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Abstract

We prove that for every ε > 0, there is a birationally super-rigid Fano variety X

such that 1
2
6 α(X ) 6 1

2
+ε. Also we show that for every ε > 0, there is a Fano

variety X and a finite subgroup G ⊂ Aut(X ) such that X is G-birationally

super-rigid, and αG(X ) < ε.

17.1 Introduction

Throughout this paper, we assume that all varieties are projective, normal, and

defined over C.

Let X be a Fano variety with terminal singularities. If rk Cl(X ) = 1, then X

is a Mori fiber space. In this case, we say that X is birationally rigid if X is

not birational to other Mori fiber spaces [8]. Similarly, we say that X is bira-

tionally super-rigid if it is birationally rigid and Bir(X ) = Aut(X ). Examples

of birationally super-rigid smooth Fano varieties include

l smooth hypersurfaces in Pn+1 of degree n+1 > 4 [6, 28, 29, 31, 37, 42, 44,

51];
l smooth weighted hypersurfaces in P(1n+1, n) of degree 2n > 6 [43].

Note that these examples of smooth Fano varieties are known to be K-stable

[3, 7, 14, 16, 27, 30]. One can prove this by using Tian’s criterion. Namely,

recall from [41] and [49] that X is K-stable if
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α(X ) >
dim(X )

dim(X ) + 1
,

where α(X ) is the α-invariant of X that can be defined as follows:

α(X ) = sup

®
λ ∈ Q

∣∣∣∣∣
the log pair (X , λD) is log canonical

for any effective Q-divisor D ∼Q −KX

´
.

If X is smooth, then X is also K-stable in the case when α(X ) =
dim(X )

dim(X )+1

and dim(X ) > 2 [30]. On the other hand, if X is a smooth hypersurface in

Pn+1 of degree n + 1, then [7] and [14] give

α(X ) >
n

n + 1
=

dim(X )

dim(X ) + 1
.

Similarly, if X is a smooth hypersurface in P(1n+1, n) of degree 2n > 2, then

[16] gives

α(X ) >
2n − 1

2n
>

n

n + 1
=

dim(X )

dim(X ) + 1
.

This shows that all smooth hypersurfaces in Pn+1 of degree n + 1 > 3 and all

smooth weighted hypersurfaces in P(1n+1, n) of degree 2n > 4 are K-stable.

This gives an evidence for the following conjecture.

Conjecture 17.1.1 ([35]) Let X be a Fano variety with terminal singulari-

ties such that rk Cl(X ) = 1. Suppose that X is birationally rigid. Then X is

K-stable.

This conjecture has been already verified for many Fano varieties [10, 11, 12,

15, 24, 35, 47, 51], but it is still open in full generality (cf. [40]). On the other

hand, we have the following result.

Theorem 17.1.2 ([48]) Let X be a Fano variety with terminal singulari-

ties such that rk Cl(X ) = 1. Suppose that X is birationally super-rigid and

α(X ) > 1
2

. Then X is K-stable.

This naturally leads to the following question

Question 17.1.3 ([48]) Is it true that α(X ) >
1
2

for any birationally super-

rigid Fano variety X ?

In this chapter, we show that the bound 1
2

is optimal by proving the following

theorem.

Theorem 17.1.4 For every ε > 0, there exists a singular Fano variety X with

terminal singularities such that rk Cl(X ) = 1, the variety X is birationally

super-rigid, and
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1

2
6 α(X ) 6

1

2
+ ε.

We also answer a natural equivariant version of Question 17.1.3, which can

be stated as follows. Suppose that rk ClG(X ) = 1 for a finite subgroup G ⊂

Aut(X ), so that X is a G-Mori fiber space. Then X is G-birationally rigid if it

is not G-birational to other G-Mori fiber spaces [21, section 3.1.1]. Similarly,

the Fano variety X is said to be G-birationally super-rigid if X is G-birationally

rigid, and X does not have non-biregular G-birational self-maps. Finally, we let

αG(X ) = sup

®
λ ∈ Q

∣∣∣∣∣
the pair (X , λD) is log canonical for every

effective G-invariant Q-divisor D ∼Q −KX

´
.

If αG(X ) >
dim(X )

dim(X )+1
, then X is K-polystable by [52, Corollary 1.3].

Question 17.1.5 Is it true that αG(X ) > 1
2

for any G-birationally super-rigid

Fano variety X ?

The answer to this question is positive in dimension 2.

Exercise 17.1.6 ([9, 18, 46]) If dim(X ) = 2 and X is G-birationally super-

rigid, then αG(X ) > 2
3

.

In dimension 3, we still do not know whether our Question 17.1.5 has a pos-

itive answer or not, but many examples suggest that the answer is probably

positive.

Example 17.1.7 ([19, 20, 22]) Suppose that X =P3, and let G be any finite

subgroup in Aut(X ). Then X is G-birationally super-rigid if and only if

the following four conditions are satisfied:

(i) X does not have G-orbits of length 6 4;

(ii) X does not contain G-invariant lines;

(iii) X does not contain G-invariant pairs of skew lines;

(iv) G is not isomorphic to A5, S5, PSL2(F7), A6, µ
4
2 o µ5, and µ

4
2 o D10.

Using this criterion and [18], we see that αG(X ) >
1
2

if X is G-birationally

super-rigid.

In this chapter, we prove that the answer to Question 17.1.5 is very negative

in higher dimensions.

Theorem 17.1.8 For every ε > 0, there is a smooth Fano variety X and a finite

subgroup G ⊂ Aut(X ) such that rk PicG(X ) = 1, the variety X is G-birationally

super-rigid, and αG(X ) < ε.
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Let us describe the structure of this chapter. In Section 17.2, we prove

Theorem 17.1.4. In Section 17.3, we study equivariant birational geometry

of a smooth quadric threefold Q ⊂ P4 for the natural action of the sym-

metric group S5, which should be interesting for mathematicians working on

finite subgroups of the space Cremona group (cf. [50, section 9]). This exam-

ple inspired Theorem 17.1.8. In Section 17.4, we present few results used in

the proof of Theorem 17.1.8, which is done in Section 17.5.

17.2 The Proof of Theorem 17.1.4

We fix a positive integer a > 2. Then we let X be a quasi-smooth well-formed

singular weighted hypersurfaces of degree 2a + 1 in P(1a+2, a) that is given by

the following equation:

y2x1 + f2a+1(x1, . . . , xa+2) = 0,

where each xi is a coordinate of weight 1, y is a coordinate of weight a, and

f2a+1 is a general homogeneous polynomial of degree 2a + 1. Then

l X is a Fano variety of dimension N = a + 1;
l the class group of the variety X is of rank 1;
l the singularities of X consist of one singular point Oy = (0 : . . . : 0 : 1),

which is a terminal quotient singularity of type 1
a

(1, . . . , 1).

Further, it follows from [36] that

α(X ) 6
a + 1

2a + 1
=

1

2
+

1

4a + 2
.

In this section, we prove the following result, which implies Theorem 17.1.4.

Theorem 17.2.1 The Fano variety X is birationally super-rigid.

This theorem also answers positively [36, Question 7.2.3].

Remark 17.2.2 If a = 2, then X is known to be birationally super-rigid

[15, 24].

Let π : X 99K PN be the projection from the point Oy. Then π contracts

the following divisor:

D =
{

x1 = 0, f2a+1(x1, . . . , xa+2) = 0
}

⊂ P(1a+2, a).

Furthermore, one has the following diagram:
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X̃

f

��

ν
//

g

&&

U

θ
��

X
π

// PN

where f is the weighted blow-up of the point Oy with weights (1, . . . , 1), the

map g is a morphism, the variety U is a hypersurface in P(1a+2, a + 1) of

degree 2a + 2 that is given by

z2 + x1 f2a+1(x1, . . . , xa+2) = 0,

the morphism ν is a birational morphism that contracts the strict transform

of the divisor D, and the morphism θ is a double cover that is branched over

the hypersurface x1f2a+1(x1, . . . , xa+2) = 0. Here, we consider x1, . . . , xa+2 as

coordinates on PN and as coordinates of weight 1 on the weighted projective

space P(1a+2, a + 1), where z is a coordinate of weight a + 1.

Now, let us prove Theorem 17.2.1. Assume the contrary, that is, there exists

a birational map

8 : X 99K W

to a Mori fiber space W that is not isomorphism. Let M be a birational trans-

form of a very ample complete linear system on W via 8. Let λ ∈ Q>0 be

the positive rational number such that

KX + λM ∼Q 0.

Then, by the Noether–Fano inequality [25], the singularities of the pair

(X , λM) are not canonical. Let Z be a center of non-canonical singularities

of the log pair (X , λM).

