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Abstract

We prove that for every € > 0, there is a birationally super-rigid Fano variety X
such that % <alX) < %—}—e. Also we show that for every € > 0, there is a Fano
variety X and a finite subgroup G C Aut(X) such that X is G-birationally
super-rigid, and ag(X) < €.

17.1 Introduction

Throughout this paper, we assume that all varieties are projective, normal, and
defined over C.

Let X be a Fano variety with terminal singularities. If rk CI(X) = 1, then X
is a Mori fiber space. In this case, we say that X is birationally rigid if X is
not birational to other Mori fiber spaces [8]. Similarly, we say that X is bira-
tionally super-rigid if it is birationally rigid and Bir(X) = Aut(X). Examples
of birationally super-rigid smooth Fano varieties include

® smooth hypersurfaces in Prtl of degreen+1 > 46, 28,29, 31,37, 42, 44,
511;
® smooth weighted hypersurfaces in P(1"+!, n) of degree 2n > 6 [43].

Note that these examples of smooth Fano varieties are known to be K-stable
[3, 7, 14, 16, 27, 30]. One can prove this by using Tian’s criterion. Namely,
recall from [41] and [49] that X is K-stable if
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dim(X)
dim(X) + 1’

where «(X) is the a-invariant of X that can be defined as follows:

a(X) >

a(X) = sup {A eQ

the log pair (X, AD) is log canonical
for any effective Q-divisor D ~g —Ky | -

If X is smooth, then X is also K-stable in the case when a(X) = %

and dim(X) > 2 [30]. On the other hand, if X is a smooth hypersurface in
P! of degree n + 1, then [7] and [14] give
n dim(X)

X) > - .
o) 2 T T Ime 1

Similarly, if X is a smooth hypersurface in P(1"*!, n) of degree 21 > 2, then
[16] gives
2n — 1 n dim(X)

X) > = — .
) > T T dmn +1

This shows that all smooth hypersurfaces in P"*! of degree n + 1 > 3 and all
smooth weighted hypersurfaces in P(1”*!, n) of degree 2n > 4 are K-stable.
This gives an evidence for the following conjecture.

Conjecture 17.1.1 ([35]) Let X be a Fano variety with terminal singulari-
ties such that tk CI(X) = 1. Suppose that X is birationally rigid. Then X is
K-stable.

This conjecture has been already verified for many Fano varieties [10, 11, 12,
15, 24, 35, 47, 51], but it is still open in full generality (cf. [40]). On the other
hand, we have the following result.

Theorem 17.1.2 ([48]) Let X be a Fano variety with terminal singulari-
ties such that tk CI(X) = 1. Suppose that X is birationally super-rigid and
a(X) > % Then X is K-stable.

This naturally leads to the following question

Question 17.1.3 ([48]) Is it true that a(X) > %for any birationally super-
rigid Fano variety X?

In this chapter, we show that the bound % is optimal by proving the following
theorem.

Theorem 17.1.4 For every € > 0, there exists a singular Fano variety X with
terminal singularities such that tk CI(X) = 1, the variety X is birationally
super-rigid, and
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1
ga(X)gz—i-e

N =

We also answer a natural equivariant version of Question 17.1.3, which can
be stated as follows. Suppose that rk CI°(X) = 1 for a finite subgroup G C
Aut(X), so that X is a G-Mori fiber space. Then X is G-birationally rigid if it
is not G-birational to other G-Mori fiber spaces [21, section 3.1.1]. Similarly,
the Fano variety X is said to be G-birationally super-rigid if X is G-birationally
rigid, and X does not have non-biregular G-birational self-maps. Finally, we let

ag(X) = sup {k eQ

the pair (X, AD) is log canonical for every
effective G-invariant Q-divisor D ~g —Ky |

fagX) > %, then X is K-polystable by [52, Corollary 1.3].

Question 17.1.5 Is it true that ag(X) > % for any G-birationally super-rigid
Fano variety X?

The answer to this question is positive in dimension 2.

Exercise 17.1.6 ([9, 18, 46]) If dim(X)=2 and X is G-birationally super-
rigid, then ag(X) > %
In dimension 3, we still do not know whether our Question 17.1.5 has a pos-

itive answer or not, but many examples suggest that the answer is probably
positive.

Example 17.1.7 ([19, 20, 22]) Suppose that X =P, and let G be any finite
subgroup in Aut(X). Then X is G-birationally super-rigid if and only if
the following four conditions are satisfied:

(i) X does not have G-orbits of length < 4;
(i1) X does not contain G-invariant lines;
(iii) X does not contain G-invariant pairs of skew lines;
(iv) G is not isomorphic to s, Ss, PSLy(F7), s, ;L‘z‘ X ps, and ;L‘z‘ x Djo.

Using this criterion and /18], we see that ag(X) > % if X is G-birationally
super-rigid.
In this chapter, we prove that the answer to Question 17.1.5 is very negative

in higher dimensions.

Theorem 17.1.8 For every € > 0, there is a smooth Fano variety X and a finite
subgroup G C Aut(X) such that tk PicO(X) =1, the variety X is G-birationally
super-rigid, and ag(X) < €.
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Let us describe the structure of this chapter. In Section 17.2, we prove
Theorem 17.1.4. In Section 17.3, we study equivariant birational geometry
of a smooth quadric threefold 9 C P* for the natural action of the sym-
metric group Gs, which should be interesting for mathematicians working on
finite subgroups of the space Cremona group (cf. [50, section 9]). This exam-
ple inspired Theorem 17.1.8. In Section 17.4, we present few results used in
the proof of Theorem 17.1.8, which is done in Section 17.5.

17.2 The Proof of Theorem 17.1.4

We fix a positive integer @ > 2. Then we let X be a quasi-smooth well-formed
singular weighted hypersurfaces of degree 2a + 1 in P(1912, a) that is given by
the following equation:

yle +_f2&+1(x1a cee 9-xa+2) = 07

where each x; is a coordinate of weight 1, y is a coordinate of weight @, and
fra+1 1s a general homogeneous polynomial of degree 2a + 1. Then

® X is a Fano variety of dimension N = a + 1;

® the class group of the variety X is of rank 1;

® the singularities of X consist of one singular point O, = (0: ...: 0: 1),
which is a terminal quotient singularity of type 3—1(1, o 1)

Further, it follows from [36] that

a+1_1+ 1
2a+1 2 4a+2

a(X) <

In this section, we prove the following result, which implies Theorem 17.1.4.
Theorem 17.2.1 The Fano variety X is birationally super-rigid.
This theorem also answers positively [36, Question 7.2.3].

Remark 17.2.2 If a = 2, then X is known to be birationally super-rigid
[15, 24].

Let 7: X --» PV be the projection from the point Oy. Then 7 contracts
the following divisor:

D = {x1 = 0, foa1(x1, - .., Xa42) = 0} C P(172, q).

Furthermore, one has the following diagram:
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X U
ft\ Lg
X—— - _JpN

where 1" is the weighted blow-up of the point O, with weights (1,...,1), the
map g is a morphism, the variety U is a hypersurface in P(1+2,a + 1) of
degree 2a + 2 that is given by

2+ X1 frat1 (X1, -+ - Xa42) = 0,

the morphism v is a birational morphism that contracts the strict transform
of the divisor D, and the morphism 6 is a double cover that is branched over
the hypersurface x1f24+1(x1, - - . ,Xa+2) = 0. Here, we consider x, . ..,x,42 as
coordinates on PV and as coordinates of weight 1 on the weighted projective
space P(1472, 4 4 1), where z is a coordinate of weight a + 1.

Now, let us prove Theorem 17.2.1. Assume the contrary, that is, there exists
a birational map

X - W

to a Mori fiber space W that is not isomorphism. Let M be a birational trans-
form of a very ample complete linear system on W via ®. Let . € Q-¢ be
the positive rational number such that

Ky +AM ~q 0.

