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Abstract

The periodic tiling conjecture asserts that if a region X' C RY tiles RY by translations then it
admits at least one fully periodic tiling. This conjecture is known to hold in R, and recently it was
disproved in sufficiently high dimensions. In this paper, we study the periodic tiling conjecture
for polygonal sets: bounded open sets in R? whose boundary is a finite union of line segments.
We prove the periodic tiling conjecture for any polygonal tile whose vertices are rational. As a
corollary of our argument, we also obtain the decidability of tilings by rational polygonal sets.
Moreover, we prove that any translational tiling by a rational polygonal tile is weakly-periodic,
i.e., can be partitioned into finitely many singly-periodic pieces.
© 2024 Elsevier GmbH. All rights are reserved, including those for text and data mining, Al training,
and similar technologies.
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1. Introduction

Let ¥ C R? be a bounded, measurable set. We say that X tiles RY by translations
if there exists a countable set 7 C R? such that the translations of X along the points
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of T, ¥ +1t,teT, cover almost every point in R? exactly once. In this case, we write
Y ® T =R? and refer to X as a translational tile and to T as a tiling of R by X. Let
Tile(X; R?) denote the set of all the tilings of RY by X, i.e.,

Tile(X; R ={T cRY: X @ T = RY).

Since in this work we consider tilings by only translations, in what follows we sometime
abbreviate and write “tiling” to refer to tiling by translations and “tile” to refer to
translational tile.

The study of translational tiling consists of studying the structure of sets in Tile(X; RY).
A major conjecture in this area is the periodic tiling conjecture [8,11,15], which asserts
that if Tile(X; R?) is non-empty, then it must contain at least one periodic set, i.e., a set
T e Tile(X; R?), which is invariant under translations by lattice A C R? (here, a lattice
is a full rank discrete subgroup).

The periodic tiling conjecture (PTC) is known to hold in R [11], for convex domains
in all dimensions [12,16] and for topological disks in R? [2,9,10]. On the other hand,
recently, the periodic tiling conjecture was disproved in sufficiently high dimensions [7],
even under the assumption that the tile is connected [4].

One important motivation to study the structure of tilings and the periodic tiling
conjecture in particular is the connection to the decidability of tilings. Indeed, in [17] it
was shown that if the periodic tiling conjecture were true, then the question of whether
a set is a tile or not would be decidable. Recently, in [5], it was shown that translational
tilings are undecidable if the dimension is unbounded. However, the decidability of
translational tilings (by a single tile) in RY, for a fixed d > 2, is still open. In this paper
we study the periodicity and decidability of planar translational tilings by polygonal sets.

1.1. Polygonal tiles

A polygonal set is a bounded open set 2 C R?, whose boundary is a finite union
of segments. Note that a polygonal set can certainly be disconnected and its connected
components are not necessarily simply-connected. We denote the vertices of {2 by V({2),
and the edges of (2 by E({2). See Fig. 1.1 for illustration.

We say that a polygonal set {2 is rational if the set V(§2) — v is contained in Q?, for
any v € V().

Our first result is that the periodic tiling conjecture holds for rational polygonal tiles.

Theorem 1.1 (PTC Holds for Rational Polygonal Tiles). A rational polygonal set 2 C R?
tiles R? by translations if and only if Tile(£2; R?) contains a periodic set.

Using the proof of Theorem 1.1 we also obtain the decidability of tilings in R? by
rational polygonal tiles.
Corollary 1.1. There is an algorithm that computes, upon any given rational polygonal
set £2, whether Tile(£2; R?) is empty or not.

In addition, we establish a structural result that applies to any set in Tile(£2; R?). To
state our result, we first introduce some refinements of the notion of periodicity.

Please cite this article as: J. de Dios Pont, J. Grebik, R. Greenfeld et al., Periodicity and
decidability of translational tilings by rational polygonal sets, Expositiones Mathematicae
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J. de Dios Pont, J. Grebik, R. Greenfeld et al. / Expo. Math. xxx (XXXX) XXX 3

Fig. 1.1. Example of a polygonal set (2. The set {2 is shown in gray; it has three connected components.
The set E(§2) consists of the 22 segments in black whose union is the boundary of (2, 32, and V({2) is
the 21 endpoints of those segments.

