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Abstract

We show that direct summands (or more generally, pure images) of kit type singular-
ities are of klt type. As a consequence, we give a different proof of a recent result of
Braun, Greb, Langlois and Moraga that reductive quotients of klt type singularities
are of klt type.

Unless otherwise stated, throughout the paper we work over an algebraically closed
field k of characteristic zero.

1 Introduction

Given a morphism Y = Spec(B) — X = Spec(A) between affine algebraic vari-
eties, we say that X is a direct summand of Y if A is a direct summand of B as
A-modules. More generally, we say the morphism is pure if A is a pure subring of
B,i.e. M — M ®4 B is injective for any A-module M. Some interesting examples
are GIT quotients by reductive groups and faithfully flat morphisms between normal
varieties. The purpose of this note is to show that certain classes of singularities from
the Minimal Model Program (see e.g. [17]) are preserved under pure morphisms.

Theorem 1.1 Let f: Y — X be a pure morphism between affine varieties. Assume
that Y is of kit type." Then X is also of kit type. In particular, direct summands of kit
type singularities are of klt type.

This refines Boutot’s theorem [2] that pure images of rational singularities are
rational. We also prove an analogous statement in the plt case, see Theorem 2.10.

I'This means there exists some effective Q-divisor D on Y such that the pair (¥, D) is klt. In some literature
this is also called potentially klt. More generally we say a pair (X, A) (where A is an effective Q-divisor
on X) is of klt (resp. plt, resp. Ic) type if there exists some effective Q-divisor D such that (X, A + D) is
klt (resp. plt, resp. Ic).
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As immediate applications, we deduce that images of kit type singularities under
equidimensional morphisms are of kIt type (Corollary 2.9), and give a new proof of a
recent result of Braun, Greb, Langlois and Moraga [4] that reductive quotients of klt
type singularities are of kit type.

Corollary 1.2 Let X = Spec(A) be an affine variety of kit type and let G be a reductive
group acting on X . Then the quotient X // G = Spec(A©) is also of kit type.

We refer to [4] for several further applications of the above result.

Theorem 1.1 is suggested by positive characteristic considerations: the character-
istic p > 0 analog of klt singularities is the class of strongly F-regular singularities,
which by definition is preserved by taking direct summands (the Hochster-Roberts
theorem [13] that reductive quotient singularities are Cohen-Macaulay was based on
a similar circle of ideas). In fact, several special cases of Theorem 1.1, e.g. when X
and Y come from section rings of Mori dream spaces [9], or when X is Q-Gorenstein
[20], have been established by using the connection between klt and strongly F-
regular singularities. Our proof of Theorem 1.1 does not rely on the theory of F-
singularities (in particular we also give a new proof of Schoutens’ result [20]), but
it would still be interesting to find a proof of Theorem 1.1 through the conjecture of
Schwede and Smith (see [21, Sect. 7]) that strongly F-regular type singularities are
also of kit type. We also expect the log canonical version of Theorem 1.1 to hold (see
Question 2.11, c.f. [4, Question 8.5], [8, Corollary B]), although our current method
does not seem to apply to the lc setting.

2 Proof
2.1 Some preliminary observations

We start by collecting some preliminary results that will be useful in the proof of
Theorem 1.1. First we recall a criterion for purity.

Lemma 2.1 ([14, Corollary 5.3]) Let A be a Noetherian ring which is subring of B.
Then A is a pure subring of B if and only if A is a direct summand, as an A-module,
of every finitely generated A-submodule of B that contains it.

Eventually the goal is to reduce Theorem 1.1 to the case when X is Gorenstein,
as [2] has shown that pure images of rational singularities remain rational, and for
Gorenstein singularities being rational is equivalent to being klt. The next result will
provide the basis for performing various reduction steps.

