IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025 161

Multiview Graph Learning With Consensus Graph

Abdullah Karaaslanli

Abstract—Graph topology inference is a significant task in many
application domains. Existing approaches are mostly limited to
learning a single graph assuming that the observed data is ho-
mogeneous. This is problematic because many modern datasets
are heterogeneous and involve multiple related graphs, i.e., multi-
view graphs. Prior work in multiview graph learning ensures the
similarity of learned view graphs through pairwise regularization,
which has several limitations. First, most of the existing work
focuses on the Gaussian Graphical Models (GGM) which learns
precision matrices rather than the actual graph structures. Second,
these methods do not infer the consensus structure across views,
which may be useful in certain applications for summarizing the
group level connectivity patterns. Finally, the number of pairwise
constraints increases quadratically with the number of views. To
address these issues, we propose a consensus graph-based multi-
view graph model, where each view is assumed to be a perturbed
version of an underlying consensus graph. The proposed frame-
work assumes that the observed graph data is smooth over the
multiview graph and learns the graph Laplacians. A generalized
optimization framework to jointly learn the views and the con-
sensus graph is proposed, where different regularization functions
can be incorporated into the formulation based on the structure
of the underlying consensus graph and the perturbation model.
Experiments with simulated data show that the proposed method
has better performance than existing GGM-based methods and
requires less run time than pairwise regularization-based methods.
The proposed framework is also employed to infer the functional
brain connectivity networks of multiple subjects from their elec-
troencephalogram (EEG) recordings, revealing both the consensus
structure and the individual variation across subjects.

Index Terms—Multiview graphs, graph inference, graph signal
processing.

1. INTRODUCTION

ANY real-world data are represented through the re-

lations between data samples or features, i.e., a graph
structure [1]. Although many datasets, including social and
traffic networks, come with a known graph that helps in their
interpretation, there is still a large number of applications where
a graph is not readily available. For instance, functional brain
networks [2] and gene regulatory networks [3] are not directly
observable. In such cases, inferring the topology of the graph is
an essential task to be able to effectively analyze the data.

Received 24 January 2024; revised 5 August 2024 and 2 November 2024;
accepted 28 December 2024. Date of publication 8 January 2025; date of current
version 25 February 2025. This work was supported by the National Science
Foundation under Grant CCF-2312546 and Grant CCF-2211645. The associate
editor coordinating the review of this article and approving it for publication
was Prof. Xiaowen Dong. (Corresponding author: Abdullah Karaaslanli.)

The authors are with the Department of Electrical and Computer Engi-
neering, Michigan State University, East Lansing, MI 48824 USA (e-mail:
karaas!1 @msu.edu; aviyente @egr.msu.edu).

Digital Object Identifier 10.1109/TSIPN.2025.3527888

and Selin Aviyente

, Senior Member, IEEE

In order to address this problem, various graph learning
techniques have been developed by using observed nodal data,
also known as graph signals [4], to learn the unknown graph
topology. These methods are developed using approaches from
different domains including statistical methods [5], graph signal
processing (GSP) [6], [7] and recently graph neural networks
(GNN) [8]. Statistical methods, such as graphical lasso [9], are
usually based on GGMs, where the aim is to learn the precision
matrix representing conditional dependencies between nodes.
Methodologies using GSP defines the relation between graph
signals and graph topology using signal processing concepts,
such as stationarity [10], [11], [12], non-stationarity [13] and
smoothness [14], [15], [16]. Finally, GNN-based techniques
use recent graph convolutional networks and the more general
message passing networks for relational inference [8], [17], [18].

Although aforementioned methods have shown to be effec-
tive, they are limited to homogeneous datasets, where observed
graph signals are assumed to be identically distributed and
defined on a single graph. However, in many applications, the
data may be heterogeneous and come from multiple related
graphs, also known as multiview graphs. For example, gene
expression measurements are often collected across different
cell types each with their own regulatory mechanism [19],
[20]. Similarly, neuroimaging data from multiple subjects can
be considered as being defined on a multiview graph where
each view is a subject’s brain connectome [21], [22]. In these
situations, the views of the multiview graphs are closely related
to each other. Therefore, learning the topology of views jointly
by incorporating the relationships among views can improve the
performance [23], [24], [25].

