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Abstract

We give a lower bound of the §-invariants of ample line bundles in terms of Seshadri
constants. As applications, we prove the uniform K-stability of infinitely many fami-
lies of Fano hypersurfaces of arbitrarily large index, as well as the uniform K-stability
of most families of smooth Fano threefolds of Picard number one.

1. Introduction

Existence of Kidhler—FEinstein metrics on Fano manifolds is detected by K-stability:
a Fano manifold admits a Kdhler—Einstein metric if and only if it is K-polystable
(see [10], [40]). However, deciding whether a given Fano manifold is K-polystable
is a quite challenging problem. We refer to the recent survey by Xu [43] for details
on the subject and its development. A uniform approach to checking K-stability was
proposed recently by the authors in [2], which offers an inductive approach to K-
stability and the skeleton of its proof relies on lifting the calculation of the so-called
§-invariants (see Section 2.2) to certain flags of subvarieties by adjunction. One partic-
ularly useful tool that [2] provided is a K-stability criterion that only involves the exis-
tence of a linear system |L| satisfying a simple numerical condition so that through
each point there is a curve given by complete intersection of divisors in |L| (see [2,
Theorem 1.2]). In this article, we provide an even stronger criterion using the Seshadri
constant, an invariant that was originally introduced by Demailly [12] to measure the
local positivity of line bundles.

THEOREM A (Theorem 3.1)

Let X be a projective variety of dimension n > 2, and let L be an ample line bundle
onX.Letx e X,andletS = HiN---NH,_, C X be acomplete intersection surface
passing through x, where each H; € |L|. Assume that S is integral and smooth at x.
Then
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5e(L) > % ex(Lls).

For a precise description of the equality cases, we refer to the statement of Theo-
rem 3.1.

This result enables us to give strong estimate of the §-invariants of many Fano
varieties. One major application is to prove uniform K-stability for a large class of
smooth hypersurfaces. Before stating the result, we recall the following folklore con-
jecture; see [43, Part 3].

CONJECTURE
Any smooth Fano hypersurface X CP" ™1 of degree d > 3 is K-stable.

For general Fano hypersurfaces, this conjecture follows from the K-stability of
the Fermat hypersurfaces (see [1], [39], [47]), together with the openness of the K-
stable locus in smooth families (see [8], [17], [36], [42]). For arbitrary hypersurfaces,
the conjecture is known to be true when the Fano index is at most 2 (see [2], [22],
[34]), or when the dimension is at most 4 (see [32]). Using Theorem A and some
careful study of Seshadri constants, we are able to extend this to a much larger class
of hypersurfaces:

THEOREM B (Theorem 4.1)
Let X € P"*1 be a smooth Fano hypersurface of Fano index r > 3 and dimension
n>r3 Then X is uniformly K-stable.

For smooth Fano manifolds, uniform K-stability is equivalent to K-stability as
a combination of the analytic works (see [3], [10], [40])." Our proof of the above
theorem is completely algebraic. In particular, even for general hypersurfaces of Fano
index > 3 in the given dimensions, this is perhaps the first algebraic proof of their
uniform K-stability (see [2] for the small index cases).

The next application concerns smooth Fano threefolds of Picard number one.
They are classified by Iskovskikh into seventeen families; see [24]. Some of them,
such as P3, the quadric Q, and the Fano threefold V5 of index 2 and degree 5, have
infinite automorphism groups and therefore are not K-stable. It is also well known
that not all Fano threefolds of degree 22 are K-stable [38]. We show that in most
of the remaining degrees, the Fano threefolds are uniformly K-stable. This is new
when the Fano threefold has index 1 and degree at least 8. It also provides a unified

!Postscript note: an algebraic proof is now available by the very recent work [35].
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and purely algebraic proof for all the sporadic cases that were previously known (see
(11, [21, [13], [22], [34], [44]).

THEOREM C (Theorem 5.1)
Let X be a smooth Fano threefold of Picard number one. Assume that (—Kx)> #
18,22 and X # P2, Q or Vs. Then X is uniformly K-stable.

1.1. Structure of the article

We set the notation and gather some preliminary results in Section 2. The main tech-
nical result of this article, Theorem A, which relates Seshadri constants to stability
thresholds, is contained in Section 3. In Section 4, we apply this to obtain the first
application, Theorem B, which concerns the uniform K-stability of hypersurfaces.
Finally, in Section 5 we present the other application, Theorem C, which concerns the
uniform K-stability of Fano threefolds.

2. Preliminary

2.1. Notation and conventions

We work over C. Unless otherwise specified, all varieties are assumed to be normal
and projective. A pair (X, A) consists of a variety X and an effective Q-divisor A
such that Kx + A is Q-Cartier. The notions of kit and lc singularities are defined as
in [28, Definition 2.8]. If 7 : ¥ — X is a projective birational morphism and E is a
prime divisor on Y, then we say E is a divisor over X. A valuation on X will mean
a valuation v: C(X)* — R that is trivial on C*. We write Cx (E) (resp., Cx (v)) for
the center of a divisor (resp., valuation) and Ax a(E) (resp., Ax,a(v)) for the log
discrepancy of the divisor E (resp., the valuation v) with respect to the pair (X, A)
(see [4], [26]). We write Val}}’ A for the set of nontrivial valuations v on X such that
(X, A) is kit at the center of v and Ax, A (v) < co. For any valuation v and any linear
series V, we denote by , the filtration on V given by FAV = {s € V | v(s) > A}.
Let (X, A) be aklt pair, let Z C X be a closed subset, and let D be an effective divisor
(or an ideal sheaf) on X; we denote by Ictz (X, A; D) the largest number A > 0 such
that the non-lc locus of (X, A 4+ A D) does not contain Z.

2.2. K-stability and stability thresholds
In this section, we recall the definition of K-stability through stability thresholds.

Definition 2.1 ([6], [21])
Let (X, A) be a projective pair, let Z C X be a subvariety, and let L be an ample line
bundle on X. Let m > 0 be an integer such that H%(X,mL) # 0.
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An m-basis type Q-divisor of L is a Q-divisor of the form

L
D= Z{Si =0},

MmN i=1

where Ny, = h%(X,mL) and s1,...,sy,, is a basis of H°(X,mL). We define
8m(L) (resp., 8z m (L)) to be the largest number A > 0 such that (X, A+ AD)
is Ic (resp., Ic at the generic point of Z) for every m-basis type Q-divisor D
of (X, A).
Let v be a nontrivial valuation on X . We define
max{v(D) | D € |mL|}

m

Tm(L;v) =

and set 7 (L;v) = limy,— o0 T, (L;v) (it is usually called the pseudoeffective
threshold). We say that v is of linear growth if T'(L;v) < oo (this is the case
when v is divisorial or v € Val}’ A see [7, Section 2.3] and [6, Section 3.1]).
For such valuations, we set

di H°(X,mL >mt
vol(L;v>1)= lim imis € ‘( 7m.)|U(S)_m }
m—00 mdlmX/(dlmX)!

and S(L;v) = gy Jo. VOl(L;v > 1) de. If E is a divisor over X, we define
S(L;E):=S(L;ordg), T(L; E) := T(L;ordg), and so on.

Assume that (X, A) is kit (or kit at the generic point of Z in the local case).
The local and global stability thresholds (or §-invariant) are defined to be

Ax,a(v) S(L):= inf Ax,a(v)

8z(L):= , .
Z( ) veVal*X’A,ZQCX(U) S(L,U) veValy A S(L,U)

Clearly §(L) = infyex 8x(L). We say that a valuation v € Valy , computes
6z (L) (or §(L)) if it achieves the above infimum. Such valuations always exist
by [6, Theorem E]. We will sometimes write §z (X, A; L) and 6(X, A; L) if
the pair (X, A) is not clear from the context. By [6, Theorem A], we have
limy,—00 0m (X, A) = §(X, A). By the same proof in [6, Theorem A], we also
have limy;, 00 6z m (X, A) =38z (X, A).

Theorem-Definition 2.2 ([6], [21], [23], [31])
Let X be a Fano variety. Then it is K-semistable (resp., uniformly K-stable) if and
only if §(—Kx) > 1 (resp., 6(—Kx) > 1).

2.3. Seshadri constants, movable thresholds, and pseudoeffective thresholds
Let X be a variety, and let L be an ample line bundle on X. Let v be a valuation
of linear growth on X whose center Cy (v) has codimension at least two. Then the
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movable threshold n(L; v) is defined as

n(L;v) = sup{n> 0] for some m €N,

Bs‘.?f‘vm"HO(X, mL)‘ has codimension at least two}.

Note that n(L;v) > 0. Indeed, if we choose some sufficiently large integer m > 0
such that Ox (mL) ® dcy (v) is globally generated, then as the base locus of this
linear system has codimension at least two we get n(L;v) > L v(d¢ @) > 0.