Lemma 2.2 Let f: Y = Spec(B) — X = Spec(A) be a pure morphism between
affine Noetherian schemes. Let a C A be an ideal, let U C X be an open subset,
let V = f_l(U) CY,andlet L be aline bundle on U. Then

(1) A/ais a pure subring of B/aB.
(2) HY(Oy) is a pure subring of H*(Oy).
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3) B,en HY(U, Oy (mL)) is a pure subring of B, en HO(V, Oy (mf*L)).

Proof [13, Lemma 6.2] gives (1). To see (2), note that any finitely generated H 0Op)-
submodule N of H°(Oy) = HO(U, f.Oy) is contained in H(U, F|y) for some
coherent sheaf F C f,Oy. Since A is a pure subring of B, by Lemma 2.1 we get a
spitting map p: F — Oy, which induces a splitting N C HOU, Flv) — HO(Op).
Another application of Lemma 2.1 then gives (2) (note that a priori H YOy) may
fail to be Noetherian, but the Noetherian condition is not needed for the “if”’ direction
of Lemma 2.1; the same remark applies to the proof of part (3) below).

For any quasi-coherent sheaf F on X, write R(F) := @,y H'U,F ®
Oy (mL)). By projection formula, we have HO(V, Oy (mf*L)) = HO(U, f.0y ®
Oy (@mL)). Thus the two rings in part (3) are R(Ox) and R(fOy). The proof of (3)
then proceeds just as in (2), noting that any finitely generated R(Ox)-submodule of
R(f+«Oy) is contained in R(F) for some coherent sheaf 7 C f,Oy. O

2.2 Aspecial case
We next consider a special case of Theorem 1.1.

Lemma 2.3 Let f: Y — X be a pure morphism between affine normal varieties.
Assume that Y is of kit type, Kx is Q-Cartier, and f_l(XSing) has codimension at
least two in Y. Then X has kit singularities.

Note that the above statement, even without the assumption that f~1(X sing) has
codimension at least two in Y, has been proved by Schoutens [20] using the tech-
niques of F-singularities. Here we give a direct proof. In the end, our argument will
also give a new proof of Schoutens’s result that does not rely on F-singularities.

Proof Let x € X be a closed point. The statement is local on X, so after shrink-
ing X we may assume that Oy (rKx) = Ox where r is the index of Kx at x. Let
s € HY(X, Ox(rKyx)) be a nowhere vanishing section, let 7 : X’ — X be the corre-
sponding index one cover [17, Definition 5.19], and let Y’ be the normalization of
the main components of X’ x x Y. For simplicity, we also denote the map ¥’ — ¥
by 7. Let U be the smooth locus of X, let V = f~1(U), and let U’ (resp. V') be the
preimage of U (resp. V) in X’ (resp. Y’). Then 7 is étale over both U and V, the map
V' — V is the cyclic cover corresponding to the section f*s € HO(V, Oy (rf*Ky)),
and we have

7.0y = (EB Oy (mKy) - t'") /st = 1), 7,0

meN

= (@ Ov(mf*Ky) -t"’> /(st” —1).

meN
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By assumption, the complement of U (resp. V) in X (resp. Y) has codimension at
least two. It follows that

H%(Ox) = H'(U, m.0y1) = (EB H’(Oy(mKy)) - r’") /(st" = 1),

meN

H(Oy) = H(V. m,0y/) = (EB H®(Oy (nf*Kp)) - r’”) /(st" = 1).

meN

Combined with Lemma 2.2(3) and Lemma 2.2(1), we see that the morphism Y’ — X’
is pure. Note that Y’ may have several connected components. Nonetheless, by [13,
Corollary 6.12] and the fact that 7 ~!(x) consists of a single point in X', we know
that after possible shrinking X around x, there exists some component (say Y7) of ¥’
such that Y{ — X' is pure. As Y| — Y is quasi-étale (it is étale over V), we see that
Y| is of kIt type by [17, Proposition 5.20], hence it has rational singularities by [17,
Theorem 5.22]. By [2], this implies that its pure image X’ also has rational singular-
ities. By construction, Ky is Cartier, thus [17, Corollary 5.24] yields that X’ has kIt
singularities. As X’ — X is quasi-étale, another application of [17, Proposition 5.20]
gives the desired result that the singularities of X are kit. g