Then, by the Noether—Fano inequality [25], the singularities of the pair
(X,AM) are not canonical. Let Z be a center of non-canonical singularities
of the log pair (X, AM).

Now, let £ be the f-exceptional divisor, and let M be the strict transform of
the mobile linear system M on the variety X. Then E = P*, and

Ky ~qf* (Ky) + GE.
AM ~of* ()»M) — UE,
for some p € Qx¢. Therefore, we have
—~ 1
Ky + WM ~q f*(Ky + AM) + (; — n)E.
Thus, if u > %, then O, is a center of non-canonical singularities of the log
pair (X, AM).
Lemma 17.2.3 (cf. [32] for a = 2) Suppose that O, € Z. Then 1 > %

Proof Suppose that u < % Let us seek for a contradiction.
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Case:1 Z # O,. Let Z be the strict transform of Z via f. Then multz(/\?) > %
and hence,

— 1
multp(./\/l’E) iy (17.1)

for any point P € Z N E. Note that
MM |p ~o —pE|g ~q auH,
where H is a hyperplane in E = P“. Since ap < 1, this contradicts to (17.1).
Case: 2 Z = O,. We write
—~ 1
Ky + 2 M+ (=~ )E ~o f* (Kx +2M).

Hence, the singularities of the log pair ()~(, AM + (n— %)E) are not canonical

at some point P € E. Then the singularities of the log pair (X’, )»Mv) are also
not canonical at P, so that

multp (M) > %
Now, we argue as in the previous case to obtain a contradiction. O
One the other hand, we have the following.
Lemma 17.2.4 One has u < %

Proof One has g*(Opn(1)) ~q f*(—Kx) — éE Then
(k) ~ ~E) - =0,
a

for any curve C contracted by g. Thus, if 4 > Ll—l, then

M-C= %(f*(—KX)—ME) <0

for a general divisor M e M. This is a contradiction, because the linear system
M is mobile, and the curves contracted by g span a divisor in X — the proper
transform of the divisor D. O

Corollary 17.2.5 One has O, ¢ Z.
Thus, we see that Z is contained in the smooth locus of the variety X.
Lemma 17.2.6 One has dm(Z) = a — 1.

Proof Suppose that dim(Z) < a — 1. Let M| and M, be sufficiently general
divisors in M, and let P be a sufficiently general point in Z. Then

4
(M - Ma)p > el
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by [26, Corollary 3.4] or [44]. Let £ be the linear subsystem in | — Kx| con-
sisting of all divisors that pass through the point P, and let Hy,..., Hy_, be
sufficiently general divisors in the system L. If P ¢ D, then the base locus of
L does not contain curves, which gives

2a+1
ar?
which is a contradiction. Thus, we see that P € D.
Let L C D be the curve containing P that is contracted by m. Then L is
the only curve contained in the base locus of the linear system L. After a linear
change of coordinates, we can assume that

4
=M -My -Hy-...-Hy_» > (M1 - My)p > VL

P=©0:0:1:0:...:0:1)

and H; = X N{x;y3 =0} fori=1,...,N — 2. Consider the surface S defined
as

N-2
S=()H.
i=1
We can identify S with a surface in P(1, 1, 1, a) given by

yle +ﬁa+1(xlax2)x3aoa LY 70) = 0

Then L =S N {x; =x, =|,0}. Let Mg=M]s. Then AMg = mL + AA for
some non-negative rational number m € Qxo and some mobile linear sys-
tem A on the surface S. Moreover, applying the inversion of adjunction [38,
Theorem 5.50], we see that (S, A M) is not log canonical at P.

Let H be a general curve in |Og(1)|, and let H;, be a general curve in |Og(1)]
that contains L. Then H - L = % and

SNH, =L+R,

where R is a curve in S such that L ¢ Supp(R). One can check that L - R = 2
and H - R = 2. Thus,using (L+R)-L=H -L = é,we get

1

L>=-2+-,
a

which can also be shown using the subadjunction formula on S.
Now, using Corti’s inequality [26, Theorem 3.1], we get

41 —m) <2 (A1 Dg)p SAPAL- Ay =

2at+1 2 1
= (H-mL) = H? —2mH LnlL? = 2250 2" <—2+ —),
a a a

https://doi.org/10.1017/9781009396233.018 Published online by Cambridge University Press



Birational Rigidity and Alpha Invariants of Fano Varieties 293

which gives

(2a — 1)(m — 1)
0> —m— ——,
a
This is a contradiction, since a > 2. O

Therefore, we see that dim(Z) = dim(X) — 2. Then
1
multz (M) > X

Let M| and M, be general divisors in M. Then

3 2a+ 1 N—2
.1 _(-K M - M
)»2 = )»261 ( X) 1 2
> N—2 1 N—2
> multz;(M)(—Kx)" - Z > ﬁ( —Kx)" - Z,
so that (—Kx)V 2. Z € {1,2)}.
Now, let Hy, ..., Hy_, be general divisors in | — Kx|. After a linear change
of coordinates, one can assume that H; = X N{x;;4 =0} fori=1,...,N —3.

Let V' be the threefold defined as
N-3

V=)H.

i=1
Then we can identify V' with the hypersurface in P(14, 2) given by
P2x1 A+ fari (e, 34,0, 0) = 0.
Let C =VNZ, My = M|y, and let H be a general surface in |Op(1)|. Then

® (' isan irreducible curve such that C - H € {1,2};
® (is contained in the smooth locus of the hypersurface V;
® ( is a center of non-canonical singularities of the log pair (V, ALMy).

We set u = Amultc(My). Then u > 1.
Lemma 17.2.7 One has C - H # 1.

Proof Suppose that C - H = 1. We can choose coordinates on P(14, ) such
that

C={x=00x3=0,y+F(xi,...,xs) =0} C P(1*,a),
where F(xi,...x4) is a homogeneous polynomial of degree a. Note that
Cc =P
Now, we let 8: V' — V be the blow-up of the curve C, agd lgt E~be the g-
exceptional divisor. We claim that E3=a—1. Indeed, let S, Sp, Sz and be
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the strict transforms on ¥ of the surfaces that are cut out on V/ by the equations
v+ F(x1,...,x4) = 0,x3 = 0, and x3 = 0, respectively. Then

0=38-$, 83 = (@p*(H) — E) - (B*(H) — E)*
—aH’ +(a+2)*H)-E* —EF*=a—1-E,
which gives E3 = a — 1 as claimed.

Let M;; be the strict transform of the linear system My on the threefold V.
Then

MM ~q B*(H) — iE.
One the other hand, since M; is mobile and af*(H) — E is nef, we get
0< (ap*(H) — E) - (B°(H) — nE)" = at’® + Qu + ap’)p*(H) - E> — j’°E?
=(u—1"—-2a(u*—1) <0,
which is a contradiction. O

Thus, we see that C - H = 2. Then we can change coordinates on P(14, a)
such that

(A) either
C= {x4 =0,x1x2 —f—x% =0,y+ Fu(x1,...,x4) = 0} C IP’(14,a)

for some homogeneous polynomial F,(x1,...,xs) of degree a,
(B) or

C={x =0,x3 = 0,5° + Falx1,...,x4) = 0} C P(1*,0)
for some homogeneous polynomial F5,(x1, . ..,x4) of degree 2a.

In case (A), we have C = P! In case (B), the curve C may have singularities.

In both cases, let 8: V' — V be the blow-up of the curve C, and let E be
the B-exceptional divisor. Then, arguing as in the proof of Lemma 17.2.7, we
get

E =

2a — 4 in case (A),
— 2 in case (B).