In the setting of joint learning, one needs to choose the model
that relates the views of the multiview graph. The commonly
utilized approach is pairwise similarity, where each pair of views
is assumed to be similar [24], [25], [26]. Although this approach
is effective in joint learning setup, it requires quadratic number of
terms to impose similarity. Moreover, it cannot reveal the com-
mon structure shared by views. To this end, an alternative model
where each view is the sum of common and individual structures
has been proposed [27], [28]. Compared to pairwise similarity,
this alternative approach can learn the common structure and
the views within the same framework. Moreover, this approach
requires linear number of terms to impose similarity across
views, which can reduce computational complexity. However,
the methods in [27], [28] are developed for GGMs and they learn
the precision matrix reflecting conditional dependency rather
than a valid graph structure.

In this paper, we introduce a multiview graph learning ap-
proach where views are modeled to be generated from a common

2373-776X © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.htm] for more information.

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-4814-0128
https://orcid.org/0000-0001-9023-107X
mailto:karaasl1@msu.edu
mailto:aviyente@egr.msu.edu

162 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025

graph structure, referred to as consensus graph. In consensus-
based multiview graph model, each view is generated from an
underlying consensus graph through a perturbation function that
modifies the input graph to generate a new one. An example
where this model can be employed is recovering gene regulatory
networks using gene expressions collected from heterogeneous
samples, such as different disease states or cell types. In this case,
each view may correspond to a perturbation of an underlying
unknown graph. We next develop an optimization problem that
learns such multiview graphs from a given set of smooth signals.
The proposed optimization problem employs a consensus-based
regularization where both the views and the consensus graph are
learned. The optimization problem is written in a general form
that allows utilizing different regularization functions.

The proposed method addresses limitations of the previ-
ous work on multiview graph learning. Compared to pairwise
similarity-based methods, it can learn the consensus graph and
views within a single framework. Although one can learn the
consensus graph of views within the pairwise regularization
framework by taking the median or mean of the learned views,
this is suboptimal. Namely, this does not allow imposing a
structure to the consensus graph, while the proposed optimiza-
tion problem regularizes the learned consensus graph to have
desired graph properties. Second, computational complexity of
the proposed approach is linear in number of views, while that
of pairwise regularization is quadratic. Our approach also ad-
dresses the limitations of prior work where a common structure
is learned [27], [28]. This work is focused on GGMs, where the
aim is to learn precision matrices reflecting partial correlations,
which are hard to interpret as graphs. For example, they include
negative off-diagonal entries which do not relate to the edges
of a graph directly [14]. Compared to this, our work focuses
on smooth graph signals and learns a valid graph topology
by learning the graph Laplacian, whose off-diagonal entries
are associated with the edges and diagonal entries represent
node degrees. Moreover, in GGM-based approach, each view
is modeled as the sum of common and individual structures
where the common structure is not constrained to be a valid
graph. Our consensus graph, on the other hand, is modeled as
a valid graph structure, which can be regularized to impose
different graph properties. This modeling also allows us to relate
views to consensus graph through a general graph perturbation
mapping rather a simple additive model employed in previous
work. Finally, by using smoothness assumption, our framework
is not restricted to data from GGMs and can handle other graph
signals generated with smooth graph filters.

To summarize, the contributions of our work are:

* Extending consensus-based multiview graph learning

framework from GGM to smooth graph signals, where
a valid graph topology instead of precision matrices are
learned. By using smoothness, our framework is not re-
stricted to GGMs and can handle different smooth graph
signal types.

® Extending smoothness-based graph learning to multi-

view graph setting through consensus-based regulariza-
tion, where both the view graphs and the consensus graph

are learned. This regularization provides a computation-
ally efficient alternative to pairwise regularization-based
multiview graph learning frameworks [25], [29].

® Introducing a consensus-based multiview graph model,
where each view is generated from an underlying consen-
sus graph through a perturbation function. To accommo-
date different perturbation functions, a general optimiza-
tion framework that allows using different regularization
functions is developed.

The remainder of the paper is organized as follows. In Sec-
tion II, a review of related work is provided. Section III provides
abackground on graphs and graph learning. Section I'V describes
the proposed multiview graph learning. Section V includes
results on different simulated data as well as on functional brain
connectivity network inference from EEG recordings of multiple
subjects.

