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Abstract

Convolution is an important operation at the heart of many
applications, including image processing, object detection,
and neural networks. While data movement and coordi-
nation operations continue to be important areas for op-
timization in general-purpose architectures, for computa-
tion fused with sensor operation, the underlying multiply-
accumulate (MAC) operations dominate power consumption.
Non-traditional data encoding has been shown to reduce the
energy consumption of this arithmetic, with options includ-
ing everything from reduced-precision floating point to fully
stochastic operation, but all of these approaches start with
the assumption that a complete analog-to-digital conversion
(ADC) has already been done for each pixel. While analog-
to-time converters have been shown to use less energy, arith-
metically manipulating temporally encoded signals beyond
simple min, max, and delay operations has not previously
been possible, meaning operations such as convolution have
been out of reach. In this paper we show that arithmetic
manipulation of temporally encoded signals is possible, prac-
tical to implement, and extremely energy efficient.

The core of this new approach is a negative log transfor-
mation of the traditional numeric space into a ‘delay space’
where scaling (multiplication) becomes delay (addition in
time). The challenge lies in dealing with addition and sub-
traction. We show these operations can also be done directly
in this negative log delay space, that the associative and com-
mutative properties still apply to the transformed operations,
and that accurate approximations can be built efficiently in
hardware using delay elements and basic CMOS logic ele-
ments. Furthermore, we show that these operations can be
chained together in space or operated recurrently in time.
This approach fits naturally into the staged ADC readout

©Mol

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASPLOS °24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0385-0/24/04.

https://doi.org/10.1 145/3620665.3640395

Peiyang Song
p_song@ucsb.edu
UC Santa Barbara, USA

354

Advait Madhavan
amadhal@umd.edu
University of Maryland, USA

Timothy Sherwood
sherwood@cs.ucsb.edu
UC Santa Barbara, USA

inherent to most modern cameras. To evaluate our approach,
we develop a software system that automatically transforms
traditional convolutions into delay space architectures. The
resulting system is used to analyze and balance error from
both a new temporal equivalent of quantization and delay
element noise, resulting in designs that improve the energy
per pixel of each convolution frame by more than 2X com-
pared to a state-of-the-art while improving the energy delay
product by four orders of magnitude.
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1 Introduction

Convolution is a critical operation for image processing,
being the basis for feature extraction [31], filters [38], and
edge detection [50]. The rise of visual sensor networks [10]
and convolutional neural networks (CNNs) [24] have further
amplified the importance of convolutions. In the domain
of sensor-embedded computation specifically, where con-
volution operations are typically local and resident, energy
consumption is dominated by the cost of converting the data
into a form that can be manipulated digitally and the cost of
multiply and accumulate (MAC) operations [42].
Technology scaling helps reduce energy consumption but
the slowing of traditional computational scaling, coupled
with ever increasing sensor array densities, creates opportu-
nities for non-traditional computing paradigms. While this
can be as simple as reduced-precision floating point [20],
more radical approaches include stochastic computing [47,
48] and race logic [27], which experiment with alternative
data encodings. These data encodings are of particular in-
terest because they leverage the electrical behavior of basic
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Figure 1. A full system diagram of our architecture. The
ADCs in the staged pixel readout are replaced with voltage
to time (VTC). An example of the output from one of these
VTCs is shown above the system. This output is then passed
to the hard-coded convolution engine. The core of this ar-
chitecture is our delay space MAC where the output can be
routed back to the input, creating our recurrence architec-
ture.

binary logic gates in new ways. Race logic encodes infor-
mation into the timing of a voltage edge and relies on four
operations: minimum, maximum, (with AND and OR respec-
tively), delay, and inhibit [27, 43] to perform computation.
These operations are logically complete [41] and have a near
minimal activity factor [28], creating the potential for in-
credibly energy efficient computation. However, to the best
of our knowledge no prior work has demonstrated efficient
arithmetic operations with race logic primitives, limiting the
general applicability of race logic.

A primary contribution of this work is a new temporal
value encoding — one that fully leverages the existing race-
logic circuits, but that also allows for efficient arithmetic —
while still representing values as a single edge.

The key insight is to apply a mathematical transformation
under which addition and multiplication are co-transformed
with the encoded values, forming a new mathematical ring
over delays. Data values in traditional importance space are
converted into a delay space with a rising edge occurring
after a delay equal to the negative log of the value. Multiplica-
tion in importance space becomes simple addition in delay
space, which means that multiplication can be implemented
with a simple delay operation. Addition, however, becomes
a negative log sum exponential (nLSE) function. While the
nLSE function initially seems challenging to implement, we
show that the function can be efficiently approximated with
nothing more than min, max, and delay.
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While delay space is interesting theoretically and opens
many new avenues for temporal computation, it is also prac-
tical to implement, tolerant to noise, and highly energy effi-
cient in practice. To demonstrate these points, we design and
evaluate a near-sensor architecture operating completely in
delay space, from sensor activation through convolution, as
shown in Figure 1.

This proposed architecture matches the iterative row-by-
row read-out of most sensor arrays with a temporal scaling
and summation that can be applied iteratively as each new
row is read. At the core of this convolution system is an
automated transformation that converts the MAC operations
into nLSE and delay units in a novel recurrence architecture.
This work presents the following contributions:

e A new data encoding that transforms the linear opera-
tions of convolution into new operations in an inverted
logarithmic delay space, significantly expanding the
computational potential of temporal computing.

Efficient approximations for the new “soft” operations

required in delay space, using existing “hard” temporal
logic primitives, and recurrent hardware implementa-
tions of those approximations to iteratively perform
delay-coded summations.

An architectural evaluation tool for our convolution ar-
chitecture and the hardware implementations of these
temporal computations. We demonstrate the utility of
this approach by embedding these linear operations
within the natural temporal staging of pixel read-out.
We quantify the impact of various noise factors on ap-
proximation accuracy and show that realistic designs
can operate with energy efficiencies 8x better than
prior work in the area.

We start with description of the encoding, its properties,
and hardware implementation (Sections 2 and 3) before mov-
ing on to a more complete architecture and evaluation (Sec-
tions 4 and 5), finishing with connections to other work and
final conclusions (Sections 6 and 7).