Let M be the strict transform of the linear system M on the threefold V.
Then

AMy ~q B*(H) — KE.
Moreover, in case (A), the divisor af*(H) — E is nef, so that

(aB*(H) — E) - (B*(H) — pE)* > 0
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because Mj; is mobile. But

(aB*(H) = E) - (B*(H) — pE)* = al® + Qu + ap®)B*(H) - E* — 2 E°
=Q2u— 1% —2a2u* - 1) <0,

because u > 1. Likewise, in case (B), the divisor 2af*(H) — E is nef, which
gives

0 < (2aB*(H)—E)-(B*(H)—pE)* = 2aH>+Q2u+2ap?)p* (H)-E*— 2 E> =
=—-2u—-DA—-pn+2a(l+pn)<0.

Thus, we get a contradiction in both cases (A) and (B). This completes
the proof of Theorem 17.2.1.

17.3 Gs-Invariant Quadric Threefold

Let O be a smooth quadric hypersurface in P*. We can choose coordinates
X0,X1,X2, X3, X4 on the projective space P* such that Q is given by the following
equation:
4

> x =0

i=0
In particular, we see that Q is faithfully acted on by the symmetric group Gs,
which permutes the coordinates xo, x1,x2,x3,x4. Then ag,(Q) < %, because
G5 leaves invariant the hyperplane sections of the quadric Q that is cut out by
xo + x1 + x2 +x3 + x4 = 0. In fact, arguing as in [18], one can show that
@e5(0) = 3.

Keeping in mind the results obtained in [20], one can expect that Q is Gs-
birationally rigid. However, this is not the case — the quadric hypersurface O
contains two Gs-orbits of length 5, and each of them leads to a G-birational
transformation of the quadric into other Gs-Mori fiber space. Namely, let X5 be
a Gs-orbit of length 5 in X, and let 7 : X — QO be the blow-up of this G5-orbit.
Then there exists the following Gs-equivariant commutative diagram:

where ¢ is a small birational map that flops the proper transforms of 10 con-
ics that contain three points in X5, ¢ is a birational morphism that contracts
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the proper transforms of 5 hyperplane sections of the quadric Q that pass
through 4 points in ¥s, and Y is a cubic threefold in P* such that it has
5 isolated ordinary double points and rk Cl(Y)=1. Since Y is a &5-Mori
fiber space, we see that Q is not Gs-birationally rigid. Note that the cubic
threefold Y is given in P* by

X0X1X2 + X0X1X3 + X0X1X4 + X0X2X3 + X0X2X4 + X0X3X4 + X1X2X3 + X1X2X4

+ x1x3%4 + x2x3%4 = 0.

This is not difficult to prove; see [4] and [5].
The goal of this section is to prove the following result.

Theorem 17.3.1 The only Gs-Mori fiber spaces that are Ss-birational to Q
are Qand Y.

Let us prove Theorem 17.3.1. Let ¢ € Aut(Q) be the Galois involution of
the double cover Q — P given by the projection from the point (1:1:1:1:1).
Then ¢ commutes with the Gs-action on Q. It is well known [13, 17] that
Theorem 17.3.1 follows from the following technical result.

Theorem 17.3.2 Let Mg be any non-empty mobile Gs-invariant linear sys-
tem on the quadric Q, and let My and M, be its proper transform on the cubic
threefolds Y via x and x o, respectively. Choose positive rational numbers A,
W, ' such that

AMo ~g —Kp,
uMy ~q =Ky,
M/M/y ~Q —Ky/.

Then one of the log pair (O, AMg), (Y, uMy), or (Y', W' M) has canonical
singularities.

To prove Theorem 17.3.2, let us use all notations and assumptions of this the-
orem. We must prove that at least one of the log pair (0, A M), (¥, uMy), or
(Y, ' M) has canonical singularities. Set 5 = «(Xs). Then X is the second
Gs-orbit in the quadric Q.

Remark 17.3.3 Let G be a stabilizer in Ss of a point in P € X5 U Xi. Then
G = ©4 and its induced linear action on the Zariski tangent space Tp(Q) is
an irreducible representation.

Now using this remark, [1, Lemma 2.4] and [26, Theorem 3.10], we can eas-
ily derive the required assertion from the following two propositions, arguing
as in the proof of [13, Theorem 1.2].
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Proposition 17.3.4 The log pair (Q, AM ) is canonical away from %5 U 2.

Proposition 17.3.5 The log pairs (Y, uMy) and (Y, ' MY) are canonical
away from Sing(Y).

In the remaining part of this section, we will prove Propositions 17.3.4 and
17.3.5. For both proofs, we need the following technical observation, which
improves [20, Lemma 2.2].

Remark 17.3.6 Let X be a variety with terminal singularities, let D be an
effective Q-Cartier divisor on the variety X, let ¢ X — X be birational mor-
phism such that X is normal, let D be the proper transform on X of the divisor
D, and let E1,. .., E, be p-exceptional divisors. Then

n
Ky +D+ Y a(E; X, D)E; ~q ¢* (Kx + D),
i=1

where each a(E;; X, D) is a rational number known as the discrepancy of
the pair (X, D) along E;. Let E be one of the g-exceptional divisors. Then

a(E;X,D) = a(E; X) — ordg(D),
where a(E; X) is the discrepancy of X along E. Let a = a(E; X). If a(E; X, D)
< 0, then
1 1
a(E;: X, (1+=)D) = a(E;X) — (1 + - )ordg(D) < ordg(D)
a a

ordg(D)
a

- (1+é>ordE(D)=— <1,

so that the log pair (X, (1+ é)D) is not log canonical along ¢(E). In particular,
ifa(E; X, D) < 0 and ¢(E) is a smooth point of the variety X, then the log pair

( dim(X) )
X,——~D
dim(X) — 1

is not log canonical at the point ¢(E).

To prove Proposition 17.3.4, we have to present few standard basic facts
about the Gs-equivariant geometry of the quadric Q. Observe that O contains
two Gs-orbits X 19 and X}, of length 10.

Lemma 17.3.7 If ¥ is a Gs-orbit in Q with |X| < 20, then ¥ is one of
the orbits Xs, Eg, 210, 210'

Proof Left to the reader. O
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LetH ={xo+x +x2+x34+x3 =0 CcP*and S, = HN Q. Then §; is
smooth and Gs-invariant. Moreover, the surface S, does not contain X5, X,
210, X1y Let Bg be the curve in Q given by

X0+ x1 +x2+x34+x4 =0,
x(z) +x% —l—x% —|—x§ —l—xi =0,
xg +x? —i—x% —l—xg —l—xi =0.
Then Bg is the unique smooth curve of genus 4 that admits an effective action

of the group G5, which is known as the Bring’s curve (see [21, Remark 5.4.2]).
Note that Bs C QN H.

Lemma 17.3.8 Let C be a Ss-invariant curve in Q such that deg(C) < 6.
Then C = Bg.

Proof We may assume that C is Gs-irreducible, that is, the symmetric group
G5 acts transitively on the set of its irreducible components. Then S, contains
C, since otherwise |S; N C| < 8, - C = 12, which contradicts Lemma 17.3.7.
Thus, if C # Bg, then

|ICNBg| <C-Bg =18,

which is impossible by Lemma 17.3.7, since S, does not contain X5, X5, X0,
and X{,. O

Corollary 17.3.9 The log pair (Q, A M) has log canonical singularities.

Proof  Suppose that the log pair (Q, AMy) is not log canonical. Let us seek
for a contradiction. If the log pair (Q,AMy) is log canonical outside of
finitely many points, then it is log canonical outside of a single point by
the Kollar—Shokurov connectedness, which must be &s-invariant point. The
latter contradicts Lemma 17.3.7. Thus, we see that there is a &s-irreducible
curve C such that the log pair (Q, A M) is not log canonical at general points
of its irreducible components. Then

4
(Ml .MZ)C > )\—2

by [26, Theorem 3.1], where M} and M, are general surfaces in M. Using
this, we get deg(C) < %, which is impossible by Lemma 17.3.8. O

Observe that S, = P! x P2, and the induced Ss-action on S, is faithful.