Definition 1.2 (Single-Periodicity, Weak-Periodicity, Double-Periodicity). Let S C R? be
a countable set.

(1) We say that S is singly-periodic (or (h)-periodic) if it is invariant under translations
by some non-zero vector i € R? \ {0}.
(i) We say that S is weakly-periodic if it can be partitioned into finitely many
singly-periodic sets.
(iii) We say that S is double-periodic (or (hy, hy)-periodic) if it is periodic, i.e., invariant
under translations by two linearly independent vectors hy, h, € R

We show that any tiling by a rational polygonal tile must be weakly-periodic.

Theorem 1.2 (Structure of Tilings by Rational Polygonal Sets). Let 2 C R? be a rational
polygonal set. Then any T € Tile(£2; R?) is weakly-periodic.

We will address the periodicity and decidability of polygonal sets with irrational
vertices in a subsequent work.

1.2. Outline of our arguments

Let £2 C R? be a rational polygonal set. By translation and dilation invariance of
tilings, we can assume that V({2) C 72,

(1) In Section 2, by sliding the sliding components of a tiling by {2, we show that there
exists a tiling T of R? by {2 that is contained in Z.

(2) In Section 3, we discretize (2: We show that there are a natural number N and a
finite set F C N~!Z? such that every 0 € T C R? is a tiling of N~'Z? by F if and
only if it is an integer tiling of R? by 2.

Please cite this article as: J. de Dios Pont, J. Grebik, R. Greenfeld et al., Periodicity and
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(3) Then, using [1,6], where the periodic tiling conjecture was proved to hold in Z?2,
we show the existence of a periodic T C Z? which is a tiling of N~!Z? by F.
Theorem 1.1 and Corollary 1.1 then follow from combining this with (1) and (2).

(4) While the proof of Theorem 1.1 uses off-the-shelf results from [1,6], the proof
of Theorem 1.2 is more delicate and requires novel refinement of the technology
introduced in [6]. Indeed, by combining (2) and [6, Theorem 1.4], we merely obtain
that any integer tiling in Tile(f2; R?) is weakly periodic. The main obstacle to
transferring Theorem 1.2 from its integer counterpart is the possible sliding com-
ponents obstructing periodicity. In Section 4, we address this obstacle by analyzing
the connection between the sliding components of any set in Tile(f2; R?) and the
singly-periodic components of sets in Tile(F; N~!Z?), and conclude Theorem 1.2.

1.3. Notation

Let G = (G, +) be an Abelian group. For A C G, g € G we use the notation A + g
for the set {a + g:a € A}; the set A — g is defined similarly. For A, B C G, we write

A4+ B:={la+b:ae A;b e B};

the set A — B is defined similarly. .
For ¥ C RY, we denote the closure of ¥ by X and the boundary of X by 9.%.

2. From a tiling to an integer tiling

Let £2 C R? be a rational polygonal set. As tilings and periodicity are both invariant
under affine transformations, by translating {2 to make the origin one of its vertices and
dilating by the least common multiple of the denominators of both coordinated of all
the vertices we can assume without loss of generality that the vertices of (2 are in Z2.
In other words, we may assume that {2 is an integer set. If {2 tiles we say that it is an
integer tile.

Definition 2.1 (Integer Tiling). A tiling T e Tile(f2; R?) is called an integer tiling if
V(£2) + T is entirely contained in Z>.

The goal of this section is showing that any tiling of R? by {2 gives rise to an integer
tiling 7" of R? by {2, as stated in the following lemma.

Lemma 2.2 (Existence of Integer Tiling). Let 2 C R? be an integer polygonal tile. Then
there exists T e Tile(£2; R?) such that T C 7.

We will use the vertex-adjacent equivalence relationship:

Definition 2.3 (Integer Tile, Vertex-Sharing Equivalence Class). Let {2 be an integer tile.
For ¢,¢ in R? we say that t ~q t' if (V(£2) 4+ 1) N (V(2) + 1) is not empty. If T is
a tiling of R? by {2, the relationship A induces (by transitive closure) an equivalence
relationship in 7. We denote this equivalence relationship by t ~, ¢'.

