () €6,
x+y—1, (x,y) € D.

By (4.11), the constant +, (for general p) is given by
Y =E[1-h(X,Y) -h*(X,Y)],

where the expectation is taken with respect to the permuton. To evaluate this expectation, we
use the conditional density of X given Y = y which is obtained from (4.7):

1 /1—p
Ixly=y(x) = % \/ Tl(x,y)ee-

Recalling that for Y =y > 1 — p the conditional distribution of X has an atom, we can express
the expectation as follows:

vy =1 [ (0 0ay) +h*0y)) Fxiy—y (x) dxdy
//ﬁ (4.12)
- /1 (0 Gxp(y),y) + 1 Gep(¥), 1) B (X = 50(y) | ¥ = y) dy.

—-p
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In the single integral in (4.12), one can check that h°(x,(y),y) +h®(xp(y),y) = xp(y) +y — 1, and
so the integral takes the form

/:p(xp(}’) +y-1) (% - a ;j&,(y)y) dy = % (p -1+ \/;<§ — arctan F)) .

The integral is expressed in a closed form since the integrand has an explicit antiderivative.* In
the double integral, we have

) 1y Py = (14202 g (12 ery)) o[22

2p Xy
_\/1—+2(1p)+<1 2>m.x+y
2p/xXy p? 2p VXY

For integrating over €, we split the dy integral into two, and can readily compute the dx integral
in both cases. Denote the x-antiderivative by

VI—pVi  2(1-p) 2\ VI—p iy
Py p? H(l p) p o

Then the double integral in (4.12) is equal to

I(t) =

[ (= = s =)y [ (1) = 100~ iy = 5 (42 ~3)

) +p((9 —5p)p — 4)

31/ (1= p)p? — 3/(1 — p)p3 (arctan /L — 1+
.\ VI =p)p® =3/ p)p( NE

6p? ’

rolx

where the second line is the integral fll_p I(xp(y))dy, whose integrand has an explicit antideriv-
ative. Putting all the computed integrals together and using basic trigonometric identities, we
arrive at the result. Il

4.3. Fluctuations of the permutation height function. Let us now apply the second part
of Theorem 3.7 to the Grothendieck random permutations, and obtain fluctuations of the height
function around its limit shape h°(x,y). Throughout this subsection, we assume that the point
(x,y) belongs to the curved triangle € where the height function h® is not linear.

Recall that by H(z,y) we denote the random height function of the Grothendieck random
permutation w € S,,. By (4.1), we have for all r € R:

Pw(H([nx], [ny]) < nh®+ rnl/S)
= Prasep (g\_n(l—x—ho—rnl/g’)j(LTLYJ) Z n(l -y - h® — ,rnl/3)) + 0(1)7
where we used the shorthand notation

2 e y
W = H(ey) = 1+ v/ ey - *%. (4.14)

The term o(1) in (4.13) is due to the fact that we removed shifts by (+1), and combined the
integer parts. These modifications are negligible because fluctuations live on the scale n'/3.

(4.13)

4 Antiderivatives throughout this proof are expressed through elementary functions. They are tedious but ex-
plicit, and were obtained by a computer algebra system (namely, Mathematica).
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By the fluctuation result for TASEP, the probability in the right-hand side of (4.13) has the
following behavior:

i Prasip (€ (1w ho—rnt/oy ([ny]) = n(1—y = h° = rn'/?))

1 X (4.15)
- (T<V1<1 —x—he,y) " va(l —x— hO,Y))> 7

where Fb is the Tracy—Widom GUE cumulative distribution function, and the constants vy, ve
are given by (3.16). We have
1 1 (Vt— mp)t!/

vi(m,t) +v2(m,t) m1/3( t/p—\/ﬁ)2/3(\/t_p—\/ﬁ)2/3'

Let us denote the above expression with m =1 —x — h°(x,y) and t =y by

v(xy) = (VY = V(L —x—h°(x,y)))y"/
(1= x—h(,y)3(\/y/p = /1T —x—=ho(x,y)3(/p — /1 —x — h°(x,y))?/3
(4.16)
where h°(x,y) is given in (4.14). While it is not evident from (4.16), inside € the function v(x,y)
is symmetric in x,y.
With the constant v(x,y), the convergence in (4.15) implies the desired Tracy—Widom GUE
fluctuations of the height function H(z,y). This completes the proof of Theorem 1.5.

5. RANDOM PERMUTATIONS FROM NON-REDUCED PIPE DREAMS

Here we consider a different family of random permutations which is obtained by sampling
a non-reduced pipe dream and not resolving any double crossings. This corresponds to setting
q = 1 in Definition 1.8 from the Introduction. For shorter notation, throughout this section we
denote these random permutations w(¥) by w.

5.1. Exact formula. Consider the staircase shape 8, = {(i,7): i+ j < n} (where i and j are
the row and column indices, respectively) and place tiles HH or P4 in each box of &,, independently
with probabilities p and 1 — p, respectively. Let the random permutation w € S, is obtained by
following the pipes starting at (i,0), and ending at (O,w;l), 1 =1,...,n. For example, for the
pipe dream in Figure 1, this procedure gives w = 241635.

Observe that each pipe is a random walk in the bulk of §,,, equipped with the mandatory turns
by 90° at the elbows at the diagonal boundary i + 7 = n. We begin by deriving an exact formula
for the probability distribution of w;l, the outgoing position of the i-th pipe. For general p,
this distribution involves two Gauss hypergeometric functions 9 F;, which for p = % simplifies to
a sum of binomial coefficients. We do not use these exact formulas for asymptotic analysis, but
instead, in Section 5.2 below, we obtain bounds on the expected number of inversions using the
random walk approach.

Recall the Gauss hypergeometric function

a Zk
oFi(a,b;c;z) = Z —( zlcc:()))k ik

k>0
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where (a)r =a(a+1)---(a+k—1). Set
Fi(i,) = (1 —pp™ %R (—i+1,—j + 1;1:(1/p — 1)?)

—(i—1\ (i1 2k+1, i+j—2—2k
p— 1_ l .7 .
kZ()( k >< i >( p)*" T p ;

By(s,n) =n(l—p)*p" 5 (—s+2,—n+1,2,(1/p — 1)?)

— (s —2 n 2%+2, nts—3—2k
= 1-— .
> () () -

Note that both hypergeometric series terminate after finitely many terms. For p = %, these
functions simplify to binomial coeflicients:

. Comiga (it =2 Cseng1(n s —2
Fl(Z,j)’p:1/2—2 v ( i1 >, F2(8,n)|p:1/2—2 sTn < a1 )

Proposition 5.1. We have for all i,57=1,...,n:
P(w; ' =j) = Fi(i,5) + p"Litjent1 + Fa(i + j — n,n) Ligjont1. (5.1)

Proof. We proceed by induction on i. For i = 1, we have

1-— 1 if1<j<my

Pwil=j)={ PP s n
pn— ’ if J=n,

which coincides with the proposed formula. Now let i > 1. Let XZ.(n) denote the exit position of

the pipe started at (7,0), assuming that all squares on the diagonal i + j = n + 1 are elbows. By

considering where this pipe crosses the first row, we can represent X i(n) = Xi(ﬁl_l) + Y, where Y
depends on Xi(fl_l) and has the following conditional distribution given Xi(fl_l):
P m = 0;
Py =m|x" V) ={@ —p)me_i, o l<m<n- xmy,
n—1
(1=p)p" X m=n— X7

. — n .
Since w;, ¢ ), we can write

PXI Y =) o+ Y P =) B(wi =)

r<j -
_ {(1 — ), j<nm G

Zr<n IP>(‘)(z(f1—1) = T) : (1 _p)pn—r—l’ Jj=n.