Lemma 17.3.10 (cf. [23, Theorem 7.5]) One has ac;(S2) = %
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Proof Observe that Pic65(S2) = Z[H|s,] and Bs € |3H|s,|. But |H]s,| and
|2H|s,| do not contain any Gs-invariant curves. Hence, we have ag;(S2) = %
by [9, Lemma 5.1] and Lemma 17.3.7. O

Now we are ready to prove Proposition 17.3.4.

Proof of Proposition 17.3.4 Suppose (Q, 1 My) is not canonical. Denote by
¥ its non-canonical locus. To complete the proof, we have to show that ¥ C
s U Eg.

First, let us show that the set X consists of finitely many points. Indeed,
suppose that ¥ contains a Gs-irreducible curve C. Then

multc (MQ) > %, (17.2)

which easily implies that deg(C) < 18. Arguing as in the proof of
Lemma 17.3.8, we see that C € S,. Then (17.2) gives deg(C) < 6, which
is impossible by Lemma 17.3.8. Hence, we see that X is finite.

If ¥ NS # o, then the log pair (S2, AMyls,) is not log canonical by
the inversion of adjunction, which is impossible by Lemma 17.3.10. Thus, we
have X NS, = @.

Applying Remark 17.3.6, we see that (0, 37)‘./\/1Q) is not log canonical at
every point of the set . Take ¢ € QQ~¢ such that ¥ C Nklt(Q, 3)”*‘UMQ).

Set Q = Nklt(Q, 3)‘2’ £ Mp). Then Q is Gs-invariant. Moreover, ariguing as
in the proof of Corollary 17.3.9, we see that the locus €2 does not contain
curves, so that Q is a finite set. Now, applying Nadel vanishing theorem, we
get h'(Q, T ® Oo(2H|p)) = 0, where J is the multiplier ideal sheaf of the log

pair (Q, 3%*?)L/\/IQ). This gives

=1 <19l < h°(0.09(2H]p)) = 14,

because Supp(J) = €. Now, using Lemma 17.3.7, we see that one of
the following possibilities holds:

* T CEsUz
® Q=X =Xy;
e Q=3%=3,

If X € Z5UXL, we are done. Hence, without loss of generality, we may assume
that @ = ¥ = ¥j¢. Let us show that this assumption leads to a contradiction.

Let D be the linear subsystem in |2H| that consists of all surfaces in |2H|
that pass through X19. By counting parameters, we get dim(D) > 4. Arguing
as in the proof of Lemma 17.3.8, we see that the base locus of the linear system
D contains no curves. Using [26, Corollary 3.4] or [44], we get
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36 4 40
ZeDMiM ) (MM ) =
Pexyg PeXo
which is absurd. This completes the proof of Proposition 17.3.4. O

Now, let us present a few facts about the threefold Y. Its singular locus
consists of five nodes:

P1=(1:0:0:0:0),
P,=(0:1:0:0:0),
P3=0:0:1:0:0),
Py=0:0:0:1:0),
Ps=0:0:0:0:1).

Note that (3 : 3:3:3: —=2) € Y\ Sing(Y). Let ®5 be the Ss-orbit of this
point. Then |®s] = 5. For every 1 < i <j < 5, we let £; be the line in P* that
passes through the nodes P; and P;. Let L be the union of these lines. Then
Lo C Y, and L9 N H is a Gs-orbit @ of length 10. The cubic Y contains
two more Ss-orbits of length 10, which we denote by ©', and OF),.

Lemma 17.3.11 The orbits Sing(Y), ©s, O19, O, OY are all Ss-orbitin Y
of length < 20.

Proof Left to the reader. O

Let S3 = Y N H. Then S3 is a smooth cubic surface known as the Clebsch
diagonal cubic surface. It follows from [21, Lemma 6.3.12] that ®19 C S3,
but S3 does not contain Sing(Y), s, @}, ©},. Observe also that S3 contains
the curve Bg.

Lemma 17.3.12 Let C be a Ss-invariant curve in Y such that deg(C) < 10.
Then C = Bg or L.

Proof If C C 83, the assertion follows from [21, Theorem 6.3.18]. Hence,
we assume that C ¢ S3. Then, arguing as in the proof of Lemma 17.3.8, we
conclude that and C - H = ©y.

We suppose that the curve C is irreducible. Then C has to be singular
at every point P € ©jg, because the stabilizer in G5 of the point P acts
faithfully on the Zariski tangent space 7p(C). Thus, if C is irreducible, then
10 = C - H > 2|®19|, which is absurd.

We see that C is reducible and deg(C) = 10. Let C; be an irreducible com-
ponents of the curve C, and let G be the stabilizer in S5 of the curve Cy. Then
one of the following four cases holds:
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(1) G = %Us and C is a union of 2 irreducible curves of degree 5;
(2) G = G4 and C is a union of 5 irreducible conics;

(3) G = 24 the C is a union of 10 lines;

(4) G = 63 x p, and C is a union of 10 lines.

In case (1), ®19 splits as two G-orbits of length 5, which is not the case by [21,
Lemma 6.3.12]. In cases (2) and (3), the only two-dimensional G-invariant
linear subspace of P* is contained in the Gs-invariant hyperplane H, so that
Cj is contained in 3, which contradicts our assumption. In case (4), one can
easily see that C = L. O

Now, we are ready to prove Proposition 17.3.5.

Proof of Proposition 17.3.5 1t is enough to prove that (¥, uMy) is canonical
away from Sing(Y). Suppose that this log pair is not canonical. Let X be its
non-canonical locus.

First, we claim that ¥ is a finite set. Indeed, suppose that ¥ contains a &s-
irreducible curve. Then multc(M) > ﬁ If C C S3, this implies that deg(C) <
6, which is impossible by Lemma 17.3.12. Thus, we see that C ¢ S3. Then
deg(C) < 12, so that H - C < 12. Using Lemmas 17.3.11 and 17.3.12, we
conclude that C = L. Let H’ be the hyperplane in P* that contains the nodes
Py, Py, P3, and P4, and let M be a general surface in My. Then

H M= m(€12 + 413+ l1a+€a3 + U4 +f34) + A,

where a is an integer such that ¢ > multc(M), and A is an effective one-
cycle whose support does not contain the lines €12, £13, €14, €23, €24, and £34.
Therefore, we have

S _ 2,5 =H -H -M=6m+H-A >6m> 6multc(M) > 9,
noop o
which is absurd. Thus, we see that X is a finite set.

Let X be the subset in X that consists of all smooth points of ¥. We have
to show that X1 =@. If X1 N 3 # &, then the log pair (S3, uMyls;) is not
log canonical, which implies that ag4(S3) < 2. The latter contradicts [9,
Example 1.11]. Thus, we have X1 NS5 = .

Now, using Remark 17.3.6, we see that (Y, 3—“/\/11/) is not log canoni-
cal at every point of the set ¥;. Moreover, arguing exactly as in the proof
of Corollary 17.3.9 and using Lemma 17.3.12, we see that each point of
the subset Xj is an isolated center of non-log canonical singularities of
the pair (7, 3—“/\/ly). Now, using Nadel vanishing theorem as we did in
the proof of Proposition 17.3.4, we see that |X1| <5. Therefore, we have
Y| =05 by Lemma 17.3.11.
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Let M| and M, be general surfaces in My. Then it follows from [26,
Corollary 3.4] or [44] that

(M- M), > —,
I

for every point O € ®s. Let Q1, 0>, and Q3 be three points in Os, let IT be
the plane in P* that contains these three points, and let C = ¥|r. Then C is
a smooth irreducible cubic curve. Write

M -M, =¢eC+ Q,
where € is a non-negative rational number, and €2 is an effective one-cycle
whose support does not contain C. Let H’ be a general hyperplane section

of the cubic hypersurface Y that contains C. Then H' does not contain any
irreducible component of the one-cycle €2. Thus, we have

l—i —3e =H'-Q > multy, () + multy, () + multy, () > 3(i — e)

n w?
12 3
= — 6’
12
which is absurd. This completes the proof of Proposition 17.3.5. O

This completes the proof of Theorem 17.3.1, which also implies that Q is
Gs-solid [2, 13, 17].