Now, let E be the f -exceptional divisor, and let M̃ be the strict transform of

the mobile linear system M on the variety X̃ . Then E ∼= Pa, and

K
X̃

∼Q f ∗
(
KX

)
+ 1

a
E,

λM̃ ∼Q f ∗
(
λM

)
− µE,

for some µ ∈ Q>0. Therefore, we have

K
X̃

+ λM̃ ∼Q f ∗(KX + λM) +
Ä1

a
− µ
ä

E.

Thus, if µ > 1
a
, then Oy is a center of non-canonical singularities of the log

pair (X , λM).

Lemma 17.2.3 (cf. [32] for a = 2) Suppose that Oy ∈ Z. Then µ > 1
a

.

Proof Suppose that µ 6
1
a

. Let us seek for a contradiction.
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Case: 1 Z 6= Oy. Let Z̃ be the strict transform of Z via f . Then mult
Z̃

(M̃) > 1
λ

and hence,

multP
(
M̃
∣∣
E

)
>

1

λ
(17.1)

for any point P ∈ Z̃ ∩ E. Note that

λM̃
∣∣
E

∼Q −µE
∣∣
E

∼Q aµH ,

where H is a hyperplane in E ∼= Pa. Since aµ 6 1, this contradicts to (17.1).

Case: 2 Z = Oy. We write

K
X̃

+ λM̃ +
Ä
µ −

1

a

ä
E ∼Q f ∗

(
KX + λM

)
.

Hence, the singularities of the log pair (X̃ , λM̃+ (µ− 1
a
)E) are not canonical

at some point P ∈ E. Then the singularities of the log pair (X̃ , λM̃) are also

not canonical at P, so that

multP
(
M̃
)

>
1

λ
.

Now, we argue as in the previous case to obtain a contradiction.

One the other hand, we have the following.

Lemma 17.2.4 One has µ 6
1
a

.

Proof One has g∗(OPN (1)) ∼Q f ∗(−KX ) − 1
a

E. Then

Ä
f ∗(−KX ) −

1

a
E
ä

· C = 0,

for any curve C contracted by g. Thus, if µ > 1
a

, then

‹M · C =
1

λ

(
f ∗(−KX ) − µE

)
< 0

for a general divisor ‹M ∈ M̃. This is a contradiction, because the linear system

M̃ is mobile, and the curves contracted by g span a divisor in X̃ – the proper

transform of the divisor D.

Corollary 17.2.5 One has Oy /∈ Z.

Thus, we see that Z is contained in the smooth locus of the variety X .

Lemma 17.2.6 One has dim(Z) = a − 1.

Proof Suppose that dim(Z) < a − 1. Let M1 and M2 be sufficiently general

divisors in M, and let P be a sufficiently general point in Z. Then

(M1 · M2)P >
4

λ2

https://doi.org/10.1017/9781009396233.018 Published online by Cambridge University Press



292 Ivan Cheltsov, Arman Sarikyan, and Ziquan Zhuang

by [26, Corollary 3.4] or [44]. Let L be the linear subsystem in | − KX | con-

sisting of all divisors that pass through the point P, and let H1, . . . , HN−2 be

sufficiently general divisors in the system L. If P 6∈ D, then the base locus of

L does not contain curves, which gives

2a + 1

aλ2
= M1 · M2 · H1 · . . . · HN−2 > (M1 · M2)P >

4

λ2
,

which is a contradiction. Thus, we see that P ∈ D.

Let L ⊂ D be the curve containing P that is contracted by π . Then L is

the only curve contained in the base locus of the linear system L. After a linear

change of coordinates, we can assume that

P = (0 : 0 : 1 : 0 : . . . : 0 : 1)

and Hi = X ∩ {xi+3 = 0} for i = 1, . . . , N − 2. Consider the surface S defined

as

S =

N−2⋂

i=1

Hi.

We can identify S with a surface in P(1, 1, 1, a) given by

y2x1 + f2a+1(x1, x2, x3, 0, . . . , 0) = 0.

Then L = S ∩ {x1 = x2 =|, 0}. Let MS =M|S . Then λMS = mL + λ1 for

some non-negative rational number m ∈ Q>0 and some mobile linear sys-

tem 1 on the surface S. Moreover, applying the inversion of adjunction [38,

Theorem 5.50], we see that (S, λMS) is not log canonical at P.

Let H be a general curve in |OS(1)|, and let HL be a general curve in |OS(1)|

that contains L. Then H · L = 1
a

and

S ∩ HL = L + R,

where R is a curve in S such that L 6⊂ Supp(R). One can check that L · R = 2

and H · R = 2. Thus, using (L + R) · L = H · L = 1
a
, we get

L2 = −2 +
1

a
,

which can also be shown using the subadjunction formula on S.

Now, using Corti’s inequality [26, Theorem 3.1], we get

4(1 − m) < λ2
(
11 · 12

)
P
6 λ211 · 12 =

=
(
H − mL

)2
= H2 − 2mH · L + m2L2 =

2a + 1

a
−

2m

a
+ m2

Å
−2 +

1

a

ã
,
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which gives

0 >
(2a − 1)(m − 1)2

a
.

This is a contradiction, since a > 2.

Therefore, we see that dim(Z) = dim(X ) − 2. Then

multZ
(
M
)

>
1

λ
.

Let M1 and M2 be general divisors in M. Then

3

λ2
>

2a + 1

λ2a
=
(

− KX

)N−2
· M1 · M2

> mult2Z(M)
(

− KX

)N−2
· Z >

1

λ2

(
− KX

)N−2
· Z,

so that (−KX )N−2 · Z ∈ {1, 2}.

Now, let H1, . . . , HN−2 be general divisors in | − KX |. After a linear change

of coordinates, one can assume that Hi = X ∩ {xi+4 = 0} for i = 1, . . . , N − 3.

Let V be the threefold defined as

V =

N−3⋂

i=1

Hi.

Then we can identify V with the hypersurface in P(14, a) given by

y2x1 + f2a+1(x1, . . . , x4, 0, . . . , 0) = 0.

Let C = V ∩Z, MV = M|V , and let H be a general surface in |OV (1)|. Then

l C is an irreducible curve such that C · H ∈ {1, 2};
l C is contained in the smooth locus of the hypersurface V ;
l C is a center of non-canonical singularities of the log pair (V , λMV ).

We set µ = λmultC(MV ). Then µ > 1.

Lemma 17.2.7 One has C · H 6= 1.

Proof Suppose that C · H = 1. We can choose coordinates on P(14, a) such

that

C =
{

x2 = 0, x3 = 0, y + F(x1, . . . , x4) = 0
}

⊂ P(14, a),

where F(x1, . . . x4) is a homogeneous polynomial of degree a. Note that

C ∼= P1.

Now, we let β : Ṽ → V be the blow-up of the curve C, and let E be the β-

exceptional divisor. We claim that E3 = a − 1. Indeed, let S̃1, S̃2, S̃3 and be
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the strict transforms on Ṽ of the surfaces that are cut out on V by the equations

y + F(x1, . . . , x4) = 0, x2 = 0, and x3 = 0, respectively. Then

0 = S̃1 · S̃2 · S̃3 = (aβ∗(H) − E) · (β∗(H) − E)2

= aH3 + (a + 2)β∗(H) · E2 − E3 = a − 1 − E3,

which gives E3 = a − 1 as claimed.

Let M
Ṽ

be the strict transform of the linear system MV on the threefold Ṽ .

Then

λM
Ṽ

∼Q β∗(H) − µE.

One the other hand, since M
Ṽ

is mobile and aβ∗(H) − E is nef, we get

0 6
(
aβ∗(H) − E

)
·
(
β∗(H) − µE

)2
= aH3 + (2µ + aµ2)β∗(H) · E2 − µ2E3

= (µ − 1)2 − 2a(µ2 − 1) < 0,

which is a contradiction.

Thus, we see that C · H = 2. Then we can change coordinates on P(14, a)

such that

(A) either

C =
{

x4 = 0, x1x2 + x2
3 = 0, y + Fa(x1, . . . , x4) = 0

}
⊂ P(14, a)

for some homogeneous polynomial Fa(x1, . . . , x4) of degree a,

(B) or

C =
{

x2 = 0, x3 = 0, y2 + F2a(x1, . . . , x4) = 0
}

⊂ P(14, a)

for some homogeneous polynomial F2a(x1, . . . , x4) of degree 2a.

In case (A), we have C ∼= P1. In case (B), the curve C may have singularities.