Using the induction hypothesis, we know the distribution of Xi(fl_l) in terms of F1 and Fb.
Therefore, it remains to verify the recursion (5.2) for the answer (5.1). This is easily done by
grouping binomial coefficients, summing over r, and using the hockey-stick identity. ([l

5.2. Estimates from random walks. We are interested in the asymptotics of the (expected)
number of inversions inv(w) in the random permutation w obtained from the non-reduced pipe
dream model. First, we use the following known bound in terms of a displacement (disarray)

dis(w) = Z?:l i — w;| = Z?ﬂ |i — w;1|:
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Proposition 5.2 (Diaconis-Graham [DG77]). For any permutation w, we have
1
5 dis(w) < inv(w) < dis(w). (5.3)

Taking the expectation of (5.3) and using linearity, we see that it suffices to understand the
asymptotic behavior of EHL —-w; 1H for all 4. In principle, the exact distribution of w; ! from
Proposition 5.1 should allow us to compute this expectation. However, this is not straightforward.

Instead, we use the random walk interpretation of each individual pipe:

Proposition 5.3. Fiz e >0 and let i < (1 —e)n. Then

. _ 4i
E[li — w;l|] = ?1%) +0(1), n— .
Proof. Fix i. Let J;, Ji—1,...,J1,Jo be the (random) column coordinates of the positions of the
i-th pipe in row 4,7 — 1,...,1,0. In particular, J; = 0 and Jy = wi_l. For example, in the pipe
dream in Figure 1, left, we have J3 =0, Jo =3, J1 = 3, and Jy =5 for i = 3.

We aim to upper bound the probability that the pipe reaches the diagonal ¢+ 7 = n first time at
row ko, that is, Jg, = n—ko. Denote this event by Ry,, and observe that P(R,) > P(Ry) for a < b.
Before the pipe reaches the diagonal, the horizontal displacements Jy — Jx11, ko < k < i—1, are
iid (independent identically distributed), and are distributed as

P({Jk — Jg41 = m} N Rko) =ply—0+ (1 *p)2pm_1 17,1217 m & Z;Q, ko <k <i-—1. (5.4)

One readily checks that the expectation and variance of the random variable in the right-hand
side are equal to 1 and 1271’17, respectively. We can represent

1—2
Tho = Jeg — kot + Jicr + D> (Je— Jrs1) -
k—ko+1

For the event Ry, to occur, the above sum must be equal to n—ko =i—ko+ (n—1i) > i— ko +ne.
Since the expectations of the iid summands are equal to 1, by a standard large deviation estimate,
this probability is upper bounded by e~%" for suitable c.(ko) > 0.° By monotonicity, we can
choose these constants such that c.(kg) > C: = ¢.(0) > 0 for all ky. Taking the union over all
ko, we see that the probability that a pipe started at i ever reaches the diagonal is exponentially
small.

Therefore, Jo = w; 1is close (with exponentially small error in probability) to a sum of i iid
random variables Ji — Jii1. By the Central Limit Theorem, this sum is approximately normal
with mean ¢ and variance 2ip/(1 — p). Subtracting i from w; ! taking the absolute value, and
using the fact that E (|Z]) = y/2/7 for standard normal Z, we obtain the result. O

We can now bound the expected number of inversions in w on the scale n3/2:

Theorem 5.4. Fizp € [0,1). For every € > 0 and sufficiently large n, we have

%(1 —e)n’/?, /f%p < Elinv(w)] < %(1 +e)n®?, /lpj. (5.5)

5Note that if i — ko < n, the actual bound is even stronger than this, but we do not need this precision.
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Proof. For p = 0, the permutation is identity with probability 1, so the bounds (5.5) hold trivially.
Let p > 0 and let us calculate E[dis(w)] to apply Proposition 5.2. With Proposition 5.3 for
i < (1 —¢)?3n, we obtain for large n:
(1—5)2/371 9 9
p
E[dis(w E W —z —J—Vi> == ——n\/_l—e

where the last 1nequahty is a simple Riemann sum approximation. The upper bound follows
similarly, this time extending the Riemann sum to n. (Il

Numerical simulations suggest the following behavior of the number of inversions:

Conjecture 5.5. For any p € [0,1), we have convergence in probability:

lim mvgﬂ ERPON (5.6)
n—oo n3/2 1—-p
Note that the bounds 2/(3+/7) & 0.376 and 4/(3y/7) ~ 0.752 in Theorem 5.4 are at the same
time bounds on . Simulations show that s is close to 0.5, but is not exactly equal to it.
The fact that the number of inversions lives on scale n/2 implies a trivial permuton limit of w.
Denote by id the deterministic identity permuton supported on the diagonal of [0,1]2.

Proposition 5.6. For any fized p € [0,1), the random permutations w € S, converge in distri-
bution to id as n — oo.

Proof. For any 7 € S and w € Sy, k < n, denote by t(r,w) [Gri24, Section 3] the relative
frequency of the pattern 7 in w. This is simply the number of times the pattern 7 appears in w,

divided by (7). In particular, ¢(21,w) = mE/%U) We have for any 2 < ¢ < n [Gri24, (9)]:
2

t(21,w) = Y (21, 7) (7, w). (5.7)

TESy

The term in the sum with 7 = id vanishes since #(21,id) = 0. For our random permutations
w € S, the left-hand side of (5.7) converges to zero in probability by Proposition 5.3 and
Markov inequality:

P (inv(w) > 5n2) < an_% — 0, n — 0o

for all § > 0. For a fixed ¢, this implies that ¢(7, w) — 0, n — oo, in probability for all id # 7 € Sy,
¢ > 3. We see that all relative frequencies converge to zero except for t(id,w) — 1. Therefore,
by [BBF 20, Theorem 2.5], we get the result. O

This completes the proof of Theorem 1.11 from the Introduction.

6. MAXIMAL PRINCIPAL SPECIALIZATIONS OF (GROTHENDIECK POLYNOMIALS

6.1. Grothendieck polynomials via bumpless pipe dreams. In this subsection, we outline
another combinatorial model for Schubert and Grothendieck polynomials based on bumpless pipe
dreams. Some of these definitions and results go back to [Las02], and are described in detail in

[Wei21] and [LLS23].

2v/2

6 After this article was posted to the arXiv, Defant settled this conjecture in [Def24] and showed that » = ——=.

3y
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FIGURE 11. Left: Example of a (non reduced) bumpless pipe dream D. Right: The asso-
ciated reduced bumpless pipe dream D’ of D. In this case, D’ is obtained by ignoring the
second crossing of the pipes 2 and 5. The permutation is w(D) = w(D’) = 45128637.
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FicUurE 12. Labeling tiles in a bumpless pipe dream to read the associated permutation
w(D).

A bumpless pipe dream is a tiling D of the n x n square with six types of tiles:
SE bump E, NW bump V'],  cross EH, empty [], horizontal 5, wvertical [T]. (6.1)

These tiles form a set of pipes labeled 1,...,n going from the bottom boundary (left to right)
to the right boundary. See Figure 11, left, for an illustration. We denote the set of all bumpless
pipe dreams of size n by BPD(n).

Remark 6.1. Bumpless pipe dreams are the same as configurations of the six-vertex model in
the n x n square with domain wall boundary conditions (see [Wei21, Section 3] or [Las02]). We
refer to [ZJ09, Section 2] or [Res10] for background and many properties on the six-vertex model.
This object is also sometimes called the oscullating lattice paths model [Beh08].