2 Delay Space Arithmetic

In race logic, a signal’s time of arrival — when a rising or
falling edge occurs — encodes the signal’s value, rather than
the signal’s voltage level. Using just four basic operations
on those signals, first arrival (Fa), last arrival (LA), INHIBIT,
and DELAY [27, 43], arbitrary temporal functions can be con-
structed [41]. If one thinks about the delay in time as linearly
encoding a value (as has been assumed by prior work), then
FA and LA execute min and max functions respectively, while
the delay performs simple addition. This makes some intu-
itive sense as a signal computed as FA(71,DELAY(7;, §)) will
appear at time min(zy, 7; + 9).

This encoding has the advantage of a very simple hard-
ware mapping, with FA and LA on rising edges being im-
plemented by simple or and AND gates respectively. While
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not corresponding exactly to existing logic gates, INHIBIT
only requires two transistors [43], and there are a myriad of
hardware delay elements [30].

In addition to being a complete temporal logic, race logic
has been shown to efficiently implement shortest path graph
algorithms, decision trees, sorting networks, and other useful
constructions [27, 41, 43]. However, efficient implementa-
tions of more general arithmetic operations with race logic
primitives has never been demonstrated, in part due to the
complexity of multiplication and the inability to represent
negative numbers or perform subtraction. Ideally we would
be able to achieve the following properties:

1. Operations directly on encoded form: Given a real
number we need a clear way to get into and out of this
encoding coupled with a way to perform the opera-
tions necessary for convolution (addition, subtraction,
and multiplication) directly in the encoded form, with-
out unnecessary conversions. More formally we could
say we are looking for a bijective ring homomorphism
of the reals.

2. Important values early: Traditionally, a signal of
larger magnitude is represented with a larger number.
When dealing with delays, it would be far more natural
for highly important values to be encoded as shorter
durations of time, so that less important contributions
can be truncated at any time. The more “excited” the
system, the smaller the delay and hence the larger the
importance — meaning the events that occur first are
those that carry the most weight.

3. Broader dynamic range: From image processing to
machine learning, the ability to stretch beyond the
constraints of linear encoding is very useful. This is
particularly critical when dealing with delays because
the execution time and energy consumption is coupled
to the data representation. Most prior “unary” schemes
map values linearly, which makes it difficult to deal
with very large and very small values in the same
computation. An ideal solution would allow a broad
range of values to be operated on in a way similar
in spirit to a floating point representations, without
introducing the problems of normalization.

We propose that a new encoding meeting all of these
requirements is a negative log mapping, where a value x in
the original convolution maps to a signal that has a rising
edge after a time delay of x” where

In(x)

7’
x'=-

(1)

Values encoded in this way are in “delay space”, and we
use the notation of primes such as x’ to indicate delay space
values. Given a delay x” we can map its value back to the
original “importance space” via

- @
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All operations in importance space convolution have di-
rect equivalents in delay space, which can be derived by ap-
plying Equation 1 and logarithmic identities. A delay space
multiplication can be performed using simple addition. Delay
space addition and subtraction map to the negative log sum
exponential (nLSE) and negative log difference exponential
(nLDE) functions respectively:

x-yx +y ®3)
x+y —ln(e_x, + e_y/) =nLSE(x’,y") (4)
x—y— —In(e™ —e¥) =nLDE(x,v/) (5)

2.1 Approximate Delay Space Addition

At first glance this negative log space seems awkward —
the nLSE and nLDE functions in particular seem difficult
to efficiently implement in hardware. But delay space has
some nice properties which we can exploit. First, as values
approach infinity in importance space, they approach zero
time in delay space, so more important values have less delay.

Second, because it is a logarithmic encoding, the value
space gives reasonable encodings to a far wider range of
values. Furthermore we can re-scale our values by simply
shifting the reference point for the delay, because addition
or subtraction in delay space is the same as multiplicative
scaling in importance space. This means we have a much
improved range to operate in. Finally, and most critically
from an implementation standpoint, the nLSE function is
a form of “soft min” operation (where LSE is the “real soft
max” used commonly in machine learning [3]) and is asso-
ciative, commutative, and addition distributes through it as
nLSE(a + 8,b + &) = nLSE(a, b) + §. These properties, along
with its bounds, allow us to come up with arbitrarily tight
approximations for nLSE using only min, max, and delay.

Figure 2 shows the nLSE function (Equation 4). The func-
tion is bounded from above by min(x’, y’) and at the most
extreme points, where one of x” or y’ is much larger than the
other, the behavior of nLSE(x’, y") converges to min(x’,y’).
However, as x” and y’ become closer in value, nLSE deviates
further and further from min, with worst-case error — In(2)
when x’ = y’.

While the “hard min” of min(x’, y") can serve as an approx-
imation of nLSE, introducing a shifted max-term (max(x” +
C,y’ + D)) under the min adds a valley to the approximation,
which can reduce approximation error. An arbitrary num-
ber of these max-terms can be added, and approximation
error can be made arbitrarily small with more max-terms.
An approximation with n max-terms has the form:

min(x’,y’, max(x" + Co,y’ + Dy),

max(x" + Cy—1,y’ + Dp_1))

(6)

To improve our nLSE approximation with max-terms, we
must find appropriate values for the constants C; and D;.
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Figure 2. Plot of s’ = nLSE(x’, y’). The surface has the same

shape along all planes where x” +y’ = K, for all constants K.

The dashed line shows a representative slice of the surface
on the plane where x” + y’ = 0. This representative slice is
shown again in Figure 3.

—In(e™™ +¢¥') = nLSE(x’, -x’) ——
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Figure 3. Plot of nLSE(x’, —x’). This is the representative
slice of nLSE from Figure 2, where x’ + y’ = 0. This graph
also shows how min roughly approximates nLSE, and how
introducing a max-term can improve the approximation.

To do so, we first observe that the curves of nLSE(x’, ") in
Figure 2 all have the same shape for any arbitrary constant
K = x’+y’. The dotted line in Figure 2 shows a representative
slice of this surface, where x” + 3’ = 0. All slices parallel to
this representative slice have the same shape. Therefore,
without loss of generality, we can set K = 0 and focus on
approximating nLSE(x’, —x’). This observation allows us to
simplify the problem from two inputs x’,y’ to one input
x’. Figure 3 shows nLSE simplified to one input, how min
roughly approximates nLSE, and an improved approximation
with one max-term, where Cy = Dy = —1.
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Figure 4. Approximating nLSE with four max-terms. We
only approximate positive x” values because Figure 3 is sym-
metric about the y’-axis.