2.3 AKklttype criterion

To deduce Theorem 1.1 from Lemma 2.3, two difficulties lie ahead: the image X is
not Q-Gorenstein in general, and even if it is Q-Gorenstein, the preimage f -1 (Xsing)
of the singular locus may well contain a divisor in Y. We will address the latter issue
at the very end: the point is that after a small birational modification one can “throw
away” the divisorial part of f~!(X sing) from Y while retaining purity. Here we focus
on the Q-Gorenstein part. The key is to use the following klt type criterion.

Lemma 2.4 Let X be a normal variety and A an effective Q-divisor on X. Then
(X, A) is of kit (resp. plt) type if and only if the following two conditions are simulta-
neously satisfied:

(1) R(X,—r(Kx + A)) :=P,,ey Ox (—mr(Kx + A)) is a sheaf of finitely gener-
ated Ox-algebras for some positive integer r such that Coef(r A) € Z.

(2) The pair (X', A), where X' := ProjyR(X, —r(Kx + A)) and A’ is the strict
transform of A, is kit (resp. plt).

Proof We only prove the kit case since the plt case is very similar. Since the state-
ment is local, we may assume that X is affine. By [17, Lemma 6.2], as long as
R(X,—r(Kx + A)) is finitely generated, the morphism 7 : X’ — X is an isomor-
phism in codimension one and —(Ky + A') = -7 (Kx + A) is Q-Cartier and
s-ample. It follows that —(Kx’ + A’) is ample since X is affine.

First suppose that (X, A) is of kit type. Then R(X, —r(Kx + A)) is finitely gen-
erated by the following Lemma 2.5. If (X, A 4+ D) is klt, then its crepant pullback to
X’ remains klt. In particular, (X', A”) is of klt type. Since Ky + A’ is Q-Cartier, this
implies that (X, A') is KIt.
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Suppose next that (1) and (2) holds. Since —(Kx» + A’) is ample and (X', A') is
klt, by Bertini’s theorem we may choose some 0 < D" ~g —(Kx’ + A’) such that the
pair (X', A"+ D') is klt. Note that Kx» + A"+ D" ~q 0, hence Kx' + A’ + D' =
7*(Kx + A + D) for some effective Q-divisor D on X such that (X, A + D) is KIt.
In other words, (X, A) is of kit type. O

The following result is used in the above proof. For a more general version, see

[3].

Lemma 2.5 Let X be a variety of kit type and let D be a Weil divisor on X. Then
there exists a small birational modification w: X' — X such that the strict transform
D' = n*_lD is Q-Cartier and 7t-ample. In particular, the sheaf @,,. Ox (mD) of
Ox-algebras is finitely generated.

Proof This follows easily from [1], see e.g. [24, Lemma 4.7]. Il
2.4 Finite generation

We thus proceed to show that the two conditions in Lemma 2.4 are satisfied by pure
images of klt type singularities. In this subsection, we deal with the finite generation
part; the other condition will be verified afterwards by reducing to the special case
treated in Lemma 2.3. We need an auxiliary result.

Lemma 2.6 Let Y be an affine variety of kit type, let V. C Y be an open subset, and
let L be a Weil divisor on V. Then:

(1) Yo :=Spec(H(Ov)) is of kit type.

(2) The algebra R(V,L) = @meN HO(V, Oy (mL)) is finitely generated over
HO(Oy).

(3) The birational map V --+ Y identifies V with a big open set of Yy (i.e. Yo\ 'V
has codimension at least two).

@) If A is an effective Q-divisor on Y such that (Y, A) is of kit (resp. plt) type, then
so is the strict transform (Yy, Ag).

