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Abstract

The periodic tiling conjecture asserts that if a region Σ ¢ Rd tiles Rd by translations then it

admits at least one fully periodic tiling. This conjecture is known to hold in R, and recently it was

disproved in sufficiently high dimensions. In this paper, we study the periodic tiling conjecture

for polygonal sets: bounded open sets in R2 whose boundary is a finite union of line segments.

We prove the periodic tiling conjecture for any polygonal tile whose vertices are rational. As a

corollary of our argument, we also obtain the decidability of tilings by rational polygonal sets.

Moreover, we prove that any translational tiling by a rational polygonal tile is weakly-periodic,

i.e., can be partitioned into finitely many singly-periodic pieces.

© 2024 Elsevier GmbH. All rights are reserved, including those for text and data mining, AI training,

and similar technologies.
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1. Introduction

Let Σ ¢ Rd be a bounded, measurable set. We say that Σ tiles Rd by translations

if there exists a countable set T ¢ Rd such that the translations of Σ along the points
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of T , Σ + t , t ∈ T , cover almost every point in Rd exactly once. In this case, we write

Σ · T = Rd and refer to Σ as a translational tile and to T as a tiling of Rd by Σ . Let

Tile(Σ ;Rd ) denote the set of all the tilings of Rd by Σ , i.e.,

Tile(Σ ;Rd ) = {T ¢ Rd :Σ · T = Rd}.

Since in this work we consider tilings by only translations, in what follows we sometime

abbreviate and write “tiling” to refer to tiling by translations and “tile” to refer to

translational tile.

The study of translational tiling consists of studying the structure of sets in Tile(Σ ;Rd ).

A major conjecture in this area is the periodic tiling conjecture [8,11,15], which asserts

that if Tile(Σ ;Rd ) is non-empty, then it must contain at least one periodic set, i.e., a set

T ∈ Tile(Σ ;Rd ), which is invariant under translations by lattice Λ ¢ Rd (here, a lattice

is a full rank discrete subgroup).

The periodic tiling conjecture (PTC) is known to hold in R [11], for convex domains

in all dimensions [12,16] and for topological disks in R2 [2,9,10]. On the other hand,

recently, the periodic tiling conjecture was disproved in sufficiently high dimensions [7],

even under the assumption that the tile is connected [4].

One important motivation to study the structure of tilings and the periodic tiling

conjecture in particular is the connection to the decidability of tilings. Indeed, in [17] it

was shown that if the periodic tiling conjecture were true, then the question of whether

a set is a tile or not would be decidable. Recently, in [5], it was shown that translational

tilings are undecidable if the dimension is unbounded. However, the decidability of

translational tilings (by a single tile) in Rd , for a fixed d ⩾ 2, is still open. In this paper

we study the periodicity and decidability of planar translational tilings by polygonal sets.

1.1. Polygonal tiles

A polygonal set is a bounded open set Ω ¢ R2, whose boundary is a finite union

of segments. Note that a polygonal set can certainly be disconnected and its connected

components are not necessarily simply-connected. We denote the vertices of Ω by V (Ω ),

and the edges of Ω by E(Ω ). See Fig. 1.1 for illustration.

We say that a polygonal set Ω is rational if the set V (Ω ) − v is contained in Q2, for

any v ∈ V (Ω ).

Our first result is that the periodic tiling conjecture holds for rational polygonal tiles.

Theorem 1.1 (PTC Holds for Rational Polygonal Tiles). A rational polygonal set Ω ¢ R2

tiles R2 by translations if and only if Tile(Ω;R2) contains a periodic set.

Using the proof of Theorem 1.1 we also obtain the decidability of tilings in R2 by

rational polygonal tiles.

Corollary 1.1. There is an algorithm that computes, upon any given rational polygonal

set Ω , whether Tile(Ω;R2) is empty or not.

In addition, we establish a structural result that applies to any set in Tile(Ω;R2). To

state our result, we first introduce some refinements of the notion of periodicity.
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Fig. 1.1. Example of a polygonal set Ω . The set Ω is shown in gray; it has three connected components.

The set E(Ω ) consists of the 22 segments in black whose union is the boundary of Ω , ∂Ω , and V (Ω ) is

the 21 endpoints of those segments.

Definition 1.2 (Single-Periodicity, Weak-Periodicity, Double-Periodicity). Let S ¢ R2 be

a countable set.

(i) We say that S is singly-periodic (or ïhð-periodic) if it is invariant under translations

by some non-zero vector h ∈ R2 \ {0}.
(ii) We say that S is weakly-periodic if it can be partitioned into finitely many

singly-periodic sets.

(iii) We say that S is double-periodic (or ïh1, h2ð-periodic) if it is periodic, i.e., invariant

under translations by two linearly independent vectors h1, h2 ∈ R2.

We show that any tiling by a rational polygonal tile must be weakly-periodic.

