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SNP heritability, the proportion of phenotypic variation explained by genotyped SNPs, is an important parameter in un-
derstanding the genetic architecture underlying various diseases and traits. Methods that aim to estimate SNP heritability
from individual genotype and phenotype data are limited by their ability to scale to Biobank-scale data sets and by the re-
strictions in access to individual-level data. These limitations have motivated the development of methods that only require
summary statistics. Although the availability of publicly accessible summary statistics makes them widely applicable, these
methods lack the accuracy of methods that utilize individual genotypes. Here we present a SUMmary-statistics-based
Randomized Haseman-Elston regression (SUM-RHE), a method that can estimate the SNP heritability of complex pheno-
types with accuracies comparable to approaches that require individual genotypes, while exclusively relying on summary
statistics. SUM-RHE employs Genome-Wide Association Study (GWAS) summary statistics and statistics obtained on a
reference population, which can be efficiently estimated and readily shared for public use. Our results demonstrate that
SUM-RHE obtains estimates of SNP heritability that are substantially more accurate compared with other summary statistic
methods and on par with methods that rely on individual-level data.

[Supplemental material is available for this article.]

The exponentially decreasing cost of genotyping and sequencing
technologies has led to an increase in the number and size of bio-
banks (Bycroft et al. 2018; Johnson et al. 2023; Kurki et al. 2023),
covering awide range of populations.With large samples of pheno-
type and genotype data now available in these biobanks, one of the
major analyses often performed is estimating heritability, defined as
the phenotypic variance explained by the variance in the genotype
(Falconer and Mackay 1996). Heritability estimates in these large
data sets have allowed researchers to better delineate the scope of
the role genetics play in complex traits, ranging from schizophrenia
(Niarchou et al. 2020) to height (Yang et al. 2015), andhave assisted
investigations into their genetic architectures (Lappalainen et al.
2024).Most heritability estimationmethods fit linearmixedmodels
(LMMs) (Yang et al. 2011; Loh et al. 2015a,b) tomap the variation in
genotypes measured at single-nucleotide polymorphisms (SNPs) to
the variation in phenotypes and thereby estimate the SNP heritabil-
ity, that is, the proportion of phenotypic variance explained by gen-
otyped SNPs. Given the high dimensionality of the genotypes and
the large sample sizes of biobanks, fitting or parameter estimation in
LMMs is computationally prohibitive. Many methods have been
proposed to reduce computational complexity while retaining stat-
istical accuracy (Yang et al. 2011; Zhou and Stephens 2012; Loh
et al. 2015a,b; Zhou 2017; Wu and Sankararaman 2018;
Pazokitoroudi et al. 2020). These methods, although highly accu-

rate, generally take hours or days to run and require access to indi-
vidual genotypes and phenotypes.

The rise of large-scale biobanks has also brought increased at-
tention to the issue of genomic privacy owing to a surge in security
breaches (Frizzo-Barker et al. 2016; Savatt et al. 2019; Akyüz et al.
2021). Consequently, additional measures have been implement-
ed to safeguard individual information throughout its processing,
storage, and sharing (Wan et al. 2022). Gaining access to raw indi-
vidual-level data is now more challenging, exemplified by the UK
Biobank’s decision to restrict access to its WGS data to its cloud
server (Deflaux et al. 2023). Given these developments, there is a
growing preference for summary-statistics-based methods due to
their portability and speed, even though they may sacrifice some
statistical power compared with methods that use individual-level
data (Bulik-Sullivan et al. 2015; Shi et al. 2016; Zhou 2017;
Hou et al. 2019; Speed and Balding 2019). Such a loss in statistical
power is particularly pronounced in smaller sample sizes and may
result in inflated estimates of heritability owing to underestima-
tion of linkage disequilibrium (LD) (Zhou 2017), even if correct ref-
erence summary statistics were used.

To address these challenges of heritability estimation in large
biobanks, we propose SUMmary-statistics Randomized Haseman–
Elston regression (SUM-RHE), by extending our previous work,
Randomized Haseman–Elston regression (RHE) (Wu and Sankar-
araman 2018; Pazokitoroudi et al. 2020), to work exclusively on
summary statistics. This adaptation leverages the observation

Corresponding authors: bronsonj@cs.ucla.edu, sriram@cs.ucla.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.279207.124.
Freely available online through the Genome Research Open Access option.