The same configurations can be identified with alternating sign matrices (ASMs) of size n,
see [Bre99] for a detailed exposition, and [Kup96], [ZJ09, Section 2.5.6] for applications of the
six-vertex model to the enumeration of ASMs.

Definition 6.2 (From bumpless pipe dreams to permutations; see [Wei2l, Section 2.3]). A
permutation w(D) is associated to a bumpless pipe dream D by tracing the pipes from left to
right, starting from the bottom boundary, and ignoring the second and subsequent crossings of
each pair of pipes. See Figure 11, right, for a reading of the bumpless pipe dream in the left part
of the figure which leads to w(D). The local rules for labeling the tiles in a bumpless pipe dream
(which produce the permutation w(D)) are given in Figure 12. Denote by BPD(w) C BPD(n)
the set of bumpless pipe dreams whose associated permutation is w.
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Definition 6.3. A bumpless pipe dream is called reduced if no two pipes cross twice. Denote
the set of reduced bumpless pipe dreams of size n by RBPD(n), and by RBPD(w) C RBPD(n)
the subset whose associated permutation is w.

Remark 6.4. Alternatively, just as in pipe dreams (see Remark 1.3), the permutation w(D) from
a non-reduced bumpless pipe dream can be defined using the Demazure product, see [Wei21, §2.3]
for details.

For a bumpless pipe dream D (reduced or not), denote by NWbump(D) and empty(D) the
set of NW bumps and empty tiles in D, respectively (see (6.1) for the notation). For a tile in a
bumpless pipe dream, we denote its horizontal and vertical coordinates by (k,1), 1 < k,l < n.
Here k increases from left to right, and [ increases from top to bottom.

Theorem 6.5 ([Wei2l, Thm. 1.1]). For any permutation w € S, we have
6 (21, xn) =B Y I B [T  a+8z). (62
DeBPD(w) (k,l)€empty(D) (k,l)eENWbump(D)
In particular, for B =0, we have for the Schubert polynomials:
CSu(T1,...,xn) = Z H Tk (6.3)
DeRBPD(w) (k,l)Eempty (D)

Corollary 6.6. Recall the notation (1.10). We have

w@ = 3 proaesO-twD), (6.4)
DePD(n)
= Y gremn(P-twP)(q 4 gy# NWoump(P) (6.5)
PEBPD(n)

where w(D) and w(P) are the permutations associated to the pipe dream D and bumpless pipe
dream P, respectively.

Proof. These identities follow from the formulas for Grothendieck polynomials in Theorems 1.4
and 6.5. For (6.4), we immediately get

Un(,B) _ Z @5)(171) _ Z ﬁ# cross(D)—@(w(D)).
w DePD(n)
For (6.5), we have

= > pe® K I s II @a+5
)

PEBPD(n DEBPD(w) (k,l)€empty(D)  (k,))ENWbump(D)
— Z gt empty(P)=t(w(P)) (1 4 g)# NWbump(P)
PEBPD(n)
This completes the proof. (Il
Remark 6.7. Gao and Huang [GH23| gave a bijection between reduced pipe dreams and reduced

bumpless pipe dreams that preserves the corresponding weight of the diagrams in the correspond-
ing expansions (1.3) and (6.3) of Schubert polynomials. This bijection was recently generalized
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to the case of pipe dreams and bumpless pipe dreams with marked NW-bumps and Grothendieck
polynomials by Huang—Shimozono—Yu [HSY24].

Remark 6.8. By the product formula for the number of alternating sign matrices of size n

[Ze196], [Kup96], we have # BPD(n) = Z;é ((?;f:kl))!!. Moreover, since RBPD(n) C BPD(n), we

have
n—1

“n(o) < ’Un<0) < H

k=0

(3k + 1)
(n+ k)

From the asymptotics of the number of AMSs of order n (which is relatively straightforward using
the product formula), we conclude that

1

lim sup — log, u, (0) < 0.37.
n—oo T

The asymptotic behavior of the number of bumpless pipe dreams (six-vertex model configurations)

with periodic boundary is originally due to Lieb [Lie67]. The domain wall case with general six-

vertex parameters is treated by Korepin—Zinn-Justin [KZ.J00].

6.2. Asymptotics of Grothendieck random permutations via domino tilings. Consider
a random bumpless pipe dream D € BPD(n) with the distribution

Pyasn(D = D) = 27(2) g#XWbump(D) - 1 ¢ BPD(n). (6.6)

Via the bijection with Alternating Sign Matrices (Remark 6.1), this distribution is equivalent to
choosing each alternating sign matrix of size n with probability proportional to 27#(mumber of —1’s)
We call this distribution the 2-enumerated ASM model, and it is equivalent (via a two-to-one
bijection) to the uniform probability distribution on domino tilings of the Aztec diamond of size
n—1. This connection, as well as the asymptotics of uniformly random domino tilings, has been a
subject of extensive research in statistical mechanics and integrable probability, see, for example,
[CEP96], [CKPO01], and [EKLP92], [ZJ00], [FS06].

The results from the previous Section 6.1 immediately imply:

Corollary 6.9. The Grothendieck random permutation w € S, with the parameter p = % (see
Section 1.4 for the definition) coincides with the permutation w(D) associated (as in Defini-
tion 6.2) to the random bumpless pipe dream D € BPD(n) with the distribution (6.6).

Remark 6.10. For general p, an analog of Corollary 6.9 would involve a more complicated
weighting of bumpless pipe dreams (six-vertex configurations). This weighting is still in the free-
fermion family of six-vertex weights. At the level of domino tilings, the p-weighting corresponds
to a deformation of the uniform model in which vertical and horizontal dominoes have different
weights. This model is also well-studied, for example, see [CJY15]. For simplicity, here we focus
only on the case p = %

Our asymptotic results for Grothendieck random permutations (Theorem 1.5) readily translate
into results about the behavior of the permutations w(D) coming from the 2-enumerated ASM
model. On the other hand, the asymptotic behavior of the bumpless pipe dream D in various
regimes has also been extensively studied, and some of these results can be brought back to
Grothendieck random permutations. Let us present just one example leading to asymptotically
Gaussian fluctuations:
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Proposition 6.11 (Central limit theorem for the image of n). Let w € S, be the Grothendieck
random permutation with p = % Let wy, be the image of n under w. We have

Wy, —n/2 g

NOY — N(0,1), n — oo. (6.7)

Here N'(0,1) is the standard normal distribution.

Proof. Let 1,, be the position of the single NW bump in the rightmost column of D. In Figure 11,
we have 1, = 5. By Corollary 6.9, w,, has the same distribution as l,,. In the language of domino
tilings (see the map in, e.g., [FS06]), 1,, is the position of the first particle in the particle process
associated to the domino tiling. By [JN06, Theorem 1.5], 1,, satisfies a central limit theorem as in
(6.7). Note that our standard deviation /n/4 matches the normalization in [JNO6] as the latter
work deals with GUE random matrices whose diagonal elements have variance 2. This completes
the proof. O

Remark 6.12. Proposition 6.11 can also be proven directly by looking at the trajectory of the
pipe of color n in the random pipe inside the staircase shape (Section 1.2), as this trajectory is
a random walk.

6.3. Exact formulas for elementary layered permutations. We are now in a position to
discuss principal specializations of Grothendieck polynomials on layered permutations. We begin
with a few exact formulas, for which we need some notation.