Let x € X be a smooth point, let 7 : X — X be the blowup of x, and let E be
the exceptional divisor. Then the Seshadri constant L at x is defined to be (see [12]
or [29, Chapter 5])

L-C
ex(L):zsup{t20|71*L—tEisnef}:cigt;(( m é
cx mult,

’

where the infimum is taken over all irreducible curves C € X passing through x. We
also denote the pseudoeffective threshold 7'(L; E) (resp., movable threshold n(L; E))
in this case by 7 (L) (resp., nx(L)). Note that (L) = 1 (L) when X is a surface.
By definition, it is easy to see that (L) < nx(L) < (L) and

(L) = sup{mult, D |0 < D ~q L}.

As we have (m*L — ex(L)E)" > 0 (where n = dim X), it follows that /(L") >
ex(L). It is also well known that t,(L) > {/(L") (see, e.g., [30, Lemma 10.4.12]).
When L is very ample, we also have 1y (L) < /(L"); otherwise we can find two
effective QQ-divisors D, Dy ~g L that have no common components such that
mult, D; > /(L"), and we have

(Ln) = (D] Dy -Hy-eovvn- Hn—2) > mult, D - mult, D, > (Ln)

for some general members Hy,..., H,_, of the linear system |L ® my|, a contradic-
tion. For later use, we recall some more properties of these invariants.

LEMMA 2.3

Let L be an ample line bundle on a variety X, and let v be a valuation of linear
growth on X whose center has codimension at least two. Assume that X is Q-factorial
of Picard number one and n(L;v) < T(L;v). Then there exists a unique irreducible
Q-divisor Dy ~g L on X such that v(D¢) > n(L;v). Moreover, we have v(Dy) =
T(L;v), and for any effective Q-divisor D ~q L such that v(D) > n(L;v), we have

D> v(D) —n(L:v)
~ T(L;v)—n(L;v)

0-
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Proof

For ease of notation, let n = n(L;v) and T = T(L;v). We first prove the unique-
ness. Suppose that there exist two such irreducible Q-divisors Do, Dy. Let A =
min{v(Dy),v(D1)} > 1. Then for some sufficiently divisible integer m the base locus
of |#"* H%(mL)| has codimension at least two since m Do, mD; € |F"* H(mL)).
Hence n > A, a contradiction. This proves the uniqueness of Dy.

For the existence, let D ~q L be an effective Q-divisor on S such that v(D) > 7
(which exists as T(L;v) > n(L;v)). Since p(X) = 1, we may write D =) _A; D;
where A; > 0, >~ A; = 1, and each D; ~q L is irreducible. As v(D) > 7, at least
one of the D; satisfies v(D;) > 5. This proves the existence of Dy. Since such Dy is
unique, it is then clear from the definition of pseudoeffective threshold that v(Dy) =
T, and moreover we have v(D;) < n for all i > 0. Thus v(D — AgDg) < (1 — Ag)7n.
Solving this inequality gives g > %. O

LEMMA 2.4

Let S be a Q-factorial surface of Picard number one, and let x € S be a smooth point.
Then we have e, (L) - T, (L) = (L?).

Proof
Again let ¢ = ¢, (L) and 7 = t,(L). Clearly ¢ < t by definition. If ¢ = 7, then since
7> /(L?) > &, we necessarily have ¢ = t = /(L2); hence et = (L?). Thus we

may assume that ¢ < 7. By Lemma 2.3, there exists a unique irreducible Q-divisor
Do ~g L on § such that mult, Dy = 7. Let C C § be an irreducible curve passing
through x. If Dy is supported on C, then

(C-L) (Do-L) _(L*.

’

mult,C mult,Dy <t

otherwise we have

(C-L) (C-Do)
= > mult, Dg = 7.
mult, C mult, C =Mt Po =1

Since 2 > (L?), by the definition of Seshadri constants, we see that & = @ ([

2.4. Restricted volumes

We refer to [19] for the original definition of the restricted volume voly|z(L) of a
divisor L along a subvariety Z. For our purpose, their most important properties are
summarized in the following statement.

LEMMA 2.5
Let L be an ample line bundle on a projective variety X of dimensionn, let w: Y —
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X be a birational morphism, and let E C 'Y be a prime divisor on Y. Then

d
EVOI(R’*L—IE) =—n-voly|g(7*L —tE) 2.1

forall 0 <t < T(L; E). Moreover, the function t — voly g (n*L — tE)anl is con-
cave on [0, T(L; E)).

Proof
The equality (2.1) follows from [5] or [33, Corollary C]. The concavity part follows
from [19, Theorem A]. O

We may then rewrite the formula of S-invariants using restricted volumes as
follows.

LEMMA 2.6
In the situation of Lemma 2.5, we have

n T(L;E)
S(L;E) = / x-voly|g(7*L — xE)dx.
(L") Jo |
Proof
By definition, S(L; E) = (Lln) OT(L;E) vol(r* L —t E') dt. Thus the statement follows
from (2.1) and integration by parts. O

2.5. Filtered linear series and compatible divisors
In this section, we briefly recall some definitions from [2, Sections 2.5 and 2.6].

Definition 2.7
Let Lq,..., L, be line bundles on X. An N”"-graded linear series W5 on X associated
to the L;’s consists of finite dimensional subspaces

W; CH®(X,Ox(aiLy + -+ +a,L,))

for each @ € N such that Wy = C and Wy, - W, € W;, 45, forall d;,d> € N, The
support Supp(W;) € R” of W; is defined as the closure of the convex cone spanned
by all @ € N" such that W; # 0. In this article we only consider multigraded linear
series that have bounded support and contain ample series; see [33, Section 4.3] or
[2, Definition 2.11] for the precise definition. A filtration ¥ on Wj is given by the
data of vector subspaces F*W; C W; for each A € R and @ € N” such that F*1 Wi, -
Fh W;, € Fhitha W;, 44, forall A; € R and all @; € N”. We only consider linearly
bounded filtrations, that is, there are constants C; and C, such that ¥ AW‘; = W; for
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all A < Cy|d| and FAW; = 0 for all A > C,|d|. Any valuation v of linear growth on
X induces a filtration %, on W; such that FAW; = {s € W; | v(s) > A}.

If we think of W; as an N x N”~!-graded linear series and view the first N-factor
as the level grading, then we may define m-basis type Q-divisors of W; as a Q-divisor

of the form
L
D=—— s; = 0},
T D s =0}
i=1
where s1,...,5y,, enumerate some basis of W, ; for all a € N1 (we call it an

m-basis of W) and N,, = ) ; dim W, ;. Following [2], we say that D is compatible
with a filtration % on W if every % W, z is spanned by some of the s;. Let A(W5) =
{aeR"™| (1,a) € Supp(W;)}. For any @ € Q"1 in the interior of A(W;), we set
dimW,, .z
voly. (@) := lim ———="%  (n =dimX),
* m—oco m"/n!

where the limit is taken over integers m such that ma € N"~!. By [33, Corollary 4.22],
it extends a continuous function on the interior of A(W5), which we still denote by
voly; (+). For each a € N, we let M; (resp., F;) be the movable (resp., fixed) part of
W;. We define F(W3) :=limy,— o0 Fiy (W3) € Div(X)R, where

1

Fn(We) = -t NZ AW z) Pz
aeN"—

Note that the limit exists by [2, Lemma-Definition 2.25]. As in [2, Lemma-
Definition 2.25], we also set ¢ (W3) := limy—o0 ¢1(Dy) € NS(X)r (Where Dy,
is any m-basis type Q-divisor of W5) and ¢y (M,) := ¢1(W;) — F(W5). Many of the
invariants we define in Section 2.2 also generalize to this setting; see [2, Section 2.6].
For our purposes, we recall the following.
(1)  The pseudoeffective threshold 7' (W5; ) of a filtration ¥ on W5 is defined as
T, W;; F T, W;; F
T(W5; F):= lim M = sup M,
m—oo  m meN M
where
Tm(W5; F) =sup{L €R | TFAWm,(; # ( for some a}.

2) We set S(W5; ) :=limy,; 00 S (W33 ), where

S (Wa: F) = > A-dimGri W, 5.

mN,
"™ oa
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3) Given a closed subset Z C X, we define

SZ(W;, 5‘7) = limsupSZ,m(W;, ?),
m—00
where 8z, (W;, ) = infp Ictz (X, A; D) and the infimum runs over all m-
basis type Q-divisors D of W5 that are compatible with & .
Our multigraded linear series mostly come from the refinement of a complete
linear series.

Definition 2.8 ([2, Example 2.15])

Let L be a big line bundle on X, and let V; be the complete linear series associated
to L, thatis, V,, = HO(X,mL). Let 7: Y — X be a birational morphism, and let F
be a Cartier prime divisor on Y. The refinement of V5 by F is the N?-graded linear
series W; associated to 7*L|f and —F | on F given by

Win,j =Im(H (Y. ma*L — jF) > H*(F.mx*L|r — jF|F)).
Note that any filtration # on Vi naturally induces a filtration ¥ on W;, that i
F AW, s, is the image of F4V,, N HO(Y,mn*L — jF).

LEMMA 2.9
In the above notation, we have S(V3: ¥) = S(W5, F).