Figure 3 reveals that this simplified one-input nLSE is sym-
metric over the y’-axis, so it is sufficient to approximate only
non-negative x’ values. If negative x’ values are involved, we
can negate the inputs and thus simplify the calculation down
to non-negative nLSE. This same trick works for two-input
nLSE, which can be computed after swapping x” and y’ if
x" < y’, keeping the first operand always greater.

We implement the min-of-max approximation model from
Equation 6 in the Pyomo [4] modeling framework. The model
is generalized to represent approximations with any number
of max-terms, so we model several approximations with var-
ious numbers of max-terms, and use the KNITRO solver [5]
to optimize each approximation’s curve fit. Figure 4 shows
a sample optimized approximation with four max-terms. In
Section 5.2 we show that seven max-terms is more than
enough to achieve reasonable accuracy.

2.2 Negative Numbers and Subtraction

While addition and multiplication give us most of what we
need to perform convolution, an additive inverse is required
to handle negative constants common to many convolution
kernels and complete the mathematical ring. To enable sub-
traction and negative value representation we adopt an ap-
proach similar to memristive crossbars [6] or dual rail com-
puting [44], where we split all numbers into non-negative
pairs, (Xpos, Xneg). If the value is positive, xp,s equals the
value and x,, is 0. For a negative value, x,0s is 0 and x4 is
the absolute value. For zero, both x,,s and xy4 are zero.
With this representation, subtraction simply becomes ad-
dition with the x,., field of the second operand, but we
must re-normalize the result to ensure that at least one of
(Xpos> Xneg) is zero. This re-normalization only has to oc-
cur at the end of computation and once per convolution.
In importance space this re-normalization is achieved with
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Figure 5. Approximating nLDE with four inhibit-terms.
nLDE’s shape is more difficult to approximate than nLSE’s
shape, because nLDE converges to infinity as x” approaches
0, while nLSE converges to —In(2) as x” approaches 0 (see
Figure 4).

subtraction:
_ ) Xpos — Xneg ifxpos 2 Xneg
Xpos = .
0 if Xpos < Xneg
_ JXneg — Xpos if Xneg 2 Xpos
Xneg = .
0 if Xpeg < Xpos

In delay space we re-normalize with the negative log differ-
ence exponential function nLDE (Equation 5), which is also
symmetric about the y’-axis. The nLDE function is bounded
by the inhibit function, similar to how the nLSE function
is bounded by min. inhibit(#;, t;) accepts two inputs, an in-
hibiting event set at time ¢; and a data event arriving at time
tg, and outputs an event at time ¢; if and only if 5 < t;.
When t; > t;, no event will be output, which is equivalent
to an event at time co. We use min-of-inhibit functions to
approximate nLDE:

min(inhibit(x” + Eo, v’ + Fp),
inhibit(x” + E1, ¢’ + Fy),

™)

Using the same technique as the nLSE approximation, we
simplify from two inputs to one, modeling min-of-inhibit
approximations from Equation 7 where x” +y’ = 0 in Pyomo,
and use KNITRO to optimize approximations with various
numbers of inhibit-terms. Figure 5 shows a sample optimized
nLDE approximation with four inhibit-terms.

inhibit(x” + E,_1, 4’ + Fp_1))

2.3 Approximation Logic Design

One of the challenges with a delay-based nLSE function is
that its output is always less than or equal to the min of the
inputs. When mapped to times, this would mean the output
needs to fire before any of the inputs have even arrived and
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Figure 6. Figure (a) shows A naive circuit implementation
of a 2 max-term nLSE approximation where all of the max-
terms are calculated in parallel. Figure (b) gives an Optimized
hardware implementation of a 2 max-term nLSE approxima-
tion using two chains of delay elements. Since the C; and D;
constants are in opposite order (the largest C; pairs with the
smallest D;) the output of the first delay element is matched
with the last delay element. The grey blocks represent fixed
delay elements.

thus the constants in equation 6 are all negative. Instead of
directly implementing nLSE, we implement a time shifted
nLSE (which is the same as rescaling in importance space).
This can be done by adding a constant K that is greater than
or equal to the most negative approximation constant:

nLSE(x’,y") + K
~min(x’,y’, max(x" + Cy,y’ + Dy),...) + K
=min(x" + K,y" + K, max(x" + Co + K,y + Dy +K),...)

The now-positive max-term constants can now be imple-
mented with constant delays, and the max and min functions
can be replaced with LA and Fa gates respectively. Finally, to
handle swapping x” and y’, as described in Section 2.1, we
use a temporal comparator circuit [41] at the input to ensure
proper ordering, preventing the need to double number of
max-terms. A naive implementation of this can be seen in
Figure 6a where each max-term has its own dedicated delay.

However, this approach creates redundant delay, wasting
both energy and area. With physical delay elements, energy
consumption scales linearly with the magnitude of delay, so
designs should minimize the number of redundant delays.
This informs an optimized design shown in Figure 6b, where
there is only a single path of delay elements for each input.
The max-term inputs are tapped from the proper location
along the delay chain. Note that as max-terms are added, the
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C; constants increase and the D; constants decrease, so max-
terms are connected in reverse order along their respective
chains. This same shift-and-chain approach can be used to
create a hardware implementation of the nLDE approxima-
tion function (Equation 7).

3 Recurrence Architecture

The accumulation operation in multiply-accumulate implies
many connected summations. This can be achieved by all
inputs arriving at the same time and being summed together.
However, for most systems this is infeasible due to either the
number of inputs or data naturally arriving over time. There-
fore, a stateful system is required, which poses a problem
for delay space. Temporal memories have been proposed in
the past but they all rely on either emerging technologies or
complex and sensitive analog circuits[26, 29, 39, 45]. To solve
this problem we propose an alternative race logic approach
that emulates a stateful system for efficient MACs.