Theorem 1.2 (Structure of Tilings by Rational Polygonal Sets). Let Ω ¢ R2 be a rational

polygonal set. Then any T ∈ Tile(Ω;R2) is weakly-periodic.

We will address the periodicity and decidability of polygonal sets with irrational

vertices in a subsequent work.

1.2. Outline of our arguments

Let Ω ¢ R2 be a rational polygonal set. By translation and dilation invariance of

tilings, we can assume that V (Ω ) ¢ Z2.

(1) In Section 2, by sliding the sliding components of a tiling by Ω , we show that there

exists a tiling T of R2 by Ω that is contained in Z2.

(2) In Section 3, we discretize Ω : We show that there are a natural number N and a

finite set F ¢ N−1Z2 such that every 0 ∈ T ¢ R2 is a tiling of N−1Z2 by F if and

only if it is an integer tiling of R2 by Ω .
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(3) Then, using [1,6], where the periodic tiling conjecture was proved to hold in Z2,

we show the existence of a periodic T ¢ Z2 which is a tiling of N−1Z2 by F .

Theorem 1.1 and Corollary 1.1 then follow from combining this with (1) and (2).

(4) While the proof of Theorem 1.1 uses off-the-shelf results from [1,6], the proof

of Theorem 1.2 is more delicate and requires novel refinement of the technology

introduced in [6]. Indeed, by combining (2) and [6, Theorem 1.4], we merely obtain

that any integer tiling in Tile(Ω;R2) is weakly periodic. The main obstacle to

transferring Theorem 1.2 from its integer counterpart is the possible sliding com-

ponents obstructing periodicity. In Section 4, we address this obstacle by analyzing

the connection between the sliding components of any set in Tile(Ω;R2) and the

singly-periodic components of sets in Tile(F; N−1Z2), and conclude Theorem 1.2.

1.3. Notation

Let G = (G, +) be an Abelian group. For A ¢ G, g ∈ G we use the notation A + g

for the set {a + g : a ∈ A}; the set A − g is defined similarly. For A, B ¢ G, we write

A + B := {a + b : a ∈ A; b ∈ B};

the set A − B is defined similarly.

For Σ ¢ Rd , we denote the closure of Σ by Σ and the boundary of Σ by ∂Σ .

2. From a tiling to an integer tiling

Let Ω ¢ R2 be a rational polygonal set. As tilings and periodicity are both invariant

under affine transformations, by translating Ω to make the origin one of its vertices and

dilating by the least common multiple of the denominators of both coordinated of all

the vertices we can assume without loss of generality that the vertices of Ω are in Z2.

In other words, we may assume that Ω is an integer set. If Ω tiles we say that it is an

integer tile.

Definition 2.1 (Integer Tiling). A tiling T ∈ Tile(Ω;R2) is called an integer tiling if

V (Ω ) + T is entirely contained in Z2.

The goal of this section is showing that any tiling of R2 by Ω gives rise to an integer

tiling T ′ of R2 by Ω , as stated in the following lemma.

Lemma 2.2 (Existence of Integer Tiling). Let Ω ¢ R2 be an integer polygonal tile. Then

there exists T ∈ Tile(Ω;R2) such that T ¢ Z2.

We will use the vertex-adjacent equivalence relationship:

Definition 2.3 (Integer Tile, Vertex-Sharing Equivalence Class). Let Ω be an integer tile.

For t, t ′ in R2 we say that t ≈Ω t ′ if (V (Ω ) + t) ∩ (V (Ω ) + t ′) is not empty. If T is

a tiling of R2 by Ω , the relationship ≈Ω induces (by transitive closure) an equivalence

relationship in T . We denote this equivalence relationship by t ∼Ω t ′.
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2.1. Reduction

The following lemma shows that to prove Lemma 2.2 it suffices to show that every

polygonal tile can be repaired to a tile with a unique vertex sharing component.

Lemma 2.4 (Vertex-Sharing Tiling by an Integer Tile Is an Integer Tiling). Let Ω be an

integer tile, so that T is a tiling of R2 by Ω containing 0. If t ∼Ω t ′ for any elements

t, t ′ of T , then T ¢ Z2.

Proof. If Ω is an integer tile t ≈Ω t ′ implies that t − t ′ ∈ Z2. Let t ∈ T . By assumption,

since 0 ∈ T , we have 0 ∼Ω t . This means that there is a path 0 = t1, t2, . . . , tn = t with

t j ∈ T and ti ≈Ω ti+1 for i = 1, . . . , n − 1. Therefore,

t − 0 =

n−1
∑

j=1

ti+1 − ti

is in Z2, as claimed. □

2.2. Sliding

Lemma 2.4 reduces the proof of Lemma 2.2 to showing, for any integer tile Ω ¢
R2, the existence of a tiling T ∈ Tile(Ω;R2) that is ∼Ω -connected, i.e., has a

single ∼Ω -equivalence class. This will be achieved in this subsection, by developing

a sliding machinery, which allows one to shift the ∼Ω -components of a given tiling

T ∈ Tile(Ω;R2), while preserving the tiling, to eventually merge all of the components

into a tiling T ′ ∈ Tile(Ω;R2) with a single ∼Ω -equivalence class (see Fig. 2.2 for an

illustration).