Proof
It suffices to show that S,,(Vs; %) = Sy, (Ws: ). By [2, Lemma 3.1], we may find a
basis 51, ..., 8n,, of V}, thatis compatible with both ¥ and ¥, the filtration induced

by F. By construction, they restrict to form an m-basis of W; that is compatible with
F.Let A; = sup{A | s; € FAV,,}. Then, by the definition of S-invariants, it is easy to
see that S(Vs: F) = s Y Ay = S(Ws: 7). O

For computations we often choose refinements that are almost complete [2, Def-
inition 2.27].

Definition 2.10
Let L be a big line bundle on X, and let W5 be an N”-graded linear series. We say
that W; is almost complete (with respect to L) if for every a € int(Supp(W5)) N Q"
and all sufficiently divisible integers m (depending on @), we have |M,,;| € |L,, ;|
for some L,, ; =¢,, ;L and some ¢, ; € N such that
dim Wm?z _ dim Mmii N
hO(X. L, 5L)  hO(X.L, ;L)

as m — oQ.
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In the surface case, all refinements as in Definition 2.8 are almost complete by
[2, Lemma 4.10]. Another common example is the refinement of the complete linear
series associated to an ample line bundle L by some integral member H € |L|; see
[2, Example 2.28].

3. Seshadri constants and stability thresholds

In this section, we prove the following statement, giving lower bounds of stability
thresholds in terms of Seshadri constants on complete intersection surfaces. This will
be a key tool to verify K-stability of Fano varieties in subsequent sections.

THEOREM 3.1

Let X be a projective variety of dimension n > 2, and let L be an ample line bundle
on X. Let x € X be a smooth point, and let S = Hy N ---N H,_, C X be a com-
plete intersection surface passing through x, where each H; € |L|. Assume that S is
integral and is smooth at x. Then

5e(L) > % ex(Lls).

When equality holds, we have at least one of the following:

(1)  ex(L|s) =tx(L|s) = /(L") =1, and 55 (L) is computed by any H € |L ®
My |, or

(2)  ex(L|s) =1x(L|s) = /(L") > 1, and the center of any valuation v that com-
putes 85 (L) has dimension dim Cx (v) > n —2, or

(3)  ex(L|s)tx(L]s) = (L"), and every valuation that computes 5, (L) is diviso-
rial and induced by a prime divisor G € X containing x such that S ¢ G and
L =1(L[s)G.

As one might expect, the careful analysis of the equality cases in the above state-
ment will be useful in proving uniform K-stability in several cases.

Note that an upper bound on the log canonical threshold in terms of Seshadri
constants was studied in [37]. However, the relation in Theorem 3.1 is in the opposite
direction, which offers significantly more flexibility in estimating the §-invariant.

The proof of Theorem 3.1 is by induction on the dimension, where the inductive
step is based on [2, Lemma 4.6]. Apart from that, the heart of the proof is a detailed
analysis of the surface case, where we can be even more precise about the equality
cases.

LEMMA 3.2
Let S be a surface, and let L be an ample line bundle on S. Let x € S be a smooth
point. Then
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5e(L) > % (L),

and equality holds if and only if ex(L) = 14 (L) = +/(L2), or ex(L)tx(L) = (L?)
and there exists a unique irreducible curve C C X containing x such that L =
x(L)C. Moreover, in the latter case, the curve C is the only divisor that computes

8x(L).

The idea to prove the above statement is to consider the refinement W5 of the
linear series associated to L by the ordinary blowup of x and then compare the sta-
bility thresholds of L and W; using tools from [2]. Using Zariski decomposition on
surfaces, we will estimate the stability threshold §(W;) in terms of restricted volume
functions and reduce the inequality in Lemma 3.2 to an inequality of the following

type.

LEMMA 3.3
Let 0 <a < b, and let g(x) be a bounded concave function on [0, b) such that g(x) =
x forall x € [0,a). Then

3a fob(Zx —g(x)) - g(x)dx < 4([: g(x) dX)z,

and equality holds if and only if a = b, or g(x) = h(x) for all x € [0,b), where

X if0<x=<a,
h(x)z{M Fa<x b
b—a -

In particular, when equality holds, we have fob gx)dx = %ab.

Proof

It is straightforward to check that equality holds when a = b; thus we may assume
that b > a.Let f(x) =g(x +a) —h(x +a),andletc =b —a > 0. Then f(0) =0,
f(x) is a bounded concave function on [0, ¢), and the inequality in the statement of
the lemma is equivalent to

az[(%x —4)f(x)dx—I—a/oc(6x—4c)f(x)dx

_3a/OC f(x)de—4(/Oc f(x)dx)zfo

by an elementary calculation. We claim that
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/c(3x —2¢) f(x)dx <0,
0

which clearly implies the previous inequality as well as the equality condition
f(x)=0. To prove the claim, consider F(t) = fot (3x — 2t) f(x)dx as a func-
tion of ¢ € [0,¢]. Then F(0) =0 and F'(t) =1 - f(t) =2 [y f(x)dx <t - f(t) —
2f(f 7 f(t)dx =0 (Yt € (0,¢)) by the concavity of f(x). Thus F(c) <0, and we are
done. ([

To further analyze the equality case in Theorem 3.1 and Lemma 3.2, we need two
more auxiliary results.

LEMMA 3.4
Let a > 0, and let g(x) be a nonnegative bounded concave function on [0,a) such
that g(0) > 0. Let n > 0 be an integer. Then

e [“xegr s o ([Mewor )’

with equality if and only if n = 1 or g(x) = (1 — 7)g(0).

Proof

The result is clear when n = 1, so we may assume that n > 2. Up to rescaling, we
may also assume that g(0) = 1. For each b > 0, let f;(x) =1— 3 (0 < x < b). Since
g(x) is nonnegative and concave, we have g(x) > f,(x) for all x € [0,«], and thus
Jo g tdx = [f fa(x)" 1dx. As limp_yoo fob fp(x)""1dx = oo, by interpola-
tion we know that there exists some b > a such that

a b
/ g(x)" dx =/ ()" Ldx. (3.1
0 0

It is easy to check that fob x- fp(x)" ldx = nnﬁ(fob fp(x)" 1 dx)?; hence it suffices
to show that

a b
/ x-g(x)"_ldxff x- fp(x)" dx. (3.2)
0 0

For ease of notation, set g(x) = 0 when a < x < b, and set h(x) = fj(x)""! —
g(x)"~1. Since g(x) is concave on [0,a] and f;(x) is linear, there exists some ¢ < a
such that 4(x) <0 for all x € [0,c] and A(x) > O for all x € (¢, b). Note that ¢ > 0 by
(3.1). We then have

b c b c b
/0 xh(x)dxz/o xh(x)dx—i—/; xh(x)dxzc/0 h(x)dx—i—c/c h(x)dx =0,
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where the last equality follows from (3.1). This proves (3.2). When equality holds,
we have 1(x) =0, and thus b = a and g(x) =1 — 7. O

LEMMA 3.5

Let L be an ample line bundle on a variety X of dimension n. Let G C X be a prime
divisor on X. Then

(L")

)L G)’

S(L;G) <
( )< n+1
with equality if and only if L = aG for some a > 0.

Proof

The result is clear when n = 1, so we assume that n > 2. Let 7: ¥ — X be a log
resolution such that the strict transform G = 7' G of G is smooth. Leta = T(L; G).
By Lemmas 2.5 and 2.6, we have

a
S(L;G) = (LL”)f x-volY|5(ﬂ*L—xG)dx,
e (3.3)
(L”):n/ Voly‘g(n*L—xa)dx.
0

Since L is ample, by [19, Lemma 2.4] we also have voly g (7*L) = volx|g(L) =
(L""!. G); hence the inequality follows directly from Lemma 3.4 applied to g(x) =
voly g (7*L —xG) anl, which is concave by [19, Theorem A]. Suppose that equality
holds; then by Lemma 3.4, we have g(x) = (1 — 7)g(0), that is,

~ n—1
voly g(n*L —xG) = (1 - i) (L"1.G)
a

for all 0 < x < a. A direct calculation through (3.3) then yields (L") = a(L""! - G),
or (L '-L —aG)=0.It follows that L —aG =0 as L —aG is pseudoeffective

and L is ample. Clearly S(L;G) = nil if L = aG. This finishes the proof. O

We are ready to present the proof of Lemma 3.2 and Theorem 3.1.

Proof of Lemma 3.2

Let 7: T — S be the ordinary blowup at x with exceptional divisor E = P!. Let
Vi be the complete linear series associated to L, and let W5 be its refinement by
E. Note that 8, (L) = 8,(V3). Let A = (%2) ~ex(L), let ¢ = ex(L), and let T =
(L) = T(L; E). Since W; is almost complete by [2, Lemma 4.10], applying [2,
Corollary 3.4], we know that §,(V3) > A as long as
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_ As(E)

~ S(L;E) 34

and 8(E, A - F(W;);c1(Mg)) = A holds, where M5 is the movable part of W;. By the
definition of stability thresholds, the latter inequality is equivalent to saying

A-S(c1(M3); P) + A-multp F(W;) <1 (3.5)

for all closed point P € E. Let us verify that both conditions (3.4) and (3.5) hold in
our situation. First, we have

FW;) = (L—ZZ)/O (volp|g(n*L — xE) - No(7*L — xE)|g) dx

by [2, Lemma 4.13] and
volr|g(n*L — xE) = (Ps(n*L — xE) - E)

by [19, Corollary 2.17 and Example 2.19], where Py (-) (resp., Ny (+)) denotes the nef
(resp., negative) part in the Zariski decomposition of a (pseudoeffective) divisor. In
particular, letting g(x) = voly|g(7*L —xE) (0 < x < 1), we have

(No(n*L —xE)-E)=((*"L—xE)-E)— (Ps(7*L —xE)-E) = x — g(x).