© 2024 Jeong et al. This article, published in Genome Research, is available un-
der a Creative Commons License (Attribution 4.0 International), as described at
http://creativecommons.org/licenses/by/4.0/.

Method

1286 Genome Research 34:1286–1293 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/24; www.genome.org
www.genome.org

 Cold Spring Harbor Laboratory Press on July 1, 2025 - Published by genome.cshlp.orgDownloaded from 

mailto:bronsonj@cs.ucla.edu
mailto:sriram@cs.ucla.edu
https://www.genome.org/cgi/doi/10.1101/gr.279207.124
https://www.genome.org/cgi/doi/10.1101/gr.279207.124
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/
http://www.cshlpress.com


that the trace estimates of the squared genetic relatedness matrix
(GRM), which are needed to compute the method-of-moments
(MoM) estimator underlying RHE, can be related to population-
level parameters. By combining these trace estimates from a refer-
ence sample with Genome-Wide Association Study (GWAS) sum-
mary statistics from a target sample (consisting of individuals
sampled from the same population as the reference sample), we
can reconstruct the MoM estimates for the target sample without
access to the individual data. In comprehensive simulations across
various genetic architectures and scenarios, we show that SUM-
RHE estimates are on par withmethods that rely on individual-lev-
el data, and are substantiallymore accurate than popular summary
statistic-based methods, all while exclusively utilizing summary
statistics.

Methods

Background on heritability estimation and LMMs
Early attempts to calculate SNP heritability of complex traits by ag-
gregating SNPs identified asGWAS-significant have revealed the is-
sue of missing heritability, as this estimate of heritability was
significantly lower than the narrow-sense heritability estimated
in other studies (e.g., twin studies) (Manolio et al. 2009). The semi-
nal work by Yang et al. (2010) reduced this discrepancy by jointly
modeling all the SNPs, such that their effect sizes come from a dis-
tribution of some fixed variance that quantifies the genetic varia-
tion. In this LMMframework, the standardized phenotype vector y
is modeled as a linear combination of SNP effect sizes βmultiplied
by the standardized genotype matrix X ofM SNPs and N individu-
als with uniform noise e:

y = Xb+ e, b ! D 0,
s2
g

M
IM

( )

, e ! D(0, s2
e IN ), (1)

where the additive effect sizes β are drawn from an arbitrary distri-

bution D with mean zero and variance of
s2
g

M
IM , and the environ-

mental/noise effects e are drawn from a distribution with variance
s2
e . In the original work by Yang et al. (2010) andGCTA (Yang et al.

2011), the distributionDwas chosen as a normal distribution. The
SNP heritability is then defined as the proportion of genetic vari-

ance over total phenotypic variance, h2
SNP =

s2
g

s2
g + s2

e
.

One approach to estimating the variance components s2
g , s

2
e

is to find the maximum likelihood estimator (MLE) and its vari-
ants, such as restricted maximum likelihood (REML) estimators
(Yang et al. 2011; Loh et al. 2015b). These methods often rely on
iterative optimizations, which tend to be inefficient, and could
lead to biased estimates owing to the normality assumption
(Zhou 2017; Wu and Sankararaman 2018). On the other hand,
MoM approaches such as the Haseman–Elston regression (HE)
(Haseman and Elston 1972; Sham and Purcell 2001), RHE (Wu
and Sankararaman 2018; Pazokitoroudi et al. 2020), MQS (Zhou
2017), or LDSC (Bulik-Sullivan et al. 2015), only require solving
the normal equations and do not make any assumptions on the
underlying distribution D. Here, we briefly discuss the MoM esti-
mator (HE), which sets the foundation for our work.