Proof We shall give a geometric construction of Yj. Let D be the divisorial part of
Z :=Supp(Y \ V) (if Z has codimension > 2 in Y then D = 0). By Lemma 2.5, there
exists a small birational morphism 7 : ¥’ — Y such that D’ = 7' D is Q-Cartier and
m-ample. By construction, we have:

e Y’'\ D' is affine (Y’ is projective over the affine variety Y, and we remove from it
an ample divisor D’).

e Y’ is of kit type (take the crepant pullback of a kit boundary on Y).

e 7 is an isomorphism over V (the exceptional set is contained in D).

By the last property, we see that V is a big open subset of Y’ \ D', hence
H O(OY/\ p)=H O(Ov). Combined with the first property we deduce that Yo = Y’ \
D', hence (3) holds and the second property above implies (1). Similarly (4) holds.
The closure of L gives a Weil divisor Lo on Yy such that R(V, L) = R(Yy, Lg). By
Lemma 2.5, the algebra R(Yy, Lg) is finitely generated. This finishes the proof. [l
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The following lemma gives the desired finite generation.

Lemma 2.7 Let f: Y — X be a pure morphism between normal Noetherian affine
schemes. Assume that for any open subset V. C Y and any Weil divisor L on V, the
section ring R(V, L) is finitely generated (as an HO(Oy)—algebra). Then R(X, D) is
finitely generated (as an H°(Ox)-algebra) for any Weil divisor D on X.

By Lemma 2.6, the above assumption on Y holds when Y is a variety of kit type
over k. Lemma 2.7 also applies when Y is Q-factorial: in this case the divisorial part
of Y \ V supports some Cartier divisor D, and replacing V with the open set Y \ D
does not change the section ring; but as L is Q-Cartier and Y \ D is affine, the section
ring R(Y \ D, L) is finitely generated.

Proof Let U be the regular locus of X. By Lemma 2.2(3), R(X, D) = R(U, Dy) is
a pure subalgebra of R(f~'(U), f*Dy), and the latter is finitely generated by our
assumption. If f is of finite type, it then follows from [11] that R(X, D) is finitely
generated. For the general case, denote R := R(X, D) and S := R(f~'(U), f*Dy).
Note that R is a graded pure subalgebra of S and its degree 0 part is exactly H(Oy).
LetI =@,,~; Rm :=D,,~; H(X,mD). Since S is Noetherian, the ideal /5 is also
finitely generated, hence we may write S = (g1, ..., gn)S for some homogeneous
element g1, ..., gn € . By purity, the map

R/(g1, ... 8m)R— S/(g1,- .., gm)S = S/IS

is injective. On the other hand its kernel contains 7/(g1, ..., g»)R by construction,
thus / = (g1, ..., gm)R. In other words, any homogeneous element g € R of posi-
tive degree can be written as g = g1hy + -+ - + gnhy for some hy, ..., h, € R. By
induction on the degree, this implies that R = Ry[g1, ..., &n], hence R is finitely
generated. g

2.5 Completion of the proof

Returning to the setup of Theorem 1.1, we now let X' := Projy (R(X, —Kx)). Recall
that X’ — X is a small modification, and —Kx/ is Q-Cartier and ample. It remains
to show:

Lemma 2.8 X' has kit singularities.

Proof Let m be a sufficiently divisible positive integer. Let 0 < D’ ~ —mKy/ and
let Uy = X'\ D’. Then Uj is an affine open subset of X’ and as we vary D',
the corresponding U; cover X’. Thus it suffices to show that U; has kit singular-
ities. Let D be the strict transform of D" on X, let U = X \ (Xsing U D), and let
V = f~1(U) C Y. Then U is a big open subset of U;, hence HO(OU]) = H%(Op).
By Lemma 2.2(2), this is a pure subring of H 0(Oy). Consider the induced morphism
V= Spec(HO((’)V)) — Uj. By Lemma 2.6, V; is of kit type and V; \ V has codi-
mension at least two. By construction, Ky, is Q-Cartier and the singular locus of
U is contained in Up \ U. Thus the assumptions of Lemma 2.3 are satisfied and we
deduce that Uj is klt as desired. Il
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Proof of Theorem 1.1 By [13, Proposition 6.15], X is normal. The result then follows
from Lemma 2.4, Lemma 2.7 and Lemma 2.8. O

Corollary 2.9 Let f: Y — X be an equidimensional surjective morphism between
affine varieties. Assume that Y is of klt type. Then X is also of kit type.