By the definition of Seshadri constant, we also have g(x) = x for all 0 < x <.
Therefore as g(x) is concave by [19, Theorem A], Lemmas 2.6 and 3.3 yield

T

S(L; E) +deg F(W;) = %/{; x-g(x)dx + 2 (x—g(x))-g(x)dx

(L Jo
_ 2 Afpsdx?  2(L?) 2
~(L?) 3¢ 3¢ A
It follows that
2 2 As(E)

A< S(L: E) + deg F(W5) = S(L:E) - S(L.E)’ (3.6)

which verifies (3.4). Since E = P! is a curve, we have S(c; (M;3); P) = % degc1(M3)
for any closed point P € E. By [2, (3.1)], we also have deg(c;(M3) + F(W3)) =
degci(W;) = S(L; E). Thus we obtain
1
A-S(c1(Mg): P)+ A-multp F(Ws) < A- deg(icl(M;) + F(W;))

= % (S(L:E) + deg F(W3)) <1
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for any closed point P € E, which verifies (3.5). Hence, according to the discussions
at the beginning of the proof, [2, Corollary 3.4] implies that 8, (L) = §,(V;3) > A as
desired.

It remains to prove the equality conditions. It is straightforward to check that
g(SL(?) = A (resp., g(SL(CC)) = A) when ¢ = v = /(L2) (resp., et = (L?) and there
exists some curve C C X containing x such that L = tC), and hence 6, (L) =
in either case. Conversely, assume that §, (L) = A. If §x (L) is computed by E, then
by (3.6) we have F(W;) = 0; hence Ny(n*L —xE) =0 and n*L — xE is nef for
all 0 < x < t. It follows that ¢ = 7. Since ¢ < /(L?) < 7, we must have ¢ =t =
Vv (L?), as desired. On the other hand, if £ does not compute 8y (L), then € <
and by the equality description in Lemma 3.3 we have (L?) = 2f0r g(x)dx = ert.
By [6, Theorem E] and [2, Corollary 3.4], we also see that 6, (L) is computed by
some valuations v such that Cs(v) # {x}. Thus the center of v is a curve C C S; in
particular, v is divisorial and the curve C also computes 8, (L), thatis, S(L;C) = +
By Lemma 3.5 and the definition of Seshadri constant, we deduce that

_(L-0) (L» A (L?

“mc O350 "3 —°

and thus equality holds everywhere. In particular L=aC and S(L;C) = % for some

a > 0by Lemma 3.5. But since S(L;C) = A (gs) =35 =3, we musthavea =rT.
Since there can be at most one irreducible curve C C S containing x such that L =
tC (otherwise it follows from the definition of Seshadri constants that € > 1), this

concludes the proof of the equality cases. O

COROLLARY 3.6

Let S be a smooth surface of Picard number one, and let L be an ample line bundle
on S. Let x € S be a closed point. Then 5, (L) > ﬁ and equality holds if and
only if ex(L) = tx(L) or L ~g tx(L)C for some irreducible curve C C S passing
through x.

Proof
This is immediate from Lemma 3.2 and Lemma 2.4. |

Remark 3.7

The corollary is false without the Picard number one assumption. Consider for exam-
ple S = P! x P!, and take L to be the line bundle of bi-degree (a,b) with 0 <a < b.
Then, by [46, Theorem 1.2], we know that §(L) = %. On the other hand, it is not
hard to see that t,(L) = a + b for all x € S and therefore §, (L) > ﬁ only when
b <2a.
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Proof of Theorem 3.1

We prove by induction on the dimension n. When n = 2, the only part that is not
covered by Lemma 3.2 is the assertion that §, (L) is computed by any H € |L| when
ex(L) = 1= (L?) and 8, (L) = 3. However, this follows immediately from the fact

that g(’z(z)) =3 forany H € |L| (by Lemma 3.5). When n > 3, we have

ex(L|s) = ——ex(Lls)

n
Sx(LlHl)Zm D)

by the induction hypothesis. By [2, Lemma 4.6], we then have

. n+1 ) n+1
8x(L) > mm{n +1, TSX(L|H1)} > mln{n +1, W .sx(L|S)}.

Since ex(L|s) < /(L|3) < (L|%) = (L"), we obtain

n+1
$x(L) = L—”) -ex(Lls).
Suppose that equality holds. Let v be any valuation that computes 6x(L). By [2,
Lemma 4.6] and the above discussion, we have either §x (L) =#n + 1 and ex(L|s) =

(L") =1,0r6x(L|g,) = (L"—n) -ex(L|s). In the former case, we also have 1 (L|s) =

ex(L|s) = 1 since ex(L|s) = {/(L|%). By the same argument as in the n = 2 case,
we also know that in this case 8, (L) is computed by any H € |L|. In the latter case, by
[2, Lemma 4.6], we also know that Cx (v) ;(_ H; and that for every irreducible compo-
nent Z of Cx (v) N H; containing x, there exists a valuation vy on H; with center Z
that computes 8, (L|x, ). By the induction hypothesis, either ex(L|s) = tx(L|s) =
V(L") > 1 and dim Cq, (v1) > n —3, in which case dimCx (v) =dimCpq, (v) + 1>
n—2,or ex(L|s)tx(L|s) = (L") and the center of vy on H; is a prime divisor
that does not contain S. Suppose that we are in the last case. Then G = Cx (v)
is also a prime divisor that does not contain S. Since v computes 8x(L), we have
ﬁ =6x(L) = % -&x(L]|s). As in the proof of Lemma 3.2, we then obtain

ex(L]s) <ex(L|s)-multy(Gls) < (L|s - Gls) = (L" - G)

(L")

Surnsae

Hence equality holds everywhere and L = 7,(L|s)G by Lemma 3.5 as in the proof
of Lemma 3.2. This completes the proof. O

4. Hypersurfaces
As a first application of Theorem 3.1, in this section we prove the uniform K-stability
of the following hypersurfaces.
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THEOREM 4.1
Let X C P"*1 be a smooth Fano hypersurface of Fano index r > 3 and dimension
n >r3. Then X is uniformly K-stable.

The main difficulty we need to overcome in order to apply Theorem 3.1 in this sit-
uation is that the Seshadri constants on complete intersection surfaces are not always
large enough. For example, for any effective Q-divisor D ~g L (where L is the
hyperplane class) and any general complete intersection surface S passing through

(L3) L"
some fixed x we have g, (Lg) < multx(%ms) = m(u]tx)D.

that mult, D is relatively large (more precisely, if 7, (L) >

If there exists some D such
"ril), then we will not
be able to derive §(X) > 1 directly through Theorem 3.1. Thus we need to analyze
these “bad” loci. This is done in the next two lemmas. In particular, it turns out that the

“bad” locus corresponds exactly to points that support divisors of high multiplicities.

LEMMA 4.2

Let X €PN be a smooth variety of dimension n > 4, Picard number one, and
degree d. Let x € X be a closed point, and let L be the hyperplane class. Assume
that for some constant ¢ > Vd and for any general hyperplane section ¥ C X
containing x, we have t(Ly) > c. Then t(L) > c.

Proof

For each t e PH?(X,0x (1) ® my), let Y; € X, be the corresponding hyperplane
sections containing x. When ¢ is general, Y; is smooth by the Bertini theorem and
has Picard number one by the Lefschetz theorem. Since L is very ample, we have
nx(Ly,) < Vd (see the remark before Lemma 2.3). It then follows from Lemma 2.3
and the assumption that there exists a unique irreducible Q-divisor 0 < D; ~qg Ly,
on Y; such that mult, D; > c. By a standard Hilbert scheme argument, we may also
assume that m D; is integral for some fixed integer m > 0.

We first treat a special case. Suppose that a general Dy is covered by lines passing
through x. Let Z € X be the union of all lines passing through x. Then Supp(D;) €
Z NY;, and hence Z has codimension at most one. Note that Z # X since otherwise
X is a cone over its hyperplane section, but as X is smooth it must be a linear subspace
and it is easy to see that the assumption of the lemma is not satisfied. If Zy,..., Z; C
Z are the irreducible components of codimension one in X, then as dim Z; > 3,
its image under the projection from x has dimension at least two; hence Z; N Y;
is irreducible for general ¢ by the Bertini theorem. Since Dy is also irreducible and
is swept out by lines containing x, we deduce that Supp(D;) = Z; N Y; for some
1 <i <k. As X has Picard number one, there exists some A; > 0 such that D =
AiZ; ~q L. By comparing degrees, we then have D; = Dly,. Since Y; is a general
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hyperplane section, we also have mult, D = mult, D; > c. This proves the lemma in
this special case.