Please cite this article as: J. de Dios Pont, J. Grebik, R. Greenfeld et al., Periodicity and
decidability of translational tilings by rational polygonal sets, Expositiones Mathematicae
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2.1. Reduction

The following lemma shows that to prove Lemma 2.2 it suffices to show that every
polygonal tile can be repaired to a tile with a unique vertex sharing component.

Lemma 2.4 (Vertex-Sharing Tiling by an Integer Tile Is an Integer Tiling). Let {2 be an
integer tile, so that T is a tiling of R?> by §2 containing 0. If t ~¢ t' for any elements
t,t of T, then T C 7>

Proof. If {2 is an integer tile r ~, ¢’ implies that t —¢' € Z*. Let t € T. By assumption,
since 0 € T, we have 0 ~, t. This means that there is a path 0 =1, f,, ..., 1, =t with
tjeT and t; ~q ti1g fori =1,...,n — 1. Therefore,

n—1
I—O=Zti+1 -t

=1
is in Z2, as claimed. 0O

2.2. Sliding

Lemma 2.4 reduces the proof of Lemma 2.2 to showing, for any integer tile {2 C
R2, the existence of a tiling T € Tile({2; R?) that is ~g-connected, i.e., has a
single ~ p-equivalence class. This will be achieved in this subsection, by developing
a sliding machinery, which allows one to shift the ~-components of a given tiling
T e Tile({2; R?), while preserving the tiling, to eventually merge all of the components
into a tiling T’ € Tile(f2; R?) with a single ~-equivalence class (see Fig. 2.2 for an
illustration).

This is done by first analyzing the structure of the ~ (-tiling-components, and showing
that they are invariant under sliding in some direction v € R2 ie, R+Ti+8v=0N+T,
for every § e R and T; € T/ ~, (see Fig. 2.1 for an illustration).

Lemma 2.5 (Tiling-Components Slide). Let T be a tiling of R? by a polygonal tile 12,
let T;, i € I, be the equivalence classes of

T = |_| T; 2.1
iel
by ~q. Then there exists a unit vector v € R? such that each set W; = 2 + Tj is

vR—invariant.

Remark 2.6. See also [3, Theorem 1.7] for a related decomposition into ‘“rational
components” of tilings of a torus.

Proof. For D C R? we say that x € D is a proper vertex of D if for no neighborhood
B.(x), the intersection of B.(x) N dD is a segment.

Please cite this article as: J. de Dios Pont, J. Grebik, R. Greenfeld et al., Periodicity and
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Fig. 2.1. In blue, green and orange, three sliding components, W1, W, W3, of a tiling, with a sliding direction
v.

We first show that if xp € d({2 + S) is a proper vertex of {2 + S, then S is not
~g-closed, i.e., there exist t € T \ S and s € S such that s ~, t.

Indeed, for all € there exists a 7. in T \ § so that B.(xo) N (2 + t.) # @. Since
the set 7' is uniformly discrete and {2 is bounded, there must exist t € 7 \ S so that
(24 1) N Be(xp) # @ for all € > O (or, equivalently, xo € Q2 +1). Let {t,...t,} be the
set of all elements in 7'\ S with the property that x, € 2+ t;, and {sq,...s,} be the set
of the elements in S with the property that xo € 2 4 s;. (Note that none of these sets is
empty.) Then we must be in one of the following three scenarios:

1.m=1,and xo € V({2 + s51);
2.n=1,and xo € V(2 4+ 11);
3. There are 1 < j <7 and 1 <k < m such that xg € V(2 +1¢;) N V(2 + sp).

In the first case, we have that xo € 2+ fors € S only if s = s1. Therefore x( is not
a proper vertex of {2+ S as xo ¢ V({2) + s;. In the second case, by the same argument
we show that x( is not a proper vertex of 2+ (7 \ S). This leads to a contradiction, since
(24 (T\ S)) = 3(2+S). In the third case, our conclusion holds; indeed, in this case,
ti =0 Sk.

Now, if an open set D has no proper vertices, then 3D is a closed subset of R? which
is locally a line, and therefore a union of parallel lines in direction v € R?. Since 3D is
invariant under translations by v, also D is invariant under translations by I Indeed, since
dD does not contain x for any point x € D, we must have that 3D does not intersect
x + UR. In particular, x + ¥R C D.