This is done by first analyzing the structure of the ∼Ω -tiling-components, and showing

that they are invariant under sliding in some direction v⃗ ∈ R2, i.e., Ω +Ti +¶v⃗ = Ω +Ti ,

for every ¶ ∈ R and Ti ∈ T/ ∼Ω (see Fig. 2.1 for an illustration).

Lemma 2.5 (Tiling-Components Slide). Let T be a tiling of R2 by a polygonal tile Ω ,

let Ti , i ∈ I , be the equivalence classes of

T =
⨆

i∈I

Ti (2.1)

by ∼Ω . Then there exists a unit vector v⃗ ∈ R2 such that each set Wi := Ω + Ti is

v⃗R−invariant.

Remark 2.6. See also [3, Theorem 1.7] for a related decomposition into “rational

components” of tilings of a torus.

Proof. For D ¢ Rd we say that x ∈ ∂ D is a proper vertex of D if for no neighborhood

Bϵ(x), the intersection of Bϵ(x) ∩ ∂ D is a segment.
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Fig. 2.1. In blue, green and orange, three sliding components, W1, W2, W3, of a tiling, with a sliding direction

v.

We first show that if x0 ∈ ∂(Ω + S) is a proper vertex of Ω + S, then S is not

∼Ω -closed, i.e., there exist t ∈ T \ S and s ∈ S such that s ≈Ω t .

Indeed, for all ϵ there exists a tϵ in T \ S so that Bϵ(x0) ∩ (Ω + tϵ) ̸= ∅. Since

the set T is uniformly discrete and Ω is bounded, there must exist t ∈ T \ S so that

(Ω + t) ∩ Bϵ(x0) ̸= ∅ for all ϵ > 0 (or, equivalently, x0 ∈ Ω + t). Let {t1, . . . tn} be the

set of all elements in T \ S with the property that x0 ∈ Ω + ti , and {s1, . . . sm} be the set

of the elements in S with the property that x0 ∈ Ω + si . (Note that none of these sets is

empty.) Then we must be in one of the following three scenarios:

1. m = 1, and x0 ̸∈ V (Ω + s1);

2. n = 1, and x0 ̸∈ V (Ω + t1);

3. There are 1 ⩽ j ⩽ n and 1 ⩽ k ⩽ m such that x0 ∈ V (Ω + t j ) ∩ V (Ω + sk).

In the first case, we have that x0 ∈ Ω + s for s ∈ S only if s = s1. Therefore x0 is not

a proper vertex of Ω + S as x0 ̸∈ V (Ω ) + s1. In the second case, by the same argument

we show that x0 is not a proper vertex of Ω + (T \ S). This leads to a contradiction, since

∂(Ω + (T \ S)) = ∂(Ω + S). In the third case, our conclusion holds; indeed, in this case,

t j ≈Ω sk .

Now, if an open set D has no proper vertices, then ∂ D is a closed subset of R2 which

is locally a line, and therefore a union of parallel lines in direction v⃗ ∈ R2. Since ∂ D is

invariant under translations by v⃗, also D is invariant under translations by l⃗. Indeed, since

∂ D does not contain x for any point x ∈ D, we must have that ∂ D does not intersect

x + v⃗R. In particular, x + v⃗R ¢ D.



Please cite this article as: J. de Dios Pont, J. Grebı́k, R. Greenfeld et al., Periodicity and
decidability of translational tilings by rational polygonal sets, Expositiones Mathematicae
(2024) 125620, https://doi.org/10.1016/j.exmath.2024.125620.

J. de Dios Pont, J. Grebík, R. Greenfeld et al. / Expo. Math. xxx (xxxx) xxx 7

Fig. 2.2. The ∼Ω -classes from Fig. 2.1 before sliding (left) and after sliding (right).

We conclude that R2 =
⨆

i∈I Ω +Ti , where Ω +Ti is v⃗i invariant. However, as Ω +Ti

is not empty, and Ω + Ti ∩ Ω + T j = ∅ if i ̸= j , all of the vectors v⃗i must be parallel.

This concludes the proof. □

Using Lemma 2.5, one can now slide the ∼Ω -components of a given tiling T ∈
Tile(Ω;R2) to merge them into a single ∼Ω -component of another tiling T ′ ∈
T ile(Ω;R2).

Lemma 2.7 (Merge Components by Sliding). Suppose that T is a tiling of R2 by a

polygonal tile Ω , and let T1, T2, . . . and v⃗ ∈ R2 \ {0} be as in Lemma 2.5. Then there

exist real coefficients s1, s2, . . . such that

T ′ :=
⨆

Ti + si v⃗ ∈ Tile(Ω;R2)

and T ′ has a single ∼Ω -equivalence class.