17.4 Preliminary Results

In this section, we prove a few results that will be used towards the proof of
Theorem 17.1.8.

Let X be a variety with at most Kawamata log terminal singularities that is
faithfully acted on by a finite group G. The following result is a consequence
of the technique developed in [45, section 3].

Lemma 17.4.1 Suppose X is smooth. Let Z be a G-irreducible subvariety of
X of codimension m, let H be an ample divisor on X, and let D1, D>, . .., Dy,
be effective divisors on X such that

Dy ~g Dy ~q -~ Dn ~0 H,

and Z is a G-irreducible component of the intersection N Supp(D;). Let Y C
X be an effective cycle of codimension ¢ < m. Then

—1
|
%fg) < (deg(z).m;ngmultz(l)i)> g
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where the minimum is taken over all subsets S C {l,...,m} of cardinality
m—c.

Proof We may assume that Y is irreducible and ZC Y. We construct
a sequence of irreducible subvarieties Y.,...,Y, and a permutation
Di,...,D,, of Dy,...,D, such that

L Yc = Y;
® codimy(Y;) =i
® Y; ¢ Supp(Dj,));
® Y1 is a component of Y; - D! 1 that contains Z;
® forall c <i < m—1onehas
multz(Yiy1) > multy(D., ) - mUItZ(Yi).
deg(Yit1) T deg(Y)

Once this is done, the lemma follows immediately from the trivial equality
Yn=2Z.

Suppose that Y,,...,Y; and D:, IRTRRS ,D; have been constructed for some
i < m. Then

i
Y; € () Supp(D).
Jj=c+1
Since N/, Supp(D;) has codimension m in a neighborhood of Z by assumption
and

codimy(Y;) =i < m,

then there exists some D;, which is necessarily different from D], IR ,D;,
which gives ¥; € D;. We may then take D | =D; and Y;41 an irreducible

I
component of (¥; - D;) such that

multz(Yiy1) _ multz(Y; - D) multz(Y;)
> — > multzD; - ————.
deg(Yi+1) deg(Y; - D)) deg(Y:)
By induction, this finishes the construction. O

Now, let D be either an effective Q-divisor on X (a boundary) or a movable
(mobile) boundary:

’
D= Z a,‘M,',
i=1

where each a; € Qx, and each M is a linear system on X that does not have
fixed components. Suppose, in addition, that D is G-invariant.
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Lemma 17.4.2 Suppose that (X, D) is not log canonical, and D is ample. Then
there exists positive rational number € < 1 such that the following assertions
hold:

® If D is a Q-divisor, there exists a G-invariant effective Q-divisor D' ~q
(1 — €)D such that the log pair (X, D’) has log canonical singularities, and
NKIt(X, D') is a non-empty disjoint union of minimal log canonical centers
of the log pair (X, D).

® [fDis a mobile boundary, there exists a G-invariant mobile boundary D' ~q
(1 — €)D such that the log pair (X, D’) has log canonical singularities, and
Nklt(X, D') is a non-empty disjoint union of minimal log canonical centers
of the log pair (X, D).

Furthermore, irreducible components of NKIt(X, D) are normal, and G tran-
sitively permutes them.

Proof This is an equivariant version of the tie breaking. See [21,
Lemma 2.4.10] or [33] and [34]. O

Lemma 17.4.3 Let H be a very ample divisor in Pic(X), and let L be a divisor
in Pic(X) such that the divisor L — (Ky + D + dim(X)H) is ample. Then |L|
contains a non-empty G-invariant linear subsystem L such that Nklt(X, D) =
Bs(L).

Proof Let J = J(X, D) be the multiplier ideal. Then the support of Ox/J
is exactly Nklt(X, D). By [39, Proposition 9.4.26], J ® Ox(L) is generated by
global sections. The G-invariant linear system £ = |J & Ox(L)| then satisfies
the statement of the lemma. O

Now, we fix d,n € Z-g. Let W be the subgroup in GL,(C) consisting
of all permutation matrices, let T be the subgroup in GL,4+1(C) consisting of
diagonal matrices whose (non-zero) entries are the dth roots of unity, and let
G be the subgroup in GL,4((C) generated by T and W. Then W = &,,41,

T [LZ—H, and

G=TxW=pit x &,y

Let W, T, and G be the images in PGL,4(C) via the quotient map of
the groups W, T, and G, respectively. Then W = &,41, T = nj;, and
G = T x W. Note that G leaves invariant the Fermat hypersurface

d
Xy = {led = O} c P,

i=0
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where xo, . . ., X, are homogeneous coordinates on P”. If n > 2 and d > 3, then
G = Aut(P", Xy).

The examples for Theorem 17.1.8 are complete intersections in P” of
some Fermat hypersurfaces. The main result of this section is the following
proposition. We will use it in the next section.

Proposition 17.4.4 Let M be a W-invariant linear subsystem in |Opn(m)|, let
Z be an irreducible component of the intersection Bs(M), and let & be the W -
irreducible subvariety in P", whose irreducible component is Z. Then at least
one of the following two cases holds:

(1) a general point in Z has at most d different coordinates, and dim(Z) <
m—1;

(2) the subvariety Z is an irreducible component of a set-theoretic intersection
of W-invariant hypersurfaces of degree at most m, and dim(Z) > n — m.

Moreover, in case (1), if m < nand n > 4, then either % has at least n + 1
irreducible components, or  =7Z =(1:1:...:1).

In particular, the base locus of a W-invariant linear subsystem in |Op»(m)|
either has dimension at most m — 1 or has codimension at most m. This can be
illustrated by the following example.

Example 17.4.5 In the assumptions and notations of Proposition 17.4.4, sup-
pose m =1 and Y =P". Then either M = |Opx(1)|, so it is base point free, or
one of the following two cases holds:

(1) M is the linear system of hyperplanes containing the ¥-invariant point
(1:1:...:1);
(2) M is the W-invariant hyperplane X1 = {xo + - - - +x,, = 0} C P".

Incase (1),wehave Z=Z=(1:1:...:1).Incase(2), we have 2 =7 = X].

To prove Proposition 17.4.4, we need to prove a few auxiliary results.

Lemma 17.4.6 Fixs € {1,...,n}, and take positive integers ay, .. .,as such
thatn = a1 + - - - + a5. Let N be the number of unordered partitions of the set
{1,...,n} into subsets of ay, . .. ,as elements, respectively. Then N > n unless

s=1,s=norn=4s=2a =ay =2.

Proof Wemay assumea; < a» < --- < ag. Ifa; =--- = a; < a;4 for some
ie{l,---,k— 1}, then
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Hence, we may assume thata; = -+ = a; = r forsome r € {2,...,n — 1}.
Then s = g > 2 and

_n >n(n—l)-...-(n—r+l)

G rles ’

Thus, since n > 2s, we get

n Sa—2— j
N>m-1) - —-||——>n—-1,
( ) 2s H r—j "
J=0
with equality only if » = 2s and n — 2 = r, that is, when » = s = 2. Since N
is a positive integer, the assertion follows. O

For the second result, we need the following two conventions. A color set is
a finite multiset, where elements (i.e. colors) may appear with multiplicities. If
K = (V,E) is a graph and ¥ is a color set, then a coloring of the graph K by
% isamap ¢: V — € such that

® cvery color is used at most once, that is, we have |¢p~!(c)| < 1 for every
cEeC;

® cvery pair of adjacent vertices has different color, that is, we have
¢(u) # ¢(v) as integers whenever (u,v) € E.