Please cite this article as: J. de Dios Pont, J. Grebik, R. Greenfeld et al., Periodicity and
decidability of translational tilings by rational polygonal sets, Expositiones Mathematicae
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Fig. 2.2. The ~g-classes from Fig. 2.1 before sliding (left) and after sliding (right).

/

We conclude that R? = Llic; 2+ T, where 24T, is v; invariant. However, as 2+ T;
is not empty, and 2 + 7, N 2+ T; = P if i # j, all of the vectors v; must be parallel.
This concludes the proof. [

Using Lemma 2.5, one can now slide the ~gp-components of a given tiling T €

Tile(£2; R?) to merge them into a single ~qp-component of another tiling 7’ &
Tile(2; R?).

Lemma 2.7 (Merge Components by Sliding). Suppose that T is a tiling of R* by a
polygonal tile (2, and let Ty, T», ... and v € R?>\ {0} be as in Lemma 2.5. Then there
exist real coefficients sy, S, ... such that

T — I_l T, + s;v € Tile(2; R?)

and T' has a single ~ g-equivalence class.

Proof. Applying an affine transformation, we may assume without loss of generality that
v =(0,1). Denote W; .= 2+ T;. Let L = R x {0}, and L; := {(x,0):3y, (x,y) € W;}.
Then, since {2 is open and T = | |7; is a tiling by {2, the sets L; are open, non-
overlapping and non-empty. Since the set T is a tiling by {2, the distance between any
two elements in 7 is at least

§ = min{|x|:x € R?, 2N (£ + x) has zero measure } > 0.

Thus, for any R there are finitely many L; at distance at most R from 0, and so, by
reordering if needed, we may assume that the sets L; are ( ordered so that d(L;,0) <
d(L;41,0). This implies that for i > 1, one has L; N Uj<i L; #90.

We will define the numbers s; by induction. Set s; = 0. For i > 1 suppose that
st,...,8—1 were already chosen to satisfy the claim. We will now define s; from the
values of sy, ..., s;—;. From the ordering of L, L,, ... it follows that there must exist

Jj <iandx € L such that x € 9L; N JL}, or equivalently,
x+vR CI2+T)NAR+T)).

Please cite this article as: J. de Dios Pont, J. Grebik, R. Greenfeld et al., Periodicity and
decidability of translational tilings by rational polygonal sets, Expositiones Mathematicae
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Thus, there are t; € T;, t; € T; such that both V(£24#)N(x+vR) and V(£2+7;)N(x+UR)
are non-empty. We can therefore choose v; € V(2 + ;) N (x + UR) and v; € V(2 +
1;) N (x + UR). We then set s; € R to satisfy

(sj — sV = v; — vy,

which ensures that an element of T; 4 s;v is ~-connected to an element of T; +s; v,
while preserving the ~p-connectedness of 7; and 7;. [

Combining Lemmas 2.4 and 2.7 we obtain Lemma 2.2, as needed.

3. Encoding an integer tile as a discrete tile

In this section, we prove Theorems 1.1 and Corollary 1.1 by a reduction from the
continuous setup to the discrete setup.

3.1. Discrete translational tilings

Let (G, +) be a finitely generated Abelian group. A finite set F C G tiles G by
translations if there exists a set 7 C G such that F @ T = G, namely, the translations
of Falong T: F +1¢,¢t €T, cover every point in G exactly once. As in the continuous
setup, we denote

Tile(F; G) :={T C G:F® T = GJ}.

The discrete version of the periodic tiling conjecture is know to hold in Z [14] and
Z? [1,6], but was recently disproved in Z?> x G, for some high-rank finite groups Gy,
and thus (using [13]) in Z¢ for sufficiently large d [7].

3.2. Discretization

In this subsection, we encode any rational polygonal set {2 as a finite set in a two-
dimensional lattice, in a way that preserves the tiling properties of {2. This will enable
us to utilize the proof of the two-dimensional discrete periodic tiling conjecture [1,6] to
obtain Theorem 1.1 and deduce Corollary 1.1.

Let {2 be an integer set. Consider all integer translates of the finitely many segments
in E(£2). These segments partition [0, 1]?> into M open polygonal sets Py, ..., Py_; (up
to null sets), see Fig. 3.1.