Recall that a surjective morphism f: Y — X between algebraic varieties is
equidimensional if every fiber has the same dimension (which necessarily equals
dimY — dim X).

Proof By [5, Lemma 2.7], f is pure. The result then follows from Theorem 1.1.
Alternatively, by Bertini’s theorem and taking hyperplane sections one reduces to the
case when f is quasi-finite, then the result follows from [7, Lemma 1.1]. O

Proof of Corollary 1.2 Since G is reductive and char(k) = 0, A is a direct summand
of A, thus the result follows from Theorem 1.1. O

2.6 The plt case

With a slight modification of the previous argument, we can also prove an analogous
statement in the plt case .>

Theorem 2.10 Let f: Y — X be a pure morphism between affine varieties, let P be
a prime divisor on X, and let Q = f*P be the cycle-theoretic pullback. Assume that

(Y, Q) is of plt type. Then (X, P) is of plt type.

Here we define the cycle-theoretic pullback f* P of a prime divisor P as the Weil
divisor associated to the divisorial part of the scheme-theoretic pullback f~!(P). For
general Q-divisors D = Y_ a; D;, the cycle-theoretic pullback is defined by linearity,

ie. f*D:=Y a;f*D;.

Proof By replacing Y with Spec(H%(Oy)) where V =Y \ f_l(Xsing) and applying
Lemma 2.6, we may assume throughout the proof that £~ (X sing) has codimension
at least two in Y. In this case, the cycle-theoretic pullback f*P is determined by
its restriction to V, where it becomes the pullback of a Cartier divisor, and hence
commutes with finite base change over X. By [17, Proposition 2.43], we know that Y
is of klt type, thus so is X by Theorem 1.1. In particular, X is normal. By Lemma 2.5,
there exists a small birational morphism X’ — X such that —(Kx/ + P’) is Q-Cartier
and ample over X, where P’ is the strict transform of P. By Lemma 2.4, it suffices to
show that (X', P’) is plt. As in the proof of Lemma 2.8, using Lemma 2.2 and Lemma
2.6 we can cover X’ by affine open sets U; such that each U; is the pure image of
some affine variety V; where V; — U; satisfies the same assumptions of the theorem.
Thus replacing X by the various U;’s we may assume that Ky + P is Q-Cartier.

By Lemma 2.5 again, there also exists a small birational morphism X” — X such
that the strict transform P” of P is Q-Cartier and ample over X. Note that (X, P)

2Thanks to Javier Carvajal-Rojas for suggesting this refinement.
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is plt if and only if (X", P”) is plt, since the morphism is small and hence crepant.
As before, X” admits affine open covers of the form X"\ D” where 0 < D” ~mP"
for some integer m, and each of these affine subsets can be realized as the image of
some pure morphism that satisfies the assumptions of the theorem (again this follows
from Lemma 2.2 and Lemma 2.6, as in the proof of Lemma 2.8). Thus replacing X
by these affine subsets of X”, we can further assume that P is also Q-Cartier.

Consider the index one cover X| — X for P and let P; be the preimage of P.
Recall from the beginning of the proof that f~!(X sing) has codimension at least two
in Y. Thus as in the proof of Lemma 2.3, (possibly after shrinking X) there exists
some component Y7 of the normalization of X x x Y such that the induced morphism
f1: Y1 — Xy is pure and (Y, Q1) is of plt type. Here Q; is the preimage of Q; it
coincides with the cycle-theoretic pullback fl* Pras f “I(x sing) has codimension at
least two in Y. Now Pj is Cartier by construction, and (X, P) is plt if and only if
(X1, Py) is plt. Replacing (X, P) with (X1, P;), we reduce to the case when Kx + P
is Q-Cartier and P is Cartier.