This approach relies on the fact that in temporal systems,
the arrival time of any event, t,, is meaningless without
context. There must also be a reference time t,.r, where the
difference between the times t —t,. s represents x’s value. All
inputs to race logic operations, including our nLSE approx-
imations, must share the same reference time to function
properly. In a system with fully parallelized inputs this is sim-
ple with a shared global reference time t,.f = tsqr;. However,
with serialized inputs each input will have a unique local
reference time. Before the data can be processed together
with race logic it must be synchronized to the last input’s ref-
erence time. One method of synchronization is delaying each
input by the difference between their local reference time
and the last input’s reference time: t,» = ty + (Yjast — tiocal)s
where an example using nLSE is shown in Figure 7a. These
delay lines create state by holding in-flight data until all
other inputs have arrived.

This represents an important trick where we can maintain
the proper logical value of a signal with a shifting reference
frame by adding a constant (delay). However, this requires
as many delay lines as inputs, which wastes energy and area,
making it infeasible for large systems. Instead, we propose an
optimization that operates on inputs as they arrive, perform-
ing as many operations as possible on currently available
data. Then, only the required information for the next stage
of computation is passed, minimizing the data that must
be reference shifted. This also allows the required reference
shifting delay to be reduced because each operation has some
inherent delay, either through explicit delay elements or gate
propagation time.

Our nLSE approximations are particularly well suited for
this compute-on-arrival approach because 1) they have a
larger delay due to the addition of a constant K, even further
reducing the required frame shift delay, and 2) only accept
two inputs. Figure 7b illustrates this by showing how a large
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nLSE operation can be split up and staged across input arrival
times. The equivalence of breaking apart the nLSE operations
can be shown simply:

_ ln(eln(e’x+e’y) + e—Z)
_ ln(efnLSE(x,y) + e*Z)
nLSE(nLSE(x, y), z)

When the calculation being performed is completely as-
sociative, commutative and symmetric then each stage is
composed of identical hardware, such as our nLSE approxi-
mation in Figure 7b. When these conditions are satisfied then
the compute-on-arrival approach can be further optimized
by frame shifting the output and looping it back into its own
input, as shown in Figure 7c. In order for this to operate
properly, three constraints must be met:

—In(e ™ +e ¥+e7%)

e The rise and fall time of the delay elements must be
matched so that the integrity of the voltage pulse is
maintained.

e The value of any input cannot be so large that it ex-
tends past the next value’s reference frame.

o Arelaxation period must be introduced between cycles
to ensure that the previous cycle’s falling edge does not
interfere with the computation of the current cycle.

This recurrence takes advantage of reference shifting de-
lay lines and causes the system to act like a classical state
machine, so long as the inputs arrive at evenly spaced time
intervals. This saves both energy and area by limiting the
number and length of delay elements, as well as reducing the
number of nLSE approximation hardware blocks required.
It’s worth noting that this approach is not restricted to a
fully serial input. The two-input nLSE approximation units
can be expanded to a tree of nLSE blocks with any number
of inputs. Regardless of the size of the tree, the output can
still be recurrent, creating a trade-off between the number of
nLSE approximations, the area of the design, the minimum
length of each cycle, and the number of necessary cycles.

4 Rolling Shutter Convolution Architecture

Most cameras rely on a technique called a rolling shutter
[17] where individual columns or rows of pixels are captured
and read out in parallel. This pipelines both the exposure
time and the ADC readout times while causing the inputs
to become available across fixed time intervals. This acts as
a natural serialization for our recurrence architecture and
can be leveraged for convolution. Even in systems without a
rolling shutter, a staged readout is often applied to reduce
the number of necessary ADCs.

4.1 Analog to Delay Space

Traditional camera systems rely on Analog-to-Digital Con-
version (ADC) circuits to read pixel data prior to processing.
However, low power systems have explored converting ana-
log signals into the temporal domain [34, 36] for mixed signal
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Figure 7. Illustrations of different approaches to reference frame synchronization, where the y-axis indicates time and the
x-axis indicates physical area added to the design. Figure (a) shows how each element can be individually delayed to ensure
the proper reference frame. Figure (b) shows how computation can be performed as inputs arrive, and Figure (c) shows how
the output of this computation can be looped to the same hardware (as shown by the hollow arrow) block with some delay to

prevent hardware replication.
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Figure 8. Figure (a) Demonstrates a simple starved inverter
that forms the basis of voltage to time converters (VTC).
Figure (b) Shows the circuit diagram of an inverter-chain
delay element with a transistor between the inverter output
and ground to increase the delay of a single inverter.

processing. This approach has shown the potential for signifi-
cant energy savings [16], and allows for temporal processing
of data while in the time domain.

Many of these techniques attempt to achieve a linear map-
ping of input voltage to output timing [13, 34]. However,
this is insufficient for our delay space computation as the
negative log of the input is required. Instead, we require a
voltage to time converter (VTC) that matches the negative
log properties of delay space. This can be achieved by using
a starved inverter, shown in Figure 8a, which is already at
the core of many VTC systems [16].

The pixel voltage controls the current starving transis-
tor, and the read clock acts as the input to the base inverter.
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As the pixel voltage increases, the delay of the inverter de-
creases, creating the value inversion necessary for delay
space. Additionally, pixel voltage has a monotonically in-
creasing impact on the delay of the clock signal, allowing it
to approximate negative log for specific regions of interest.
These two properties combined allow for the delay of the
clock signal to be interpreted as a delay space value.

4.2 Delay Elements

Three previous approaches to delay elements for race logic
have been proposed: discrete delay through chained DFFs
[27], inverter chains, and starved inverters [28]. These ap-
proaches all have their advantages, but the discretized ap-
proach would be impractical to integrate with the precise
constant values required for the delay space approximations.

The starved inverter approach surrounds an inverter with
two statically biased transistors [28]. These inverters act as
current sources to reduce the rise and fall time of the output,
resulting in controllable delays based on the bias voltages.
However, this approach requires each starved inverter to be
biased separately, introducing circuit complexity and addi-
tional energy consumption. Also, having a single large delay
element maximizes the impact of random jitter (RJ) from a
single element.