Heritability estimation from individual genotype data
using MoM and randomized MoM
The HE MoM estimator of the parameters s2

g , s
2
e can be obtained

by minimizing the discrepancy between the sample covariance

yy` and the population covariance matrices. The population co-
variance is given as

cov[y] = E[yy`]− E[y]E[y`] = s2
gK+s2

e IN , (2)

where K = 1
M

XX` is defined as the GRM. We want to find the

estimates of the parameters ŝ2
g , ŝ2

e that minimize the Frobenius
norm (the measure of discrepancy) between the two covariance
matrices. This is equivalent to solving the following normal equa-
tions:

tr(K`K) tr(K)
tr(K) N

[ ]
ŝ2
g

ŝ2
e

[ ]

= y`Ky
y`y

[ ]
, (3)

where tr(K) =N and y`y = N, given bothX and y are standardized.
Equation 3 has the analytical solution for the variance compo-

nents ŝ2
g , ŝ2

e :

ŝ2
g = y`Ky − y`y

tr(K`K)−N
, ŝ2

e = y`y
N

− ŝ2
g , (4)

giving the MoM estimate for heritability ĥ2:

ĥ2 =

y`Ky
y`y

− 1

tr(K2)
N

− 1
=

1
M

y`XX`y
y`y

− 1

tr(K2)
N

− 1

=

1
M

X`y)))))
y`y

√

( )`
X`y)))))
y`y

√ − 1

tr(K2)
N

− 1

. (5)

The biggest bottleneck in the equation is calculating tr(K`K).
An exact calculation of the trace involves forming thematrixK`K,
which has a computational complexity of O(MN2). Given M≈
1,000,000 and N≈1,000,000, this is not tractable in modern bio-
banks. One of the main contributions of RHE-reg (Wu and
Sankararaman 2018) and RHE-mc (Pazokitoroudi et al. 2020) is
the efficient estimation of tr(K`K) by leveraging the fact that the
trace of K`K can be approximated by a stochastic trace estimator
(Girard 1989; Hutchinson 1989):

t̂r(K`K) = 1
B

∑B

b=1

z`b K
`Kzb, (6)

where zb are independent and identically distributed random vec-
tors such that E[zb] = 0 and E[zbz`b ] = IN . In both RHE-reg and
RHE-mc, randomvectors sampled from the standard normal distri-
bution are used. Numerically, it was found that using B≈100 can
estimate the trace of the squared GRM matrix K`K with high
accuracy for moderate sample sizes ofN≈5000 and B≈10 for large
samples sizes (Wu and Sankararaman 2018; Pazokitoroudi et al.
2020). This stochastic trace estimator reduces the computational
complexity to O(MNB). Additional optimizations, such as the
mailman algorithm (Liberty and Zucker 2009) and implementa-
tion of a streaming version of the algorithm, reduce the computa-

tional complexity to O
NMB

max (log3N, log3M)

( )
and the memory

complexity to O(NB), thus allowing estimation of heritability
across millions of SNPs and individuals.

Extensive benchmarking of the RHE methods has shown
that their performance is on par with other methods that require
individual-level data, such as GCTA or BOLT-REML (Wu and
Sankararaman 2018; Pazokitoroudi et al. 2020). RHE offers a
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distinct advantage over these likelihood-based methods, which
tend to scale poorly, as well as other MoM approaches in terms
of computational andmemory efficiency (e.g., HE) or statistical ef-
ficiency (LDSC) (Pazokitoroudi et al. 2020). However, RHE is still
limited in that it requires access to individual-level genotype and
phenotype data, which restricts its applicability in cases in which
such data are unavailable or only GWAS summary statistics are
available.

Heritability estimation from summary statistics
In this work, we further extend RHE to work exclusively with
GWAS summary statistics. Our key observation is the fact that
the left-hand side (LHS) of the normal equations (Equation 3) is re-
lated to the LD in the population (Bulik-Sullivan 2015; Zhou 2017)
and not the phenotype. Thus, if we can summarize the trace esti-
mate for a reference sample drawn from a population, we can
use these trace estimates to reconstruct the corresponding trace es-
timates for a target sample drawn from the same population.
Indeed, we find that the expected value of the trace of K`K can
be related to the LD scores of the SNPs. Furthermore, the RHS of
the normal equations can be computed fromGWAS summary sta-
tistics obtained on the target population.