Observe that for each v € Z? and each P;, either (v 4+ P;) is in {2 or is disjoint from
.Let N = N(f2) = 3k +4, where k € N is such that M < k2. To each P; we associate
a subset S; of {0, ..., N — 1}? as follows:

1.For1 < i < M —1, let (a;,b;) € {1,...,k}2 be the unique pair such that
(a; — 1)+ k(b; — 1) = i. We define the set S; to consist of the 8 points

@,b)€{0,...,N — 1>\ {(3a;, 3b)}
which satisfy |@ — 3a;| < 1 and |b — 3b;| < 1.

Please cite this article as: J. de Dios Pont, J. Grebik, R. Greenfeld et al., Periodicity and
decidability of translational tilings by rational polygonal sets, Expositiones Mathematicae
(2024) 125620, https://doi.org/10.1016/j.exmath.2024.125620.
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Fig. 3.1. (Left) An integer set {2 and (Right) its associated partition into translations of subsets of [0, 113,
with Py in gray; P; in green; P, in orange; and Pz in blue.

Q.

C s -

_): ‘S2 A.)4
= )
=g

Sn SO
S | |
\_ (] S S
(A) When M =4, k=2 and (B) When M =7, k=3 and
N =10 (e.g., for Q as in Figure 3.1). N =13.
Fig. 3.2. The associated sets So, ..., Sy—1 in two different cases. (Here, a point (a,b) € {0, ..., N)? is

represented by a square (a, b) + [0, 1]2.).

2. For i = 0, we first define S‘o =1{0,...,N —1}? \ Uﬁ”;ll S;. The set Sy is defined
as So U {(N, 1), (1, NI\ {©, D, 1, 0)).

See Fig. 3.2.
Now we associate to {2 the (discrete) set:
F=r=|] || @+4+s)ciz’ 3.1
vez2 i=0...M-1
(W+P)CR

(see Fig. 3.3.) Thus, for every v € Z2, S; € {So, ..., Sy—1}, either (v + %Si) C F or
(v+ #Si) N F is empty.
We show that this F “encodes” the tiling properties of (2:

Please cite this article as: J. de Dios Pont, J. Grebik, R. Greenfeld et al., Periodicity and
decidability of translational tilings by rational polygonal sets, Expositiones Mathematicae
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[]

Fig. 3.3. The tile F(2) c N~'Z? for 2 as in Fig. 3.1. A point (a,b) € N~'Z? is represented here by a
square (a, b) + [0, %]2. The colored squares correspond to the elements in F C N ~172 while the white
squares correspond to the elements in N~!Z? that are not in F.

Lemma 3.1. Let {2 be an integer set, and let N = N({2) and F = F({2) be as
constructed above. Then we have:

(i) The set Tile(£2; R?) is empty if and only if the set Tile(F; ~7?) is empty.
(ii) For every set 0 € T C R%, T € Tile(F; %Zz) if and only if T e Tile(2; R?) with
T C 7%
(iii) If Ty, T\ are subsets of 72, and v € 72, then 2 ® Ty + v = 2 & T, if and only if
F@TQ+B=F®TI.

Proof. Observe that (i) follows from (ii) and Lemma 2.2. Indeed, if Tile(§2; R?) in
non-empty then by Lemma 2.2 there exists 0 € T € Tile(f2; R?) such that T C Z?,
thus, (ii) implies that 7 € Tile(F; %Zz). Conversely, if Tile(F; %ZZ) is non-empty then
it contains a set 7' such that O € T'; thus, again, by (ii), 7 € Tile({2; R?).

We prove (ii). Suppose first that 0 € T e Tile(f2; R?) and T C Z?. Then, for
any P, € {Py,..., Py_1} and x € 72 there exists a unique translate ¢, , € T so that
(x + P;) C (£2 + t;x). Note that by the definition of S; we have (x + P;) C (2 +¢;,) if
and only if (x + %S,-) C (F +t; ). This implies that

TeF= || (+%8)=+2
xez?

i€{0,...M—1}

ie., T e Tile(F; (£2)).
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Conversely, suppose that 0 € T € Tile(F; %Zz), then, by construction of Sy and since
F is a tile of %ZZ, we must have that the set

Fo=|] | «a+ySocF

vez? (x+Py)C 2

is non-empty. Thus, since T € Tile(F’; iZz), by construction of F, we have that if ¢, ¢’
are two distinct elements of 7' such that Fy + [0, 11>+ and Fy + [0, 1>+ share an
edge then t' — r € Z?. This means that every set in Tile(F; +-7Z?) must be contained in
some coset of Z? in %Zz. In particular, as by assumption O € T, we must have T C Z>.