II. RELATED WORK

Most previous methods for learning a multiview graph are
based on statistical models. These methods extend graphical
lasso [9] to joint learning setup, where they learn the precision
matrices of multiple related GGMs and use various penalties in
the likelihood framework to exploit the common characteristics
shared by different views [24], [28], [30], [31], [32], [33]. Most
notable work using this approach is the joint graphical lasso [24],
where fused or group lasso penalties are used to encourage
topological similarity across views. However, these methods
are limited by the assumption that the observed graph signals
are Gaussian, suffer from increased computational complexity
in the case of pairwise penalties and cannot learn the shared
structure across views. [27], [28] address the latter by modeling
each view as the sum of common and individual components
assuming an additive decomposition model for each view. How-
ever, they still focus on learning the precision matrices without
imposing any graph structure constraints on the individual views
or the common structure. Therefore, they do not infer the graph
structure but rather learn conditional dependencies, which may
not be suitable for interpreting the structure of data in some
contexts. These joint learning approaches have been extended
to jointly learn multiple graph Laplacian matrices instead of
precision matrices [26]. However, this approach is still limited
to Gaussian data.

Recently, GSP community has addressed the problem of
learning multiview graphs from heterogeneous data. This work
can be split into two categories depending on whether one knows
the association of the observed signals to the views a priori.
In the first setup, multiple datasets are given and each dataset
is defined on a view [25], [34]. On the other hand, the second
setup deals with the mixture of graph signals, where one is given
a single dataset and the association of graph signals to the views
is not known [35], [36], [37]. The focus of the present paper
is the first category. This problem setting has been most widely
studied for inferring the topology of time-varying networks [38],
[39], [40], where the aim is to learn graphs at multiple time
points and to track changes in the graph structure across time.

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



KARAASLANLI AND AVIYENTE: MULTIVIEW GRAPH LEARNING WITH CONSENSUS GRAFH 163

This problem can be posed as multiview graph learning with a
regularization term that promotes pre-specified changes between
consecutive graphs. More recently, the problem of multiview
graph learning has been formulated with the assumption of graph
stationarity [25]. In this formulation, the signals are assumed to
be stationary and pairwise similarity between all graphs is used
to regularize the optimization. While this formulation has the
same goal as the present paper, it is based on stationary graph
signals; while we focus on smoothness. Moreover, it does not
learn a consensus graph. In [29], the authors propose a multi-
view graph learning method based on smoothness assumption.
However, it focuses on decentralized optimization by relying on
pairwise regularization, which does not allow for the inference
of the shared structure across views.

III. BACKGROUND
A. Notations

In this paper, lowercase and uppercase letters, e.g., n or N,
are used to represent scalars. Vectors and matrices are shown as
lowercase and uppercase bold letters, e.g., x and X, respectively.
For a vector X, x; is its ith entry. For a matrix X, we use X;;, X;.
and X ; to show its jth entry, ith row and 7th column, respec-
tively. Vectors with all entries equal to 1 or 0, and identity matrix
are shown as 1, 0, and I, respectively. tr(-) and ' refer to the trace
and the pseudo-inverse of a matrix, respectively. ® represents
Hadamard product. For a vector x € R, diag(x) is a diagonal
matrix X € RV*N with X;; = z;. For a matrix X € RV*N
diag(X) is a vector x with z; = Xj;. The operator upper(-) takes
a symmetric matrix X € R™*" as input and returns its strictly
upper triangular part as a vector x € R™"~1)/2 constructed
in row-major order. We define the matrix S € R™*"(n-1)/2
such that Supper(X) = X1 — diag(X) where X is a symmetric
matrix.

B. Graphs and Graph Signals

An undirected weighted graph is represented as G =
(V,E, W) where V is the node set with cardinality |V | =n,
E is the edge set [1]. W € R™*" is the adjacency matrix of
G, where W;; = Wy, is the weight of the edge between nodes
¢ and j and W;; = W}; = 0 if there is no edge between nodes
2 and j. d = W1 is the degree vector and D = diag(d) is the
diagonal degree matrix. The Laplacian matrix of G is defined
as L = D — W. Its eigendecompositionis L = VAV ", where
columns of V are eigenvectors and A is the diagonal matrix of
eigenvalues with 0 = Ay < Agp <+ < Ay,