In both cases, let β : Ṽ → V be the blow-up of the curve C, and let E be

the β-exceptional divisor. Then, arguing as in the proof of Lemma 17.2.7, we

get

E3 =

®
2a − 4 in case (A),

− 2 in case (B).

Let M
Ṽ

be the strict transform of the linear system MV on the threefold Ṽ .

Then

λM
Ṽ

∼Q β∗(H) − µE.

Moreover, in case (A), the divisor aβ∗(H) − E is nef, so that
(
aβ∗(H) − E

)
·
(
β∗(H) − µE

)2
> 0
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because M
Ṽ

is mobile. But

(
aβ∗(H) − E

)
·
(
β∗(H) − µE

)2
= aH3 + (2µ + aµ2)β∗(H) · E2 − µ2E3

= (2µ − 1)2 − 2a(2µ2 − 1) < 0,

because µ > 1. Likewise, in case (B), the divisor 2aβ∗(H) − E is nef, which

gives

0 6
(
2aβ∗(H)−E

)
·
(
β∗(H)−µE

)2
= 2aH3+(2µ+2aµ2)β∗(H)·E2−µ2E3 =

= −2(µ − 1)(1 − µ + 2a (1 + µ)) < 0.

Thus, we get a contradiction in both cases (A) and (B). This completes

the proof of Theorem 17.2.1.

17.3 S5-Invariant Quadric Threefold

Let Q be a smooth quadric hypersurface in P4. We can choose coordinates

x0, x1, x2, x3, x4 on the projective space P4 such that Q is given by the following

equation:

4∑

i=0

x2
i = 0.

In particular, we see that Q is faithfully acted on by the symmetric group S5,

which permutes the coordinates x0, x1, x2, x3, x4. Then αS5 (Q) 6
1
3

, because

S5 leaves invariant the hyperplane sections of the quadric Q that is cut out by

x0 + x1 + x2 + x3 + x4 = 0. In fact, arguing as in [18], one can show that

αS5 (Q) = 1
3

.

Keeping in mind the results obtained in [20], one can expect that Q is S5-

birationally rigid. However, this is not the case – the quadric hypersurface Q

contains two S5-orbits of length 5, and each of them leads to a G-birational

transformation of the quadric into other S5-Mori fiber space. Namely, let 65 be

a S5-orbit of length 5 in X , and let π : X → Q be the blow-up of this S5-orbit.

Then there exists the following S5-equivariant commutative diagram:

U
ζ

//

π

��

W

φ

��

Q
χ

// Y

where ζ is a small birational map that flops the proper transforms of 10 con-

ics that contain three points in 65, φ is a birational morphism that contracts
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the proper transforms of 5 hyperplane sections of the quadric Q that pass

through 4 points in 65, and Y is a cubic threefold in P4 such that it has

5 isolated ordinary double points and rk Cl(Y ) = 1. Since Y is a S5-Mori

fiber space, we see that Q is not S5-birationally rigid. Note that the cubic

threefold Y is given in P4 by

x0x1x2 + x0x1x3 + x0x1x4 + x0x2x3 + x0x2x4 + x0x3x4 + x1x2x3 + x1x2x4

+ x1x3x4 + x2x3x4 = 0.

This is not difficult to prove; see [4] and [5].

The goal of this section is to prove the following result.

Theorem 17.3.1 The only S5-Mori fiber spaces that are S5-birational to Q

are Q and Y.

Let us prove Theorem 17.3.1. Let ι ∈ Aut(Q) be the Galois involution of

the double cover Q →P3 given by the projection from the point (1 : 1 : 1 : 1 : 1).

Then ι commutes with the S5-action on Q. It is well known [13, 17] that

Theorem 17.3.1 follows from the following technical result.

Theorem 17.3.2 Let MQ be any non-empty mobile S5-invariant linear sys-

tem on the quadric Q, and let MY and M′
Y be its proper transform on the cubic

threefolds Y via χ and χ ◦ ι, respectively. Choose positive rational numbers λ,

µ, µ′ such that

λMQ ∼Q −KQ,

µMY ∼Q −KY ,

µ′
M

′
Y ∼Q −KY ′ .

Then one of the log pair (Q, λMQ), (Y , µMY ), or (Y ′, µ′M′
Y ) has canonical

singularities.

To prove Theorem 17.3.2, let us use all notations and assumptions of this the-

orem. We must prove that at least one of the log pair (Q, λMQ), (Y , µMY ), or

(Y , µ′M′
Y ) has canonical singularities. Set 6′

5 = ι(65). Then 6′
5 is the second

S5-orbit in the quadric Q.

Remark 17.3.3 Let G be a stabilizer in S5 of a point in P ∈ 65 ∪ 6′
5. Then

G ∼= S4 and its induced linear action on the Zariski tangent space TP(Q) is

an irreducible representation.

Now using this remark, [1, Lemma 2.4] and [26, Theorem 3.10], we can eas-

ily derive the required assertion from the following two propositions, arguing

as in the proof of [13, Theorem 1.2].
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Proposition 17.3.4 The log pair (Q, λMQ) is canonical away from 65 ∪ 6′
5.

Proposition 17.3.5 The log pairs (Y , µMY ) and (Y , µ′M′
Y ) are canonical

away from Sing(Y ).

In the remaining part of this section, we will prove Propositions 17.3.4 and

17.3.5. For both proofs, we need the following technical observation, which

improves [20, Lemma 2.2].

Remark 17.3.6 Let X be a variety with terminal singularities, let D be an

effective Q-Cartier divisor on the variety X , let ϕ : X̃ → X be birational mor-

phism such that X̃ is normal, let D̃ be the proper transform on X̃ of the divisor

D, and let E1, . . . , En be ϕ-exceptional divisors. Then

K
X̃

+ D̃ +

n∑

i=1

a(Ei; X , D)Ei ∼Q ϕ∗
(
KX + D

)
,

where each a(Ei; X , D) is a rational number known as the discrepancy of

the pair (X , D) along Ei. Let E be one of the ϕ-exceptional divisors. Then

a
(
E; X , D

)
= a(E; X ) − ordE(D),

where a(E; X ) is the discrepancy of X along E. Let a = a(E; X ). If a(E; X , D)

< 0, then

a
Ä

E; X ,
Ä

1 +
1

a

ä
D
ä

= a(E; X ) −
Ä

1 +
1

a

ä
ordE(D) < ordE(D)

−
Ä

1 +
1

a

ä
ordE(D) = −

ordE(D)

a
< −1,

so that the log pair (X , (1+ 1
a

)D) is not log canonical along ϕ(E). In particular,

if a(E; X , D) < 0 and ϕ(E) is a smooth point of the variety X , then the log pair

Ç
X ,

dim(X )

dim(X ) − 1
D

å

is not log canonical at the point ϕ(E).

To prove Proposition 17.3.4, we have to present few standard basic facts

about the S5-equivariant geometry of the quadric Q. Observe that Q contains

two S5-orbits 610 and 6′
10 of length 10.

Lemma 17.3.7 If 6 is a S5-orbit in Q with |6| < 20, then 6 is one of

the orbits 65, 6′
5, 610, 6′

10.

Proof Left to the reader.
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Let H = {x0 + x1 + x2 + x3 + x4 = 0} ⊂ P4 and S2 = H ∩ Q. Then S2 is

smooth and S5-invariant. Moreover, the surface S2 does not contain 65, 6′
5,

610, 6′
10. Let B6 be the curve in Q given by





x0 + x1 + x2 + x3 + x4 = 0,

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = 0,

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0.

Then B6 is the unique smooth curve of genus 4 that admits an effective action

of the group S5, which is known as the Bring’s curve (see [21, Remark 5.4.2]).

Note that B6 ⊂ Q ∩ H .

Lemma 17.3.8 Let C be a S5-invariant curve in Q such that deg(C) 6 6.

Then C = B6.

Proof We may assume that C is S5-irreducible, that is, the symmetric group

S5 acts transitively on the set of its irreducible components. Then S2 contains

C, since otherwise |S2 ∩ C| 6 S2 · C = 12, which contradicts Lemma 17.3.7.

Thus, if C 6= B6, then

|C ∩ B6| 6 C · B6 = 18,

which is impossible by Lemma 17.3.7, since S2 does not contain 65, 6′
5, 610,

and 6′
10.

Corollary 17.3.9 The log pair (Q, λMQ) has log canonical singularities.

Proof Suppose that the log pair (Q, λMQ) is not log canonical. Let us seek

for a contradiction. If the log pair (Q, λMQ) is log canonical outside of

finitely many points, then it is log canonical outside of a single point by

the Kollár–Shokurov connectedness, which must be S5-invariant point. The

latter contradicts Lemma 17.3.7. Thus, we see that there is a S5-irreducible

curve C such that the log pair (Q, λMQ) is not log canonical at general points

of its irreducible components. Then

(
M1 · M2

)
C

>
4

λ2

by [26, Theorem 3.1], where M1 and M2 are general surfaces in MQ. Using

this, we get deg(C) < 9
2
, which is impossible by Lemma 17.3.8.