Let C,, = %H(ZT’;) denote the nth Catalan number which counts the number of Dyck paths
of size n. Let s, denote the n-th little Schrider number [OEIL, A001003] and S,, the n-th large
Schréder number [OEIL, A006318]. It is known that S,, = 2s,, for n > 1.

The Narayana polynomial is defined as

L, (x) = Z V@,

deDyck(n)

where the sum is over Dyck paths of size n and v(d) is the number of valleys of the path d. The

coefficients of L, (z) are the Narayana numbers N(n,k) = 1 (3)(,",) [OEL A001263]. Note that

Cn, = L,(1) and s, = L£,,(2). The polynomials £, (x) have the following generating function:

" 1—y(l+2)— (1 —y(l+2))?%— 42y
Y
n>0
Consider the following elementary layered permutation (see also (1.12) for notation):
wo(k;n) =idg x wo(n) = (1,...,k,k+nk+n—1,....k+1) € Sgin. (6.9)

Recall the notation Y,,(5) (1.9). A formula due to Fomin and Kirilov [FK97] relates the Schubert
principal specialization T, (4;)(0) to Proctor’s formula [Pro90] counting bounded plane partitions
of staircase shape:

Theorem 6.13. For nonnegative integers k and n, we have
H 2k+i+j5-1

6.10
itj—1 (6.10)

Two(k::,n) (0) = Gwo(k‘;n)(lﬂ ey 1) - det[cn72+i+_j]ﬁj:1 -
1<i<j<n

In [MPP22], an analogous formula for the § = 1 Grothendieck polynomials is proven:
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Theorem 6.14 ([MPP22, Thm. 5.9]). For nonnegative integers k and n, we have

_ _(k [kt
Two(k;n)(l) = @B ! )(1, RN 1) =2 (2) det[sn_%iﬂ}f’j:l =2 ( 2 ) det[sn_2+i+j]k

wo(k;n l,]:1
A general determinantal formula for all § may be derived from [HKYY19, Thm. 5.9]:

Theorem 6.15. For nonnegative integers k and n, we have

Yoo (km)(B) = (1 + 5)_(]26) det[Lyyiyj—o(1+ 5)}%:1' (6.11)

The determinants in Theorems 6.14 and 6.15 can be efficiently computed via the Dodgson
condensation (the Desnanot—Jacobi identity). We use it to get the numerical data for f = 1
presented in Appendix A.

6.4. Asymptotically maximal specializations for layered permutations. Here we prove
that principal specializations of 5 = 1 Grothendieck polynomials on layered permutations (see
(1.13) for the definition) attain the asymptotically largest value. That is, we prove Theorem 1.14
from the Introduction.

Theorem 6.16. Consider the compositions b\ = (...,b2,b1) of n such that
bl+...+bi_1+(2+\/§)bi <nfori=1,2,..., while by + ...+ b;_1 <n —4,

and b™ has o(n) parts. Then for the layered permutations w(b™) we have

.1 1
nlggo ﬁ logy Tw(b(n))(l) = 57

which is asymptotically mazximal.

Remark 6.17. In particular, one can take compositions to be geometric b; ~ (1 — a)ai~!n, for

any a € [1/v/2,1).

In the rest of this Section 6.4, we prove Theorem 6.16. First, observe that the Grothendieck
specializations enjoy the following basic factorization property:

Proposition 6.18. Let u € S, w € S,. We have

Tuxw(ﬁ) = Tu(ﬁ) . Tidkxw(/ﬁ)a
where u X w is the block permutation defined by (1.12).

Proof. This follows from properties of pipe dreams corresponding to permutations of the form

u x w. See [Man01, Corollary 2.4.6] or [Mac91, (4.6)]. O
Let us denote (recall the notation (6.9))
F(k,n) = Tupemy(1)s Glk,n) = 20) . F(k,n) = det[sp—arirs] 1, (6.12)

where the last equality follows from Theorem 6.14.

An important step in obtaining the asymptotics of T, (1) for layered permutations is to un-
derstand the behavior of the function F(k,n). A similar analysis [MPP22] was possible in the
Schubert case (8 = 0) thanks to an explicit product formula (Theorem 6.13). For other 3’s, we
have determinantal (but not product) formulas (Theorem 6.14 and Theorem 6.15). However, in
the case § = 1 we are able to asymptotically analyze these determinants via the correspondence
with 2-enumerated ASMs.
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Lemma 6.19. Let k € (n/v/2,n]. We have

n? k2
logZF(k,n—k):7—?—O( n), n — 00. (6.13)
In (6.13) and throughout the proofs below in this subsection, we assume that the constants in

the O(-) notation are nonnegative.

Proof of Lemma 6.19. By (6.12), it suffices to show that for k > n/v/2, we have

det[Sn—k—2+i+j]F j—1 _ 9% 0, (6.14)

We employ the interpretation of the litte Schréder number s, [OEI, A001003] as the number of
Motzkin paths from (0,0) to (2m,0) (with steps (1,1), (1,—1), and (2,0)) which do not have
horizontal steps at height 0. Let us call these paths the 0-Schdder paths, where 0 represents the
lower boundary of the path. Then, by the Lindstrom—Gessel-Viennot lemma [KM59], [Lin73],
[GV85] the determinant (6.14) counts k-tuples of nonintersecting 0-Schdoder paths starting from
(—2i,0) and ending at (2(n —k+i—1),0), respectively, where ¢ = 1, ..., k. Denote this space of
configurations by My, ,,_j. See Figure 13 for an illustration.
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FIGURE 13. Nonintersecting 0-Schoder paths from M3 5, the corresponding Aztec diamond
D,,_1 of order n — 1 = 16, and the arctic circle. The horizontal coordinate line is at the
vertical height 0. The gray points at the bottom are the starting (filled) and ending (hollow)
points of the (k + 1 — n)-Schroder paths representing the full domino tiling of the Aztec
diamond. The dashed gray lines are the continuations of some of the paths from Mj,,,_ into
paths from the ensemble S,,.
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A well-known correspondence (e.g., see [EF05]) between domino tilings of the Aztec diamond
and nonintersecting paths allows to interpret
det{sn—k—2+i+j]§,j:1
9(5)
as a probability of a certain event in the uniformly random domino tiling of the Aztec diamond
D,,_1 of order n — 1. Let us explain this identification in detail.

(6.15)

The total number of domino tilings of D,,_1 is 2(3). Domino tilings of D,,_1 bijectively corre-
spond to families of n nonintersecting paths, for which we may take the (k+1—mn)-Schroder paths
starting from (n—k—2i,k+1—n),i=1,...,n, and ending at (n—k+2(i—1),k+1—n), respec-
tively, where ¢ = 1,...,n. Denote this ensemble of nonintersecting paths by S, so |S,| = 2(3).

The k paths from My, may be continued diagonally to coincide with the outermost £ paths
from the ensemble S,,. This continuation procedure implies that the ratio | My, ,,_x|/|Sy| given by
(6.15) is equal to the probability that the n — k paths in S, \ My, ,—x are in their lowest possible
configuration. See Figure 13 for an illustration.