Conversely, an inverter chain uses a large number of iden-
tical inverters, with the effective load capacitance determin-
ing the delay from each individual inverter. In this approach
the R] for each element is independent and scales with the
magnitude of delay, causing each additional element to re-
duce the overall impact of R] [33]. In our design we use this
approach and hard-code the load capacitance by adding a
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Figure 9. A single, hard-coded, three by three convolution fil-
ter. Data is read through the rolling shutter, then progresses
through the dedicated filter weight delay matrix and finally
to the accumulation nLSE trees. The non-recurrent outputs
from each nLSE tree is combined for a single output. The
multiply and accumulate hardware handles one row of con-
volutions and must be replicated for each necessary row.

transistor between the output of each inverter and ground
as shown in Figure 8b. The load capacitance is varied by
changing the size of the ground transistor, allowing delay
to be hard-coded into the hardware. This chained inverter
approach introduces an area and noise trade-off, as the larger
the output capacitance, the fewer inverters are required for
each chain. We evaluate how RJ impacts the accuracy of our
approximations in section 5.2, which informs the design of
the ground transistor.

4.3 Dedicated Convolution Engine

The core of this architecture is a hard-coded convolution
MAC block shown in Figure 9 which handles all of the con-
volutions along a set of columns equal to the filter width.
This block must be replicated for every filter application

along the row axis of the given pixel array, given by 1 +
pixelwidth—filter width
stride .

Once the pixel values have been converted to delay space

through the VTCs, each temporal pixel value is passed to all
MAC blocks that utilize it. Figure 10 illustrates how this pixel
data flows through the MAC block. Each block has a static
matrix of delay lines that includes every filter weight. As the
corresponding pixels are processed by the VTCs they are
passed to this matrix and the input can be distributed to any
or all of the filter’s rows. The number of rows activated in a
given cycle is given by [ filterlength/stride], where a stride
of 1 indicates that every filter row will be used each cycle. O
Each activated filter row then performs element-wise delay,
which functions as the multiplication of the MAC operation.

To fully utilize the outputs from the activated rows there
must an accumulation unit for every potentially activated
filter row. (2) These accumulation units receive the results of
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Figure 10. An example of the scheduled pixel information
flow through the system for a filter with 3 rows. Each dif-
ferently colored cube represents a different row in the filter
weight matrix. In subsequent time steps each nLSE tree re-
ceives inputs from next filter row until it has completed a full
filter application. The actions corresponding to the circled
digits are explained in Section 4.3.
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@ = WeightDelay @ = L’;:'t'lgrtsum
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®
= =)
@

Completed
Sum

the filter rows and subsequently sums the incoming values
in delay space. The core of the accumulation unit is a tree of
two-input nLSE approximation units performing delay space
addition. Whenever the tree is not fully symmetric, gaps in
the tree must be path balanced by with a delay equal to the
delay of the nLSE approximation hardware to maintain the
proper reference frame. This delay is added as deep in the
tree as possible to minimize the number of extra delay lines.
When an image begins to be processed only one accumu-
lation unit is activated, with the next one being activated
every stride cycles. Eventually they will all be activated and
operating in parallel, similar to a systolic array.

(3 The result of this nLSE tree is then looped back as the
recurrence discussed in Section 3. This loop must have a
delay equal to the cycle time minus the inherent delay of the
nLSE tree. @ Once an nLSE tree has received an input from
each of the filter rows it passes its result to the output instead
of being looped for recurrence. Then, in the next cycle 5
the outputs of the filter rows are rotated so that each nLSE
receives the next necessary input for their application of the
filter. This ensures that there will be an output produced
every stride cycles.

4.4 Split Value Representation

The split value representation presented in section 2.2 re-
quires each MAC block to have multiple kernels to handle
each combination of {positive, negative} {input, weight}. The
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temporal outputs of the VTCs are always non-negative, so
we only need two kernels (positive input, positive weight
and positive input, negative weight). If the inputs could be
negative then we would need a total of four kernels to handle
the two additional cases.

Since the weights are hard-coded, the filter weight matrix
is split between the positive and negative sides. Weights that
are zero in importance space, either because of the pos/neg
split or the actual value is zero, become infinity. An infinite
delay is the same as the path not existing, allowing the num-
ber of weight multiplications (delays) to stay constant with
filter size, unaffected by the split value representation. Ad-
ditionally, the number of nLSE approximations performed
remains the same, the only extra operations are any required
tree balancing and the recurrence delay lines.

Once a convolution have been completed, both positive
and negative kernels must be routed to a delay space sub-
traction unit to re-normalize the values as described in Sec-
tion 2.2. The subtraction unit evaluates an nLDE approxima-
tion (Section 2.3) on two inputs, and the result can be fed
directly to the output. This output can either remain in delay
space for further temporal computation, or be converted to
the digital domain for traditional processing.

5 Evaluation and Results
5.1 Architectural Simulator

To explore the architectural space we created an architectural
simulator that takes a system description as its input and
produces a software representation of the architecture. The
system description includes the image dimensions, the ker-
nel shape, the number of kernels and the convolution stride.
This architecture can be configured to change the unit scale,
the maximum supply voltage swing, and the magnitude of
each inverter’s delay (as a multiplier of the minimum inverter
delay). We use the unit scale to indicate the connection be-
tween theoretical delay values and physical time values: for
example an abstract delay of 1 could map to 5ns.

These parameters are then used to estimate the area and
energy consumption for the given system description. The
energy estimates are based on SPICE simulations for delay
lines using 65nm predictive technology models [49]. Area
estimates are dependent on typical transistor sizes for 65nm
nodes and an estimation for the total number of transistors
in the system. We assume that the delay elements dominate
both the energy and area and assume that the control logic
is negligible. The architectural parameters are also used to
implement noisy versions of delay and our approximations
based on noise values from [33].

The generated architecture can be executed given an im-
age data set and filter. The convolution is performed ac-
cording to the compiled architecture with programmable
multiplication, addition and subtraction functions. We use
these programmable functions to ensure that when using
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importance space operations the architecture produces the
exact same result as software convolution. We also verify
that using exact delay, nLSE and nLDE provides the same re-
sult as software convolution when the results are converted
from delay space to importance space.