Since P is Cartier, the induced morphism Q — P is pure by Lemma 2.2(1), and Q
is of klt type by adjunction. Thus P is kit by Theorem 1.1. In particular, it is normal.
As we also have that Kx + P is Q-Cartier, inversion of adjunction [17, Theorem
5.50] implies that (X, P) is plt. This finishes the proof. g

2.7 Some remarks and further questions
A natural question is whether Theorem 1.1 generalizes to the log canonical setting.

Question 2.11 Let f: Y — X be a pure morphism between affine varieties. Assume
that Y is of Ic type. Is X also of Ic type?

This question has a positive answer if Kx is Cartier [8, Corollary B]. One of the
difficulties in extending our arguments to the general Ic case is that Lemma 2.4 fails
if we replace klt (or plt) by lc, as illustrated by the following example.

Example 2.12 We show that there exist Ic type singularities X for which R(X, —Kx)
is not finitely generated. Let Cy C P2 be a smooth elliptic curve, and let Py, ..., Py
be nine very general points on Cy (we may assume k = C). Let S be the blowup of
P? at Py, ..., Py, let C C S be the strict transform of Cp, and let X be the cone over
S (with respect to some sufficiently ample divisor H). Then Kg + C ~ 0 and (S, C)
is log smooth, which implies the cone over (S, C) is Ic [16, Lemma 3.1], thus X is of
Ic type. We have

R(X,—Kx) = @ HY(S,¢C + mH).
¢,meN

Since the P;’s are very general, O¢(C) is a non-torsion line bundle of degree zero.
It follows that 2°(C, ¢C) = 0 and h°(C, £C + H) > 0 for all £ € N. Since H is
sufficiently ample we also have h'(S, £C + H) = 0 by Fujita vanishing. Using the
two exact sequences

0— Og(( —1)C) — Os(lC) = Oc(£C) — 0,
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0= 0s({—1)C+H)— Os(¢C+H)— Oc{C+H)— 0,

we see that £C is the only member of the linear system [£C|, and h°(S, £C +
H) > h(S, (¢ — 1)C + H). They together imply that a new generator is need for
HY(S, £C + H) for each £ and therefore R(X, —K x) cannot be finitely generated.

Another natural question is whether Theorem 1.1 and Theorem 2.10 generalizes
to pairs with more general coefficients.

Question 2.13 Let f: Y — X be a pure morphism between affine varieties, let A
be an effective Q-divisor on X, and let Ay = f*A be the cycle-theoretic pullback.
Assume that (Y, Ay) is of klt (resp. Ic) type. Is (X, A) also of klt (resp. Ic) type?

It would be interesting to know if there is some local version of the canonical
bundle formula for pure morphisms. If so, it may provide answers to both Question
2.11 and Question 2.13.

Appendix: Pure images of kit type excellent schemes
Shiji Lyu*

In this appendix, we explain how to extend the previous results to morphisms
between excellent schemes admitting dualizing complexes, and slightly further.

A.1 Main theorems for non-finite-type schemes

In this subsection we prove Theorems 1.1 and 2.10 for excellent schemes admitting
dualizing complexes.

Let X be a Noetherian excellent scheme of equal characteristic zero that admits
a dualizing complex. We say (X, A) is of kit (resp. plt) type if Zariski locally on X
there exists a Q-divisor D > 0 such that (X, A 4+ D) is klt (resp. plt).

Since log resolutions exist [23, Theorem 2.3.6], being kit or plt can be detected
using a single log resolution, thus (X, A) is of klt (resp. plt) type if and only if for all
x € X, (Spec(Ox x), Alspec(©y ,)) is of Kt (resp. plt) type.

We say that a morphism of Noetherian schemes f : Y — X is pure if forall x € X,
there exists y € ¥ such that f(y) = x and Ox , — Oy, is pure. If ¥ = Spec(B) and
X = Spec(A) are affine, f is pure if and only if A — B is pure, see [12, Lemma 2.2].

Here is our extension of Theorems 1.1 and 2.10.