Proof. Applying an affine transformation, we may assume without loss of generality that

v = (0, 1). Denote Wi := Ω + Ti . Let L = R × {0}, and L i := {(x, 0) : ∃y, (x, y) ∈ Wi }.
Then, since Ω is open and T =

⨆

Ti is a tiling by Ω , the sets L i are open, non-

overlapping and non-empty. Since the set T is a tiling by Ω , the distance between any

two elements in T is at least

¶ := min{|x | : x ∈ R2, Ω ∩ (Ω + x) has zero measure } > 0.

Thus, for any R there are finitely many L i at distance at most R from 0, and so, by

reordering if needed, we may assume that the sets L i are ordered so that d(L i , 0) ⩽

d(L i+1, 0). This implies that for i > 1, one has L i ∩
⋃

j<i L j ̸= ∅.

We will define the numbers si by induction. Set s1 = 0. For i > 1 suppose that

s1, . . . , si−1 were already chosen to satisfy the claim. We will now define si from the

values of s1, . . . , si−1. From the ordering of L1, L2, . . . it follows that there must exist

j < i and x ∈ L such that x ∈ ∂L i ∩ ∂L j , or equivalently,

x + vR ¢ ∂(Ω + Ti ) ∩ ∂(Ω + T j ).
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Thus, there are ti ∈ Ti , t j ∈ T j such that both V (Ω+ti )∩(x+v⃗R) and V (Ω+t j )∩(x+v⃗R)

are non-empty. We can therefore choose vi ∈ V (Ω + t j ) ∩ (x + v⃗R) and v j ∈ V (Ω +
t j ) ∩ (x + v⃗R). We then set si ∈ R to satisfy

(s j − si )v⃗ = vi − v j ,

which ensures that an element of Ti + si v⃗ is ∼Ω -connected to an element of T j + s j v⃗,

while preserving the ∼Ω -connectedness of Ti and T j . □

Combining Lemmas 2.4 and 2.7 we obtain Lemma 2.2, as needed.

3. Encoding an integer tile as a discrete tile

In this section, we prove Theorems 1.1 and Corollary 1.1 by a reduction from the

continuous setup to the discrete setup.

3.1. Discrete translational tilings

Let (G, +) be a finitely generated Abelian group. A finite set F ¢ G tiles G by

translations if there exists a set T ¢ G such that F · T = G, namely, the translations

of F along T : F + t , t ∈ T , cover every point in G exactly once. As in the continuous

setup, we denote

Tile(F; G) := {T ¢ G : F · T = G}.

The discrete version of the periodic tiling conjecture is know to hold in Z [14] and

Z2 [1,6], but was recently disproved in Z2 × G0 for some high-rank finite groups G0,

and thus (using [13]) in Zd for sufficiently large d [7].

3.2. Discretization

In this subsection, we encode any rational polygonal set Ω as a finite set in a two-

dimensional lattice, in a way that preserves the tiling properties of Ω . This will enable

us to utilize the proof of the two-dimensional discrete periodic tiling conjecture [1,6] to

obtain Theorem 1.1 and deduce Corollary 1.1.

Let Ω be an integer set. Consider all integer translates of the finitely many segments

in E(Ω ). These segments partition [0, 1]2 into M open polygonal sets P0, . . . , PM−1 (up

to null sets), see Fig. 3.1.

Observe that for each v ∈ Z2 and each Pi , either (v + Pi ) is in Ω or is disjoint from

Ω . Let N = N (Ω ) = 3k + 4, where k ∈ N is such that M ⩽ k2. To each Pi we associate

a subset Si of {0, . . . , N − 1}2 as follows:

1. For 1 ⩽ i ⩽ M − 1, let (ai , bi ) ∈ {1, . . . , k}2 be the unique pair such that

(ai − 1) + k(bi − 1) = i . We define the set Si to consist of the 8 points

(ã, b̃) ∈ {0, . . . , N − 1}2 \ {(3ai , 3bi )}

which satisfy |ã − 3ai | ⩽ 1 and |b̃ − 3bi | ⩽ 1.
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Fig. 3.1. (Left) An integer set Ω and (Right) its associated partition into translations of subsets of [0, 1]2,

with P0 in gray; P1 in green; P2 in orange; and P3 in blue.

Fig. 3.2. The associated sets S0, . . . , SM−1 in two different cases. (Here, a point (a, b) ∈ {0, . . . , N }2 is

represented by a square (a, b) + [0, 1]2.).

2. For i = 0, we first define S̃0 := {0, . . . , N − 1}2 \
⋃M−1

j=1 S j . The set S0 is defined

as S̃0 ∪ {(N , 1), (1, N )} \ {(0, 1), (1, 0)}.

See Fig. 3.2.

Now we associate to Ω the (discrete) set:

F = F(Ω ) :=
⨆

v∈Z2

⨆

i=0,...,M−1
(v+Pi )¢Ω

(

v + 1
N

Si

)

¢ 1
N
Z2. (3.1)

(see Fig. 3.3.) Thus, for every v ∈ Z2, Si ∈ {S0, . . . , SM−1}, either (v + 1
N

Si ) ¢ F or

(v + 1
N

Si ) ∩ F is empty.