A graph signal defined on G is a function = : V' — R and can
be represented as a vector x € R™ where z; is the signal value on
node 7 [4]. Eigenvectors and eigenvalues of the Laplacian of G
can be used to define the graph Fourier transform (GFT), where
small eigenvalues correspond to low frequencies. Thus, the
graph Fourier transform of x isX = V " x where #; is the Fourier
coefficient at the zth frequency component A;; [41]. Similar to
Fourier transform of temporal signals, GFT can be utilized to
define a notion of signal variability over the graph such that x is
a smooth graph signal, i.e., X has low variation over the graph,

if most of the energy of X lies in the low frequency components.
The smoothness of x can then be calculated using the total
variation (also called the Dirichlet energy) of x measured in
terms of the spectral density of its Fourier transform as:

tr(XTAR) = tr(x VAVTx) = tr(x " Lx). (1)

The quadratic term tr(x " Lx) on the right hand side of (1) is
equal to ), Wij(z; — z;)?, whose smaller values indicate
the graph signal is smooth. In particular, for a smooth signal x,
signal values on strongly connected nodes, i.e., large W;;, are
similar to each other [41].

C. Single Graph Learning

An unknown graph G can be learned from a set of graph
signals defined on it based on some assumptions about the
relation between the observed graph signals and the underlying
graph structure. One such assumption is the smoothness of the
observations with respect to G, which can be quantified using
total variation defined in (1). Total variation offers a natural
criterion to search for the best topology over which the ob-
served signals have the desired smoothness property. This graph
learning paradigm based on smoothness is motivated by the fact
that smooth signals admit low-pass and sparse representation
with respect to the GFT basis [6], [7]. Thus, the graph learning
problem can be equivalently viewed as one of finding efficient
information-processing transforms for graph signals. Moreover,
smoothness is at the foundation of several graph-based sta-
tistical learning tasks including nearest neighbors, denoising,
semi-supervised learning, and spectral clustering. The success
of these methods hinges on the fact that many real-world graph
signals are smooth as graphs are constructed based on similar-
ities between nodal attributes, or when the network formation
process is driven by mechanisms such as homophily or proximity
in some latent space [7].

Dong et al. [14] proposed to learn G by assuming the graph
signals are smooth with respect to G. Given X € R"*P as the
data matrix with the columns corresponding to the observed
graph signals, G can be learned by minimizing smoothness,
defined in (1), with respect to the Laplacian matrix of G:

minimize (X LX) + o ||L||%
st. LeLandtr(L) = 2n, (2)

where the first term quantifies the total variation of graph signals
and the second term controls the density of the learned graph
such that larger values of hyperparameter o result in a denser
graph. L is constrained to be in L = {L : L;; = Lj; <0 Vi #
7, L1 = 0}, which is the set of valid Laplacians. The second
constraint is added to prevent the trivial solution L = 0.

IV. MULTIVIEW GRAPH LEARNING
A. Consensus Graph-Based Multiview Graph Modelling

A multiview graph, G = {G!,...,GN},isasetof N graphs,
where each G* = (V, B, W?) is defined on the same node set
V with |V| = n. While edge sets, E*’s, and associated edge

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



164 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025

weights are different from each other, they are closely related
to each other in most practical applications. In this work, the
relation between views is modeled through a consensus graph
Go = (V,E, W), where each G" is assumed to be a perturbed
version of GG as defined below.

Definition 1 (Consensus Graph-based Multiview Graph
Model): Consider a multiview graph, G = {G',..., GV},
where views are closely related to each other. G is said to follow a
consensus graph-based multiview graph model if G' is generated
from a consensus graph Gy = (V, E, W) through a mapping
gi, i.e., G' = q;(Gp) which perturbs the input graph’s topology
and/or edge weights to generate a new graph.

This definition provides the most general class of consensus
graph based multiview graph model, where no restrictions are
placed on the form of g;. The transformation, g;, may be linear
or nonlinear and can be independent or dependent across views
resulting in the same edges being perturbed across views. One
commonly used model for g; is edge removal and addition
defined by W = W — E} © W + E} ©® (1 — W) where Ej
and E} are symmetric binary perturbation matrices [42]. In
this model, edges corresponding to non-zero entries of E} are
removed, while those corresponding to non-zero entries of E
are added. Based on the definitions of E} and E3, one can obtain
different perturbation models considered in the prior work. For
example, the additive model considered in [27], [28] is obtained
if E} = 0 and E} is a sparse binary matrix. If E? and Ej have
block structure, views are related to the consensus graph through
perturbation of community structure [43]. If E} and Ef are
row-sparse, only acouple of nodes’ connectivities differ between
views [31]. In this paper, we consider the most general form of
perturbations without any constraints on E} and E5. Finally,
Ej and E} can be dependent across i, allowing the same edges
being added or removed across views.