5.2 Approximation Accuracy and Noise

To evaluate our approximation accuracy, we generate two
uniform random values between zero and one, which cor-
respond to positive values in delay space. The values are
converted to delay space, the approximation is applied, and
the result is then converted back to importance space. This
approximation result is then compared to the exact opera-
tion being performed in importance space. We perform this
operation a million times, then take the range-normalized
RMS error (RMSE) to determine the overall accuracy.

We use this approach to evaluate how the number of ap-
proximation terms impacts the accuracy of our nLSE and
nLDE approximations with infinite precision, shown in Fig-
ure 12a. The graph shows that additional approximation
terms significantly increase the approximation accuracy un-
til 7 or 8 terms where they start to provide diminishing
returns. However, when implemented in hardware, the ac-
curacy of the approximation is also impacted by hardware
timing noise. We use the noisy approximation simulator de-
scribed in Section 5.1 to evaluate the two major sources of
noise: power supply induced jitter (PSIJ) and random jitter
(RJ) [33]. PSYJ is a product of the power delivery network
(PDN) and will dominate the noise unless the swing in the
supply voltage is carefully controlled. Figure 12b shows how
the accuracy of our nLSE approximation suffers due to the
noise introduced by varying Vpp swings.

While this shows that PSIJ can significantly reduce the
accuracy of the approximations, the low power nature of
our convolution architecture puts less stress on the PDN,
reducing potential voltage swings. If this is still insufficient to
control the PSIJ, the voltage swing can be further controlled
by adding decoupling capacitors to the PDN. RJ, on the other
hand, cannot be controlled and is a function of the magnitude
of each inverter’s delay [33]. However, since the R] of each
inverter is independent, the more inverters in a chain, the
smaller the impact to the system. This creates a relationship
between the delay of each inverter, the unit scale, and noise.

Figures 12c and 12d shows the impact of limited PSIJ
(10mV Vpp swing) and RJ for different unit scales with fixed
delay element magnitudes. Figure 12c uses the smallest pos-
sible delay for each inverter, minimizing RJ, while Figure
12d uses an inverter with 50x the minimal delay. Both of
these show that there is a minimum unit scaling that must be
met to ensure the max-terms can be utilized fully, otherwise
the RJ noise dominates. With appropriate unit scaling and
minimal noise there is little to no impact on the accuracy, but
this requires significantly longer inverter chains to achieve
the proper delay. However, Figure 12d shows that for a unit
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Figure 11. Delay space approximation accuracy as the number of approximation terms increases. Figure (a) shows the pure
approximation accuracy, while Figure (b) shows how PSIJ impacts accuracy. Figure (c) and figure (d) show how RJ impacts
accuracy. All graphs share the same y-axis, and (c) and (d) share the same legend. The top line is the same across all graphs,
showing delay space approximation accuracy for addition, without noise.

(a) Approximation Accuracy (b) PSIJ Impact on Add. Approx.
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then have a larger impact on the output than slight variations
along the proper max-term.

Note that the nLDE approximation is also affected by noise,
but because there is a larger difference between its approxi-
mation constants, the noise impacts the accuracy to a lesser
degree. Due to space constraints we omit the nLDE noise
trade-off graphs from this paper, but we consider this impact
on nLDE accuracy in our architectural evaluation.

5.3 Architectural Evaluation

To investigate the relationship between approximation accu-
racy and the our convolution architecture, we run a design
space exploration with our architectural simulator. For our
exploration we use the Imagenette [18] dataset, which is a
subset of the Imagenet [11] dataset, and scale each image to
150 by 150 pixels. Our architecture is then configured to run
the Sobol function from OpenCV [2] which uses two 3 X 3
filters. We sweep the number of approximation terms for
both nLSE and nLDE as well as the unit scale. The delay of
each inverter is set to 50X the minimal delay and the maxi-
mum Vpp swing is set to 10mV. For each configuration, the
architectural simulator determines the energy consumption.
Then it emulates all of the operations with appropriate noise
in the same order as the simulated hardware for a single
channel of the dataset. The Sobel convolution was calculated
for five different images and the RMSE for each output pixel
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Figure 12. The results of the architectural exploration where
the number of approximation terms are swept across 5, 7, 10,
15, 20 for both nLSE and nLDE and the unit scale is swept
across 1ns, 5ns and 10ns. Circled points are along the Pareto
optimal frontier, with the corresponding configuration (Unit
scale, nLSE terms, nLDE terms) written next to it.

was taken. The results from this architectural explorations
are shown in Figure 12.

The first noteworthy result from this graph is the effect of
unit scale. Each vertical grouping represents a unique unit
scale, caused by the necessary increase in delay magnitudes,
which leads to a larger energy consumption. Also, the energy
difference between different approximation configurations
becomes more significant as the unit scale increases. This is
because the increased delay due to additional approximation
terms is multiplied by the larger unit scale, leading to more
energy consumption.

As expected, the accuracy increases noticeably when go-
ing from 1ns to 5ns unit scales. However, similar to the two
input accuracy in Figure 11, the difference between 5ns and
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Table 1. Convolution benchmarks and their descriptions.
The filter configuration is (filter size, stride, number of fil-
ters).

Function Description Filter Config
Sobel Edge Detection 3x3,1,2
pyrDown Blur and Downsample 5%5,2,1
GaussianBlur  Blur with Gaussian filter 7x 7,1, 1

Table 2. Relevant statistics for different race logic convolu-
tion configurations for three different functions. The Arch
column indicates the unit scale, the number of max-terms
and the number of inhibit-terms. The pyrDown and Gaus-
sianBlur functions do not have inhibit-terms as they have
only positive filter weights. Throughput is measure in mil-
lions of frames per second (Mfps)

Energy Max
. Area er Through- Acc.
Function Arch. (mm?) Erame put & (RMSE)
1) (Mfps)
Ins, 7, 20 .02 9.81 71 .065
Sobel 5ns, 10, 20 .08 48.1 18 .029
10mns, 10, 20 .149 95.4 9 .028
1ns, 7 .004 7.2 55 .038
pyrDown 5ns, 10 134 36.6 12 .029
10ns, 10 236 72.7 6 .028
Ins, 7 .008 14.2 55 .037
GaussianBlur  5ns, 10 273 73.1 12 .028
10ns, 10 481 146 6 .027

10ns is fairly small. This demonstrates an effect where in-
creasing the unit scale improves the accuracy with diminish-
ing gains while the energy continues to increase consistently.
It is clear from the Pareto frontier that maximizing the num-
ber of inhibit terms is important for accuracy. As discussed
earlier in Section 5.2, inhibit terms are less affected by noise.
Also, adding additional inhibit terms leads to a smaller in-
crease in the energy consumption compared to adding max-
terms because there are significantly fewer nLDE operations.
Due to the larger impact of noise on the nLSE approximation,
increasing the number of max-terms beyond seven or ten
does not significantly improve the accuracy.