The LD score of a variant j is defined as the sumof squared cor-
relation with all the variants,

r2j =
∑M

k=1

r2jk, (7)

then tr(K`K) is

tr(K`K) = tr
XX`

M
XX`

M

( )

= 1
M2 tr(X

`XX`X), Cyclic property of trace

= N2

M2 tr
X`X
N

X`X
N

( )

= N2

M2 tr(R
2)

= N2

M2

∑M

j=1

∑M

k=1

r2jk

, (8)

where R is the M×M correlation matrix (or the LD matrix), and

r jk =
1
N

∑N

n=1

xnjxnk is the sample correlation between variants j, k.

This gives

r2jk =
1
N

∑N

n=1

xnjxnk

( )
1
N
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xnjxnk

( )

= 1
N2

∑N

n=1

x2njx
2
nk +

∑N

n=1

∑N

i=n

xnjxnkxijxik

( ) .

For large sample sizes (N), we have

r2jk ≈
1
N2 (NE[X2

j X
2
k ]+ (N2 − N)E[XjXk])

= 1
N2 (NE[X2

j X
2
k ]+ (N2 − N)r2jk)

,

where ρjk is the expected correlation or population LD between
SNPs j and k. Assuming (Xj, Xk) are normally distributed with

mean zero and covariance
1 r jk
r jk 1

[ ]
, we can use Isserlis’ theorem

to compute E[X2
j X

2
k ] = E[Xj]2E[Xk]2 + 2E[XjXk]2 = 1+ 2r2jk. We

then have

r2jk ≈
1
N2 (N(1+ 2r2jk)+ (N2 − N)r2jk)

= 1
N2 (N + (N2 +N)r2jk)

= 1
N

+N + 1
N

r2jk

. (9)

Substituting Equation 9 into Equation 8,

tr(K`K) = N +N(N + 1)
M2

∑M

j=1

∑M

k=1

r2jk

= N +N(N + 1)
M2

∑M

j=1

lj

≈ N + N2

M2

∑M

j=1

lj

= N + N2

M2 S

= N +N2r

, (10)

where lj =
∑M

k=1 r
2
jk is the expected or population-level LD score as-

sociatedwith SNP j, whereas ρ can be interpreted as the average (ex-
pected) LD across all SNPs in genotype X.

Let b̂j denote the GWAS effect size estimates for SNP j ob-
tained by linear regression. Given the observed count Nj of the

SNP, we have b̂j =
X`y
Nj

because the genotypes are standardized.

The standard error of the GWAS estimate is sj =
))))))
MSE
Nj

√
≈

)))))
y`y
NNj

√

.

Thus, if we define the vector of adjusted z-scores,

z =
b̂j

sj

)))
Nj

N

√{ }

,

we have that

z = X`y)))))
y`y

√ . (11)

Substituting Equations 10 and 11 into Equation 5 gives us

ĥ2 ≈

z`z
M

− 1

Nr
, (12)

where r = 1
N

tr(K2)
N

− 1
( )

. Given ρ, ĥ2 can be computed using sum-

mary statistics using Equation 12. However, computing ρ requires
the exact κ= tr(K2), which is computationally intractable. Instead,

we approximate ρ by using the stochastic trace estimates k̂ = t̂r(K2)

described in Equation 6, such that r̂ = 1
N

k̂

N
− 1

( )
. This gives us the

randomized MoM estimator of h2 that can be calculated from
summary statistics:

ĥ2
MOM =

z`z
M

− 1

Nr̂
. (13)

We propose releasing r̂ as “trace summaries,”which can then
be combined with phenotype-specific GWAS summary statistics z
to estimate heritability. The estimator in Equation 14 assumes that
the r̂ was computed on the same genotypes used to generate the
GWAS summary statistics. In settings in which r̂ cannot be
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computed on the same genotypes, we can use r̂ computed on a ref-
erence genotype data set drawn from a population that is similar to
the population that was used to generate GWAS summary statistics
(such as The 1000 Genomes Project). This is under the assumption
that the LD structures of similar populations will also be related.

Estimating standard errors
To calculate the standard error of our estimator, we perform
SNP-level block jackknife resampling, as done in RHE-mc
(Pazokitoroudi et al. 2020). When generating the trace summaries
with individual genotypes, we report the r̂ jack values estimated
from jackknife subsamples. Excluding the same SNPs from the
PLINK GWAS summary statistics, we can compute the denomina-
tor in Equation 14, z`jackz jack/Mjack, to get the jackknife replicate

of ĥ2:

ĥ2
jack =

1
Nr̂ jack

z`jackz jack

Mjack
− 1

( )

.