B. Problem Formulation

Assume that we are given a collection of data matrices,
X = {X!,...,XN}. The columns of X* € R™*P: are assumed
to be smooth graph signals defined on the view graph G* of
an unknown multiview graph G. We assume that G follows the
consensus graph-based multiview graph model given in Defini-
tion 1. Our aim is to learn G and the consensus graph Gy from
given X. To this end, we propose the following optimization
problem:

N
minimize Z {tr(XiTLiXi) +afLf ||i}
1

{LHL L o

+ Be({L = L}Y,) +9r(L)
st. L'eL,tr(L)=2n,Vi,andLeL, (3)

where L”’s and L are the graph Laplacians of G* and G,
respectively. The first sum and constraints are analogous to (2).
Since G*’s are generated from G|, through a perturbation, learned
L?’s are encouraged to be similar to L through ¢({L? — L}V ),
which penalizes the difference between L*’s and L. r(L) is
added to regularize the learned L to have the desired properties.

Finally, e, 3 and +y are hyperparameters that scale different terms
of the objective function.

The above optimization problem is written in a general form
where different regularization terms can be used for ¢(-) and
(+). e(+) encourages the similarity of learned G*’s and G and
its functional form depends on the assumptions made about the
perturbation function g; in Definition 1. If g; corresponds to a
perturbation that is sparse and independent across views, ¢(-)
can be imposed to each L' — L separately and set to a sparsity
imposing function, such as £;-norm [44]. If the perturbations
have some dependency across the views, then structured sparsity
inducing norms, such as €p1q-n0r1n [45], can be used to capture
this dependency. If ¢; modifies G locally, such as only a couple
of nodes’ edges are perturbed, group sparsity [46] can be im-
posed where the connection of all nodes except those perturbed
are enforced to be the same in G* and Gy. Similarly, the term
(-) can be chosen based on the desired topological properties of
G). Edge density of Gy can be controlled by sparsity promoting
functions. G can be enforced to have a community structure by
promoting sparsity in its spectrum. Its degree distribution can be
regularized, e.g., a log-barrier term applied to diagonal of L can
ensure every node has at least one connection. Along with these
choices, various regularization terms proposed in graph learning
and joint graph learning literature [23] can be modified to be used
for ¢(-) and r(-). In Section IV-D, we discuss two models for
¢(-) and r(-), which are employed to illustrate the applicability
of the proposed optimization framework. Future work will focus
on other choices for ¢(-) and r(-) and the development of
new regularization functions within the proposed optimization
framework.

C. Optimization

In order to solve the optimization problem in (3), we
first vectorize it such that the upper triangular parts of
the graph Laplacians are learned. Let ki = upper(XiX') €
R™, d' = diag(X‘X'") € R, #* = upper(Li) € R™ and £ =
upper(L) € R™, where m = n(n — 1)/2. Also, define func-
tions ¢, ({€' — €} ,) = c({L' — L}Y,) and r,(£) = r(L).
The problem in (3) can then be vectorized as follows (see
Appendix A for details):

N
inimi 2k! — STd) T ¢ + ot (STS 4 20)¢
n{l;}l}l}rvnge ; {( ) £ +al’ ( +21I) }

i=1"

+ Bey({€ — £}L1) +ru(£)
st. £1<0,1"¢'=—n,Vi, and £ < 0, 4)

which can be solved using Alternating Direction Method of
Multipliers (ADMM) [47]. Let f(£') = (2k' —STd))"¢' +
af'' (STS + 2I)¢', and let 2, (-) and 2, (-) be the indicator func-
tions for the sets {£ € R™|1T¢ = —n} and {£ € R™|¢ < 0},
respectively. We introduce the slack variables z = £, z' =
£', v =z' —z Vi and rewrite the problem in its standard