In Figure 12 we highlight three configurations that are
along the Pareto optimal frontier and use these configura-
tions to investigate the functions shown in Table 1 from the
openCV library [2]. Note that the pyrDown and Gaussian-
Blur functions have non-negative weight values, so the split
value representation and nLDE approximation unnecessary.
Table 2 shows the area, energy and cycle time of these func-
tions for each of the highlighted configurations. The Sobel
function is the only one with negative weights, requiring
the split value representation. However, it still consumes a
similar amount of resources to pyrDown due to the fact that
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it has significantly smaller filter sizes. While pyrDown con-
sumes marginally less energy than the Sobel function, this
is largely due to the fact that its stride size is two, effectively
halving the number of necessary computations and static
hardware. GaussianBlur demonstrates that larger filter sizes
consume significantly more resources, doubling the energy
and area requirements from pyrDown while barely increas-
ing the accuracy. However, because the height of the nLSE
tree is the same for both functions, the maximum possible
throughput is the same.

The maximum possible throughput for all of these ar-
chitectures is incredibly high, with the fastest filter able to
process 71 million frames-per-second (FPS), although it is
unlikely that a camera would able to match this throughput.
So in a slower camera the delay space architecture will be
able process the convolutions without slowing down the
throughput of the system. The only requirement is that the
row readout cycle time be evenly spaced and short enough
for recursion be energy efficient. If this means the readout is
faster than the rest of the camera operations then the time
between finishing an image and starting to read the next can
be lengthened to match the rest of the system’s FPS.

This shows how delay space convolutions can be used for
a variety of workloads with low energy and no impact to the
processing speed. To see how this impact compares to a state
of the art approach we consider a processing-in-pixel (PIP)
architecture [23] as shown in Table 3. For our comparison
we evaluate the benchmark used in the PIP paper, a 1.5 bit
edge detection convolution where the weights can be zero, 1
or -1. We evaluated our design against three different filter
sizes with two different strides. For the calculation of our
energy we include both the VTC [13] and TDC [14] cost,
and use a 1ns unit scale, 10 max-terms and 20 inhibit-terms
delay space configuration. We report the energy per pixel per
frame as the same figure of merit presented by the PIP work.
We also ran the same convolution benchmark as the PIP
in our simulator, and normalized our RMSE to the range of
output values to create a percent error for direct comparison.

The delay space approach consumes less energy than PIP
for every convolution structure when the results are left in
the temporal domain. As the convolution gets larger and
the stride stays small, the energy improvements of the delay
space architecture becomes more significant, achieving over
2.5% energy savings for a four by four filter with a stride
of two. The delay space architecture also outperforms PIP
when the stride size is small, but PIP improves its energy
consumption more with an increasing stride size than delay
space. This makes delay space a better fit for most openCV
filtering applications, where the stride size normally always
small. However, when the results must be converted into
digital the delay space architecture begins to consume more
energy for the ultra-low energy design points. This motivates
additional computation in the temporal domain, such as more
convolutional layers or min/max selections.
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Table 3. Comparison between the delay space convolutions and a state of the art, processing in pixel convolution engine. We
show the energy of the operation, the delay of each operation, the accuracy and the energy delay product. The delay space
convolution analysis includes the energy cost of the VTC, and separate columns are given for a system that includes the TDC
cost. The minimum energy delay product for each configuration is shown in bold.

Benchmark PIP Delay Space
. p]irrli)rii}elzl Frame ExD Error p]irrli)rii}elzl Energy Flr\gze ExD PrEg((iIl?ct Error
Shape Stride per frame Delay  Product (%RMSE) | per frame w/TDC Delay Product w/TDC  (%RMSE)
2x2 2 16.9 12.8 2.18e2 7.18 16.4 21.9 7.35e-4  1.21e-2 1.61e-2 3.69
2x2 4 4.6 5.2 2.3%1 7.12 4.2 9.8 7.35e-4  3.13e-3 7.2e-3 3.51
2x4 2 32.9 21.9 7.21e2 7.8 213 26.8 7.35e-4  1.57e-2 1.97e-2 3.02
2x4 4 7.0 7.7 5.42¢el 6.77 5.46 11.0 7.35e-4  4.01e-3 8.09e-3 3.6
4x4 2 104 41.3 4.29e3 4.56 41.0 46.6 1.47e-3  6.04e-2 6.86e-2 2.8
4x4 4 11.6 1.3 1.52e2 5.27 10.3 15.9 1.47e-3  1.52e-2 2.34e-2 3.2
general categories, noise that occurs before the VIC and
30 0.14 noise at the VTC output. Noise that occurs before the VTC
N are associated with the CMOS sensor, such as fixed pattern
; 25 0.12 noise [15] and dark shot noise [12], and affects the voltage
-g 20 0.10 used to program the starved inverter. The resulting value
c will then undergo a negative log transformation with the
E 15 0.08 conversion to delay space. Noise that occurs after the VTC
3 10 0.06 is caused by nonidealities in the VTC, and results in a linear
& 5 change in the delay space value.
0.04 To evaluate the impact of these two types of noise we
use the pyrDown application from OpenCV [2]. We use the

0.1 0.2 .
Post-VTC n0|se

Figure 13. Impact of sensor and VTC noise on the accuracy
of the pyrDown convolution. The axes show the standard
deviation of the introduced error while the color indicates
the output RMSE. The y-axis is given as a percentage of the
max possible range of input values while the x-axis is given
in nanoseconds.

Also, the delay space architecture approach can be com-
pletely separated from the pixel array, unlike PIP. PIP re-
quires circuitry to be added to the pixel array, significantly
reducing the possible pixel density and the speed of image
processing. This causes the energy delay product of the PIP
architecture to be several orders of magnitude higher than
the delay space architecture, which operates fast enough
that it has minimal impact on the image throughput.