We show that this F “encodes” the tiling properties of Ω :



Please cite this article as: J. de Dios Pont, J. Grebı́k, R. Greenfeld et al., Periodicity and
decidability of translational tilings by rational polygonal sets, Expositiones Mathematicae
(2024) 125620, https://doi.org/10.1016/j.exmath.2024.125620.

10 J. de Dios Pont, J. Grebík, R. Greenfeld et al. / Expo. Math. xxx (xxxx) xxx

Fig. 3.3. The tile F(Ω ) ¢ N−1Z2 for Ω as in Fig. 3.1. A point (a, b) ∈ N−1Z2 is represented here by a

square (a, b) + [0, 1
N

]2. The colored squares correspond to the elements in F ¢ N−1Z2, while the white

squares correspond to the elements in N−1Z2 that are not in F .

Lemma 3.1. Let Ω be an integer set, and let N = N (Ω ) and F = F(Ω ) be as

constructed above. Then we have:

(i) The set Tile(Ω;R2) is empty if and only if the set Tile(F; 1
N
Z2) is empty.

(ii) For every set 0 ∈ T ¢ R2, T ∈ Tile(F; 1
N
Z2) if and only if T ∈ Tile(Ω;R2) with

T ¢ Z2.

(iii) If T0, T1 are subsets of Z2, and v⃗ ∈ Z2, then Ω · T0 + v⃗ = Ω · T1 if and only if

F · T0 + v⃗ = F · T1.

Proof. Observe that (i) follows from (ii) and Lemma 2.2. Indeed, if Tile(Ω;R2) in

non-empty then by Lemma 2.2 there exists 0 ∈ T ∈ Tile(Ω;R2) such that T ¢ Z2,

thus, (ii) implies that T ∈ Tile(F; 1
N
Z2). Conversely, if Tile(F; 1

N
Z2) is non-empty then

it contains a set T such that 0 ∈ T ; thus, again, by (ii), T ∈ Tile(Ω;R2).

We prove (ii). Suppose first that 0 ∈ T ∈ Tile(Ω;R2) and T ¢ Z2. Then, for

any Pi ∈ {P0, . . . , PM−1} and x ∈ Z2 there exists a unique translate ti,x ∈ T so that

(x + Pi ) ¢ (Ω + ti,x ). Note that by the definition of Si we have (x + Pi ) ¢ (Ω + ti,x ) if

and only if (x + 1
N

Si ) ¢ (F + ti,x ). This implies that

T · F =
⨆

x∈Z2

i∈{0,...,M−1}

(

x + 1
N

Si

)

= 1
N
Z2

i.e., T ∈ Tile(F;
(

1
N
Z

)2
).



Please cite this article as: J. de Dios Pont, J. Grebı́k, R. Greenfeld et al., Periodicity and
decidability of translational tilings by rational polygonal sets, Expositiones Mathematicae
(2024) 125620, https://doi.org/10.1016/j.exmath.2024.125620.

J. de Dios Pont, J. Grebík, R. Greenfeld et al. / Expo. Math. xxx (xxxx) xxx 11

Conversely, suppose that 0 ∈ T ∈ Tile(F; 1
N
Z2), then, by construction of S0 and since

F is a tile of 1
N
Z2, we must have that the set

F0 :=
⨆

v∈Z2

⨆

(x+P0)¢Ω

(x + 1
N

S0) ¢ F

is non-empty. Thus, since T ∈ Tile(F; 1
N
Z2), by construction of F , we have that if t, t ′

are two distinct elements of T such that F0 + [0, 1
N

]2 + t and F0 + [0, 1
N

]2 + t ′ share an

edge then t ′ − t ∈ Z2. This means that every set in Tile(F; 1
N
Z2) must be contained in

some coset of Z2 in 1
N
Z2. In particular, as by assumption 0 ∈ T , we must have T ¢ Z2.

We now show that T ∈ Tile(Ω;R2). Since 0 ∈ T ∈ Tile(F; 1
N
Z2), for every Si ∈

{S0, . . . , SM−1} and x ∈ Z2, there exists a unique ti,x ∈ T such that (x+ 1
N

Si ) ¢ (F+ti,x ).

Thus, by construction of Si , we have that (x + Pi ) ¢ (Ω + ti,x ); hence

T · Ω =
⨆

x∈Z2

i∈{0,...,M−1}

(x + Pi ) = R2

i.e., T ∈ Tile(Ω;R2).

It remains to prove (iii). For i = 0, . . . , M − 1, let

X i,0 := {x ∈ Z2 : x + Pi ¢ Ω · T0 + v⃗}, X i,1 := {x ∈ Z2 : x + Pi ¢ Ω · T1},

and

Yi,0 := {x ∈ Z2 : x + N−1Si ¢ F · T0 + v⃗}, Yi,1 := {x + N−1Si ¢ F · T1}.