Lemma 17.4.7 Let K = (V,E) be a graph such that K contains at least s > 1
connected components, and let € be a color set of size at least |V'| such that
€ has at least |V| — s + 1 different colors. Then there exists a coloring of
the graph K by €.

Proof We use induction on |V| —s > 0. The result is clear when |V]| —s = 0,
since in this case there are no edges in K. Suppose now that the result has
been proved for smaller values of | V| —s. We can assume that every connected
component of K contains at least two vertices, since we can assign any color to
isolated points. In particular, the number | V| — s drops if we remove connected
components from V. It is also clear that we may assume s > 2 and at least one
of the colors has multiplicity > 2 (otherwise there are already |V| different
colors).

Now, we let K1 = (V1,E1) be a connected component of the graph K, and
we setr = V]| > 2. Let K’ = (V', E’) be the subgraph of the graph K that is
obtained by removing the component K. We may choose a subset 4] C % that
consists of 7 distinct colors (each with multiplicity 1) such that the complement
@\ has at least |V'| — s + 2 — r different color (here we use the assumption
that at least one color in ¥ has multiplicity > 2). Note that we can color
the graph K| by %). By induction hypothesis, we can also color K’ by €\%1,
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since |V| —s+2—r = |V'| — (s — 1) + 1. This gives us a coloring of K
by €. 0

Let us identify HO(P", Op»(m)) with the subspace in C[xo, . . ., x,] consisting
of all homogeneous polynomials of degree m. For f € HO(P", Opn(m)) and
a (possibly reducible) subvariety ¥ C P”, we define f|y to be the image of
the polynomial f in H(Y, Ops(m)|y) via the restriction morphism. For any
f € H(P", Opn(m)), we denote by M the linear subsystem in |Op»(m)| that
is given by the subspace in HO(P", Opn(m)) spanned by t*(f) for all T € W.
Finally, we fix V' = {0,1,...,n}. For every graph K = (V,E), let ¢(K) be
the number of its connected components, and let

fi =% [] i —x) € H(P", Opn(IE))).
(ij)<E

Lemma 17.4.8 Let Y be an intersection in P" of some W-invariant hyper-
surfaces, and fix £ € Z-. Take some g € HO(P", Opn(L)) such that gly is
not W-invariant, and let K= (V,E) be a graph. Then there exists a graph
K'=(V,E') containing K as a subgraph and g € HO(P", Opn(£ — 1)) such
that c(K') > c(K) — 1, g'|y # 0 and

Bs(Mj;) € Bs(My)
Jor h = fxgand W = fxg'.

Proof Since g|y is not W-invariant, there is a transposition t = (ij) € W such
that T*(g)|y # gly. Then t%(g) —g = (x;—x;)g’ for some g’ € HO(P", Opn (£ —
1)) such that g’|y # 0, since otherwise we would have t*(g)|y = gl|y.

Let 7(K) be the graph obtained from K by switching the labeling of the ver-
tices i and j without changing any edges, and let K’ be the graph obtained
by adding the edge (if) to K U t(K) (take the union of edges). Then ¢(K') >
oK) — 1.

Let h=fxg and k' =fgg’. Then t*(h) = frx)T*(g), and Bs(M;) C
Bs(Myy), because 4’ has the same factors (ignoring multiplicities) as

frur) - @i — X)€" = frueao (7€) — &) = fk—wx) T (h) — fro)—kch

where K — t(K) is the graph obtained by removing from K the edges of
7(K). O

Corollary 17.4.9 Let Y be an intersection in P" of W-invariant hypersurfaces,
and let f be a polynomial in HY(P", Opn(m)) such that f|y # 0. Then there are
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r e {0,1,...,m}, a graph K = (V,E), and a W-invariant polynomial gy €
H (", Opn(m — r)) such that goly # 0, «(K) > n+1—r, and

Bs(My) NY < Bs(M) (17.3)

Jor g = fkgo.

Proof' Let us apply Lemma 17.4.8 repeatedly starting with the graph (V, @)
and g = f. This process must stop after at most m steps. Therefore, we obtain
a graph K(V, E) and a polynomial g = fxh such that deg(h) = m—r forr < m,
c(K) = n+ 1 — r, the restriction /|y is W-invariant, and

Bs(My) € Bs(M,).

Then we can replace 4 by a W-invariant polynomial gy of the same degree such
that goly = hly. O

Proof of Proposition 17.4.4 The assertions on dim(Z) and the assertion on
the number of irreducible components of the subvariety 2 follow from Lemma
17.4.6. Thus, we have to prove that

(1) either a general point in Z has at most m different coordinates, or
(2) the subvariety Z is an irreducible component of a set-theoretic intersection
of W-invariant hypersurfaces of degree at most .

Let Dy, ..., Dy be W-invariant hypersurfaces of degree at most m that con-
tain Z, and let Y be the set theoretic intersection D1 N - - - N Dy (if there exist
no such hypersurfaces, we set ¥ = X). We may assume Z g Y (otherwise (2)
clearly holds). Hence, there is f € M such that |y # 0. Note that this gives
ZCBs(Mp)NY.

By Corollary 17.4.9, we find a graph K = (V, E) with ¢(K) > n+ 1 —r and
a W-invariant polynomial gg € H(P", Op«(m — r)) such that go|y # 0 and
(17.3) holds, where r € {0,1,...,m}. By the construction of Y, we see that
golz # 0; thus, (17.3) gives

Z< BS(MfK)'

Pick a general point z € Z with coordinates [zg : ... : z,] and consider the color
setC = {zp,...,zy}. If (1) does not hold, then there are at least m > r different
colors in C. By Lemma 17.4.7, we may color the graph K by C. After unwind-
ing the definitions, this implies that there is 0 € W such that o *(fx) does not
vanish on Z. But this is a contradiction as 0 *(fx) € My, . So, we conclude that
(1) holds in this case and this completes the proof of the proposition. O

Let us apply Proposition 17.4.4. Recall that X; is the Fermat hypersurface
in P” of degree d.
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Proposition 17.4.10 Ifd < n < 3d — 1, then ag(X) > 1. If n > 3d, then

ac(X) = .

Proof We suppose that n > d. Let H be a hyperplane section of X, let
r = min{2d,n + 1 — d}, and let D be a G- invariant effective divisor on Xy
such that D ~q rH. We have ag(X) < +1 —;» Where the right-hand side
is computed by the G-invariant Fermat hypersurface X»;. Hence, both state-
ments of the proposition would follow once we prove that the log pair (X, D)
is log canonical. Suppose that (X, D) is not log canonical. Let us seek for
a contradiction.

Let 2 = lIct(X, D) and Z = Nklt(X, AD). Then (X, AD) is log canonical,
A < 1,and Z # @. Applying Lemma 17.4.2, we may assume that Z is a dis-
joint union of irreducible normal subvarieties. But, on the other hand, since
—(Kx+AD) is ample, applying Kollar—Shokurov’s connectedness, we conclude
that Z is an irreducible subvariety. By Lemma 17.4.3, there exists a G-invariant
linear subsystem £ C |(3d — 2)H| such that Z = Bs(£).