Observe that S2
∼= P1 × P2, and the induced S5-action on S2 is faithful.

Lemma 17.3.10 (cf. [23, Theorem 7.5]) One has αS5 (S2) = 3
2

.
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Proof Observe that PicS5 (S2) = Z[H |S2 ] and B6 ∈ |3H |S2 |. But |H |S2 | and

|2H |S2 | do not contain any S5-invariant curves. Hence, we have αS5 (S2) = 3
2

by [9, Lemma 5.1] and Lemma 17.3.7.

Now we are ready to prove Proposition 17.3.4.

Proof of Proposition 17.3.4 Suppose (Q, λMQ) is not canonical. Denote by

6 its non-canonical locus. To complete the proof, we have to show that 6 ⊆

65 ∪ 6′
5.

First, let us show that the set 6 consists of finitely many points. Indeed,

suppose that 6 contains a S5-irreducible curve C. Then

multC
(
MQ

)
>

1

λ
, (17.2)

which easily implies that deg(C) < 18. Arguing as in the proof of

Lemma 17.3.8, we see that C ⊆ S2. Then (17.2) gives deg(C) < 6, which

is impossible by Lemma 17.3.8. Hence, we see that 6 is finite.

If 6 ∩ S2 6= ∅, then the log pair (S2, λMQ|S2 ) is not log canonical by

the inversion of adjunction, which is impossible by Lemma 17.3.10. Thus, we

have 6 ∩ S2 = ∅.

Applying Remark 17.3.6, we see that (Q, 3λ
2
MQ) is not log canonical at

every point of the set 6. Take ε ∈ Q>0 such that 6 ⊂ Nklt(Q, 3λ−ε
2

MQ).

Set � = Nklt(Q, 3λ−ε
2

MQ). Then � is S5-invariant. Moreover, arguing as

in the proof of Corollary 17.3.9, we see that the locus � does not contain

curves, so that � is a finite set. Now, applying Nadel vanishing theorem, we

get h1(Q,J ⊗OQ(2H |Q)) = 0, where J is the multiplier ideal sheaf of the log

pair (Q, 3−ε
2

λMQ). This gives

|6| 6 |�| 6 h0
Ä

Q,OQ

(
2H |Q

)ä
= 14,

because Supp(J ) = �. Now, using Lemma 17.3.7, we see that one of

the following possibilities holds:

l 6 ⊆ 65 ∪ 6′
5;

l � = 6 = 610;
l � = 6 = 6′

10.

If 6 ⊆ 65∪6′
5, we are done. Hence, without loss of generality, we may assume

that � = 6 = 610. Let us show that this assumption leads to a contradiction.

Let D be the linear subsystem in |2H | that consists of all surfaces in |2H |

that pass through 610. By counting parameters, we get dim(D) > 4. Arguing

as in the proof of Lemma 17.3.8, we see that the base locus of the linear system

D contains no curves. Using [26, Corollary 3.4] or [44], we get
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36

λ2
= D · M1 · M2 >

∑

P∈610

(
M1 · M2

)
P

>
∑

P∈610

4

λ2
=

40

λ2
,

which is absurd. This completes the proof of Proposition 17.3.4.

Now, let us present a few facts about the threefold Y . Its singular locus

consists of five nodes:

P1 = (1 : 0 : 0 : 0 : 0),

P2 = (0 : 1 : 0 : 0 : 0),

P3 = (0 : 0 : 1 : 0 : 0),

P4 = (0 : 0 : 0 : 1 : 0),

P5 = (0 : 0 : 0 : 0 : 1).

Note that (3 : 3 : 3 : 3 : −2) ∈ Y \ Sing(Y ). Let 25 be the S5-orbit of this

point. Then |25| = 5. For every 1 6 i < j 6 5, we let `ij be the line in P4 that

passes through the nodes Pi and Pj. Let L10 be the union of these lines. Then

L10 ⊂ Y , and L10 ∩ H is a S5-orbit 210 of length 10. The cubic Y contains

two more S5-orbits of length 10, which we denote by 2′
10 and 2′′

10.

Lemma 17.3.11 The orbits Sing(Y ), 25, 210, 2′
10, 2′′

10 are all S5-orbit in Y

of length < 20.

Proof Left to the reader.

Let S3 = Y ∩ H . Then S3 is a smooth cubic surface known as the Clebsch

diagonal cubic surface. It follows from [21, Lemma 6.3.12] that 210 ⊂ S3,

but S3 does not contain Sing(Y ), 25, 2′
10, 2′′

10. Observe also that S3 contains

the curve B6.

Lemma 17.3.12 Let C be a S5-invariant curve in Y such that deg(C) 6 10.

Then C = B6 or L10.

Proof If C ⊂ S3, the assertion follows from [21, Theorem 6.3.18]. Hence,

we assume that C 6⊂ S3. Then, arguing as in the proof of Lemma 17.3.8, we

conclude that and C · H = 210.

We suppose that the curve C is irreducible. Then C has to be singular

at every point P ∈ 210, because the stabilizer in S5 of the point P acts

faithfully on the Zariski tangent space TP(C). Thus, if C is irreducible, then

10 = C · H > 2|210|, which is absurd.

We see that C is reducible and deg(C) = 10. Let C1 be an irreducible com-

ponents of the curve C, and let G be the stabilizer in S5 of the curve C1. Then

one of the following four cases holds:
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(1) G ∼= A5 and C is a union of 2 irreducible curves of degree 5;

(2) G ∼= S4 and C is a union of 5 irreducible conics;

(3) G ∼= A4 the C is a union of 10 lines;

(4) G ∼= S3 × µ2 and C is a union of 10 lines.

In case (1), 210 splits as two G-orbits of length 5, which is not the case by [21,

Lemma 6.3.12]. In cases (2) and (3), the only two-dimensional G-invariant

linear subspace of P4 is contained in the S5-invariant hyperplane H , so that

C1 is contained in S3, which contradicts our assumption. In case (4), one can

easily see that C = L10.

Now, we are ready to prove Proposition 17.3.5.

Proof of Proposition 17.3.5 It is enough to prove that (Y , µMY ) is canonical

away from Sing(Y ). Suppose that this log pair is not canonical. Let 6 be its

non-canonical locus.

First, we claim that 6 is a finite set. Indeed, suppose that 6 contains a S5-

irreducible curve. Then multC(M) > 1
µ

. If C ⊂ S3, this implies that deg(C) <

6, which is impossible by Lemma 17.3.12. Thus, we see that C 6⊂ S3. Then

deg(C) < 12, so that H · C < 12. Using Lemmas 17.3.11 and 17.3.12, we

conclude that C = L10. Let H ′ be the hyperplane in P4 that contains the nodes

P1, P2, P3, and P4, and let M be a general surface in MY . Then

H ′ · M = m
(
`12 + `13 + `14 + `23 + `24 + `34

)
+ 1,

where a is an integer such that a > multC(M), and 1 is an effective one-

cycle whose support does not contain the lines `12, `13, `14, `23, `24, and `34.

Therefore, we have

6

µ
=

2

µ
H3 = H · H ′ · M = 6m + H · 1 > 6m > 6multC(M) >

6

µ
,

which is absurd. Thus, we see that 6 is a finite set.

Let 61 be the subset in 6 that consists of all smooth points of Y . We have

to show that 61 =∅. If 61 ∩ S3 6=∅, then the log pair (S3, µMY |S3 ) is not

log canonical, which implies that αS5 (S3) < 2. The latter contradicts [9,

Example 1.11]. Thus, we have 61 ∩ S3 = ∅.

Now, using Remark 17.3.6, we see that (Y , 3µ
2
MY ) is not log canoni-

cal at every point of the set 61. Moreover, arguing exactly as in the proof

of Corollary 17.3.9 and using Lemma 17.3.12, we see that each point of

the subset 61 is an isolated center of non-log canonical singularities of

the pair (Y , 3µ
2
MY ). Now, using Nadel vanishing theorem as we did in

the proof of Proposition 17.3.4, we see that |61|6 5. Therefore, we have

61 = 25 by Lemma 17.3.11.
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Let M1 and M2 be general surfaces in MY . Then it follows from [26,

Corollary 3.4] or [44] that

(
M1 · M2

)
Q

>
4

µ2
,

for every point Q ∈ 25. Let Q1, Q2, and Q3 be three points in 25, let 5 be

the plane in P4 that contains these three points, and let C = Y |5. Then C is

a smooth irreducible cubic curve. Write

M1 · M2 = εC + �,

where ε is a non-negative rational number, and � is an effective one-cycle

whose support does not contain C. Let H ′ be a general hyperplane section

of the cubic hypersurface Y that contains C. Then H ′ does not contain any

irreducible component of the one-cycle �. Thus, we have

12

µ2
− 3ε = H ′ · � > multQ1

(
�
)

+ multQ2

(
�
)

+ multQ3

(
�
)

> 3
Ä 4

µ2
− ε
ä

=
12

µ2
− 3ε,

which is absurd. This completes the proof of Proposition 17.3.5.