In the sequel, we may assume that D; is not covered by lines containing x. In
particular, the projection from x defines a generically finite rational map on D;. Since
dim D, > 2, we see that D; N Y is irreducible for general s,t € PH?(X,0x (1) ®
m, ) by the Bertini theorem. Note that each D; is also a codimension two cycle on X.
If there exists some general s # ¢ such that Dy N D; has codimension four (here we
need n > 4 to ensure that Dy N D; is nonempty), then we get

d =deg(Dy - D;) > mult, Dy - mult, D, > ¢? > d,

a contradiction. Thus Dg N D; contains a divisor on both Dy and D;. Clearly this
divisor is contained in Y5 N D;, which is irreducible for general s, ¢. It follows that

Supp(¥Ys N Dy) € Supp(Ds N Dy) € Supp(Dy).

Now consider a general pencil £ € PH?(X,Ox(1) ® my), and let G € X be the
divisor swept out by Supp(D;) for general ¢ € £. In other words, G is the image of the
universal divisor £ C ¥ under the natural evaluation map ev: ¥ — X, where ¥ — ¢
is the corresponding family of hyperplane section. Since Dy is irreducible for general
t, we see that O and G are both irreducible. Since X has Picard number one, we
have G ~g rL for some r € Q. Let D = %G. We claim that mult,, D > c. Indeed, for
generalt € £ and s € PH(X, Ox (1) ®m,), we know that G N Y is irreducible by the
Bertini theorem as before and Supp(Y; N D;) € Dy by the previous steps. As ¢ varies,
the locus Supp(Y; N D;) sweeps out a divisor on Y, which is necessarily contained
in both Dg and G N Y;. Since Dg and G N Y; are both irreducible, we deduce that
they are proportional to each other. By comparing degrees, we see that Dy = Dly,.
As Y is a general hyperplane section, this implies that mult, D = mult, Dg > ¢ and
finishes the proof. O

LEMMA 4.3

Let X €PN be a smooth threefold of Picard number one and degree d. Let L be the
hyperplane class, and let x € X be a closed point that is contained in at most finitely
many lines on X. Assume that a very general hyperplane section Y C X containing x
has Picard number one and for some constant ¢ > Jd?, we have T, (Ly)>c. Then
(L) > c.

Proof
Let Y; € X; be the hyperplane sections corresponding to

t ePH(X,0x(1) ® my).
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As in the proof of Lemma 4.2, when ¢ is very general, there exists a unique irre-
ducible Q-divisor 0 < D; ~g Lly, such that mult, D; > c¢. Note that D; is a curve
on X. Since (L?) = d > (£)?, there exists a Q-divisor 0 < D ~g L on X such that
mult, D > %. Since X has Picard number one, we may further assume as before that
D is irreducible. Since

(D -D;)=d < multy D - mult, Dy,

we see that supp(D;) € supp(D). By assumption, the projection from x defines a
generically finite rational map on D; hence D N Y; is irreducible by the Bertini
theorem and D; = Dy, as in the proof of Lemma 4.2. As before, this implies that
mult, D = mult, D; > c. Ul

We now prove Theorem 4.1. The key point is that, while the “bad” locus is in
general nonempty, it consists of at most a countable number of points. This allows us
to use the K-stability criterion [2, Lemma 4.23] from our previous work, and then we
can just apply Theorem 3.1 to conclude.

Proof of Theorem 4.1

By [2, Lemmas 4.23 and 4.25], it suffices to show that §z(X) > ”nil for any subva-
riety Z C X of dimension > 1. Let L be the hyperplane class, and let d := (L") =
n +2—r. By assumption n > d and d > 26. We first show that 7 (L) < ~/d + 1 for
a very general point x € Z. Suppose not; then by Lemma 2.3 there exists a unique
irreducible Q-divisor 0 < Dy ~q L such that mult, D, > Vd +1forall x € Z (it s
easy to see that n, (L) < Va). By a standard Hilbert scheme argument, we can find an
irreducible and reduced divisor G € X x U (where U C Z is an affine open subset)
and an integer m > 0 such that G € |prfOx (mL)| and G|xx(x} = m D, for very gen-
eral x € Z. In particular, by [18, Lemma 2.1] we have multyy G = mult,(mD,) >
m(~/d + 1), where W € X x U is the graph of the embedding U < X. By [18,
Proposition 2.3], there exists a divisor G’ € [prjOx (mL)| such that G ¢ Supp(G')
and multy G’ > m(v/d + 1) — 1 > m+/d. Let D}, = L G'|xx(xj ~q L for general
x € Z; then Dy and D’ have no common components, and mult, D/, > Vd. Tt fol-
lows that

d =deg(Dy - D) > mult, D, - mult, D’ > (Vd + 1)Vd > d,

a contradiction. Hence 7, (L) < +/d + 1 for a very general point x € Z.

Fix some x € Z with 7,(L) < +/d + 1, and let Y C X be a general linear sub-
space section of dimension three that passes through x. By the Lefschetz theorem,
we know that Y has Picard number one. Let S € |[H?(Y, Oy (2L) ® m,)| be a very
general member. By [15, Theorem 1.1], the surface S also has Picard number one. By
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Lemma 4.2, we have 7y (Ly) < v/d + 1 < Jd? (as d > 26), and hence .(2Ly) =
215(Ly) < 23/d?. Since (2L - C) = 2 for any curves C C Y, the threefold Y does
not contain any lines under the embedding given by |2L|; thus by Lemma 4.3, we

also have 7, (2Lg) < 23/d? . By Corollary 3.6, we get Oy (2LS) > %/_ thus by
[2, Lemma 4.6], we have 6x(2Ly) > 3/_ or 8x(Ly) > 3/_ A repeated use of [2,
Theorem 4.6] then yields

n+1

6z(L) z 6x(L) = —5 (Ly) =

RZEh

and hence 8z (X) = szr(L) > ":{1 as longasn>r Jd?. Since n > (, this is auto-
matic when n > r3. The proof is now complete. ([

5. Fano threefolds

As another application of Theorem 3.1, we prove in this section the uniform K-
stability of most Fano threefolds of Picard number one. Recall that the degree of a
Fano threefold X of Picard number one is defined to be (H3), where H is the ample
generator of Pic(X). Using the classification of Fano threefolds [24], we may restate
Theorem C as follows.

THEOREM 5.1

Let X be a smooth Fano threefold of Picard number one. Assume that X has index two
and degree at most 4, or it has index one and degree at most 16. Then X is uniformly
K-stable.

We remark that while Fano threefolds of Picard number one have been fully clas-
sified (most of them are complete intersections in rational homogeneous manifolds),
we only need very little information from this classification. As will be seen below,
the two key properties of Fano threefolds we need are the following.

(1)  For any closed point x € X on the Fano threefold, there exists some smooth
member S € | H| passing through x.

(2) Most Fano threefolds X of Fano index one are cut out by quadrics, and there
are only finitely many lines through a fixed point.

Before presenting the details, let us give a brief summary of the proof of Theorem 5.1

and indicate where the above two properties are used. We focus on the case when X

has Fano index one (the index two cases are easier). Clearly, point (1) allows us to

apply Theorem 3.1 and immediately obtain

dex(H|s)

VB (5.1)

8x(X) =
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Note that S is a K3 surface. Seshadri constants on K3 surfaces have been studied in
[27], and usually they are easier to compute when the surfaces have Picard number
one. Thus we seek to choose the surface S carefully so that it not only contains x,
but also has Picard number one. This is a Noether—Lefschetz-type problem with a
base point constraint and will be studied in Section 5.3. Note that this requirement
on S can fail on certain Fano threefolds (e.g., quartic threefolds with generalized
Eckardt points), but we will show that it is satisfied whenever point (2) holds. For-
tunately, in the remaining cases, already the trivial bound of e, (H |s) is enough to
imply K-stability through (5.1). Once we find a surface S of Picard number one, the
argument is relatively straightforward using Seshadri constants calculations and The-
orem 3.1, except when X has degree 16. In this case, we only get 6(X) > 1 (i.e.,
K-semistability) and need to study the equality condition a bit further. This is done in
Section 5.1 by analyzing the inductive step, which is based on inversion of adjunction,
in the proof of Theorem 3.1.

5.1. Equality conditions in adjunction

As indicated in the summary of proof above, the goal of this subsection is to fur-
ther analyze the equality conditions in Theorem 3.1. The main technical results are
Lemma 5.4 and Corollary 5.6, which list a few constraints that need to be satisfied
in order to have equality in the adjunction of stability thresholds. They will play an
important role when treating Fano threefolds of degree 16 and complete intersections
of two quadrics.

LEMMA 5.2
Let X be a projective variety of dimension n, let L be an ample line bundle on X, and

let v be a valuation of linear growth on X. Then S(L;v) = n”? T(L;v) if and only if

V01(L;U2t)=1_< t >n

) T(L:v) 62

forall 0 <t <T(L;v). If in addition v is quasi-monomial, then its center is a closed
pointon X.