We now show that 7 € Tile(£2; R?). Since 0 € T € Tile(F; +7Z?), for every S; €
{So, ..., Sy_1} and x € Z?, there exists a unique f; » € T such that (x—i—%S,-) C (F+t ).
Thus, by construction of S;, we have that (x + P;) C ({2 + #;,); hence

TodN= LJ x+P)=R>

xez2

ie., T e Tile(12; R?).
It remains to prove (iii). Fori =0,..., M — 1, let

Xio={xe€Zx+PCR®Ty+71), X1 =xeZ:x+P CR®T),
and
Yio=1{x¢€ Z:x+N7'S;c Fo® To+u}, Y= {x+NflS,- C FoT}.

As argued above, we have X; ; = Y; ; foreveryi =1,...,M —1and j = 0,1. We
therefore have that X;o = X;; forevery i = 0,...,M — 1 if and only if Y;o = Yi
for every i = 0,...,M — 1. In other words, 2 ® Ty +v = 2 @ T; if and only if
FOTy+v=F®T, as claimed. O

3.3.

Combining Lemmas 3.1 with [6, Theorem 1.5], we can now prove Theorem 1.1, as
follows.

Proof of Theorem 1.1. Let {2 be a rational polygonal tile and, by translation invariance,
assume without loss of generality that 0 € V({2). Then, as V({2) C Q? is finite, there
exists n € N such that V(n{2) C 7. Let 2 .= n{2. Note that T e Tile(£2; R?) if and
only if nT € Tile({2; R?) and T is doubly-periodic if and only if nT is doubly-periodic.
Thus, we can equivalently prove the statement for (2.

Let N €e N = N(2) and F = F(f2)) ¢ N7'Z? be as in Lemma 3.1. Then,
by Lemma 3.1(i) and dilation invariance, as by assumption Tile({2; R?) is non-empty,
Tile(NF; Z?) is non-empty, i.e., NF C 72 tiles Z2. ~

By [6, Theorem 1.5], we then have the existence of a doubly-periodic T C 72
such that 7 € Tile(N~F : Z2). By Translation invariance, we can assume without loss
of generality that 0 € T.

Letting 7 := N~'T C N7'Z? we have that 0 € T e Tile(F; N~'Z?). By
Lemma 3.1(ii), we then have that T € Tile(f2; R?) and T C Z?. As T is doubly-periodic,
this concludes the proof. [
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3.4.
We now deduce Corollary 1.1, as follows.

Proof of Corollary 1.1. We describe an algorithm that computes whether a given rational
polygonal set tiles R? by translations: Let 2 be a rational polygonal set. The algorithm
first computes the number N and the finite set F C N~'Z2, as described in the proof of
Lemma 3.1. By Lemma 3.1(i), {2 tiles R? if and only if F tiles N~'Z2.

The algorithm then computes all the ways to tile finite regions in N~!Z? by translated
copies of F' (“patches”), with growing diameter. If F does not tile, then, by compactness,
the largest possible diameter of any patch formed by translated copies of the F' must
be finite. Thus the algorithm will detect that F, and thus {2, is not a tile after finitely
many steps. If F tiles, then a periodic tiling exists; and so, after finitely many steps
the algorithm will detect a tiling of a patch that satisfies periodic boundary conditions
(i.e., the patch a fundamental domain of some lattice in N~!Z?), and will then output
that F, and thus {2 is a tile. O

4. Structure of tilings by a rational tile

In this section, using Lemma 3.1 and analyzing the structure of discrete tilings by
F({2). and its connection to the structure of tilings by the original rational polygonal set,
we prove Theorem 1.2.

We begin by recalling the discrete analog of Theorem 1.2, which was established in [6,
Theorem 1.4].

Theorem 4.1 (Tilings in Z* are Weakly-Periodic). Let F C Z? be a tile. Then there exist
¢ = c(F) and d = d(F) such that there are m < c pairwise incommensurable vectors
hiy..., hy € 7%\ {0} with |hj| < d™ such that every tiling T of Z? by F admits a
decomposition

T=Tu---uUT, 4.1)

such that T; is (h;)-periodic. In fact, there exists a lattice A C 7?2 such that for every
x € 72 there is 1 < J < m such that the set (A+x)NT is {h;)-periodic.