5.4 VTC noise impact

We’ve shown that our proposed delay space arithmetic is
able to process convolutions with incredibly low energy
while still maintaining good accuracy, but this evaluation
assumes a perfect sensor and VTC. In reality, these systems
are noisy, which can contribute to error in the final result
of the delay space convolutions. This noise falls into two

same testing framework and dataset as before, but instead we
add a random Gaussian distribution to each image centered
around zero at two different points, before the negative log
conversion to delay space, and after. For both types of noise
we gradually increase the standard deviation of the distri-
bution. The noise is applied in simulation, and represents
an abstract noise model to show how robust the system is
to noise. For the delay space arithmetic we use a 1ns unit
scale, a 10 max-term system with a maximum Vpp swing
of 10mV and the same noise model as before. The results of
this experiment are shown in Figure 13. The y-axis indicates
noise on the original, importance space image, where the
values are the standard deviation of the noise, shown as a
percentage of the maximum input range. The x-axis shows
the noise applied after the conversion to delay space, where
each value is the standard deviation of the noise in nanosec-
onds. The color or each *pixel” corresponds to the output
RMSE from an ideal convolution with no error and noise.
As expected, the RMSE increases with the noise being
added to the system. However, the error of the delay space
computation grows slower than the amount of noise. With a
noise distribution that has a standard deviation of 10% of the
input range and no post-VTC noise, the RMSE is .046, less
than .01 greater than the baseline which assumes a perfect
input. Also, the post-VTC noise has a small impact until it
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reaches a standard deviation of .3 ns. This is because the
post-VTC noise is added in the log domain, which means it
has an exponential impact on the importance space input.
So small errors have very little impact, but as the post-VTC
noise increases the error increases exponentially.

This exponential growth is most apparent in the case when
there is no pre-VTC noise. The RMSE grows faster along
this row than any others, and has almost as much error as
the maximum noise data point. This is because both noise
sources are added independently, so the two sources of noise
can partially counteract each other. However, in a real sys-
tem there will always be some noise both before and after
the VTC. Overall this chart shows that the delay space archi-
tecture is fairly robust to noisy inputs and can tolerate some
non-idealities caused by the VTC.

6 Related Work

Historically, work reducing the overheads of bit-parallel
computation has centered around bit-serial computation.
Recently this has been used to create energy efficient MACs
[8], solving partial differential equations [35], and neural
networks [21]. Memory cells have even been adapted to
perform bit-serial computation near data [21, 37]. However,
bit-serial computation replaces the bit-parallel computation
with many cycles and high activity factors. It also requires
registers and memory to keep track of data across cycles,
increasing the area and energy consumption.

Similar to bit-serial computing, stochastic computing en-
codes information into a probabilistic bit-stream. Now com-
putation can be done using just AND and or gates [1]. Because
random number generators are expensive researchers have
investigated methods to reduce the dependence on indepen-
dent streams [47]. This work has then shown how it can be
applied in low power, near-sensor domains such as the brain
[46]. However, this still requires a large number of cycles
and expensive averaging circuitry.

Race logic has been proposed previously as a low power
alternative to bit-serial and stochastic computing, and has
shown to be very effective for dynamic programming [28]
and decision trees [43]. However, our work is the first to
propose an arithmetic framework for race logic, to the best
of our knowledge. There exists another form of time-domain
computation that uses pulse width to encode information
[32]. General addition has been shown to be possible with
time registers [7, 40], and multiplication has been shown by
scaling this technique [39]. However, these operations work
through iterative shifting and adding, requiring each input
to fully complete before the next can begin. Also, these time
registers have temporal limits and overflow issues.

Along with these strategies many analog hardware ap-
proaches have been coupled with image sensors. Convolu-
tion circuits have been placed alongside the photo diode for
processing-in-pixel [22]. However, this approach has less

366

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

accuracy than traditional approaches and causes the pixel
size to increase significantly, reducing the resolution of cam-
eras using this technique. Mixed near-sensor and in-sensor
architectures have been proposed [25], but the near-sensor
computation is based on conventional binary computation.

Race logic has been applied to 3D photon cameras [19]
to reduce off-sensor bandwidth and computation. However,
this is done using race logic to cleverly find the median
without doing any actual arithmetic. Similarly, a time domain
approach has been used in a retinal prosthesis [9] to perform
energy efficient edge detection. They compare pulse widths
with neighboring pixels and use mixed signal approaches to
create a threshold for the differences. While this is similar to
edge detection convolution (the Sobel operation), it cannot
be generalized to other filters. We expect the new arithmetic
capabilities of this energy efficient approach might open the
door to even more applications in the future.

7 Conclusion

There is no question that convolution operations will con-
tinue to play an important role in sensor information pro-
cessing, with applications from image processing to object
detection and neural networks. The power consumption of
multiply-accumulate (MAC) operations is a key factor in con-
volutions integrated with sensor operation. Departing from
the norm of performing full analog-to-digital conversions
for each pixel, we showed how to perform arithmetic on tem-
porally encoded signals with remarkable energy efficiency.

At the heart of our approach is a negative log transforma-
tion, converting the traditional numeric space into a ‘delay
space’. This mechanism enables multiplicative scaling by
adding delays. We demonstrate the direct execution of neg-
ative log-space addition and subtraction in this new delay
space, ensuring that normal associative and communicative
properties of addition still apply in the transformed oper-
ations. Moreover, we show how strong approximations of
these operations can be efficiently constructed from delay
elements and existing CMOS logic elements.

Many computations execute iteratively, and to apply tem-
poral techniques we need new techniques for chaining and
recurrently operating these designs, multiplexing in both
time and space. We show how time-division multiplexing
aligns naturally with the staged ADC readout common to
most modern sensor arrays. To establish the practicality of
this approach, we present an automated transformation that
carries traditional convolutions through to their delay space
equivalents. This translation balances error introduced by a
new temporal equivalent of quantization and delay element
noise. We use this approach to show how our approach can
consume eight times less energy than another state-of-the-
art convolution approach while achieving similar accuracy.
We believe that this approach presents a powerful new set
of design primitives with applications beyond convolution.
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