Following the execution on all SNP blocks, we employ jack-
knife resampling to obtain SE estimates:

V̂ar(ĥ2 ) = n− 1
n

∑n

i=1

[ĥ2
i − m(ĥ2)], ŜE(ĥ2) :=

))))))))))
V̂ar(ŝ2

g )
√

. (14)

Results

Simulations under varied genetic architectures
We assessed the performance of SUM-RHE against methods that
require individual genotypes—RHE (RHE-mc run with a single
component), GCTA-GREML, and BOLT-REML—and methods
that can work with summary statistics—LDSC and SumHer
(Speed and Balding 2019)—on the task of estimating genome-
wide heritability. We applied all methods to unrelated White
British individuals genotyped on M=454,207 common SNPs
(MAF>0.01 excluding SNPs in the MHC region) typed on the
UK Biobank Axiom array. Because of the computational scalability
of GCTA-GREML and BOLT-REML, we tested these and other
methods in a small-scale setting in which the number of individu-
als in the target data set was set toNtarget=10,060 (we term this the
10k sample). In addition, we compared all the remainingmethods
in a large-scale setting in which the number of individuals in the
target data set was set to Ntarget=50,112 (termed the 50k sample).
For the summary statistic methods, the GWAS summary statistics
were computed on the target data sets. Thesemethods also require
population statistics, calculated in the remainder of the N=
291,273 unrelated White British individuals as the reference data
set. For the small-scale simulation, the reference set has Nref=
281,213, and for the large-scale simulation, we set Nref=241,161.
On each of the reference sets, we generated SUM-RHE trace sum-
mary statistics, LDSC reference LD scores, and LDAK SNP taggings.

We then simulated phenotypes corresponding to nine differ-
ent genetic architectures: h2

SNP = 0.1, 0.25, 0.4 and causal ratio P=
1.0, 0.1, 0.01 (where the causal ratio represents the proportion of
variants with non-zero effects), each with 100 replicates. Table 1
summarizes the inputs for each method: For the calculation of
LDSC LD scores, we used the entire Nref reference sample with a
window size of 2 Mb. SUM-RHE trace summaries were calculated
by aggregating the trace estimates of 25 runs on the reference
set with B=100 (equivalent to stochastic trace estimation with
B′ = 2500 random vectors) (formore information, see Supplemen-
tal Fig. S2) and 1000 jackknife blocks, yielding a single trace sum-
mary statistic with 1000 jackknife estimates of r̂. SumHer was run
assuming the GCTA model to calculate the SNP taggings (consis-
tent with the genetic architecture assumed in our simulations).
RHE was run with B=100 and 1000 jackknife blocks as well.
BOLT-REML/GCTA-GREML was run with default parameter set-
tings. GWAS summary statistics for each simulated phenotype
were generated using PLINK 2.0. Figure 1 summarizes the heritabil-
ity estimates on the target data. Across the 18 different settings (ge-
netic architectures and sample sizes) we tested, we found that the

Table 1. Inputs for the different methods evaluated

Method BOLT/GCTA-GREML, RHE SUM-RHE LDSC SumHer

Inputs Individual genotype Ref. trace Ref. LD scores Ref. SNP tag

Individual phenotype GWAS summary GWAS summary GWAS summary

LDSC and SUM-RHE rely only on the summary statistics, whereas GCTA-GREML, BOLT-REML, and RHE require individual data for target genotypes and
phenotypes.

Figure 1. Comparison of SNP heritability estimates across methods.
SUM-RHE heritability estimates are comparable to those from RHE or
BOLT-REML/GCTA-GREML and are significantly more accurate than those
of LDSC and SumHer. Because of computational limitations, BOLT-REML/
GCTA-GREML was not run on the N=50k simulations. Dashed hatches
denote individual-level data methods.
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accuracy of SUM-RHE was comparable to RHE (Fig. 1) with the
mean-squared error of SUM-RHE close to one relative to RHE, de-
spite relying only on the summary statistics (Fig. 2; for the MSE
of each method, see Supplemental Fig. S1).