As argued above, we have X i, j = Yi, j for every i = 1, . . . , M − 1 and j = 0, 1. We

therefore have that X i,0 = X i,1 for every i = 0, . . . , M − 1 if and only if Yi,0 = Yi,1

for every i = 0, . . . , M − 1. In other words, Ω · T0 + v⃗ = Ω · T1 if and only if

F · T0 + v⃗ = F · T1, as claimed. □

3.3.

Combining Lemmas 3.1 with [6, Theorem 1.5], we can now prove Theorem 1.1, as

follows.

Proof of Theorem 1.1. Let Ω be a rational polygonal tile and, by translation invariance,

assume without loss of generality that 0 ∈ V (Ω ). Then, as V (Ω ) ¢ Q2 is finite, there

exists n ∈ N such that V (nΩ ) ¢ Z2. Let Ω̃ := nΩ . Note that T ∈ Tile(Ω;R2) if and

only if nT ∈ Tile(Ω̃;R2) and T is doubly-periodic if and only if nT is doubly-periodic.

Thus, we can equivalently prove the statement for Ω̃ .

Let N ∈ N = N (Ω̃ ) and F = F(Ω̃ ) ¢ N−1Z2 be as in Lemma 3.1. Then,

by Lemma 3.1(i) and dilation invariance, as by assumption Tile(Ω̃;R2) is non-empty,

Tile(N F;Z2) is non-empty, i.e., N F ¢ Z2 tiles Z2.

By [6, Theorem 1.5], we then have the existence of a doubly-periodic T̃ ¢ Z2

such that T̃ ∈ Tile(N F;Z2). By Translation invariance, we can assume without loss

of generality that 0 ∈ T̃ .

Letting T := N−1T̃ ¢ N−1Z2 we have that 0 ∈ T ∈ Tile(F; N−1Z2). By

Lemma 3.1(ii), we then have that T ∈ Tile(Ω̃;R2) and T ¢ Z2. As T is doubly-periodic,

this concludes the proof. □
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3.4.

We now deduce Corollary 1.1, as follows.

Proof of Corollary 1.1. We describe an algorithm that computes whether a given rational

polygonal set tiles R2 by translations: Let Ω be a rational polygonal set. The algorithm

first computes the number N and the finite set F ¢ N−1Z2, as described in the proof of

Lemma 3.1. By Lemma 3.1(i), Ω tiles R2 if and only if F tiles N−1Z2.

The algorithm then computes all the ways to tile finite regions in N−1Z2 by translated

copies of F (“patches”), with growing diameter. If F does not tile, then, by compactness,

the largest possible diameter of any patch formed by translated copies of the F must

be finite. Thus the algorithm will detect that F , and thus Ω , is not a tile after finitely

many steps. If F tiles, then a periodic tiling exists; and so, after finitely many steps

the algorithm will detect a tiling of a patch that satisfies periodic boundary conditions

(i.e., the patch a fundamental domain of some lattice in N−1Z2), and will then output

that F , and thus Ω is a tile. □

4. Structure of tilings by a rational tile

In this section, using Lemma 3.1 and analyzing the structure of discrete tilings by

F(Ω ). and its connection to the structure of tilings by the original rational polygonal set,

we prove Theorem 1.2.

We begin by recalling the discrete analog of Theorem 1.2, which was established in [6,

Theorem 1.4].

Theorem 4.1 (Tilings in Z2 are Weakly-Periodic). Let F ¢ Z2 be a tile. Then there exist

c = c(F) and d = d(F) such that there are m < c pairwise incommensurable vectors

h1, . . . , hm ∈ Z2 \ {0} with |h j | ⩽ dm such that every tiling T of Z2 by F admits a

decomposition

T = T1 ⊔ · · · ⊔ Tm (4.1)

such that T j is ïh j ð-periodic. In fact, there exists a lattice Λ ¢ Z2 such that for every

x ∈ Z2 there is 1 ⩽ j ⩽ m such that the set (Λ + x) ∩ T is ïh j ð-periodic.

Proof. See [6, Theorem 1.4]. □

Observe that by combining Theorem 4.1 and Lemma 3.1(ii), we can immediately

deduce that any integer tiling in Tile(Ω;R2) is weakly periodic. The main barrier to

transferring Theorem 1.2 from its integer counterpart is the possible sliding components

obstructing periodicity. The proof of Theorem 1.2 consists of showing that the decompo-

sition of Theorem 4.1 is compatible with the sliding decomposition in Lemma 2.5, in the

sense that each of the singly-periodic pieces in the decomposition (4.1) can be further

decomposed into pieces, each contained in a sliding component of the partition (2.1). In

order to show that, we introduce the notion earthquake1 decomposition of discrete tilings.