This completes the proof of Theorem 17.3.1, which also implies that Q is

S5-solid [2, 13, 17].

17.4 Preliminary Results

In this section, we prove a few results that will be used towards the proof of

Theorem 17.1.8.

Let X be a variety with at most Kawamata log terminal singularities that is

faithfully acted on by a finite group G. The following result is a consequence

of the technique developed in [45, section 3].

Lemma 17.4.1 Suppose X is smooth. Let Z be a G-irreducible subvariety of

X of codimension m, let H be an ample divisor on X , and let D1, D2, . . . , Dm

be effective divisors on X such that

D1 ∼Q D2 ∼Q · · · ∼Q Dm ∼Q H ,

and Z is a G-irreducible component of the intersection ∩m
i=1Supp(Di). Let Y ⊂

X be an effective cycle of codimension c 6 m. Then

multZ(Y )

deg(Y )
6

(
deg(Z) · min

S

∏

i∈S

multZ(Di)

)−1

,
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where the minimum is taken over all subsets S ⊆ {1, . . . , m} of cardinality

m − c.

Proof We may assume that Y is irreducible and Z ⊆ Y . We construct

a sequence of irreducible subvarieties Yc, . . . , Ym and a permutation

D′
1, . . . , D′

m of D1, . . . , Dm such that

l Yc = Y ;
l codimX (Yi) = i;
l Yi 6⊂ Supp(D′

i+1);
l Yi+1 is a component of Yi · D′

i+1 that contains Z;
l for all c 6 i 6 m − 1 one has

multZ(Yi+1)

deg(Yi+1)
> multZ(D′

i+1) ·
multZ(Yi)

deg(Yi)
.

Once this is done, the lemma follows immediately from the trivial equality

Ym = Z.

Suppose that Yc, . . . , Yi and D′
c+1, . . . , D′

i have been constructed for some

i < m. Then

Yi ⊆

i⋂

j=c+1

Supp(Dj).

Since ∩m
i=1Supp(Di) has codimension m in a neighborhood of Z by assumption

and

codimX (Yi) = i < m,

then there exists some Dj, which is necessarily different from D′
c+1, . . . , D′

i,

which gives Yi 6⊆ Dj. We may then take D′
i+1 = Dj and Yi+1 an irreducible

component of (Yi · Dj) such that

multZ(Yi+1)

deg(Yi+1)
>

multZ(Yi · Dj)

deg(Yi · Dj)
> multZDj ·

multZ(Yi)

deg(Yi)
.

By induction, this finishes the construction.

Now, let D be either an effective Q-divisor on X (a boundary) or a movable

(mobile) boundary:

D =

r∑

i=1

aiMi,

where each ai ∈ Q>0, and each Mi is a linear system on X that does not have

fixed components. Suppose, in addition, that D is G-invariant.
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Lemma 17.4.2 Suppose that (X , D) is not log canonical, and D is ample. Then

there exists positive rational number ε < 1 such that the following assertions

hold:

l If D is a Q-divisor, there exists a G-invariant effective Q-divisor D′ ∼Q

(1 − ε)D such that the log pair (X , D′) has log canonical singularities, and

Nklt(X , D′) is a non-empty disjoint union of minimal log canonical centers

of the log pair (X , D′).
l If D is a mobile boundary, there exists a G-invariant mobile boundary D′ ∼Q

(1 − ε)D such that the log pair (X , D′) has log canonical singularities, and

Nklt(X , D′) is a non-empty disjoint union of minimal log canonical centers

of the log pair (X , D′).

Furthermore, irreducible components of Nklt(X , D′) are normal, and G tran-

sitively permutes them.

Proof This is an equivariant version of the tie breaking. See [21,

Lemma 2.4.10] or [33] and [34].

Lemma 17.4.3 Let H be a very ample divisor in Pic(X ), and let L be a divisor

in Pic(X ) such that the divisor L − (KX + D + dim(X )H) is ample. Then |L|

contains a non-empty G-invariant linear subsystem L such that Nklt(X , D) =

Bs(L).

Proof Let J = J (X , D) be the multiplier ideal. Then the support of OX /J

is exactly Nklt(X , D). By [39, Proposition 9.4.26], J ⊗OX (L) is generated by

global sections. The G-invariant linear system L = |J ⊗OX (L)| then satisfies

the statement of the lemma.

Now, we fix d, n ∈ Z>0. Let W be the subgroup in GLn+1(C) consisting

of all permutation matrices, let T be the subgroup in GLn+1(C) consisting of

diagonal matrices whose (non-zero) entries are the dth roots of unity, and let

G be the subgroup in GLn+1(C) generated by T and W. Then W ∼= Sn+1,

T ∼= µ
n+1
d , and

G ∼= T oW ∼= µ
n+1
d oSn+1.

Let W , T , and G be the images in PGLn+1(C) via the quotient map of

the groups W, T, and G, respectively. Then W ∼= Sn+1, T ∼= µ
n
d , and

G ∼= T o W . Note that G leaves invariant the Fermat hypersurface

Xd :=

{
d∑

i=0

xd
i = 0

}
⊂ Pn,
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where x0, . . . , xn are homogeneous coordinates on Pn. If n > 2 and d > 3, then

G = Aut(Pn, Xd).

The examples for Theorem 17.1.8 are complete intersections in Pn of

some Fermat hypersurfaces. The main result of this section is the following

proposition. We will use it in the next section.

Proposition 17.4.4 Let M be a W-invariant linear subsystem in |OPn (m)|, let

Z be an irreducible component of the intersection Bs(M), and let Z be the W-

irreducible subvariety in Pn, whose irreducible component is Z. Then at least

one of the following two cases holds:

(1) a general point in Z has at most d different coordinates, and dim(Z) 6

m − 1;

(2) the subvariety Z is an irreducible component of a set-theoretic intersection

of W-invariant hypersurfaces of degree at most m, and dim(Z) > n − m.

Moreover, in case (1), if m 6 n and n > 4, then either Z has at least n + 1

irreducible components, or Z = Z = (1 : 1 : . . . : 1).

In particular, the base locus of a W -invariant linear subsystem in |OPn (m)|

either has dimension at most m − 1 or has codimension at most m. This can be

illustrated by the following example.

Example 17.4.5 In the assumptions and notations of Proposition 17.4.4, sup-

pose m = 1 and Y =Pn. Then either M= |OPn (1)|, so it is base point free, or

one of the following two cases holds:

(1) M is the linear system of hyperplanes containing the W -invariant point

(1 : 1 : . . . : 1);

(2) M is the W -invariant hyperplane X1 = {x0 + · · · + xn = 0} ⊂ Pn.

In case (1), we have Z = Z = (1 : 1 : . . . : 1). In case (2), we have Z = Z = X1.

To prove Proposition 17.4.4, we need to prove a few auxiliary results.

Lemma 17.4.6 Fix s ∈ {1, . . . , n}, and take positive integers a1, . . . , as such

that n = a1 + · · · + as. Let N be the number of unordered partitions of the set

{1, . . . , n} into subsets of a1, . . . , as elements, respectively. Then N > n unless

s = 1, s = n, or n = 4, s = 2, a1 = a2 = 2.

Proof We may assume a1 6 a2 6 · · · 6 ak . If a1 = · · · = ai < ai+1 for some

i ∈ {1, · · · , k − 1}, then

N >

Ç
n

ia1

å
> n.
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Hence, we may assume that a1 = · · · = as = r for some r ∈ {2, . . . , n − 1}.

Then s = n
r
> 2 and

N =
n!

(r!)s · s!
>

n(n − 1) · . . . · (n − r + 1)

r! · s
.

Thus, since n > 2s, we get

N > (n − 1) ·
n

2s
·

r−3∏

j=0

n − 2 − j

r − j
> n − 1,

with equality only if n = 2s and n − 2 = r, that is, when r = s = 2. Since N

is a positive integer, the assertion follows.