Remark 5.3
In general, we have S(L;v) < n”? T (L;v) (see for example [2, Lemma 4.2]); thus the
above statement gives a description of the equality conditions. When v is divisorial,

this is essentially proved in [22, Proposition 3.2].

Proof

Assume that S(L;v) = nf’H T(L;v).Let T = T(L;v). After replacing L by rL for

some sufficiently large integer », we may assume that L is very ample. Let H € |L|
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be a general member, let W; be the refinement by H of the complete linear series
V; associated to L, and let & be the filtration on W5 induced by the filtration %, on
R(X, L). Concretely, W; is Nz—graded, and we have

F W j =Im(F} H(X,Ox ((m — j)L)) — H*(H, O ((m— j)L)). (5.3)

In particular, Wy, ; = H°(H,O g ((m — j)L)) when m — j >> 0. By the definition of
the pseudoeffective threshold 7'(L; v), it follows that

Supp(W) N ({1} xR) =[0,1—1/T],

where W} (0 <t < T) is the multigraded linear series given by W, . = F" W, ;.
By Lemma 2.9, we also have S(L;v) = S(V;; F,) = S(W5; F). Let

f(t,y)zvolW;z(y) O<t<T,0<y<1—t/T).

Itis clear that f(z,y) < volw; (y) = (1 — ¥)"~1(L"). Note that vol(W;) = vol(L) =
(L"). We then obtain

1
(L")

T I_IT n
5/ dt/ n(l—y)" 'dy = ——T,
0 0 n+1

T
S(Liv)=S(Ws: F) = / vol(WZ) dt
0

where the second equality follows from [2, Corollary 2.22] while the third equality
is implied by [2, Lemma 2.23]. Since S(L;v) = ;25T by assumption, we see that
f(t,y) = (1 —y)""1(L") for all ¢, y. By another application of [2, Lemma 2.23]

(used in the second equality below), we then have

1—L

vol(L;v > 1) = vol(WJ) = n/o ! f@y)dy

= /(;1_% n(l—y)"Y(L")dy = (1 - (%)n)(Lnl

_n_

o1 aslong as

which proves (5.2). Conversely, it is easy to check that S(L;v) =
(5.2) holds. This proves the first part of the lemma.

Suppose next that v is quasi-monomial and dimCy (v) > 1.Letnw: Y — X bea
log resolution, and let Z = Cy (v). Since dimCx (v) > 1, we have (Z - 7*L) # 0
by the projection formula; hence Hy intersects Z where Hy is the strict trans-

form of H. By Izumi’s inequality, we have lctz (f) > m On the other hand,
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Ietz(f) < % by definition, and thus v(f) < Ay (v)multz(f) for any f € Oy z.
Up to rescaling of the valuation v, we may assume that Ay (v) = 1. Thus, by (5.3),
we see that FAW,, . CH(Hy, Jﬁynz((m — j)x*L)). As w* L is nef and big, by
[20, Theorem A(v)], we obtain vole (y) < volW. ()/) for all 0 < ¢,y < 1. By the
the second part of the
lemma. O

LEMMA 5.4

Let X be a projective variety of dimension n > 2 with kit singularities, and let L be
an ample line bundle on X such that the linear system |L| is base point free. Assume
that 5(L) is computed by some valuation v on X with dim Cx (v) > 1 and

sty <" s, i

for some general member H € |L| and some irreducible component Z of Cx(v) N H.
Then one of the following holds:
() 73rey < AFrd(L). o

@) 74()(L(1:))) 218(L), dimCx (v) = 1, and VO'(L ”>t) =1—n(L)" 4 (n—

(%) forall0 <t <T :=T(L;v).

Remark 5.5
Note that thls implies a(L) < ” 8 (L), which is stronger than the usual inequality
a(l) < 8(L) (see, e.g., [6, Theorem A)).

n+1

Proof

Let W; be the refinement by H of the complete linear series associated to L and let
Lo = L|g. Note that W5 is almost complete, F(W;) =0, and ¢1(W;) = n+1 Lo by
[2, Example 2.28 and (3.1)]. Let ae(v) be the valuation ideals of v, that is, a,, (v) =
{f €0Ox |v(f)=m}. Let ay, = a,,(v)| g and let vy be a quasi-monomial valuation
on H with center Z that computes lctz (H ; a.), which exists by [42, Theorem 1.1].
After rescaling, we may assume that Ag(vo) = Ax(v). By inversion of adjunc-
tion, Ictz (H;as) < lctz(X;ae(v)). Since v calculates Ictz (X;ae(v)) = Ax(v) by
[6, Proposition 4.8], we deduce that vg(ae) > 1, and hence a,,(v)|g < a;,(vo) for
all m. We now define two filtrations on W;: the first one, denoted by .ﬁ’:v, is the restric-
tion of the filtration ¥, on X induced by the valuation v, while the second one %, is
induced by the valuation vo. From the previous argument, we see that ¥, dominates
F,, that is, “A W5 C “’1 , Ws forall A > 0. By [2, Corollary 2.22], this implies that

S(Ws: F) < S(Ws: Foy) = S (Wi vp), (5.4
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and when equality holds we have T (W;; ;) = T (Ws; F,)- From the construction, it
is clear that T'(W5; ¥,) = T(L;v) and T (W5; Fy,) = T (Lo; vo). By Lemma 2.9, we
also have

S(L;v) = S(Ws; F),
and thus as v computes 6(L) and H € |L| is general, we deduce that
Ap (vo) = Ax (v) = 8(L)S(L;v) = 8(L)S(Ws:vo).

On the other hand, we have S(W;;vo) = ;47 S(Lo; vo) by [2, Lemma 2.29]. Com-

bined with our assumptions, we obtain

n+1 n
8z(Lo) - ——=S8(Lo;vo) =8z(Lo)S(Lo:vo) < Ar(vo).
n n+1

§(L)S(Wsivo) <

Therefore equality holds everywhere (including in (5.4)), and we get

n—+1
n

S(L) = 8z (Lo), Ax(v) = Ar(vo) =8z (Lo)S(Lo: vo),

that is, vo computes 8z (L), and
T(L;v) = T(Ws; F,) = T(Ws: Fup) = T(Los vo).
Note that S(Lg; vg) < ”n;lT(Lo; vg) by [2, Lemma 4.2]. It follows that

s (Lo) T (Lo: vo) = "L 6(L) T (L: v),
n n—+1

n

Ax(v) <

If equality holds, then by Lemma 5.2, we know that Z is a closed point and

vol(Lg;vp >1t) _q ( t )n—l

(L") T

where 0 < T < T = T(Lg;v9) = T(L;v). It follows that dimCyx (v) = 1. Let
W/ be the multigraded linear series given by W, . = F /"' W,, ;. Since W, ; =

m,j

HO(H,Og((m— j)L)) whenm — j > 0, we see that
volyy: (y) = vol((1 = y) Lo; vo > 1),
and hence

VOIW;’(V) i t\n—1
oy~ =(7)

forallO<y<1-— % Since equality holds in (5.4), using [2, Lemma 2.23], we obtain



SESHADRI CONSTANTS AND K-STABILITY OF FANO MANIFOLDS 1133

stz = et =awt [ (@ (5o
0

T
() () e

as desired. O

COROLLARY 5.6

Under the assumption of Lemma 5.4, assume in addition that X is Q-factorial,
p(X) =1, and Cx (v) has codimension > 2 in X. Then at least one of the following
holds:

Ax(w) n-—1 Ax (v) <n—l

§(L)

8(L).
T(L;v)<n—|—1 or n(L;v) " n+1 @)

Proof

Denote T := T(L;v) and 1 := n(L;v). It suffices to show that = T in the second
case of Lemma 5.4. Suppose not, that is, < 7. Then by Lemma 2.3, there exists an
irreducible Q-divisor Dy ~g L on X such that v(Dg) =T and, for any t € (,T)
and any effective Q-divisor D ~g L with v(D) > ¢, we have D = %Do + ;—::}G
where G ~q L is effective and v(G) > 7. It follows that

T —t\n
vol(L;v >1t) = (T—) vol(L;v > n),
-1

which contradicts the expression from Lemma 5.4 (note that n > 3 since the curve
Cx (v) has codimension > 2 in X). Thus n = T, and we are done. O

5.2. The index two case
As an application of Theorem 3.1 and the results from the previous subsection, we
now prove the following:

THEOREM 5.7
Let X be a Fano threefold of Picard number one, Fano index two, and degree at most
four. Then X is uniformly K-stable.

Proof

Let H be the ample generator of Pic(X), and let d = (H ?) be the degree of X . Using
the classification of Fano threefolds (see, e.g., [24]), it is straightforward to check
that for any closed point x € X there exists some smooth member S € | H| passing
through x (see, e.g., the proof of [2, Corollary 4.9(5)] for the degree one case; the
other cases are much easier). By adjunction, S is a del Pezzo surface of degree d and
H|s ~—Kg. Since 6x(X) = %SX(H), it suffices to show &, (H) > 2.
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Suppose first that d = 1. By [9, Théoreme 1.3], we know that &, (—Kg) > 1;
hence by Theorem 3.1, we obtain §,(H) > 2. Moreover the equality cannot hold
since 1 = (H?3) # (%)2 and H is a primitive element in Pic(X). Thus 6x(H) > 2,
and we are done in this case.