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



KARAASLANLI AND AVIYENTE: MULTIVIEW GRAPH LEARNING WITH CONSENSUS GRAFH 165

ADMM form as follows:

N

Z {F(€) + 01 (€) +22(2") }

i=1
+ Beo({v' 1) + 7m0 () +22(2)

s.t. =z vi=2z"—zVi,andl=12z, (5

‘minimize
{zl‘.zi svi}N

i=17"y

where the first and last constraints in (4) are imposed onto
z"’s and z, respectively and all constraints are included in the
objective function through the indicator functions. The scaled
augmented Lagrangian can then be written as:

LHL, 2 VY WY z,y) = f} { F(£) + 1y (£)
i=1
. P . . 1 . 2 1 112
ruta) + £ - e Ly - Ly
Pil..i i 1 ? 1 i||2 VNV
||V o W 2—2—p||w ||2}+.Bcv({v i=1)

2

1 1
@ +u@ +§ -ty bl ©

2

where y*’s, w'’s and y are the Lagrangian multipliers of the
equality constraints in (5) and p is the penalty parameter. Stan-
dard ADMM steps at the kth iteration are:

{Eiu "-,i é\;l: :‘3 = argmm ‘C({Bia %iu vi: ):(i: ‘?vi i\;l: g: 2-: ):()
{E:!vi}?;l‘.g
(7
(#Rls,2 = argmin £({F, 2,94, 5%, W1, 2 )
2 tim1:2
(&)
V=i +p(z 1), Vi ©)
W= w4 p(Vi — 2 +2), Vi (10)
y=y+pz—19, (11)

where variables with * and * represent the values of those vari-
ables at kth and (k — 1)th iteration, respectively. The problem
in (7) is separable across its variables, thus it can be solved with
respectto £”’s, vi’s and £ separately. Its optimization with respect
to each £° leads to a quadratic problem with equality constraint,
which has a closed form solution derived from the corresponding
Karush—Kuhn-Tucker (KKT) conditions. Optimizing (7) with
respect to v*’s results in the proximal operator of c,. Similarly,
solution of (7) with respect to £ is the proximal operator of 7.
The variables of (8) are coupled, therefore it cannot be solved
separately for each z? and z. We solve it using block coordinate
descent (BCD) as it’s a smooth convex problem with separable
inequality constraints [48]. The details of the solutions for (7)
and (8) are given in Appendix B.

D. Selection of c(-) and ()

Different forms for ¢(-) and r(-) can be selected depending on
what perturbation model is used to generate G*’s from G and
what properties are desired for Gj. In this section, we propose
two models in order to show that the proposed optimization
problem and its solution are generalizable to different scenarios.
For ease of interpretation, the models are defined using the
vectorized form of the regularization terms, i.e., ¢, (+) and 7, (+).

For the first model, we consider a case where g; is a sparse
perturbation and independent across views. In particular, g; is
considered to be edge addition and deletion, i.e., W' = W —

! ®W + E} ® (1 — W), where E} and E} are sparse binary
matrices that are independent across views. The model, referred
as mvGL,, , is defined as follows:

N

aw({l -l =>4, (12)
i=1

y(€) =0, (13)

where ||-||; is the £;-norm. Since E? and E} are assumed to be
sparse and independent across views, the model imposes sparsity
separately to each £ — £. Independence and sparsity of E} and
ES imply that only a few views can differ from the consensus
graph for any given edge, ie., if Ef ;; # 0 (E3; # 0), then
E{ =0 (E%1 w1 = 0) for most j # <. This can be restrictive
in some situations; thus, we define a second model, referred to
as mvGLy,. In particular, assume Ej and EY are again sparse
binary matrices, but they are allowed to be dependent in the sense
thatif Y ,, # 0 (E% ,, # 0), then E ,, (EJ ,,) is allowed to be
non-zero for j # i. mvGLy, is defined as:

m

e ({€ - g}é\;) = Z

a=1

o(€) = |[€]];

where A € R™N with A; =€ — ¢, m=mn(n—1)/2 and
[[]|2,1 is the £ ;1-norm of the matrix. f>; imposes structural
sparsity to A where only a few rows are allowed to be non-zero,
however non-zero rows are not forced to be sparse, which fits
to the modeling of E} and E} described above. Moreover, £ is
regularized with £; norm to impose sparsity. Since without this
regularization £ is equivalent to the element-wise mean of the
views, which results in a dense consensus graph. Therefore, we
employ £; norm regularization to impose sparsity on the learned
£.In mvGL,;,, £ is the element-wise median of the views which
ensures that the learned £ has a sparsity level similar to the
individual views. Thus, a sparsity imposing regularization is not
necessary.