For the second result, we need the following two conventions. A color set is

a finite multiset, where elements (i.e. colors) may appear with multiplicities. If

K = (V , E) is a graph and C is a color set, then a coloring of the graph K by

C is a map φ : V → C such that

l every color is used at most once, that is, we have |φ−1(c)| 6 1 for every

c ∈ C ;
l every pair of adjacent vertices has different color, that is, we have

φ(u) 6= φ(v) as integers whenever (u, v) ∈ E.

Lemma 17.4.7 Let K = (V , E) be a graph such that K contains at least s > 1

connected components, and let C be a color set of size at least |V | such that

C has at least |V | − s + 1 different colors. Then there exists a coloring of

the graph K by C .

Proof We use induction on |V | − s > 0. The result is clear when |V | − s = 0,

since in this case there are no edges in K. Suppose now that the result has

been proved for smaller values of |V |− s. We can assume that every connected

component of K contains at least two vertices, since we can assign any color to

isolated points. In particular, the number |V |− s drops if we remove connected

components from V . It is also clear that we may assume s > 2 and at least one

of the colors has multiplicity > 2 (otherwise there are already |V | different

colors).

Now, we let K1 = (V1, E1) be a connected component of the graph K, and

we set r = |V1| > 2. Let K ′ = (V ′, E′) be the subgraph of the graph K that is

obtained by removing the component K1. We may choose a subset C1 ⊆ C that

consists of r distinct colors (each with multiplicity 1) such that the complement

C \C1 has at least |V | − s + 2 − r different color (here we use the assumption

that at least one color in C has multiplicity > 2). Note that we can color

the graph K1 by C1. By induction hypothesis, we can also color K ′ by C \C1,
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since |V | − s + 2 − r = |V ′| − (s − 1) + 1. This gives us a coloring of K

by C .

Let us identify H0(Pn,OPn (m)) with the subspace in C[x0, . . . , xn] consisting

of all homogeneous polynomials of degree m. For f ∈ H0(Pn,OPn (m)) and

a (possibly reducible) subvariety Y ⊂ Pn, we define f |Y to be the image of

the polynomial f in H0(Y ,OPn (m)|Y ) via the restriction morphism. For any

f ∈ H0(Pn,OPn (m)), we denote by Mf the linear subsystem in |OPn (m)| that

is given by the subspace in H0(Pn,OPn (m)) spanned by τ ∗(f ) for all τ ∈ W.

Finally, we fix V = {0, 1, . . . , n}. For every graph K = (V , E), let c(K) be

the number of its connected components, and let

fK = ±
∏

(i,j)∈E

(xi − xj) ∈ H0
(
Pn,OPn (|E|)

)
.

Lemma 17.4.8 Let Y be an intersection in Pn of some W-invariant hyper-

surfaces, and fix ` ∈ Z>0. Take some g ∈ H0(Pn,OPn (`)) such that g|Y is

not W-invariant, and let K = (V , E) be a graph. Then there exists a graph

K ′ = (V , E′) containing K as a subgraph and g′ ∈ H0(Pn,OPn (` − 1)) such

that c(K ′) > c(K) − 1, g′|Y 6= 0 and

Bs
(
Mh

)
⊆ Bs

(
Mh′

)

for h = fKg and h′ = fK ′g′.

Proof Since g|Y is not W-invariant, there is a transposition τ = (ij) ∈ W such

that τ ∗(g)|Y 6= g|Y . Then τ ∗(g)−g = (xi−xj)g
′ for some g′ ∈ H0(Pn,OPn (`−

1)) such that g′|Y 6= 0, since otherwise we would have τ ∗(g)|Y = g|Y .

Let τ (K) be the graph obtained from K by switching the labeling of the ver-

tices i and j without changing any edges, and let K ′ be the graph obtained

by adding the edge (ij) to K ∪ τ (K) (take the union of edges). Then c(K ′) >

c(K) − 1.

Let h = fKg and h′ = fK ′g′. Then τ ∗(h) = fτ (K)τ
∗(g), and Bs(Mh) ⊆

Bs(Mh′ ), because h′ has the same factors (ignoring multiplicities) as

fK∪τ (K) · (xi − xj)g
′ = fK∪τ (K)

(
τ ∗(g) − g

)
= fK−τ (K)τ

∗(h) − fτ (K)−Kh,

where K − τ (K) is the graph obtained by removing from K the edges of

τ (K).

Corollary 17.4.9 Let Y be an intersection in Pn of W-invariant hypersurfaces,

and let f be a polynomial in H0(Pn,OPn (m)) such that f |Y 6= 0. Then there are
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r ∈ {0, 1, . . . , m}, a graph K = (V , E), and a W-invariant polynomial g0 ∈

H0(Pn,OPn (m − r)) such that g0|Y 6= 0, c(K) > n + 1 − r, and

Bs
(
Mf

)
∩ Y ⊆ Bs

(
Mg

)
(17.3)

for g = fKg0.

Proof Let us apply Lemma 17.4.8 repeatedly starting with the graph (V ,∅)

and g = f . This process must stop after at most m steps. Therefore, we obtain

a graph K(V , E) and a polynomial g = fKh such that deg(h) = m−r for r 6 m,

c(K) > n + 1 − r, the restriction h|Y is W-invariant, and

Bs
(
Mf

)
⊆ Bs

(
Mg

)
.

Then we can replace h by a W -invariant polynomial g0 of the same degree such

that g0|Y = h|Y .

Proof of Proposition 17.4.4 The assertions on dim(Z) and the assertion on

the number of irreducible components of the subvariety Z follow from Lemma

17.4.6. Thus, we have to prove that

(1) either a general point in Z has at most m different coordinates, or

(2) the subvariety Z is an irreducible component of a set-theoretic intersection

of W -invariant hypersurfaces of degree at most m.

Let D1, . . . , Dk be W -invariant hypersurfaces of degree at most m that con-

tain Z, and let Y be the set theoretic intersection D1 ∩ · · · ∩ Dk (if there exist

no such hypersurfaces, we set Y = X ). We may assume Z $ Y (otherwise (2)

clearly holds). Hence, there is f ∈ M such that f |Y 6= 0. Note that this gives

Z ⊆ Bs(Mf ) ∩ Y .

By Corollary 17.4.9, we find a graph K = (V , E) with c(K) > n + 1 − r and

a W-invariant polynomial g0 ∈ H0(Pn,OPn (m − r)) such that g0|Y 6= 0 and

(17.3) holds, where r ∈ {0, 1, . . . , m}. By the construction of Y , we see that

g0|Z 6= 0; thus, (17.3) gives

Z ⊆ Bs
(
MfK

)
.

Pick a general point z ∈ Z with coordinates [z0 : . . . : zn] and consider the color

set C = {z0, . . . , zn}. If (1) does not hold, then there are at least m > r different

colors in C. By Lemma 17.4.7, we may color the graph K by C. After unwind-

ing the definitions, this implies that there is σ ∈ W such that σ ∗( fK) does not

vanish on Z. But this is a contradiction as σ ∗( fK) ∈ MfK . So, we conclude that

(1) holds in this case and this completes the proof of the proposition.

Let us apply Proposition 17.4.4. Recall that Xd is the Fermat hypersurface

in Pn of degree d.
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Proposition 17.4.10 If d 6 n 6 3d − 1, then αG(X ) > 1. If n > 3d, then

αG(X ) = 2d
n+1−d

.

Proof We suppose that n > d. Let H be a hyperplane section of Xd , let

r = min{2d, n + 1 − d}, and let D be a G-invariant effective divisor on Xd

such that D ∼Q rH . We have αG(X ) 6
2d

n+1−d
, where the right-hand side

is computed by the G-invariant Fermat hypersurface X2d . Hence, both state-

ments of the proposition would follow once we prove that the log pair (X , D)

is log canonical. Suppose that (X , D) is not log canonical. Let us seek for

a contradiction.

Let λ = lct(X , D) and Z = Nklt(X , λD). Then (X , λD) is log canonical,

λ < 1, and Z 6= ∅. Applying Lemma 17.4.2, we may assume that Z is a dis-

joint union of irreducible normal subvarieties. But, on the other hand, since

−(KX +λD) is ample, applying Kollár–Shokurov’s connectedness, we conclude

that Z is an irreducible subvariety. By Lemma 17.4.3, there exists a G-invariant

linear subsystem L ⊂ |(3d − 2)H | such that Z = Bs(L).

Let V be the vector subspace in H0(X ,OX ((3d − 2)H)) that corresponds to

the linear system L. Then V is a G-subrepresentation in H0(X ,OX ((3d−2)H)).