Let ¥ be the vector subspace in H'(X, Ox((3d — 2)H)) that corresponds to
the linear system £. Then ¥ is a G-subrepresentation in H(X, Ox((3d—2)H)).
As T-representation, we have

V=B
be

where the summand runs over all characters x of the group T. For each x, we
have V, = x,, - W,, where x,, is a monomial of degree at most d — 1 in each
homogeneous coordinate xg, x1, . . ., x,, while T acts trivially on ¥, . Each ¥,
is the image in H%(X, Ox(mdH)) of a subspace of

Sym™(U) € H(P", Opr(md)),

where U = span(xg, e ,xﬁ) C HOP", Opn(d)) and m < 2, because md =
deg(W,) < 3d — 2.

Since the action of the group G on the vector space HO(P", Opn(1)) is irre-
ducible, we see that the subvariety Z is not contained in a hyperplane, so Z is
not contained in {x,, = 0} for any x. Then Z is a set-theoretic intersection of
zeroes of all polynomials in all W, . Since Z is invariant under the G-action, we
see that o *(f) vanishes on Z forany /' € W, andany o € W = G,,4;.

Now, let us consider a morphism v: P* — P" defined as

v(xo ... ixp) = (xf)l:... :xZ).
Then the induced action of G on Im(f) = P” is isomorphic (as an action) to

the permutational action of the group W = &, on P”. Further, we observe
that

(1:...:1) € u(Xy).

https://doi.org/10.1017/9781009396233.018 Published online by Cambridge University Press



310 Ivan Cheltsov, Arman Sarikyan, and Ziquan Zhuang

Moreover, since Z is connected and ¥-invariant, so is v(Z). Thus, from the pre-
vious discussion, we conclude that Z is the base locus of some ¥ -invariant
linear system of degree at most 2d, generated by all the polynomials in W,.
Then v(Z) is the base locus of some W-invariant linear system of degree at
most 2. Applying Proposition 17.4.4 to v(Z), we see that Z is an irreduci-
ble component of a set-theoretic intersection of G-invariant hypersurfaces of
degree at most 2d. Then

Z=X;NX.

On the other hand, since the log pair (X;, D) is not log canonical along Z, we
have multz(D) > 1. This contradicts to Z ~¢ 2dH and r < 2d. O

Similarly, we prove the following result.

Proposition 17.4.11 Let X = X;NXo0N...N Xy forr > 1, let H be a hyper-
plane section of X, and let D be a G-invariant effective Q-divisor on X such
that D ~q qH for a positive rational number q < (r + 1)d. Suppose, in addi-
tion, that dim(X) > 1, n > 4, and dH — (Kx + D) is nef. Then the log pair
(X, D) is log canonical.

Proof Replacing g by [¢], and D by %D, we may assume that the number ¢

is actually an integer. Suppose that (X, D) is not log canonical. Let us seek for
a contradiction.

Let A = lct(X,D) and Z = Nklt(X, AD). Then (X, AD) is log canonical,
A < land Z # &. Applying Lemma 17.4.2, we may assume that Z is a disjoint
union of irreducible normal subvarieties, and Z is G-irreducible. Moreover,
using Lemma 17.4.3, we see that Z = Bs(L) for some G-invariant linear
subsystem £ C |aH |, where

rir+1)
2

that satisfies Ky + D + (n — r)H ~q afl.

Now, let 7 be the vector subspace in H(X, Oy(aH)) that corresponds to
the linear system £. Then ¥ is a G-subrepresentation in H%(X, Ox(aH)). As

before, we have
V="
bt

where the summand runs over all characters x of the group T. For each yx,
we have V, =x, - W,, where X, is a monomial of degree at most d — 1
in each homogeneous coordinate xg,x1, . ..,X;, and each W, is the image in
HO(X, Ox(¢dH)) of a subspace of

d+q—(r—1)

Sym‘(U) € HY(P", Opn(£d)),
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where U = span(xg, xd € HOYP", Opn(d)) and £ < L]

Now, let Zy,...,Zs be the T-irreducible components of the locus Z. Then
we claim that s < n. Indeed, using Nadel vanishing theorem and the nefness of
the divisor dH — (Kx + D), we get

H'(X,J (X, AD) ® Ox (dH)) =0,

where J(X,AD) is the multiplier ideal sheaf of the log pair (X, AD). Now,
let Y be the subscheme defined by the multiplier ideal sheaf 7 (X, AD) of the
log pair (X, AD), and let Y; be its irreducible component supported on Z; for
i € {l1,...,s}. Then the natural restriction

H(X,0x (dH)) — H° (T, Ox (dH|x))

is surjective. Taking the T-invariant parts, we see that

5 < idim(H()(Ti, O, (dH|T,.))T> < dim(HO(T,(’)T (dH|T))T> <

i=1

< dim (HO (X, Ox (dH))T> = dimU) -1 = n.

Here, the first inequality holds because HO(TY;, O~,(dH |'r,.))T contains
U|Ti # 0.

We claim that no 7-irreducible components of Z are contained in coordi-
nate hyperplanes. Indeed, otherwise, such a component would be contained in
the (unique) minimal 7-invariant linear subspace in P”, which would imply
that Z has at least n + 1 T-irreducible components.

Let m = |7]. Arguing as in the proof of Proposition 17.4.10, we see that
Z is the base locus of the W-invariant subsystem of |Opn(md)| generated by
Bs(Wy) and hypersurfaces containing X. Now, using Proposition 17.4.4 and
the same morphism v: P* — P" as in Proposition 17.4.10, we conclude (as
in the proof of Proposition 17.4.10) that Z is a G-irreducible component of
the set-theoretic intersection of some G-invariant hypersurfaces of degree at
most md, because the other possibility in Proposition 17.4.4 is excluded, since
v(Z) has at most # irreducible components and

{x‘é:xdz---zxf} z X.

In particular, we see that the pair (X,D) is not log canonical along
Y = X;NXo0N ... N Xy, and hence multy(D) > 1. But as n > m under
our assumption (we leave to the reader to verify this), we see that Y is irreduc-
ible. Now, applying Lemma 17.4.1 to Dy, = é[(Xkd X)yfork=r+1,...,m,
we get
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deg(D) n deg(H) "
multy(D) < kd < kd =1,
' deg(¥) i=1;[ 2 deg(Y) kl;[rl

which is a contradiction. O

17.5 The Proof of Theorem 17.1.8

Let us use all assumptions and notations of Section 17.4. Let X be the com-
plete intersection in the projective space P” of the Fermat hypersurfaces
X24,X34, . .., X,q for some integer » > 2, and let H be a hyperplane section
of the variety X. Suppose that

—Ky ~gH

1)d .
for some g < (r+2) . Then ag(X) < g, since —Ky ~q 4Xylx. So, we can

make «g(X) arbitrarily small by choosing ¢ = L%(r + 1)d] and letting » > 0.
Therefore, to prove Theorem 17.1.8, it remains to show that X is G-birationally
super-rigid.

In order to prove this, we use a similar strategy as in Proposition 17.4.11.
Let M be a G-invariant mobile linear system, and let A be a positive rational
number such that

Kx +AM ~q 0.

As in the proof of Theorem 17.1.4, we need to show that (X,AM) has
canonical singularities. Suppose the singularities of the pair (X,AM) are
non-canonical. Let us seek for a contradiction.

Let B be a center of non-canonical singularities of the log pair (X, AM).
Let us create some non-log canonical behavior using the center B. In
Lemma 17.5.1, we first treat the case when B is contained in some special
divisor ¥ C X, so that (¥,AM|y) is not log canonical by the inversion of
adjunction. As in the proof of Proposition 17.4.11, we will use Nadel van-
ishing to get an estimate of the possible number of irreducible components
of the non-log canonical locus, and then use Proposition 17.4.4 to derive
a contradiction.

Lemma 17.5.1 Let r,d > 2, n > 4 be integers, let H be a divisor in
|Opn(1)|x|, and set Y = X N Xy. Assume that D ~q [H is a G-invariant
effective divisor on X for some | < (r+ 1)d such that the divisor H — (Ky + D)
is nef. Assume also that dim X > 2. Then

(1) if D does not contain Y in its support, then (X, D) is log canonical;
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(2) the non-log canonical locus of (X, D) is contained in Y.