The model of uniformly random domino tilings of the Aztec diamond develops an arctic circle
[JPS98]. In particular, the configuration outside of the circle inscribed in the Aztec diamond
(illustrated in Figure 13) is frozen (nonrandom). Qualitatively, by [CEP96, Proposition 13], this
means that with probability 1 — e‘o(”), the n — k paths in S, \ My, ,—j, are indeed in their lowest
possible configuration. Note that here we rely on the assumption k& > n/v/2, which guarantees
that the top of the n — k paths in S, \ My, does not reach the arctic circle. This establishes
(6.14), and completes the proof of Lemma 6.19. O

Remark 6.20. The recent work [CP24] provides asymptotics of logy F'(k,n — k) for all k, not

necessarily in the range k > n/v/2. For k < n/y/2, the leading term is strictly smaller than "72,
which agrees with the variational principle [CKP01, Theorem 1.3]. We do not need the regime
kE<n/ V2 for Theorem 6.16.

Proof of Theorem 6.16. Let us denote kg :=n and
ki=n—b—...—b;, 1>1,
so that b; = k;—_; — k;. We have by Proposition 6.18 and (6.9) that
Tos(eopabr) (1) = Lao( by (1) - F(n— by, b1)
=[[F(n—br—. . —bi,bi) = [ F ki bir — ka). (6.16)

i>1 i>1

From the inequalities on the b;’s, we get

ki n—bl—...—bi
— € (1/v2,1).
ki—l n—bl—...—bi_l (/ )
Hence by Lemma 6.19, we have
k2 k2
logy F(ki, ki_q — ki) = —=L — ?z — O(ki—1).

Therefore,

1 1
) logo Tu(opob) (L5 1) = Z 3 logy F'(ki, ki—1 — ki)

=1
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1 (ki K
_Zm( > 70(/%1))

i1

1 1

i1

Since k;—1 = O(n) and there are o(n) elements in our composition, we have

Z k‘l = O(nQ)’ and so %O <Z k11> = 0(1),

i>1 i>1

which completes the proof of Theorem 6.16. ([l

Remark 6.21 (Layered vs all permutations). Recall the notation (1.10), (1.14). Theorem 6.16
establishes that on layered permutations, the Grothendieck specializations Y,,(1) reach their

asymptotic maximum: u), (1) ~ 2(3). However, it is not clear whether the absolute maximum,
un (1), is attained on layered permutations. Dennin [Den22, Fig. 9] verified that for n < 9, one
has uy, (1) = ul,(1).

We present numerical data of optimal (i.e., achieving the exact, non-asymptotic maximum
in u}, (1)) layered permutations for n < 500 in Appendix A. We also comment on why these
optimal layered permutations have parts whose behavior does not fall under the assumptions of
Theorem 6.16.

6.5. Bounds on the constant for Grothendieck specializations with general 5. In
[MPP22], the authors conjectured that for 5 fixed there exists a limit

¢(B) = lim inogQ un(B). (6.17)

n—oo n

If the limit exists, it must satisfy for g > 0:

11082+ 6) < o(8) < 5 logs(2 4 ), (6.15)

see [MPP22, Section 7.12]. The limit (6.17) exists when 8 = 1, see (1.11), and we have ¢(1) =
Here we improve the bounds (6.18) in certain regimes:

D=

Proposition 6.22. If the limit ¢(3) (6.17) exists, then it must satisfy the following bounds. For
0 < B <1, we have

i max{log,(2 + 3),2logy(1 + 8)} < ¢(B) < % min{logsy(2 + 3),logy(1 +1/38)}.

For B > 1, we have

Jmax{log(2 + 5), 2logy(1+1/8)) < e(6) <  logy(1+ ).

See Figure 1/ for an illustration of the bounds.

Proof. For 0 < 8 <1 and D € PD(n), we can bound 1 < =) < 5—(’;). Thus by (6.4), we
have

Z B#cross(D) < Un(ﬂ) < B_(Z) Z 5#cross(D)’
(n)

DePD(n DePD(n)
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FIGURE 14. Comparing the bounds in Proposition 6.22 for > 1 and 0 < 3 < 1.

which leads to (1+ 5)( ) < v (B) < (TB)( 2)., Taking the logarithms and comparing with (6.18)
gives the result.

For f > 1 and D € PD(n), let us estimate 5—(3) < g~Hw(D)) < 1. Thus by (6.4), we have
Z B#cross(D) < ,Un S Z 5#cross(D)

DePD(n) DePD(n)

yielding (T’B)( ) <ov,(B) < (1+ ﬁ)(g), which leads to the desired bounds. O

7. ADDITIONAL REMARKS AND OPEN PROBLEMS

7.1. Optimal permutations achieving the exact maxima u,(1) and u,(3). This project
was motivated by Stanley’s original question from [Stal7] on determining the family of permuta-
tions w for which the Schubert specialization &,,(1") is asymptotically maximal. This question as
well as the asymptotic value remain widely open (see [MS16, Table 1] for data up to n < 10). Den-
nin [Den22, Section 4.2, Fig. 8] extended this question to Grothendieck specializations (’53,:1(1”),
but one can ask the same question for general 3. Presumably, answering this question would give
rise to a family of optimal permutations w”, which for 8 = 0 would answer the original Schubert
specialization question.

Among the candidates for such a family w® are the layered permutations [MS16], [MPP19]
(see Appendix A for numerical evidence for 5 = 1). When 8 = 1, Dennin verified that layered
permutations indeed achieve the maximum in u, (1) for n <9. Our results of Section 6.4 suggest
that layered permutations are indeed good candidates as they at least attain the asymptotic
maximum in u,(1).

To obtain the asymptotics of Grothendieck specializations on layered permutations for general
B, one has to study the asymptotics of the following Hankel determinants:

F(k,n,B) = (1+ 5)7(5) det[Loitj-2(1+ B)f 1, (7.1)

where £, (x) is the Narayana polynomial, see (6.8) and Theorem 6.15. For 3 = 0, these determi-
nants admit a product formula and were analyzed in [MPP22]. We could access the special case
B =1 due to the connection to 2-enumerated ASMs and domino tilings. It would be interesting
to find a deformation of the domino tiling model related to the determinants (7.1).

7.2. Typical vs optimal permutations. One of our main results, Theorem 1.5, concerns “typ-
ical” Grothendieck permutations. By comparing the permutation matrices in Figure 2, center,
and Figure 4, left, we see that typical permutations are far from layered. However, it is likely that
probabilities of typical Grothendieck random permutations also achieve the asymptotic maximum.
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For our permutations, this is not yet a rigorous statement, as one has to prove the asymptotic
uniformity of the probability weights of typical Grothendieck permutations.

7.3. Measures on permutations generated by elementary transpositions. Other Markov
chains (and, more generally, stochastic processes on the symmetric group) have been studied
where adjacent permutations are connected by an elementary transposition s; = (i, + 1), i =
1,...,n — 1. These include the oriented swap process [AHR09], [BGR22], [Zha23a] which is a
natural dynamics on permutations driven by independent nearest neighbor swaps, which swap
only pairs of indices that has not been swapped before. The process starts from the identity and
terminates at the full reversal permutation. Another model, random sorting networks [AHRV07],
[GR19], [Dau22], is obtained by putting a uniform probability measure on all reduced words
representing the full reversal permutation. Random sorting networks cannot be described by a
simple Markov chain on permutations.

By design, both random sorting networks and the oriented swap process terminate at the full
reversal permutation, and one is interested in the trajectories of individual elements. In contrast,
out Grothendieck random permutations are obtained by running a Markov chain (reminiscent
of the oriented swap process) for a set amount of “time”, reading off the resulting permutation,
and investigating its asymptotic properties. Despite the differences in the setup, in this work we
observed certain asymptotic similarities between the Grothendieck random permutations and the
models mentioned above.