Similarly, when d = 2, by [9, Théoreéme 1.3] we know that &, (—Kg) > 1. Thus
the same argument as above gives 8, (H) > 2.

Suppose next that d = 3. If x € X is a generalized Eckardt point, then 6, (X) =
g > 1 by [2, Theorem 4.18]. If x € X is not a generalized Eckardt point, then there
are only finitely many lines on X passing through x; thus if S C X is general then x
is not contained in any lines on S. By [9, Théoréme 1.3], we have ¢, (—Kg) = %, and
hence §,(H) > 2 by Theorem 3.1. Moreover, equality cannot hold as before. Thus
8x(H) > 2, and we are done in this case.

Finally assume that d = 4. Note that X is a complete intersection of two quadrics
in this case. There is a pencil of tangent hyperplanes at any closed point x and every
line on X passing through x is contained in the base locus of this pencil, which is
a complete intersection curve of degree four. It follows that there are at most 4 lines
containing x on X. In particular, we may arrange that x is not contained in any lines
on §. By [9, Théoreme 1.3], we know that e, (—Kg) > 2; hence Theorem 3.1 yields
8x(H) > 2. Suppose that equality holds. Then by Theorem 3.1, there exists some val-
uation v with positive dimensional center on X such that 54()1(1(;1;))) = 2. We show that
this is impossible. Indeed, if the center Cx (v) is a prime divisor D on X, then we may
assume that v = ordp. Since Pic(X) is generated by H, we have D ~ rH for some
r > 1. By Lemma 3.5, we have S(H;v) = ﬁ; hence ?()I(i(;l;)) = 4r > 2, a contradic-
tion. Therefore we may assume that the center Cx (v) isacurve C on X.If T € |H |
is a general member and x € T N Cx (v), then &5 (—K7) > 2 and §5x(—K7) > % by
[9, Théoreme 1.3] and Theorem 3.1, as above. Thus the assumptions of Corollary 5.6
are satisfied, and we deduce that either Ax (v) < T(H;v) or Ax(v) < n(H;v). The
first case is impossible by [11, Theorem 6.1]; thus it remains to exclude the other
possibility.

By the definition of the movable threshold n(H;v), for any 0 < & < 1, we can
find two effective Q-divisors Dy, D, ~g H without common components such that
v(D;) = (1 —e)n(H;v) (i =1,2). Let m be a sufficiently divisible integer, and let
Z C X be the complete intersection subscheme mD; N mD,. Note that deg Z =
4m?. If deg C > 2, then multc Z < 2m?, and by [14, Theorem 0.1], applied at the

generic point of C, we have Ictc (X;dz) > % In particular,

Ax (v) > gv(oﬂz) = \/Emin{v(Dl), v(Dy)} > V2(1=&)n(H:v) > n(H;v),

a contradiction. If degC =1, that is, C is a line on X, then multc Z < 4m?2, and by
[24, Proposition 3.4.1(ii)], we have multc D; < % <2 forsomei =1,2. Hence d z



SESHADRI CONSTANTS AND K-STABILITY OF FANO MANIFOLDS 1135

3
ng, and by [45, Lemma 2.6], applied at the generic point of C, we see that there
exists some absolute constant £; > 0, which in particular does not depend on D; or &,
such that Ictc (X;dz) > lfnﬂ It then follows as before that Ax (v) > lfniv((lz) >
(1+e1)(1 —e)n(H;v) > n(H;v), a contradiction. Hence the equality §,(H) =2
never holds, and X is uniformly K-stable. O

5.3. Noether-Lefschetz for prime Fano threefolds

In this subsection, we prove the following Noether—Lefschetz-type result on Fano
threefolds. As explained at the beginning of the section, this is another key ingredient
in our study of uniform K-stability when the Fano threefolds have index one.

THEOREM 5.8

Let X be a Fano threefold of Picard number one, Fano index one, and degree > 6. Let
x € X be a closed point. Then a very general hyperplane section S € |—K x| passing
through x has Picard number one.

Remark 5.9
The assumption that X has degree > 6 is indeed necessary since the statement fails
on quartic threefolds with generalized Eckardt points.

For the proof of the theorem we first recall the following criterion.

LEMMA 5.10

Let X €PN be a smooth projective threefold, let £  (PN)* be a Lefschetz pencil
of hyperplane sections, and let Y = X N H, where H is a very general member
of L. Assume that the natural map H*°(X) — H?*°(Y) is not surjective. Then the
restriction Pic(X) — Pic(Y) is an isomorphism.

Proof

This should be well known to experts. By assumption, the vanishing cohomology
H?2(Y,C)yan (the orthogonal complement of H?(X,C) relative to the intersection
form on H2(Y,C)) has nontrivial intersection with H?°(Y), and hence is not gen-
erated by algebraic classes. By [16, Théoréme 1.4], this implies that H2(Y, C)ya N
Pic(Y) = {0} and therefore every line bundle on Y is a pullback from X in other
words, Pic(X) — Pic(Y) is surjective. It is also injective by the Lefschetz hyperplane
theorem. O

In the remaining part of this section, let X be a smooth Fano threefold as in
Theorem 5.8, and let x € X be a closed point. It is well known (see, e.g., [24]) that the
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anticanonical linear system |—K x| induces an embedding X € PV. Let PP  (PV)*
be the dual projective space parametrizing hyperplanes of PV containing x. To apply
Lemma 5.10, we need to find a Lefschetz pencil in PP.

LEMMA 5.11
A general pencil £ C P is a Lefschetz pencil.

Proof
We first recall some notation and results from [41, Section 2.1.1]. Let Z C X x (IP’N )*
be the algebraic subset defined by

Z={(y.H)| Xn := X N H is singular at y}.

Let Dy :=pr,(Z) € (PV)* be the set of singular hyperplane sections, and let 339( -
Dx be the subset of hyperplanes H such that Xz has at most one ordinary double
point as singularity. Let W := Dy \ :Dg(. By [41, Corollary 2.8, and the comments
thereafter], we have dimW < N — 2 and PP intersects transversally with !D?( away
from Z, :=pry'(x) € Z.SincedimZ, = N —4 = dimP—3,a general line £ C Pis
disjoint from Z and thus intersects transversally with !D?(. By [41, Proposition 2.9],
£ is a Lefschetz pencil if and only if £ is also disjoint from W. This would be the
case if W NP (set-theoretic intersection) has codimension at least two in P. Clearly
wWNP= W1 U W, where W (resp., W,) parametrizes hyperplanes H containing
x such that Xz has degenerate singularities (resp., more than one ordinary double
point). It suffices to show that both W; (i = 1, 2) have codimension at least two in P.
To this end, consider the closed subset

Ri={yeX|xeA,} CX,
where Ay :=T,X C PV denotes the tangent space of X at y. We claim that
dimR <1. (5.5)

Assuming this claim for now, let us finish the proof of the lemma. Let 7= pr;‘]f”. By
construction, Z isadivisorin Z andpr,;: Z — X isa PN —5_bundle away from R; in
particular, Z is smooth outside pI’l_l (R). Note that, by (5.5), we have

dimpr;'(R) < N =3 <dimZ = N —2. (5.6)

Let (y.H) € Z \ pry}(R). As in [4], Lemma 2.7 and Corollary 2.8], Xp has an
ordinary double point at y if and only if the restriction of pr, to Z is an immersion
at (y, H), and in that case pr,, (T, & H)) can be identified with the linear subspace

of CN = T(pny« g consisting of functions that vanish at both x and y. By generic
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smoothness and (5.6), this immediately implies that dim W; < N — 3. On the other
hand, let H be a general smooth point of an irreducible component of W,. By con-
struction, X g has at least two ordinary double points y, y,. Since the Fano threefold
X is cut out by quadrics and cubics (see [25, Corollary 2.6]), the line £’ joining y; and
¥2 is contained in X ; otherwise £’ has intersection number at least 4 with one of those
quadrics or cubics. It follows that either x € £/, in which case y;,y, € R and H €
pro(pri (R)), or x ¢ €', in which case Tw, g < pr2*(TZ,(y1,H)) N prZ*(TZ’(yZ,H))
has dimension at most N — 3. In either case, we conclude that dim W, < N — 3. In
other words, both W; and W, have codimension at least two in P. As explained earlier,
this implies the statement of the lemma.

It remains to prove claim (5.5). Let y € R\ {x}. If deg X > 8, then since X
is cut out by quadrics [25, Corollary 2.6] and x € Ay, the line joining x and y is
contained in X: otherwise, as it is tangent to X at y, it has intersection number at
least 3 with one of the quadrics, a contradiction. Since there are only finitely many
lines on X passing through x (see [24, Proposition 4.2.2]), we deduce that dim R < 1.
If deg X = 6, then X is the complete intersection of a quadric (denoted by Q) and
a cubic. Again for any y € R \ {x}, the line joining x and y is contained in Q;
thus y € Hy, where Hj is the tangent hyperplane of Q at x. It follows that R C
Hy N X. Since Pic(X) = Z - [Hy], we see that Hy N X is irreducible and reduced.
As there are only finitely many lines passing through x, the linear projection from
x is finite on Hyp N X, and therefore, by generic smoothness, it cannot be ramified
everywhere. In other words, there exists some smooth point yo € Hy N X such that
x¢Ty,(HoNX)=HyNTy,X, orequivalently, x ¢ Ty, X. Thus R C Hyo N X, and
we deduce that dim R < 1. This finishes the proof. O

We are now ready to prove Theorem 5.8.