SUM-RHE has substantially improved accuracy over other
summary-statistic-based methods: LDSC exhibits MSE ranging
from 244% to 478% relative to that of SUM-RHE (mean: 356%),
whereas SumHer-GCTA has MSE ranging from 94% to 331% rela-
tive to that of SUM-RHE (mean: 167%). SumHer-GCTA has lower
MSE than SUM-RHE for lowheritability (h2 = 0.1) and high polyge-
nicity (causal ratio, P=1.0). The improvement inMSE is particular-
ly pronounced with smaller sample sizes (N=10,060).

We also tested the calibration of SUM-RHE by simulating phe-
notypes with h2

SNP = 0 and testing the hypothesis of h2
SNP = 0 with

a rejection threshold of α=0.05 for bothN=10,060 andN=50,112
to find that SUM-RHE is well calibrated (Table 2).

Simulations with a mixture model
We further test the robustness of our method by simulating phe-
notypeswith a combination of large- and small-effect SNPs.We se-
lected the first π=0.05 of the SNPs to account for γ=0.25 of the
total SNP heritability, whereas the rest of the SNPs accounted for
the remainder. The causal SNPs were then selected at random

Figure 2. Mean squared error (MSE) of heritability estimates of eachmethod relative to RHE. The dot and error bar denote the relativeMSE and the 95%
CI calculated based on bootstrap resampling (using 10,000 bootstrap samples), respectively. Although the MSE of SUM-RHE is within ±5% of the MSE of
RHE, the MSE of LDSC ranges from 245% to 472%, whereas the MSE of SumHer-GCTA ranges from 92% to 320%. (Diamond) BOLT-REML and GCTA-
GREML have relative MSE in the range of 80% and 106% for the 10k samples and were not benchmarked on the 50k samples.

Table 2. Calibration of the methods

Method Sample BOLT-REML GCTA-GREML LDSC SumHer-GCTA SUM-RHE RHE

Bias 10k 0.0247 0.0219 0.0084 0.0095 0.0058 0.0047

50k — — 0.0019 0.0005 −0.0002 −0.0002
SE 10k 0.0020 0.0020 0.0101 0.0031 0.0045 0.0045

50k — — 0.0019 0.0006 0.0010 0.0010

FPR 10k 0.15 0.14 0.04 0.06 0.06 0.05

50k — — 0.03 0.05 0.06 0.06

We report the bias, SE, and the false-positive rate (FPR) of each method in the setting in which h2SNP = 0. Because of computational limitations, GCTA-
GREML and BOLT-REML were only run on 10k samples.
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with fixed probability α, such that the effect sizes for the large-ef-
fect SNPs were sampled from a different distribution than for the
small-effect SNPs. Specifically, the effect sizes were sampled from
two distributions:

bj !
N 0,

gh2

pMa

( )
, for j [ Large effect

N 0,
(1− g)h2

(1− p)Ma

( )
, for j [ Small effect





.

Figure 3 shows the boxplots of estimates fromLDSC, SumHer-
GCTA, SUM-RHE, and RHE, whereas Figure 4 plots the SE andMSE
of the three summary-statistics methods (LDSC, SumHer-GCTA,
SUM-RHE) relative to that of RHE. We observe that both LDSC
and SumHer-GCTA show larger MSEs than SUM-RHE, similar to
our previous simulations. LDSC has a MSE in the range of 266%
to 444% relative to that of SUM-RHE (mean: 348%), and SumHer
has a MSE in 102% to 304% (mean: 151%). These results indicate
that SUM-RHE is robust under the mixture model simulations and
attains accuracy comparable to individual-level methods across
the scenarios we tested.

Runtime measurements
We compared the runtime of SUM-RHE to other methods (Table
3). The heritability estimation step for all the summary statistic
methods is computationally efficient irrespective of sample size.
The generation of the reference statistics will depend on the size

Figure 3. Comparison of SNP heritability estimates across methods on
simulations with mixtures of large and small genetic effects.