As T-representation, we have

V =
⊕

χ

Vχ ,

where the summand runs over all characters χ of the group T. For each χ , we

have Vχ = xχ · Wχ , where xχ is a monomial of degree at most d − 1 in each

homogeneous coordinate x0, x1, . . . , xn, while T acts trivially on Wχ . Each Wχ

is the image in H0(X ,OX (mdH)) of a subspace of

Symm(U) ⊆ H0(Pn,OPn (md)),

where U = span(xd
0 , . . . , xd

n) ⊆ H0(Pn,OPn (d)) and m 6 2, because md =

deg(Wχ ) 6 3d − 2.

Since the action of the group G on the vector space H0(Pn,OPn (1)) is irre-

ducible, we see that the subvariety Z is not contained in a hyperplane, so Z is

not contained in {xχ = 0} for any χ . Then Z is a set-theoretic intersection of

zeroes of all polynomials in all Wχ . Since Z is invariant under the G-action, we

see that σ ∗( f ) vanishes on Z for any f ∈ Wχ and any σ ∈ W ∼= Sn+1.

Now, let us consider a morphism υ : Pn → Pn defined as

υ(x0 : . . . : xn) =
Ä

xd
0 : . . . : xd

n

ä
.

Then the induced action of G on Im( f ) = Pn is isomorphic (as an action) to

the permutational action of the group W ∼= Sn+1 on Pn. Further, we observe

that

(1 : . . . : 1) 6∈ υ(Xd).
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Moreover, since Z is connected and W -invariant, so is υ(Z). Thus, from the pre-

vious discussion, we conclude that Z is the base locus of some W -invariant

linear system of degree at most 2d, generated by all the polynomials in Wχ .

Then υ(Z) is the base locus of some W -invariant linear system of degree at

most 2. Applying Proposition 17.4.4 to υ(Z), we see that Z is an irreduci-

ble component of a set-theoretic intersection of G-invariant hypersurfaces of

degree at most 2d. Then

Z = Xd ∩ X2d .

On the other hand, since the log pair (Xd , D) is not log canonical along Z, we

have multZ(D) > 1. This contradicts to Z ∼Q 2dH and r 6 2d.

Similarly, we prove the following result.

Proposition 17.4.11 Let X = Xd ∩ X2d ∩ . . .∩ Xrd for r > 1, let H be a hyper-

plane section of X , and let D be a G-invariant effective Q-divisor on X such

that D ∼Q qH for a positive rational number q < (r + 1)d. Suppose, in addi-

tion, that dim(X ) > 1, n > 4, and dH − (KX + D) is nef. Then the log pair

(X , D) is log canonical.

Proof Replacing q by dqe, and D by
dqe
q

D, we may assume that the number q

is actually an integer. Suppose that (X , D) is not log canonical. Let us seek for

a contradiction.

Let λ = lct(X , D) and Z = Nklt(X , λD). Then (X , λD) is log canonical,

λ < 1 and Z 6= ∅. Applying Lemma 17.4.2, we may assume that Z is a disjoint

union of irreducible normal subvarieties, and Z is G-irreducible. Moreover,

using Lemma 17.4.3, we see that Z = Bs(L) for some G-invariant linear

subsystem L ⊂ |aH |, where

a =
r(r + 1)

2
d + q − (r − 1)

that satisfies KX + D + (n − r)H ∼Q aH .

Now, let V be the vector subspace in H0(X ,OX (aH)) that corresponds to

the linear system L. Then V is a G-subrepresentation in H0(X ,OX (aH)). As

before, we have

V =
⊕

χ

Vχ ,

where the summand runs over all characters χ of the group T. For each χ ,

we have Vχ = xχ · Wχ , where xχ is a monomial of degree at most d − 1

in each homogeneous coordinate x0, x1, . . . , xn, and each Wχ is the image in

H0(X ,OX (`dH)) of a subspace of

Sym`(U) ⊆ H0(Pn,OPn (`d)),
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where U = span(xd
0 , . . . , xd

n) ⊆ H0(Pn,OPn (d)) and ` 6 b a
d
c.

Now, let Z1, . . . , Zs be the T-irreducible components of the locus Z. Then

we claim that s 6 n. Indeed, using Nadel vanishing theorem and the nefness of

the divisor dH − (KX + D), we get

H1
Ä

X ,J
(
X , λD

)
⊗ OX

(
dH
)ä

= 0,

where J (X , λD) is the multiplier ideal sheaf of the log pair (X , λD). Now,

let ϒ be the subscheme defined by the multiplier ideal sheaf J (X , λD) of the

log pair (X , λD), and let ϒi be its irreducible component supported on Zi for

i ∈ {1, . . . , s}. Then the natural restriction

H0
Ä

X ,OX

(
dH
)ä

→ H0
Ä
ϒ ,Oϒ

(
dH |ϒ

)ä

is surjective. Taking the T-invariant parts, we see that

s 6

s∑

i=1

dim

Ç
H0
Ä
ϒi,Oϒi

(
dH |ϒi

)äTå
6 dim

Ç
H0
Ä
ϒ ,Oϒ

(
dH |ϒ

)äTå
6

6 dim

Ç
H0
Ä

X ,OX

(
dH
)äTå

= dim(U) − 1 = n.

Here, the first inequality holds because H0(ϒi,Oϒi (dH |ϒi ))
T contains

U |ϒi 6= 0.

We claim that no T-irreducible components of Z are contained in coordi-

nate hyperplanes. Indeed, otherwise, such a component would be contained in

the (unique) minimal T-invariant linear subspace in Pn, which would imply

that Z has at least n + 1 T-irreducible components.

Let m = b a
d
c. Arguing as in the proof of Proposition 17.4.10, we see that

Z is the base locus of the W -invariant subsystem of |OPn (md)| generated by

Bs(Wχ ) and hypersurfaces containing X . Now, using Proposition 17.4.4 and

the same morphism υ : Pn → Pn as in Proposition 17.4.10, we conclude (as

in the proof of Proposition 17.4.10) that Z is a G-irreducible component of

the set-theoretic intersection of some G-invariant hypersurfaces of degree at

most md, because the other possibility in Proposition 17.4.4 is excluded, since

υ(Z) has at most n irreducible components and
{

xd
0 = xd

1 = · · · = xd
n

}
6⊂ X .

In particular, we see that the pair (X , D) is not log canonical along

Y = Xd ∩ X2d ∩ . . . ∩ Xmd , and hence multY (D) > 1. But as n > m under

our assumption (we leave to the reader to verify this), we see that Y is irreduc-

ible. Now, applying Lemma 17.4.1 to Dk = 1
kd

(Xkd · X ) for k = r + 1, . . . , m,

we get
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multY (D) 6
deg(D)

deg(Y )

m∏

i=k+2

kd 6
deg(H)

deg(Y )

m∏

k=r+1

kd = 1,

which is a contradiction.

17.5 The Proof of Theorem 17.1.8

Let us use all assumptions and notations of Section 17.4. Let X be the com-

plete intersection in the projective space Pn of the Fermat hypersurfaces

X2d , X3d , . . . , Xrd for some integer r > 2, and let H be a hyperplane section

of the variety X . Suppose that

−KX ∼ qH

for some q 6
(r+1)d

2
. Then αG(X ) 6

d
q

, since −KX ∼Q
q
d

Xd|X . So, we can

make αG(X ) arbitrarily small by choosing q = b 1
2
(r + 1)dc and letting r � 0.

Therefore, to prove Theorem 17.1.8, it remains to show that X is G-birationally

super-rigid.

In order to prove this, we use a similar strategy as in Proposition 17.4.11.

Let M be a G-invariant mobile linear system, and let λ be a positive rational

number such that

KX + λM ∼Q 0.

As in the proof of Theorem 17.1.4, we need to show that (X , λM) has

canonical singularities. Suppose the singularities of the pair (X , λM) are

non-canonical. Let us seek for a contradiction.

Let B be a center of non-canonical singularities of the log pair (X , λM).

Let us create some non-log canonical behavior using the center B. In

Lemma 17.5.1, we first treat the case when B is contained in some special

divisor Y ⊂ X , so that (Y , λM|Y ) is not log canonical by the inversion of

adjunction. As in the proof of Proposition 17.4.11, we will use Nadel van-

ishing to get an estimate of the possible number of irreducible components

of the non-log canonical locus, and then use Proposition 17.4.4 to derive

a contradiction.

Lemma 17.5.1 Let r, d > 2, n > 4 be integers, let H be a divisor in

|OPn (1)|X |, and set Y = X ∩ Xd . Assume that D ∼Q lH is a G-invariant

effective divisor on X for some l 6 (r+1)d such that the divisor H − (KX +D)

is nef. Assume also that dim X > 2. Then

(1) if D does not contain Y in its support, then (X , D) is log canonical;
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(2) the non-log canonical locus of (X , D) is contained in Y .