7.4. Local structure of Grothendieck permutations. What is the local structure of the
Grothendieck random permutations? In Figure 2, left and center, one can observe a certain local
layered structure. Understanding this local structure goes beyond the permuton convergence.
Can the local structure be understood in terms of descent statistics, major index, or pattern
statistics other than the overall pattern counts? For instance, layered permutations are the ones
maximizing the packing density of the pattern 132 [Kit11, Section 8.3.1]. Potential tools for this
analysis may be found in [Bor20]. Alternatively, one could translate the local behavior of random
domino tilings of the Aztec diamond [Joh05] to the local behavior of Grothendieck permutations.

7.5. The RS shape of a Grothendieck permutation. Applying the Robinson—Schensted
(RS) correspondence to large random permutations, we numerically observe that the first column
of the resulting Young diagram grows linearly with n, while all other rows and column are of order
v/n.” This behavior (except for the first column) is reminiscent of the limit shape phenomenon
for Plancherel random partitions exhibiting the Vershik—Kerov-Logan—Shepp limit shape [VK77],
[LS77]. It would be interesting to make these observations rigorous, and to find the limit shape
for the Grothendieck random permutations. We are grateful to Philippe Biane for this suggestion.

7.6. Random and maximal permutations for domain wall six-vertex model. The Bump-
less Pipe Dreams provide a surprising connection of Schubert calculus and K-theory to the six-
vertex model, one of the central objects in statistical mechanics. The analysis of typical and
maximal permutations for Schubert and Grothendieck specializations prompts the analogous
questions about the six-vertex model.

Namely, consider the six-vertex model with domain wall boundary conditions and general
Boltzmann weights a, b, ¢ (for the 2-enumerated ASMs, we have a = b = 1 and ¢ = v/2). Represent
a random configuration of the six-vertex model as a collection of pipes, and associate to it a
random permutation w by resolving the intersections as in Definition 6.2. What is the behavior

"For layered permutations, all columns grow proportionally to n, while the rows are of order logn.
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of E[inv(w)] and how does it vary depending on the weights of the six-vertex model? Do the
permutations w have a permuton limit?

7.7. g-analogues and generalized principal specialization. Zhang [Zha23b] extended the
analysis in [MPP19)] to the generalized principal Schubert specialization &, (1,q,¢%,...), when q is
aroot of unity. The analogue of layered permutations is the multi-layered ones [Zha23b, Section 4].
It would be interesting to extend our results to the Grothendieck specializations Qﬁﬁ(l, a,q%,...)
at a root of unity. However, having ¢ complex makes connections to probabilistic models less
clear.

APPENDIX A. DATA FOR MAXIMAL SPECIALIZATIONS ON LAYERED PERMUTATIONS

A.1. Dodgson condensation and data. Principal specializations T,,)(3) of Grothendieck
polynomials with general 5 on layered permutations (see Section 1.7 for notation) can be maxi-
mized using dynamic programming, similarly to how this is done for Schubert specializations in
[MPP19]. To implement it, one needs an efficient way to compute the determinants Dg(n, k) =
det[Lp4itrj—2(14 )] f j—1 from Theorem 6.15. A recursion follows from the Dodgson condensation
(Desnanot—Jacobi identity) [Dod66], [Mui06]:

Proposition A.1. For k,n € Z>o, we have

— 1 2
Dg(n,k)—DB(n+2’k_2) (Dg(n+2,k—1)Dg(n,k — 1) — Dg(n+ 1,k — 1)),

k
2

with initial conditions Dg(n,0) =1, Dg(n,1) = L,(1 + ), and Ds(0,k) = (1 + ﬂ)( ).
Proof. Let M(n,k) = [Lpyitj—2(1+ B)]ﬁjzl, so Dg(n, k) = det M(n, k). Clearly,

For n = 0, the permutation wq(0;k) = 12---k is the identity, and so 650(0:16) = 1. By Theo-
rem 6.15, we have
_(k
L= Tugup (8) = L+ B) () detlLisa(1+ B)F .
Thus, Ds(0, k) = det M(0,k) = (1+ 8)().
For 1 <4,5,p,q <k, let Mf_’jq denote the matrix obtained from M by deleting rows ¢ and j
and columns p and ¢. Similarly, let M} be obtained from M by deleting row ¢ and column p. By

the Dodgson condensation, we have
det(M(n, k)) det(M(n, k)}'}) = det(M (n, k)1) det(M(n, k)§) — det(M (n, k)¥) det(M (n, k)}).
Observe that
M(n,k)yy=M(n+2,k—2), M(nk)i=Mmn+2Fk-1),
M(n, k) = M(n,k—1), M(n,k)§=M(n,k)y=Mmn+1,k—1).
This implies the result. [l

The implementation of the recursion for Dg(n, k) combined with dynamic programming yields
the data in Table 1. This data agrees with the asymptotic behavior f(n) — % obtained in
Theorem 6.16.
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n (...,bg,bl) f(”fl) n ( bg,bl) f(”fl)
2 (1,1) _ 0.00000 130 (1.3.5.8.13,21,32,47) 0.45255
3 (1,2) 0.17611 140 (1,1,3,5,9,14,22,34,51) 0.48367
4 (1,3) 0.21621 150 (1,1,3,6,10,15,24,36,54) 0.48465
5 (1,1,3) 0.24599 160 (1,2,4,6,10,16,25,38,58) 0.48552
6 (1,2,3) 0.28068 170 (1,2,4,7,11,17,27,41,60) 0.48631
7 (1,2,4) 0.31068 180 (1,2,4,7,12,19,28,43,64) 0.48701
8 (1,2,5) 0.32354 190 (1,2,5,8,12,20,30,45,67) 0.48763
9 (1,3,5) 0.33953 200 (1,3,5,8,13,21,32,47,70) 0.48820
10 (1,1,3,5)  0.34821 210 (1,3,5,9,14,22,33,49,74) 0.48871
11 (1,1,3,6)  0.35956 220 (1,1,3,5,9,15,23,34,52,77) 0.48917
12 (1,2,3,6)  0.36955 230 (1,1,3,6,10, 15,24, 36, 54,80) 0.48961
13 (1,2,4,6)  0.37800 240 (1,2,3,6,10,16,25,38,56,83) 0.49001
14 (1,2,4,7) 0.38614 250 (1,2,4,6,10,17,26,39,59,86) 0.49038
15 (1,2,4,8) 0.39085 260 (1,2,4,7,11,17,27,41,61,89) 0.49072
16 (1,2,5,8)  0.39618 270 (1,2,4,7,12,18,28,42,63,93) 0.49104
17 (1,3,5,8)  0.40138 280 (1,2,4,8,12,19,29, 44,65,96) 0.49134
18 (1,3,5,9) 0.40550 290 (1,2,5,8,12,20,30,45,68,99) 0.49161
19 (1,1,3,5,9) 0.40887 300 (1,3,5,8,13,20,31,47,70,102) 0.49187
20 (1,1,3,6,9) 0.41252 310 (1,3,5,8,14,21,32,48,72,106) 0.49211
21 (1,1,3,6,10) 0.41605 320 (1,3,5,9,14,22,33,50,74,109) 0.49234
22 (1,2,3,6,10) 0.41946 330 (1,1,3,5,9,14,23,34,52,76,112) 0.49256
23 (1,2,4,6,10)  0.42223 340 (1,1,3,6,9,15,23,35,53,79,115) 0.49276
24 (1,2,4,6,11) 0.42517 350 (1,1,3,6,10, 15,24, 36,55,81,118)  0.49295
25 (1,2,4,7,11) 0.42797 360 (1,2,3,6,10,16,25,37,56,83,121) 0.49314
26 (1,2,4,7,12) 0.43021 370 (1,2,4,6,10, 16,25, 38,58,85,125) 0.49331
27 (1,2,4,8,12) 0.43206 380 (1,2,4,6,11,17,26,39,59,87,128) 0.49347
28 (1,2,5,8,12) 0.43392 390 (1,2,4,7,11,17,27,41,60,89,131) 0.49363
29 (1,2,5,8,13)  0.43590 400 (1,2,4,7,11,18,27,42,62,92,134)  0.49378
30 (1,3,5,8,13) 0.43780 410 (1,2,4,7,12,18,28,43,64,94,137) 0.49392
40 (1,2,4,6,10,17) 0.45099 420 (1,2,4,7,12,19,29,44,65,96,141) 0.49406
50 (1,3,5,8,13,20) 0.45956 430 (1,2,5,8,12,19,30,45,67,98,143) 0.49419
60 (1,1,3,6,10,15,24) 0.46537 440 (1,2,5,8,13,20,30,46,68,100,147) 0.49431
70 (1,2,4,7,11,18,27) 0.46983 450 (1,3,5,8,13,20,31,47,70,102,150) 0.49443
80 (1,2,5,8,13,20,31)  0.47312 460 (1,3.5,8,13.21.32,48,71,105,153) 0.49454
90 (1,1,3,5,9,14,23,34)  0.47573 470 (1,3,5,8,14,21,33,49,73,107,156) 0.49465
100 (1,2,3,6,10,16,25,37) 0.47792 480 (1,3,5,9,14,22,33,50,74,109,160) 0.49476
110 (1,2,4,7,11,17,27,41) 0.47975 490 (1,1,3,5,9,14,22,34,51,76,111,163) 0.49486
120 (1,2,4,8,12,19,30,44)  0.48125 500 (1,1,3,5,9,15,23,35,52,77,113,166) 0.49495
TABLE 1. Tuples b of layered permutations w(b) maximizing u,,(1) for n = 2,...,30, and