Proof  As in the proof of Proposition 17.4.11, we may assume that / € N.
Suppose that (1) is proved. To prove (2), write

/
D=t-3Y+(1—l‘)D()

for some 0 <t < 1 and Dy ~q /H such that Y & Supp(Dy). Then (X, D) is
log canonical by (1). Hence, every non-log canonical center of (X, D) is a non-
log canonical center of the pair (X, GLIY ). In particular, the non-log canonical
locus of (X, D) is contained in Y. This proves (2).

Now, let us prove (1). Suppose that ¥ & Supp(D), and the log pair (X, D)
is not log canonical. Let us seek for a contradiction. Let A = lct(X, D) and
Z = Nklt(X, AD). By Lemmas 17.4.2 and 17.4.3, we may further assume that
Z is G-irreducible, Z is a disjoint union of its irreducible components, and
Z = Bs(L) for a G-invariant linear system £ C |aH|, where

a= (r(r;—l) —1)d+l—r
satisfies
Kx+D+(n—r+1)H ~qg aH.
Let s be the number of irreducible components of Z, and let Zy,...,Z; be

these components. By Nadel vanishing applied to the multiplier ideal sheaf
J (X , AD) , we have a surjection

S
H® (X, Ox(H)) — H*(Z,07(H|2)) = D H' (2, Oz,(H2)),
i=1
sos < hO(X, Ox(H)) = n+ 1. But h°(Z;, Oz(H|z)) > 1 with strict inequality
for dim(Z;) > 0. Thus, if s = n + 1, then

A
n+1=h(2,02H\z) = Y (2, Oz(H|z)),
i=1
which gives dim(Z) = 0, so that we obtain a contradiction n + 1 > |Z]| >
dn+1) > n+ 1 asd > 2, since the length of a G-orbit in X is at least
d(n + 1). This shows that s < n.
Arguing as in the proof of Proposition 17.4.11, we see that Z is a component
of the set-theoretic intersection of some G-invariant hypersurfaces of degree at
most md, where m = | 5| < n. Set

R=X;NXpgN...NXya.
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Then the pair (X,D) is not log canonical along R. So, since one has
Y & Supp(D), we have

multz(D]y) > multp(D) > 1.

On the other hand, as in the proof of Proposition 17.4.11, we obtain
multp(D]y) < 1 by Lemma 17.4.1. The obtained contradiction completes the
proof of the lemma. O

Finally we treat the general case. Here the main observation is that if the cen-
ter of non-canonical singularities is not contained in the special divisors, then,
as a consequence of Proposition 17.4.4, it has small dimension, and in this
case we can prove the G-birational super-rigidity by a similar application of
the method of [51].

Theorem 17.5.2 Let d > 0, r > 2 be integers. Assume that —Ky ~ qH
where H is the hyperplane class and 1 < g < %. Then X is G-birationally
super-rigid.

Proof Assume the contrary. Then, using the Noether—Fano inequality [8], we
obtain a non-canonical log pair (X, AM) such that M is a mobile linear system,
and A € Q-¢ such that Ky + AM ~q 0. Let B be a center of non-canonical
singularities of the pair (X, AM). Let us seek for a contradiction.

Observe that the center B is not contained in the Fermat hypersurface Xj.
Indeed, otherwise, by the inverse of adjunction, the log pair (¥, M|y) is not
log canonical, where ¥ = X N Xy. But

dH — (Ky + AM|y) = —(Kx + AM)ly ~q 0,

which is impossible by Proposition 17.4.11.

We claim that B is not contained in any 7-invariant hyperplane. Indeed, sup-
pose B C {x; = 0}. Let X' = XN {x; = 0}, and let G’ be the stabilizer subgroup
in G of the hyperplane {x; = 0}. Then G’ = u/; x SS,, and X" is G'-invariant.
Let M’ = M|y Then (X', A M) is not log canonical along B by the inverse
of adjunction. But Ky + AM’ ~g H, which gives B C X; by Lemma 17.5.1.
However, we already proved that B ¢ Xj.

Now by Remark 17.3.6, the log pair (X, 2A.M) is not log canonical along B.
Let © be the smallest positive rational number such that B C Nklt(X, uM),
and let Z be an irreducible component of the locus Nklt(X, M) containing B.
Then u < 2, and it follows from [26, Theorem 3.1] that

multp(M; - Ma) > 4/u?,

for general divisors M| and M, in the linear system M. Moreover, it follows
from Lemma 17.4.3 that the subvariety Z is a component of Bs(L) for some
G-invariant linear system £ C |Ox/(a)|, where
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1
a:(r(rT—H—Qd—i—Zq—r

satisfies

Ky +2xM +mn—r+ 1)H ~g aH.

Furthermore, we know that Z is not contained in any 7-invariant hyperplane,
because B is not contained in any 7-invariant hyperplane.

Set m = |5]. Then m < n. Now, arguing as in the proof of Propo-
sition 17.4.10 or Proposition 17.4.11, and using Proposition 17.4.4, we see
that either the subvariety Z is a component of a set-theoretic intersection of
G-invariant hypersurfaces of degree at most md, or dim(B) < dim(Z) < m— 1.

Suppose that the subvariety Z is a component of a set-theoretic intersection
of G-invariant hypersurfaces of degree at most md. Let I’ be an irreducible
component of M| - M; such that

multz(T) _ mult (M) - M) 1
= > .
deg(I") deg(M - Mp) ~ pPdeg(M; - My)

Since Z ¢ X;, we observe that ' = I’ - X; is a codimension-2 cycle on
Y = X N X; such that
multz (T") - multz(T) 1
= > b
deg(I") deg(l") = p2deg(M; - My)

where Z/ = X; N ...N X,,q € Z. On the other hand, let H| and H, be general
divisors in |H|. Then, as in the proof of Proposition 17.4.11, we get

1t(T 1 m
e < Goz 11 4
eg(I") e

1 1
T @+ \)(r+ 2)deg(Hi - Hy)  p2deg(M; - M)’

by Lemma 17.4.1 applied to the divisors ¥ - Xig4, for r + 1 < &k < m on
the complete intersection Y, where the last inequality follows from 2g <
(r + 1)d. This gives us a contradiction.

Thus, we have dimB < dimZ < m — 1. Let P be a sufficiently general
point in the center B, and let ¥ be a general codimension m linear section of
the complete intersection X containing P. Set My = M]y. Then the pair
(Y, 2 My) is not log canonical at P by the inverse of adjunction, but the pair
(Y,21My) is log canonical in a punctured neighborhood of the point P. Note
that

Ky +2xMy ~q (m+ q)H.
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Using [51, Corollary 1.8] and the lower bound in [37, Paragraph 56] for
the number of lattice points, we obtain the following inequality:

hO(Y’ OY((m+q)H|Y)) -~ ; (2(71 —m— V)) > ;4,,,”1,,,.
n—m-—r n—m-—r (n_m_r)2
(17.4)

On the other hand, since Y is a complete intersection in P”~"", we also have

1O (Y, Oy((m + @)Hly)) < "™, Oprn(m + ) = (” iq) <2mH,
m-rgq
(17.5)
Recall that m = [ 7] < @ + 2r is bounded by a constant (that does not
depend on d), and, by assumption, we have

o+ 1) ) 1 (r(r+1) ) 5
(D ) agg—1> —1 1201,
" ( 2 ta 1\ 2 9+4q 39

Therefore, using (17.5), we obtain

1
hO(Y, OY((WZ +q)H)) < 21‘6n+l < gn—m—r
(n—m—r)?
when n > 0, which is equivalent to d > 0. This contradicts to (17.4). The
proof is complete. O
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