Proof As in the proof of Proposition 17.4.11, we may assume that l ∈ N.

Suppose that (1) is proved. To prove (2), write

D = t ·
l

d
Y + (1 − t)D0

for some 0 6 t 6 1 and D0 ∼Q lH such that Y 6⊆ Supp(D0). Then (X , D0) is

log canonical by (1). Hence, every non-log canonical center of (X , D) is a non-

log canonical center of the pair (X , l
d

Y ). In particular, the non-log canonical

locus of (X , D) is contained in Y . This proves (2).

Now, let us prove (1). Suppose that Y 6⊆ Supp(D), and the log pair (X , D)

is not log canonical. Let us seek for a contradiction. Let λ = lct(X , D) and

Z = Nklt(X , λD). By Lemmas 17.4.2 and 17.4.3, we may further assume that

Z is G-irreducible, Z is a disjoint union of its irreducible components, and

Z = Bs(L) for a G-invariant linear system L ⊂ |aH |, where

a =

Å
r(r + 1)

2
− 1

ã
d + l − r

satisfies

KX + D + (n − r + 1)H ∼Q aH .

Let s be the number of irreducible components of Z, and let Z1, . . . , Zs be

these components. By Nadel vanishing applied to the multiplier ideal sheaf

J
(
X , λD

)
, we have a surjection

H0
(
X ,OX (H)

)
→ H0

(
Z,OZ(H |Z)

)
=

s⊕

i=1

H0
(
Zi,OZi (H |Zi )

)
,

so s 6 h0(X ,OX (H)) = n + 1. But h0(Zi,OZi (H |Zi )) > 1 with strict inequality

for dim(Zi) > 0. Thus, if s = n + 1, then

n + 1 = h0
(
Z,OZ(H |Z)

)
=

s∑

i=1

h0
(
Zi,OZi (H |Zi )

)
,

which gives dim(Z) = 0, so that we obtain a contradiction n + 1 > |Z| >

d(n + 1) > n + 1 as d > 2, since the length of a G-orbit in X is at least

d(n + 1). This shows that s 6 n.

Arguing as in the proof of Proposition 17.4.11, we see that Z is a component

of the set-theoretic intersection of some G-invariant hypersurfaces of degree at

most md, where m = b a
d
c < n. Set

R = Xd ∩ X2d ∩ . . . ∩ Xmd .
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Then the pair (X , D) is not log canonical along R. So, since one has

Y 6⊆ Supp(D), we have

multR(D|Y ) > multR(D) > 1.

On the other hand, as in the proof of Proposition 17.4.11, we obtain

multR(D|Y ) 6 1 by Lemma 17.4.1. The obtained contradiction completes the

proof of the lemma.

Finally we treat the general case. Here the main observation is that if the cen-

ter of non-canonical singularities is not contained in the special divisors, then,

as a consequence of Proposition 17.4.4, it has small dimension, and in this

case we can prove the G-birational super-rigidity by a similar application of

the method of [51].

Theorem 17.5.2 Let d � 0, r > 2 be integers. Assume that −KX ∼ qH

where H is the hyperplane class and 1 6 q 6
(r+1)d

2
. Then X is G-birationally

super-rigid.

Proof Assume the contrary. Then, using the Noether–Fano inequality [8], we

obtain a non-canonical log pair (X , λM) such that M is a mobile linear system,

and λ ∈ Q>0 such that KX + λM ∼Q 0. Let B be a center of non-canonical

singularities of the pair (X , λM). Let us seek for a contradiction.

Observe that the center B is not contained in the Fermat hypersurface Xd .

Indeed, otherwise, by the inverse of adjunction, the log pair (Y ,M|Y ) is not

log canonical, where Y = X ∩ Xd . But

dH − (KY + λM|Y ) = −(KX + λM)|Y ∼Q 0,

which is impossible by Proposition 17.4.11.

We claim that B is not contained in any T-invariant hyperplane. Indeed, sup-

pose B ⊆ {xi = 0}. Let X ′ = X ∩{xi = 0}, and let G′ be the stabilizer subgroup

in G of the hyperplane {xi = 0}. Then G′ ∼= µ
n
d o SSn, and X ′ is G′-invariant.

Let M′ = M|X ′ . Then (X ′, λM′) is not log canonical along B by the inverse

of adjunction. But KX ′ + λM′ ∼Q H , which gives B ⊂ Xd by Lemma 17.5.1.

However, we already proved that B 6⊂ Xd .

Now by Remark 17.3.6, the log pair (X , 2λM) is not log canonical along B.

Let µ be the smallest positive rational number such that B ⊂ Nklt(X , µM),

and let Z be an irreducible component of the locus Nklt(X , µM) containing B.

Then µ < 2λ, and it follows from [26, Theorem 3.1] that

multB(M1 · M2) > 4/µ2,

for general divisors M1 and M2 in the linear system M. Moreover, it follows

from Lemma 17.4.3 that the subvariety Z is a component of Bs(L) for some

G-invariant linear system L ⊆ |OX (a)|, where
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a =

Å
r(r + 1)

2
− 1

ã
d + 2q − r

satisfies

KX + 2λM + (n − r + 1)H ∼Q aH .

Furthermore, we know that Z is not contained in any T-invariant hyperplane,

because B is not contained in any T-invariant hyperplane.

Set m = b a
d
c. Then m < n. Now, arguing as in the proof of Propo-

sition 17.4.10 or Proposition 17.4.11, and using Proposition 17.4.4, we see

that either the subvariety Z is a component of a set-theoretic intersection of

G-invariant hypersurfaces of degree at most md, or dim(B) 6 dim(Z) 6 m−1.

Suppose that the subvariety Z is a component of a set-theoretic intersection

of G-invariant hypersurfaces of degree at most md. Let 0′ be an irreducible

component of M1 · M2 such that

multZ(0′)

deg(0′)
>

multZ(M1 · M2)

deg(M1 · M2)
>

1

µ2deg(M1 · M2)
.

Since Z 6⊂ Xd , we observe that 0 = 0′ · Xd is a codimension-2 cycle on

Y = X ∩ Xd such that

multZ′ (0)

deg(0)
>

multZ(0′)

deg(0′)
>

1

µ2deg(M1 · M2)
,

where Z′ = Xd ∩ . . . ∩ Xmd ⊆ Z. On the other hand, let H1 and H2 be general

divisors in |H |. Then, as in the proof of Proposition 17.4.11, we get

multZ′ (0)

deg(0)
6

1

degZ′

m∏

k=r+3

kd

=
1

d2(r + 1)(r + 2)deg(H1 · H2)
<

1

µ2deg(M1 · M2)
,

by Lemma 17.4.1 applied to the divisors Y · Xkd , for r + 1 6 k 6 m on

the complete intersection Y , where the last inequality follows from 2q 6

(r + 1)d. This gives us a contradiction.

Thus, we have dim B 6 dim Z 6 m − 1. Let P be a sufficiently general

point in the center B, and let Y be a general codimension m linear section of

the complete intersection X containing P. Set MY = M|Y . Then the pair

(Y , λMY ) is not log canonical at P by the inverse of adjunction, but the pair

(Y , 2λMY ) is log canonical in a punctured neighborhood of the point P. Note

that

KY + 2λMY ∼Q (m + q)H .
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Using [51, Corollary 1.8] and the lower bound in [37, Paragraph 56] for

the number of lattice points, we obtain the following inequality:

h0
(
Y ,OY ((m+q)H |Y )

)
>

1

n − m − r

Ç
2(n − m − r)

n − m − r

å
>

1

(n − m − r)2
4n−m−r.

(17.4)

On the other hand, since Y is a complete intersection in Pn−m, we also have

h0
(
Y ,OY ((m + q)H |Y )

)
6 h0(Pn−m,OPn−m(m + q)) =

Ç
n + q

m + q

å
< 2n+q.

(17.5)

Recall that m = b a
d
c 6

r(r+1)
2

+ 2r is bounded by a constant (that does not

depend on d), and, by assumption, we have

n =

Å
r(r + 1)

2
− 1

ã
d + q − 1 >

1

r + 1

Å
r(r + 1)

2
− 1

ã
q + q − 1 >

5

3
q − 1.

Therefore, using (17.5), we obtain

h0
(
Y ,OY ((m + q)H)

)
< 21.6n+1 <

1

(n − m − r)2
4n−m−r

when n � 0, which is equivalent to d � 0. This contradicts to (17.4). The

proof is complete.
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