Figure 4. Comparison of MSE and SE of the summary-statistics-based methods against RHE on simulations with mixtures of large and small genetic ef-
fects. Here we report the relative MSE of the five methods on the mixture-of-effect simulations. Their performances are similar to those in the previous sim-
ulations (Fig. 2). SUM-RHE has an MSE within ±5% relative to RHE.
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of the reference data set but is typically a one-time computation
that is relatively efficient even for data sets with hundreds of thou-
sands of individuals with access to a compute cluster.

Application to traits in the UK Biobank
Finally, we applied three of the summary statistic methods as well
as one of the scalable individual genotype-based method (RHE) to
real UK Biobank phenotypes measured on N=291,273 unrelated
White British individuals paired with genotypes assayed on
454,207 common array SNPs (we ran SumHer with both GCTA
and LDAK SNP taggings for real phenotypes). Here we plot the
15 quantitative traits with the highest z-scores of SUM-RHE herita-
bility estimates, fromoverall health (z= 34.3) to albumin (z=17.9),
ordered by the heritability estimates. For the summary-statistics-
based methods (LDSC, SUM-RHE, SumHer-LDAK/GCTA), we use
in-sample statistics.

As expected, SUM-RHE has estimates that agree well with RHE
estimates (Fig. 5). SUM-RHE estimates tend to lie in between
those from LDSC and SumHer (with both GCTA and LDAK SNP tag-
gings), consistent with our previouswork (Pazokitoroudi et al. 2020).

Discussion
Here we propose a summary-statistics-based heritability estima-
tion method, SUM-RHE, that has performance comparable to
that of individual genotype-based methods. SUM-RHE is accurate,
fast, and highly portable. It uses a trace summary statistic calculat-
ed by aggregating stochastic trace estimates and PLINK GWAS sta-
tistics. In the era of large biobanks, SUM-RHE will be a useful tool
in estimating heritability while maintaining the privacy of the
patients.

We conclude with a discussion of limitations and directions
for future work. First, heritability estimates from SUM-RHE are ac-
curate under the assumption that the summary statistics are free of
confounding owing to population stratification and cryptic relat-
edness. In a setting in which the summary statistics are affected
by confounders, LDSC could potentially be more robust (as con-
founding would affect the intercept of LDSC whereas the slope
would provide a robust estimator of heritability). Second, our pre-
liminary experiments suggest that SUM-RHE retains its accuracy
even when reference trace estimates are computed using a smaller
number of random vectors on a smaller number of individuals (as

Table 3. Runtime estimates of the six methods

Step Sample BOLT-REML GCTA-GREML RHE SUM-RHE LDSC SumHer

Reference statistic estimation 281k — — — 14,286.4 3120.8 697.3

GWAS summary 10k — — — 7.0 7.0 7.0

Heritability estimation 10k 589.6 847.3 590.6 1.6 4.0 2.9

Reference statistic estimation 241k — — — 14,686.0 2699.9 1180.7

GWAS summary 50k — — — 17.9 17.9 17.9

Heritability estimation 50k — — 3032.6 1.3 4.0 1.6

We ran each method on 10 replicates to measure wall clock time. For methods or tools that allow multithreading (BOLT/GCTA-GREML, SumHer, PLINK
2.0), we used six threads, run on the UCLA Hoffman2 computing nodes. SUM-RHE trace summaries were estimated by running the original RHE-mc
codes (which does not support multithreading). PLINK 2.0 was used for calculating the GWAS summary statistics. All measurements are in seconds.

Figure 5. Application to UK Biobank phenotypes.
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low asNref=30k and B=1000) (see Supplemental Fig. S2). These re-
sults suggest that the computation of trace summaries can be even
more efficient. Third, SUM-RHE is not applicable to the setting of
MAF and LD-dependent architectures, nor does it estimate parti-
tioned or local heritability. These applications will require compu-
tation and release of partitioned trace summaries.We view this as a
promising direction for future work.

Software availability
SUM-RHE source code is available at GitHub (https://github.com/
sriramlab/SUMRHE) and as Supplemental Code. Access to the UK
Biobank data (genotype and phenotypes measured at baseline) re-
quires an approved application. Details on the application and ap-
proval process can be found at https://www.ukbiobank.ac.uk/
enable-your-research/apply-for-access.
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