Proof. See [6, Theorem 1.4]. [

Observe that by combining Theorem 4.1 and Lemma 3.1(ii), we can immediately
deduce that any integer tiling in Tile({2; R?) is weakly periodic. The main barrier to
transferring Theorem 1.2 from its integer counterpart is the possible sliding components
obstructing periodicity. The proof of Theorem 1.2 consists of showing that the decompo-
sition of Theorem 4.1 is compatible with the sliding decomposition in Lemma 2.5, in the
sense that each of the singly-periodic pieces in the decomposition (4.1) can be further
decomposed into pieces, each contained in a sliding component of the partition (2.1). In
order to show that, we introduce the notion earthquake' decomposition of discrete tilings.

' The terminology of earthquakes also appears in [9], but there it is used in the context of continuous
tilings and the definition (although closely related) is slightly different.
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4.1. Earthquake decomposition

Definition 4.1 (Earthquake Decomposition of a Discrete Tiling). Let F C N~'Z? be
finite. Suppose T € Tile(F; N™'Z?), and v € N~'Z? then we define the v-discrete
earthquake decomposition of T by F as a decomposition

T=|_|P,

PePlates(T,v)

where:

(i) For each set P € Plates(T, v) the set F @ P is Zv-periodic.
(ii) If P € Plates(T, v) and P’ C P satisfies (i) then P’ € {P, @}.

The set’ Plates(T, v) is the set of fectonic plates arising from earthquakes in the
direction v.

The following Lemma shows that the discrete decomposition into singly-periodic sets
is compatible with a discrete earthquake decomposition.

Lemma 4.2. Let F C N~'Z? be a tile of N~'Z%, T € Tile(F; N~'Z?) and Plates(T, v)
be the v-earthquake decomposition of T. Then there are pairwise incommensurable
vectors hy, ..., hy € Z*\{0} such that for each P € Plates(T, ) there is a decomposition
P = |_|;f‘:1 P; such that P; is (h;)-periodic for every 1 < j < m.

Proof. Let F := NF. Then, as T € Tile(F; N~'Z?) if and only if NT € Tile(F; Z?), it
suffices to prove the statement for any 7 € Tile(F; Z?). By translating, we may assume
without loss of generality that F contains the origin. Fix some P € Plates(T, 7), and
define T* € Tile(F, Z?) as

™" =pPu || P+
P’ePlates(T,v)\{ P}

Note that T* is obtained from 7 by an earthquake that shifts all the plates but P by kv,
and that P € Plates(T*, ¥) for all k by the construction of T*.

By Theorem 4.1, there is M € N and pairwise incommensurable vectors ﬁl, R ﬁm €
M7? with the property that for every coset I' = (x + MZ?) € Z?>/MZ? there is
1 < j=jk,I')y <m such that ' N TX is (fz_j)-periodic. By adding a vector (if needed)
we can assume without loss of generality that hy is parallel to U, and by enlarging hy (f
needed) we can further assume that ﬁl = ¢{Mv for some £ € N.

Let ' = (x + MZ? € 7Z*/A. For each k € Z, let h(k,I") = ﬁj(k,p). By the
pigeonhole principle, there exist 0 < k < k' < m such that h(Mk, I') = h(MkK', I').
We let 0 < kr < m — 1 be the smallest such that there exists kr < kK’ < m with
h(Mkr, I'y = h(Mk’, I') and set kp < k' < m to be the smallest among all possible k’
with this property. Let h(I") .= h(Mkp, I').

2 Note that a decomposition satisfying (ii) is the maximal one amongst all decompositions satisfying (i)
and therefore always exists and is unique.
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For each j = 2,...m, let P; C P be the set of points x in P such that h(x+MZ7?) =
hj, and let P; C P; be the set of points x in P; such that the coset x + &7 is entirely
contained in P. Clearly, for each 2 < j < m, the set P; is (ﬁ j)-periodic.