Theorem A.1 Let f : Y — X be a pure morphism between Noetherian schemes of
equal characteristic zero. Assume that both X and Y are excellent and admit dualiz-
ing complexes. Then the followings hold.

3Postscript note: the kit case of this question has been answered by [22, Corollary 1.3] in the positive.
They also give a partial affirmative answer [22, Theorem 1.4] for the log canonical case.

4Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago,
IL 60607, USA (slyu@uic.edu)
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(1) Assume that Y is of kit type. Then X is also of kit type.
(2) Let P be a prime divisor on X, and let Q be the divisorial part of the scheme-
theoretic pullback f~'(P).If (Y, Q) is of plt type, then (X, P) is also of plt type.

We also remark that Corollary 2.9 can be extended as well.

CorollaryA.2 Let f : Y — X be an equidimensional morphism of finite type between
Noetherian schemes of equal characteristic zero. Assume that X is normal and excel-
lent, and that X admits dualizing complexes. Then the followings hold.

(1) Assume that Y is of kit type. Then X is also of kit type.
(2) Let P be a prime divisor on X, and let Q be the divisorial part of the scheme-
theoretic pullback f~'(P).If (Y, Q) is of plt type, then (X, P) is also of plt type.

Proof A finite type map preserves being excellent and admitting dualizing com-
plexes. Thus it suffices to show f is pure.

By [10, Proposition 13.3.1], f factors locally as Y LN A§ — X where g is quasi-
finite and e = dimY — dim X. Since A$ is normal and of equal characteristic zero, g
is pure, thus so is f. O

We cannot readily extend Corollary 1.2, since we do not know if excellence and
dualizing complexes can be descended from A to A®. However, see Corollary A.4
below.

We now turn to the proof of Theorem A.1. We will not give all the details in our
case, since the argument will be completely parallel to the proof of Theorems 1.1 and
2.10. We will only indicate which parts of the argument need to be modified in our
situation.

In the proof of Lemma 2.3, [17, Proposition 5.20] works with no problem in our
case, and the reference [2] can be replaced by [19, Theorem C]. Proper birational map
from a regular scheme satisfies Grauert-Riemenschneider [19, Theorem A]. Thus one
can apply the argument in [15, §11] to see that [17, Theorem 5.22 and Corollary 5.24]
hold in our case.

In the proof of Lemma 2.4 (for kit type), [17, Lemma 6.2] works with no prob-
lem, and the required Bertini theorem is [18, Corollary 10.4]. We still need to
prove Lemma 2.5. We follow the proof of [24, Lemma 4.7]. The existence of Q-
factorialization is [18, Corollary 22.3]. Small perturbation of a kit pair is kit [18,
Lemma 6.9], and the log canonical model exists due to the finite generation of rela-
tive adjoint rings [18, Theorem 17.3].

The proof of Lemmas 2.6, 2.7 and 2.8 works verbatim. At this point, we have
proved statement (1) of Theorem A.1.

Let us now consider statement (2). Again, we follow the proof of Theorem 2.10.
The first step is to show Y of kit type, so X of kit type. It suffices to prove [17,
Proposition 2.43] for every affine local excellent scheme X of equal characteristic
zero that admits a dualizing complex. We can, for simplicity, assume H = 0. We
use the same argument as in [17], but we write out much of the details since we
do not have a Bertini theorem stated in [18] for the linear system of a Weil divisor.
Since our X is local and excellent, by Hironaka’s resolution of singularities, there

@ Springer



Direct summands of kit singularities 1693

is a log resolution 7 : X — X that is an iterated blow-up of regular centers disjoint
from X \ Z. In particular, there is a 7-ample 7 -exceptional Cartier divisor H'(< 0)
on X’. Then aH’ + n;lmAl is mw-generated [18, Definition 4.1] for some positive
integer a. Some member D’ € [aH' + 7 'mA | then satisfies (X', 7' A 4+ D’) snc
by [18, Theorem 10.1 and Remark 10.2], so D := m, D’ is such that D ~ mA; and
that (X \ Z, (A + D)|x\z) is snc. We can then argue as in the second last paragraph
of the proof of [17, Proposition 2.43].