every 10 after up to 500. The third column is f(n) = # logy ul,(1). The full table up to
n = 750 is available on the arXiv as an ancillary CSV file.

A.2. Optimal layered permutations and Theorem 6.16. Observe that the optimal lay-
ered permutations given in Table 1 do not fall into the description of sequences given in The-
orem 6.16. For example, for n = 700, the numerically optimal layered permutation has parts

7% = (1,3,5,9,14,21, 33,49, 73,107, 157, 228), whereas a sequence b from Theorem 6.16

opt
would satisfy the bound by = n — k < 700/(2 + v/2) ~ 205 on its largest part. The parts of b((j;OtO)

are suspiciously close to the Fibonacci sequence (see Table 2). Let us explain this discrepancy.
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FIGurE 15. Plot of logy G(k,200—k) (left) and log, F'(k,200—k) (right) for k =1, ...,200.
The maxima on the figures occurs at k£ = 135 and k = 78, respectively.

Optimal layered permutations can be constructed inductively via the optimization

it Toepg @) =mpx, max (Vo (1) - Flksn =k}
where by = n — k. Assume that maxy, yps4...=k To(..pg,0) (1) = 2(3) - g(k), where g(k) = 2700,
To extract the first part b, we thus need to find

IIll?X{Q(g) g(k) - Fk,n—k)} = m}iix{g(k) - G(k,n—k)},

see (6.12) for the notation. On the other hand, in the proof of Theorem 6.16 (in particular, see
Lemma 6.19), we estimated the asymptotic behavior of F'(k,n—k), and found that the coefficient

by n? in log, F(k,n — k) does not depend on k as long as k > n/v/2. These two problems lead to
different choices of k. See also the illustration in Figure 15.

13 21 34 55 89 144 233 377 610

n 1 1 2 3 5 8
12 3 5 8 13 21 34 56 90 147 237

k*

TABLE 2. If n runs over the Fibonacci numbers, the optimal £* maximizing G(k,n — k) is
close to the Fibonacci number of index 2 less. Note that k* is not the same as n — by in
Table 1 due to the presence of the lower order term g(k).

The discrepancy between optimal layered permutations and the ones appearing in Theorem 6.16
should be of order o(n) in the large n limit. Indeed, assume that k/n < 1/v/2. Then, as in the
proof of Lemma 6.19 (see also Remark 6.20), one can show that logy F(k,n — k) ~ an? — k?/2 —
O(n) for some a < 3, so Q(S)g(k)F(k, n—k) ~ 297°=0("*) "which is not maximal. We believe that
the discrepancy of the part sizes in optimal layered permutations is of order o(n) as n — co.

APPENDIX B. LIMIT SHAPE AND FLUCTUATIONS IN TASEP FROM CONTOUR INTEGRALS

In this section we compute the constants c, vi, vo from Definition 3.6, and show how to establish
Theorem 3.7 by an asymptotic analysis of the correlation kernel. We omit tedious but standard
estimates, as they are very similar to those in [Joh00, Section 3] or [Pet20].
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B.1. Fredholm determinant. Recall that &, (t) = &n(t) — &n(0) is the displacement of the
m-th particle at time ¢. By Propositions 3.3 and 3.4, we have

Prasep (Em(t) = 1) = P(Am > u), (B.1)

where A, is a point of the determinantal point process X (\) = {\j +m — j}7"; C Zzo with the
correlation kernel (3.9):

1 dzdw w2 [(z—p\" [(1—w ¢
K(u1,u2) = on1)? # o <w —p) <1 — z) , uy, uz € Z>o, (B.2)

where the contours are positively oriented simple closed curves satisfying p < |w| < |z| < 1.

Lemma B.1. The probability in the right-hand side of (B.1) is equal to the Fredholm determinant
of the kernel K on {0,1,...,u—1}:

P\ = u) =det[ld — K], =1+ Z Z det [K za,zb)}a b1 > (B.3)
=1 ' 1,eeryig=0

where 1d is the identity operator.

Proof. The event {\,;, > u} means that in the determinantal point process X (), no particles are
located in {0, 1,...,u—1}. It is a well-known property of determinantal point processes that this
probability is given by a Fredholm determinant, see e.g. [Sos00, Theorem 2]. This statement can
be traced back to the inclusion—exclusion principle (e.g., see [BOO00, Appendix A.3]). Note that
the sum over ¢ in (B.3) is finite, as for u > ¢, the ¢ x ¢ determinant must have identical rows.
Further details on Fredholm determinants may be found in [Sim05] or [Borl0]. O

Let us assume that m = |[Lm|, t = |Lt|, w = |Lu], where L — co. By Lemma 3.5, it suffices
to consider the case t > m/p, which we assume throughout the present Appendix B.

B.2. Steepest descent and law of large numbers. The asymptotic analysis of K(uj,u2)
is done by steepest descent (see, e.g., [Oko02, Section 3] for an accessible introduction). The
integrand in (B.2) has the form

1 w2 [(z—p\"[1-w L_exp{L(S(z;ul/L)—S(w;uz/L))+O(1)}
e () (75) - = @
where
S(z;u) = —ulog z + mlog(z — p) — tlog(1l — 2). (B.5)

The term O(1) arises from dropping integer parts in m and ¢. It is negligible in the limit because
the determinantal process will be scaled from discrete to continuous space.

The point A, is at the left edge of the determinantal process. Therefore, to catch its asymptotic
location u = c(m, t), we need to find a double critical point of the function z — S(z;u).