We will show that there exists n € N, 1ndependent of the choice of P € Plates(T, v),
such that each of the sets PJ =Pi\Pj,j=2,...,m,is (nﬁl)-periodic. Then, the
result will follow by setting h; := nhl, hj = h for j=2,...,m, and

Py =P\ (U}, P)) = {x € Prh(x + MZ?) = Iy} U (""}Lzﬁf)’

which is (h)-periodic. It thus suffices to show for each j = 2, ..., m that the set f’j is
(n€Mv)-periodic with n = [rez2/mzekr — k).

Let 2 < j < m. Suppose that x € P; and let I" := x + MZ?. Then, by the definition
of P there is k € Z such that the point y := x + kh € I'isin T \ P. Observe that as
hje MZ2 we have I' = x + MZ* = y + MZ*. Thus as by the definition of (kr, k)
both TMkr O T and TY*r N T are (h;)-periodic and x € TMkr N TMr N T, we have
that

y=x+khj e T 0T,

Therefore, the point z :== y — Mkr is in T N I'". In turn, we obtain that the point
7 =z+Mkpv=y— Mkp — kp)v

is in TM¥r N I'; and so, by (ﬁj)-periodicity of T"¥r N I, we have that the point
x' =7 —khj=x—M(kp —kp)o

is also in T7M¥r N I". Observe that since x € 13j C P and P € Plates(T, v), the point x’
is in P, and so, as x’ € I', we have that x" € P;. Moreover, since y € T \ P we have

y € F + P, and so, by the v- periodicity of F + P, we obtain that neither z nor 7’ is in
F + P and, in particular, 7/ = x" + kh ¢ P. This shows that x’ = x — M(k[‘ — K )v
is in P Similarly, one can show that the point x + M(kp — k/»)v is in P,, by simply
repeating the above argument with the roles of kp and k' being swapped. We therefore
conclude that P is (nh)- -periodic with n = [[ 2 /MZZ(kF kK. O

4.2.

Observe that using Lemma 4.2, to complete the proof of Theorem 1.2, it only remains
to show that the discrete earthquake decomposition in Lemma 4.2 is compatible with the
continuous earthquake structure in (2.

Proof of Theorem 1.2. Let {2 be a rational polygonal tile, by translation invariance,
we can assume without loss of generality that 0 € V({2). Let T € Tile({2; R?). By
Lemma 2.5, there exists a direction v € R? \ {0} such that T can be decomposed as
T = | |;c; Qi, where for each i € I the set N Q; is vR-invariant. By invariance under
affine transformations, we may assume that v = (0, 1). ~

As V(£2) ¢ Q7 is finite, there exists n € N such that V(nf2) C Z>. Let 2 := nf2.
Note that T € Tile(2; R?) if and only if nT € Tile(f); R?) and T is weakly-periodic if
and only if nT is weakly-periodic. Thus, we can equivalently prove the statement for {2.
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Let T’ € Tile({2; R?) be the tiling that arises from merging the ~7 components of
T by sliding, as described in Lemma 2.7. Then, by construction, there are coefficients
s; € R such that

T'=| |0 —s:0, 1),
iel
and by Lemma 2.4 T is a subset of Z2, i.e., T is an integer tiling by 2.

Let F = F(f}) be as in (3.1). Then, by Lemma 3.1(ii) T’ € Tile(F; N~'7Z?%), and by
Lemma 3.1(iii), if for a subset S of T’ the set NS is (0, DR-invariant, then F & § is
(0, 1)Z-invariant. Therefore, the decomposition of 7" into (0, 1)-discrete earthquakes by
F is a refinement of the decomposition of 7’ into continuous earthquakes by 2. In other
words, for i € I there exist sets P, ; C Z%, j € J; such that Q; —5;(0, 1) = ||, P:;
and the (0, 1)-earthquake decomposition of 7" by F is 7' =| |, ; P, ;.

Thus, by Lemma 4.2, foreach i € I, j € J; there exists h; ; € 7?2 such that the set P ;
is (h; j)-periodic, and the vectors h; ; take finitely many possible values in Z>. Therefore,
each Q; —s;(0, 1) = || el P; ; is weakly-periodic. By translation invariance, this implies
that each Q; is weakly-periodic with the same periods. Therefore, as T = | |,_, Q;, the
tiling T is weakly-periodic. We thus have Theorem 1.2. [J
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