N
Z(fla —4,)? = ||A||2,1 , (14)

i=1

(15)

E. Convergence and Computational Complexity

The proposed optimization procedure is derived by rewrit-
ing the vectorized problem (4) as in (5) using slack variables.
This new form of the problem follows the standard two-block
ADMM form. If ¢(-) and r(-) are convex functions, the pro-
posed optimization is guaranteed to converge (see [47], [49]).

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



166 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025

Using this fact, we terminate the optimization if the difference
between objective function at consecutive iterations is smaller
than a pre-defined value e (10~ is used in our implementation).
Moreover, it is known that ADMM can converge to a local mini-
mum for optimization problems with non-convex regularization
terms [47], [50]. Therefore, the proposed optimization problem
can converge for some non-convex choices of ¢(-) and r(-).
Future work will focus on empirical and theoretical analysis
of non-convex regularization for the proposed method.

The computational complexity of the procedure can be cal-
culated by considering the ADMM steps. Namely, the solution
of (7) with respect to each £’ is O(n?) where n is the number
of nodes. Complexity of solving (7) with respect to v*’s and
£ depends on the proximal operator of ¢, and r,. For the
two models proposed in Section IV-D, the time complexity is
O(n?N) where N is the number of views. Each subproblem
of the proposed BCD procedure for solving (8) are projections
onto the non-positive orthant with time complexity of O(n?).
Since ADMM converges when steps are solved inexactly, we
employed an inexact BCD, where number of iterations is 1.
Thus, solving (8) costs O(n?N). In conclusion, assuming I
is the number of ADMM iterations, the time complexity of
our optimization is O(n?NT) when ¢, and 7, are selected as
described in section I'V-D.

Remark: The most common approach in multiview graph
learning is to use pairwise regularization, where pairs of views
are imposed to be similar (see Section II). This approach has
higher computational complexity than the proposed approach
due to higher number of terms in the objective function. In par-
ticular, if the formulation in (3) with consensus regularization,
¢(L* — L), is replaced by pairwise similarity, i.e., c(L* — L),
the computational complexity of each iteration would become
O(n?N?). Thus, while the proposed consensus-based multiview
graph learning scales linearly with the number of views, mul-
tiview graph learning based on pairwise regularization scales
quadratically with the number of views.

V. RESULTS

In this section, the proposed multiview graph learning ap-
proach is tested on both simulated data and applied to areal world
application of inferring the functional connectivity networks of
multiple subjects from EEG recordings. !

A. Simulated Datasets

The proposed algorithms are applied to simulated data where
& is generated from multiple related graphs whose structures are
known. The learned graphs are then compared to the ground truth
graphs to evaluate the performance. The proposed methods are
compared against the following algorithms. First, we compare
it to single view graph learning (svGL, see (2)), which learns
each view independently. Since this method is also based on the
assumption of smoothness of X with respect to the underlying
graph, it provides a baseline to compare mvGL against. Second,

!Codes for the proposed methods and all experiment scripts can be found at
https://github.com/SPLab-aviyente/mvgl.

we study how smoothness-based multiview graph learning com-
pares to widely studied joint graphical lasso modeling. Since
our focus is learning Laplacian matrices rather than precision
matrices, we benchmark against Laplacian constrained joint
graphical lasso (JEMGL) proposed in [26]. We compare against
group JEMGL (JEMGL), where group lasso is employed for
regularization, and Laplacian shrinkage JEMGL (JEMGLys),
where pairwise difference between views is employed for reg-
ularization. Finally, we implement pairwise versions of our
methods, mvGL,, and mvGL,, (indicated as mvGL}" and
mvGL}"), where we change c,(£' — £) as c,(£' — £’). The
proposed consensus-based method is then compared to the pair-
wise version to investigate the difference between consensus and
pairwise regularization for multiview graph learning. Since none
of the methods considered for comparison learn a consensus
graph, we compute the mean and median of the learned views for
each method and consider them as the corresponding “consensus
graph” for comparison against our learned consensus graph. In
particular, for svGL, JEMGL¢ and JEMGL} g, the median of the
learned views is reported as their consensus graph.” Based on
the discussion in Section IV-D, the median is used for mvGL}"
and the mean is used for vaL?:'.