Remark B.2. Let us explain the need for the double critical point in more detail. By (3.8), we

have K(u,u) = P(u € X (X)), which is the density of the random point configuration X (). The

equation S’(z;u) = 0 for single critical points is quadratic, and its discriminant is a function of

p and our parameters (m,t,u). Fox fixed m (viewed as a parameter of the determinantal process

and not the scaled index on the last part A,,), there are three possibilities depending on (t, u):

e If the discriminant is negative, then K (u,u) converges to a value strictly between 0 and 1.
Therefore, at the scaled time t around the scaled location u there is a random configuration of
points from X () of density strictly between zero and one.
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e If the discriminant is positive, then K (u,u) converges to 0 or 1, and around u there is either a
densely packed, or an empty region of points from X (\).

e The case of zero discriminant (double critical points) is at the transition between the two cases,
and thus corresponds to the edge of the random configuration X (\).

Solving the double critical point equations S’(z;u) = S”(z;u) =0 in z,u, we find

- ym _ (Bt ) Bo)

Zecr \/t/_p _ \/57 Ucr 1—p .
Here out of two solutions to quadratic equations, we picked the one with the smaller u.,. which
corresponds to the left edge of X(A). Note that the solution u., in (B.6) is the same as the
constant c(m,t) from Definition 3.6, which is not a coincidence.

Let us deform the integration contours in the kernel (B.2) to pass near the double critical point
Zer- This point lies inside the interval (0, p), while the original contours satisfy p < |w| < |z| < 1.
Due to high multiplicity poles in the integrand, the w contour should not be deformed through
p, and the z contour should not be deformed through 0 and 1.

We deform the contours as follows. First, deform w such that the new w contour goes around
p and passes to the right of z... Then, deform z through w, such that the new z contour goes
around 0 and passes to the left of z... Dragging z through w picks up a residue at z = w, which
needs to be integrated over the new w contour. However, taking the residue at z = w eliminated
the pole at w = p, so the new single integral is zero. This implies that the contour deformation
does not produce extra terms in the kernel. See Figure 16 for an illustration.

\

N A

v

 — > / -
~

FIGURE 16. Left: Original contours in K (B.2). Right: Deformed contours passing through
the critical point. All contours are positively oriented.

The highlighted region in the right plot is Re(S (z3uer) — S(2er; uw.)) < 0. The new z and w
contour must lie inside (resp., outside) of this region for the contribution outside a neighbor-
hood of z. to vanish in the limit. In this example, p = 0.5, m =1, t =5, s0 2z, =~ 0.27 and
uer & 0.68. Large (red) dots show the points 0, p, and 1; the smaller dot is z¢;.

To arrive at the law of large numbers A,,/L — c(m,t) (recall that this is the same as u,),
it remains to show that changing ¢ by € or (—¢) makes the Fredholm determinant (B.3) go to
0 or 1, respectively. To show convergence to 1, it suffices to estimate |K (uy,us)| < e~ %L for
u1,uz < L(c—¢€), which follows from the steepest descent analysis. To show convergence to 0, it
suffices to look at the density function K (u,u) for u around L(c + ¢). In the limit, this density
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is strictly positive, and so the event \,, > L(c + ¢) has probability tending to zero. We omit
further details.

B.3. Asymptotic fluctuations. Consider the probabilities of fluctuations as in Theorem 3.7:

3 _71/3 _ Lt Lm—LY3av
Prasep (qu_lesavl J([Lt]) > Le—L m) = det [Id K Vv g T o(1).
(B.7)

Assume that m and t are fixed (recall that c,vi,ve depend on them). In the right-hand side of
(B.7), we dropped integer parts as they do not affect the limit to continuous space.

One can show that in the series (B.3) for the Fredholm determinant (B.7), terms where i, <
Lc — sLY3 for at least one a = 1,...,¢ (and s sufficiently large but finite), are negligible in the
limit. Thus, it suffices to consider K (i, i) := KLt7Lm_L1/3O‘V1(Lc+121L1/3, Lc+aoL'/3), where
u1,u2 € R. This computation will also produce the normalization constants vi and vy for the
Tracy—Widom GUE fluctuations.

In K, deform the contours to pass near the double critical point z.. = ze.(m,t) given by (B.6).
The contribution outside a small neighborhood of z.,. vanishes in the limit. In the neighborhood,
make a change of variables

1/357 w:Zcr“‘L_l/?)Q-/
0 0

Z=Zep + L™

i

where ¢ > 0 is to be determined. The new contour Z goes from e F oo to —1to e oo, and w
goes from e~ 3 0o to 0 to €3 oo. The function (B.5) is Taylor expanded in L as

L <S(z; ¢+ L72Bay) — S(zersc + L‘2/3111))

33 p3/2 (\/t/_p—\/m)4+ z <_al+av1(\/pt/m—1)>.

B _3—93 mt (1 *p)gzcr QZcr 1-p

Let us pick o > 0 such that the coefficient by 3 is (—1/3), that is,

N i O Y

e= (1—p)zer (mt)1/6
We also have in the integrand:
dzdw L7 dzdw
2(z —w) 0% W—Z

Adding the difference S(z; C+L_2/3112) —S(zer; C+L_2/3111) inside the exponent in the integrand
(B.4) does not change the correlation kernel, since it is a gauge transformation of the form
Ky, ) — K (g, 112)%, where f(-) is a nonvanishing function. Thus, we have

27i _mi 23 ~ ~
B ~ -1/3 e3> e~ 3 oo exp [T — 5+ zUp — 'LUUQ]
K(ﬂl,ﬂz)f(l?) ~— / dé/
f(ul) QZcr Je e

27i

where

Uy e — (a +av1(vpt/m_1)>. (B.9)

Zer
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The integral in (B.8) together with the minus sign from the prefactor is equal to the celebrated
Airys kernel A(Uy, Us) (e.g., see [Oko(2, (40)]). The Tracy-Widom GUE cumulative distribution
function is the Fredholm determinant of the Airys kernel, that is, Fy(r) = det[Id — Als,, r € R.

The additional prefactor (L'/3¢z.)~" in (B.8) combined with the sums in the pre-limit Fred-
holm determinant (B.3) turns them into Riemann integrals of the Airys kernel. The normalization
by 0ze is absorbed by a change of variables:

—Bv2 +oo
1 > g(a) ~ . / g(@)dﬁ—/ g(U)dU.

1/3 av m—
LY 0Zcr i= L1338 <—LV/3Bvy OZcr J—oo QZICT (5V2+—1( 111;{ 1))
Here we incorporated the bound Lc — L'/3 Bvy from (B.7) into the bound for ¢, and shifted all
indices by Lc. The function g(a) represents terms like K(-,iq)K (iq,-) in the Fredholm determi-
nant (B.3) arising when expanding the individual ¢ x ¢ determinants as sums over permutations.
Here @ and i, are related as i, = | L'/3]. We also set g(U) = g().

We see that the following convergence of Fredholm determinants holds:
lim det [1d — KEEm=E! o]

L—oo

= det [1d — Al , (B.10)

<Lc

where

T =

Byg + avy(y/pt/m—1)
QZcr I—p ‘

We see that setting

vy =vi(m,t) = 0%er (1 —p) - \/ﬁml/g (Vt/p — \/E)Q/?)-
T m 1R (et Y
VP (Pt —vm)*B(/t/p — y/m)*8
1-p) (mt)1/6
turns the right-hand side of (B.10) into the Tracy—Widom GUE distribution Fa(« + ). This
completes the proof of Theorem 3.7.

(B.11)

vo = va(m,t) i= 0z¢ = (
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