1 The terminology of earthquakes also appears in [9], but there it is used in the context of continuous

tilings and the definition (although closely related) is slightly different.
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4.1. Earthquake decomposition

Definition 4.1 (Earthquake Decomposition of a Discrete Tiling). Let F ¢ N−1Z2 be

finite. Suppose T ∈ Tile(F; N−1Z2), and v⃗ ∈ N−1Z2 then we define the v⃗-discrete

earthquake decomposition of T by F as a decomposition

T =
⨆

P∈Plates(T,v⃗)

P,

where:

(i) For each set P ∈ Plates(T, v⃗) the set F · P is Zv⃗-periodic.

(ii) If P ∈ Plates(T, v⃗) and P ′ ¢ P satisfies (i) then P ′ ∈ {P, ∅}.

The set2 Plates(T, v⃗) is the set of tectonic plates arising from earthquakes in the

direction v⃗.

The following Lemma shows that the discrete decomposition into singly-periodic sets

is compatible with a discrete earthquake decomposition.

Lemma 4.2. Let F ¢ N−1Z2 be a tile of N−1Z2, T ∈ Tile(F; N−1Z2) and Plates(T, v⃗)

be the v⃗-earthquake decomposition of T . Then there are pairwise incommensurable

vectors h1, . . . , hm ∈ Z2\{0} such that for each P ∈ Plates(T, v⃗) there is a decomposition

P =
⨆m

j=1 Pj such that Pj is ïh j ð-periodic for every 1 ⩽ j ⩽ m.

Proof. Let F̃ := N F . Then, as T ∈ Tile(F; N−1Z2) if and only if N T ∈ Tile(F̃;Z2), it

suffices to prove the statement for any T ∈ Tile(F̃;Z2). By translating, we may assume

without loss of generality that F̃ contains the origin. Fix some P ∈ Plates(T, v⃗), and

define T k ∈ Tile(F̃,Z2) as

T k := P ⊔
⨆

P ′∈Plates(T,v⃗)\{P}

P ′ + kv⃗.

Note that T k is obtained from T by an earthquake that shifts all the plates but P by kv⃗,

and that P ∈ Plates(T k, v⃗) for all k by the construction of T k .

By Theorem 4.1, there is M ∈ N and pairwise incommensurable vectors h̃1, . . . , h̃m ∈
MZ2 with the property that for every coset Γ = (x + MZ2) ∈ Z2/MZ2 there is

1 ⩽ j = j(k,Γ ) ⩽ m such that Γ ∩ T k is ïh̃ j ð-periodic. By adding a vector (if needed)

we can assume without loss of generality that h̃1 is parallel to v⃗, and by enlarging h̃1 (if

needed) we can further assume that h̃1 = ℓM v⃗ for some ℓ ∈ N.

Let Γ = (x + MZ2) ∈ Z2/Λ. For each k ∈ Z, let h(k,Γ ) := h̃ j(k,Γ ). By the

pigeonhole principle, there exist 0 ⩽ k < k ′ ⩽ m such that h(Mk,Γ ) = h(Mk ′,Γ ).

We let 0 ⩽ kΓ ⩽ m − 1 be the smallest such that there exists kΓ < k ′ ⩽ m with

h(MkΓ ,Γ ) = h(Mk ′,Γ ) and set kΓ < k ′
Γ
⩽ m to be the smallest among all possible k ′

with this property. Let h(Γ ) := h(MkΓ ,Γ ).

2 Note that a decomposition satisfying (ii) is the maximal one amongst all decompositions satisfying (i)

and therefore always exists and is unique.
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For each j = 2, . . . m, let P j ¢ P be the set of points x in P such that h(x + MZ2) =
h̃ j , and let Pj ¢ P j be the set of points x in P j such that the coset x + h̃ jZ is entirely

contained in P . Clearly, for each 2 ⩽ j ⩽ m, the set Pj is ïh̃ j ð-periodic.

We will show that there exists n ∈ N, independent of the choice of P ∈ Plates(T, v⃗),

such that each of the sets P̃j := P j \ Pj , j = 2, . . . , m, is ïnh̃1ð-periodic. Then, the

result will follow by setting h1 := nh̃1, h j := h̃ j for j = 2, . . . , m, and

P1 := P \
(

⊔m
j=2 Pj

)

= {x ∈ P : h(x + MZ2) = h̃1} ∪
(

⊔m
j=2 P̃j

)

,

which is ïh1ð-periodic. It thus suffices to show for each j = 2, . . . , m that the set P̃j is

ïnℓM v⃗ð-periodic with n =
∏

Γ∈Z2/MZ2 (kΓ − k ′
Γ

).

Let 2 ⩽ j ⩽ m. Suppose that x ∈ P̃j and let Γ := x + MZ2. Then, by the definition

of P̃j , there is k ∈ Z such that the point y := x + kh̃ j ∈ Γ is in T \ P . Observe that as

h̃ j ∈ MZ2 we have Γ = x + MZ2 = y + MZ2. Thus, as by the definition of (kΓ , k ′
Γ

)

both T MkΓ ∩ Γ and T Mk′
Γ ∩ Γ are ïh̃ j ð-periodic and x ∈ T MkΓ ∩ T Mk′

Γ ∩ Γ , we have

that

y = x + kh̃ j ∈ T MkΓ ∩ T Mk′
Γ ∩ Γ .