We now need Lemma 2.4 for plt type. Since we know [17, Proposition 2.43] in
our case, we can apply the same proof for the kit case, except for the Bertini theorem.
[18, Corollary 10.4] holds for plt instead of kit by a similar proof, which is what we
want. (Alternatively, one can use inversion of adjunction as noted below.)

Now we can follow the argument until the last paragraph. For the last step of
the proof, inversion of adjunction holds in our case since resolutions exist and the
connectedness theorem [17, Theorem 5.48] holds, the latter depending (only) on
Kawamata—Viehweg vanishing [19, Theorem A]. We have now proved Theorem A.1.

A.2 Schemes formally of kit or plt type

For a general Noetherian scheme X of equal characteristic zero, we say (X, A) is
formally of kit (resp. plt) type if for all x € X, the completion A = OQ, . is normal
and (Spec(A), Alspec(a)) is of kit (resp. plt) type. Here, for a prime divisor P on
X, Plspec(a) is the divisorial part of P x x Spec(A) and A|spec(4) is defined by lin-
earity. We note that Spec(A) is excellent and admits a dualizing complex since A is
complete.

If X is excellent and admits a dualizing complex, and (X, A) is of klt (resp. plt)
type, then (X, A) is formally of kit (resp. plt) type (cf. [16, Proposition 2.15]). The
converse holds when A = 0 (resp. A is a prime divisor) by our Theorem A.1.

Now, if A — B is a pure local map of Noetherian local rings, then by [6, Propo-
sition 1.3(5)] it is clear that A™ — B” is pure. Let P is a prime divisor on Spec(A)
and let Q (resp. P", Q") be the divisorial part of its scheme-theoretic pullback to
Spec(B) (resp. Spec(A”™), Spec(B™)). If (Spec(B”), Q™) is of plt type, then Q”
must be a prime divisor, thus so is P”. Therefore Theorem A.1 gives

Theorem A3 Let [ : Y — X be a pure morphism between Noetherian schemes of
equal characteristic zero. Then the followings hold.

(1) Assume that Y is formally of kit type. Then X is also formally of kit type.

(2) Let P be a prime divisor on X, and let Q be the divisorial part of the scheme-
theoretic pullback f~'(P). If (Y, Q) is formally of plt type, then (X, P) is also
formally of plt type.

Now we are able to extend Corollary 1.2.

5The author thanks Zhiyuan Chen for pointing this out to me. The author does not know if a general pair
(X, A) being formally of kit (resp. plt) type implies (X, A) being of kit (resp. plt) type, even when X is
excellent and admits a dualizing complex.
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Corollary A4 Let k be a field of characteristic zero, G a reductive k-group, A a
Noetherian k-algebra that admits a k-rational G-action. Then the followings hold.

(1) Assume that Spec(A) is formally of kit type. Then Spec(A©) is also formally of

kit type.
(2) Let P be a prime divisor on Spec(A©), and let Q be the divisorial part of the

scheme-theoretic pullback P Xgpec(aGy Spec(A). If (Spec(A), Q) is formally of
plt type, then (Spec(A©), P) is also formally of plt type.

Proof The map A — A is pure, in fact split, see for example [13, §10]. Thus A is
Noetherian (cf. the proof of Lemma 2.7) and Theorem A.3 applies. U

Again, we have a version of Corollary 2.9. The proof is the same as Corollary A.2.

Corollary A5 Let f : Y — X be an equidimensional surjective morphism of finite
type between Noetherian schemes of equal characteristic zero. Assume that X is nor-
mal. Then the followings hold.

(1) Assume that Y is formally of kit type. Then X is also formally of kit type.

(2) Let P be a prime divisor on X, and let Q be the divisorial part of the scheme-
theoretic pullback f~'(P). If (Y, Q) is formally of plt type, then (X, P) is also
formally of plt type.
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