Proof of Theorem 5.8

By Lemma 5.11, there exists a Lefschetz pencil of hyperplane sections passing
through x. A smooth member Y of the pencil is a smooth K3 surface, and thus
dim H%°(Y) = 1; on the other hand, as X is Fano, we have dim H>°(X) = 0. In
particular, the map H?°(X) — H?*°(Y) is not surjective, and the theorem follows
immediately from Lemma 5.10. O

5.4. The index one case
We are now ready to prove Theorem 5.1. By Theorem 5.7, the remaining case is:
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THEOREM 5.12
Every smooth Fano threefold X of Picard number one, Fano index one, and degree
d <16 is uniformly K-stable.

Proof

Let H = —Kx. We will denote by Hy the restriction of the hyperplane class H
to a subvariety ¥ C X. Let x € X, and let S € |H| be a very general hyperplane
section containing x. When d < 4, it is easy to see that e, (Hg) > 1 since H is base
point free; hence 6x(H) > 1 and X is uniformly K-stable by Theorem 3.1 as in the
proof of Theorem 5.7. Thus for the rest of the proof, we may assume that d > 6. By
Theorem 5.8, Pic(S) =Z - [Hs].

We claim that 7, (Hg) < 4. Suppose not. Then for some integer m > 0, there
exists an integral curve C ~ —m Ky |s containing x such that mult, C > 4m (we can
assume C is integral since S has Picard number one). Since mult, C is an integer, we
have mult, C > 4m + 1. By adjunction, Kg ~ 0. It follows that

16m?>>dm?=(Ks+C)-C =2pa(C)—2
> mult, C - (mult,C — 1) —2 > 4m(4m + 1) —2 > 16m?,

a contradiction. Hence 7, (Hg) < 4 and, by Lemma 2.4 and Theorem 3.1, we obtain
Sx(H) > #Hs) > 1. Moreover, when equality holds, we have ex(Hs) = tx(Hs) =
4 or H ~g 4G for some prime divisor G on X. The latter case cannot occur since
H is a primitive generator of Pic(X). By Lemma 2.4, the former case can only hap-
pen when d = 16. This proves that X is uniformly K-stable when d < 14 and is
K-semistable when d = 16.

It remains to analyze the equality conditions when X has degree d = 16. Suppose
that §,(X) = 1. Then, by Theorem 3.1, there exists some valuation v with positive
dimensional center on X such that Ax (v) = S(H;v). Since Pic(X) = Z-[H], using
Lemma 3.5, it is easy to see that S(H; D) < i < 1= Ax (D) for any prime divisor
D on X (cf. the proof of Theorem 5.7); hence Cx (v) cannot be a surface and must
be a curve.

Suppose first that C has degree (H - C) > 2. We claim that in this case
6c(X)>1. To see this, let T € |H| be a very general hyperplane section such
that Pic(T) = Z - [Hr] and that T N C consists of at least two points, and let
G € |Hr| be a general hyperplane section on 7 that is disjoint from 7 N C. Let
W5 be the refinement by 7' of the complete linear series associated to H. Note that
W; is almost complete, F(W;) =0, and ¢, (W;) = %HT by [2, (3.1)]. Consider the
admissible flag Yo on X givenby Yy = X, Y; =T and Y, = G. By [2, Theorem 3.5],
we have
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dc(X:—Kx) > min{ Ax(T)

m,gﬂwc (T; W3, F )} = mln{4,5Tmc (T;W;5, % )},

(5.7)

where ¥ is the filtration induced by the curve G. In particular, §¢ (X) > 1 as long as
we have 7nc (T; W5, ) > 1.

We show that this is indeed the case. Let m € N, and let D be an m-basis type
Q-divisor of W5 that is compatible with ¥ . Then we have

D=58,\W;;G)-G+T
for some effective Q-divisor I'. As G is disjoint from 7' N C, it is clear that
lctrne (T D) = Ictrne (T;T). (5.8)
Since
. 3 1
lim S,,(W;;G) =S(W5;G) =~ S(Hr;G) = ~
m—00 4 4

by [2, Lemma 2.29], we see that I ~q c1 (W;) — S (W;:G) - G ~g A Hr for some
Am > 0 with limy, o0 A = % By [2, Lemma 2.21] and the last part of its proof,
we also know that there exists some 7, € (0, 1) with lim,,_, o 7, = 1 such that 7, -
Sm(Ws; F) < S(W5; F) for any divisor F over T'. In particular, we have

1
ordr (Nm D) < N - S (W5 F) < S(W5: F) < Z

for any irreducible curve F C T (recall that Pic(T') is generated by Hr, thus by [2,
Lemma 2.29], S(Ws; F) = 2S(Hr; F) = 4= if F ~ rHr). Perturbing the 7,,, we
may also assume that 1,,A,, < % It follows that (T, 47, I) is klt outside a finite num-
ber of points and 2H7 — (K7 + 49, I') is ample (recall that K7 = 0 by adjunction).

We now apply an argument from [44] to estimate Ictync(7,T). More pre-
cisely, let § = 4(T,4n,,T") be the multiplier ideal, which is co-supported at a finite
number of points by the previous step. By Nadel vanishing, H!(T, $(2H7t)) = 0;
hence £(O7/¢) < h°(T,2H7) = 2(H%) +2=34. As |T N C| > 2, we see that
£(Or,x/Fx) <17 for some x € T N C. On the other hand, by [44, Lemmas 3.4 and
5.2], we have Icty(7,a) > 1 for any ideal a € Orx with £(Orx/a) <21 < 623
(we follow the notation of [44]). Since such ideals a can be parametrized by some
scheme of finite type and the log canonical thresholds are constructible in families,
we deduce that there exists some absolute constant o > % such that lct, (T, a) > o
for all a € Orx with £(O7,x/a) < 21. In particular, we have Ict, (T, §) > «. By [44,

Theorem 1.6 and Remark 3.1], we then have Icty (T, 49, ") > ‘XLH and therefore
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4anm

ICtTﬁC (T’ F) Z ICtx (T7 F) Z .
oa+1

Combined with (5.8) and letting m — oo, we obtain

> 1.

4
Srrc (T:Ws, F) > —
o

By (5.7), this implies that §¢ (X) > 1 for any curve C C X of degree at least two.

Hence the only remaining possibility for Cx (v) is a line L on X. The rest of
the argument is similar to those of Theorem 5.7. By Corollary 5.6, we have Ay (v) <
%T(H; v) or Ax(v) < %n(H; v). In the former case, there exists some Q-divisor
0 < D ~g H such that Ictz (X; D) < % Since X has Picard number one, we may
further assume that D is irreducible. Note that mult; D > 2; otherwise (X, %D)
is log canonical [28, Theorem 2.29]. By [24, Theorems 4.3.3(vii), 4.3.7(iii), and
Remark 4.3.4], 2D is integral and mult; D = % Moreover, if p: X — X is the ordi-
nary blowup of the line L with exceptional divisor F and D’ is the strict transform of
D, then the scheme theoretic intersection G = 2D’ N F contains a non-hyperelliptic
curve I, p|g: G — L is finite of degree 5, and

p*(KX + lD) —Ke4iF4lip
2 X4 T2

It follows that p|r: I' — L has degree at least three and each component of G \ T" is
different from I" and has multiplicity at most 2. From here, we deduce that every com-
ponent of %D’ N F has multiplicity < %, and by inversion of adjunction we see that
()7, %F + %D’) is kit over the generic point of L and the same is true for (X, %D).
But this is a contradiction as Icty (X; D) < % Therefore we must have Ay (v) <
%n(H; v).For any 0 < ¢ < 1, we can find effective Q-divisors D1, Dy ~q H without
common components such that v(D;) > (1—¢&)n(H ;v). Let m be a sufficiently divisi-
ble integer, and let Z C X be the complete intersection subscheme m D Nm D,. Note
thatmult; Z <degZ = 16m? and, by [24, Theorems 4.3.3(vii)], we have multc D; <

5
% < 4 for some i = 1,2. Hence dz SZ Jém and, by [45, Lemma 2.6] applied at the
generic point of C, we see that there exists some absolute constant £; > 0, which
does not depend on D; and ¢, such that Ictc (X;dz) > 1;% It then follows as in the

proof of Theorem 5.7 that Ay (v) > I;_%U(Jz) > %n(H; v), a contradiction.
Therefore we conclude that the inequality 6x(H) > 1 is always strict. In other
words, X is uniformly K-stable. O

Proof of Theorem 5.1
This is just a combination of Theorems 5.7 and 5.12. O
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