Therefore, the point z := y − MkΓ v⃗ is in T ∩ Γ . In turn, we obtain that the point

z′ := z + Mk ′
Γ
v⃗ = y − M(kΓ − k ′

Γ
)v⃗

is in T Mk′
Γ ∩ Γ ; and so, by ïh̃ j ð-periodicity of T Mk′

Γ ∩ Γ , we have that the point

x ′ := z′ − kh̃ j = x − M(kΓ − k ′
Γ

)v⃗

is also in T Mk′
Γ ∩ Γ . Observe that since x ∈ P̃j ¢ P and P ∈ Plates(T, v⃗), the point x ′

is in P , and so, as x ′ ∈ Γ , we have that x ′ ∈ P j . Moreover, since y ∈ T \ P we have

y ̸∈ F + P , and so, by the v⃗-periodicity of F + P , we obtain that neither z nor z′ is in

F + P and, in particular, z′ = x ′ + kh̃ j ̸∈ P . This shows that x ′ = x − M(kΓ − k ′
Γ

)v⃗

is in P̃j . Similarly, one can show that the point x + M(kΓ − k ′
Γ

)v⃗ is in P̃j , by simply

repeating the above argument with the roles of kΓ and k ′
Γ

being swapped. We therefore

conclude that P̃j is ïnh̃1ð-periodic with n =
∏

Γ∈Z2/MZ2 (kΓ − k ′
Γ

). □

4.2.

Observe that using Lemma 4.2, to complete the proof of Theorem 1.2, it only remains

to show that the discrete earthquake decomposition in Lemma 4.2 is compatible with the

continuous earthquake structure in Ω .

Proof of Theorem 1.2. Let Ω be a rational polygonal tile, by translation invariance,

we can assume without loss of generality that 0 ∈ V (Ω ). Let T ∈ Tile(Ω;R2). By

Lemma 2.5, there exists a direction v⃗ ∈ R2 \ {0} such that T can be decomposed as

T =
⨆

i∈I Qi , where for each i ∈ I the set Ω̃ · Qi is v⃗R-invariant. By invariance under

affine transformations, we may assume that v⃗ = (0, 1).

As V (Ω ) ¢ Q2 is finite, there exists n ∈ N such that V (nΩ ) ¢ Z2. Let Ω̃ := nΩ .

Note that T ∈ Tile(Ω;R2) if and only if nT ∈ Tile(Ω̃;R2) and T is weakly-periodic if

and only if nT is weakly-periodic. Thus, we can equivalently prove the statement for Ω̃ .
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Let T ′ ∈ Tile(Ω̃;R2) be the tiling that arises from merging the ∼
Ω̃

components of

T by sliding, as described in Lemma 2.7. Then, by construction, there are coefficients

si ∈ R such that

T ′ =
⨆

i∈I

Qi − si (0, 1),

and by Lemma 2.4 T ′ is a subset of Z2, i.e., T is an integer tiling by Ω̃ .

Let F = F(Ω̃ ) be as in (3.1). Then, by Lemma 3.1(ii) T ′ ∈ Tile(F; N−1Z2), and by

Lemma 3.1(iii), if for a subset S of T ′ the set Ω̃ · S is (0, 1)R-invariant, then F · S is

(0, 1)Z-invariant. Therefore, the decomposition of T ′ into (0, 1)-discrete earthquakes by

F is a refinement of the decomposition of T ′ into continuous earthquakes by Ω̃ . In other

words, for i ∈ I there exist sets Pi, j ¢ Z2, j ∈ Ji such that Qi − si (0, 1) =
⨆

j∈Ji
Pi, j

and the (0, 1)-earthquake decomposition of T ′ by F is T ′ =
⨆

i, j Pi, j .

Thus, by Lemma 4.2, for each i ∈ I , j ∈ Ji there exists hi, j ∈ Z2 such that the set Pi, j

is ïhi, j ð-periodic, and the vectors hi, j take finitely many possible values in Z2. Therefore,

each Qi −si (0, 1) =
⨆

j∈Ji
Pi, j is weakly-periodic. By translation invariance, this implies

that each Qi is weakly-periodic with the same periods. Therefore, as T =
⨆

i∈I Qi , the

tiling T is weakly-periodic. We thus have Theorem 1.2. □

CRediT authorship contribution statement

Jaume de Dios Pont: Conceptualization, Visualization, Writing – original draft,

Writing – review & editing. Jan Grebı́k: Conceptualization, Visualization, Writing

– original draft, Writing – review & editing. Rachel Greenfeld: Conceptualization,

Methodology, Project administration, Visualization, Writing – original draft, Writing –
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