Simulated data are generated from known graphs that are
constructed as follows. We first generate a consensus graph
Gy with n nodes from different random graph models, such
as Erd6s—Rényi (ER) and Barabdsi—Albert (BA). Next, N view
graphs are generated, where each G' is generated from Gy as
described in Section IV-A where g; is selected edge removal
and addition model. Given the view graphs, each X' € R"*P
in X is generated from G* using the smooth graph filter h(L?).
Namely, each column of X* is generated as X’; = h(L")xo;
where xg ~ AN (0, T). We finally add n% noise (in £3 norm sense)
to each generated X". For each simulation, average performance
over 50 realizations is reported.

In most experiments, we employ F1 score to measure the per-
formance of methods. F1 score measures how well the topology
of learned graphs matches the ground truth graph. For views,
F1 score is calculated for each one separately and the average
is reported. For the consensus graph, the learned topology is
compared to the ground truth to calculate the consensus F1.
In order to ensure that the comparison is valid across different
performance metrics, Section V-A3 benchmarks the methods
using additional metrics: area under precision and recall curve
(AUPRC), accuracy and normalized mutual information (NMI).
AUPRC quantifies the performance by comparing learned edge
weights to the ground truth topology such that it is higher if
large weights are learned for true edges. Both Accuracy and
NMI compare the topology of the learned graph to the ground
truth and higher values indicate better performance.

All methods require the selection of hyperparameters that
weigh the different terms in the loss functions. For svGL,
mvGLy,,mvGLy,, mvGL}", and mvGL} ; o determines the
sparsity of the learned views. For mvGL,,, v determines the
sparsity of the learned consensus graph. mvGL,,, mvGL,,,

2The mean of the views is observed to not perform as well as the median in
studied simulations.

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.


https://github.com/SPLab-aviyente/mvgl

KARAASLANLI AND AVIYENTE: MULTIVIEW GRAPH LEARNING WITH CONSENSUS GRAFH 167

[- svGL [ JEMGLg B JEMGLLs [ mvGLy, [ mvGLy, |

(a) View performance across signal types
1.00
X x @ =
0.90 & % Pk * x
2 2 FF, @+
= 0.80 e
0.70 +
0.60
Gaussian Heat Tikhonov
(b) Consensus performance across signal types
1.00 x
x X x * %'
0.95 l} * q] i '1' +
X
5 4%, ¢ x
& 0.90 %
x
0.85 x
0.80
Gaussian Heat Tikhonov
Fig. 1. Comparison of the proposed methods to two JEMGL models across

different smooth graph signals types. Performance of svGL is also shown as
baseline.

mvGL}" and mvGL}" also require the selection of 5 controlling
the similarity of the learned views. We perform a grid search on
these hyperparameters and use the value that provides the best
performance. JEMGLg and JEMGL g include two hyperpa-
rameters p,, and p;. Compared to mvGL, these parameters do not
have a one-to-one relation with the learned graphs’ properties,
i.e., density and similarity across views. Therefore, the approach
proposed in the original work is followed. Namely, weset p; = 1
and p,, is selected from the set {10~2+27/15 | = 0,..., 20} as
the value maximizing the performance. However, with this setup,
the learned graphs are observed to be not sparse leading to very
poor performance.® Thus, we threshold the learned graphs by
removing edges whose weights fall into the bottom T quantile
of all edge weights, where 7 is set to the value providing the best
performance.

1) Comparison to JEMGL: In this experiment, the proposed
methods are compared to JEMGL on datasets where Gy is
generated using ER model with edge probability set to 0.1.
N = 6 views are generated independently from Gy. Namely,
each view’s adjacency matrix is W = W —E} o W+ E} ©
(1 — W) where Ef removes 10% of edges from W and E}
added the same amount of new edges to W. The remaining
parameters for the data generation process are n = 100, p = 500
and i = 10. Graph signals are generated using different graph
filters k(L) to observe how JEMGL and mvGL compare across
different types of graph signals.

Fig. 1 shows the view and the consensus graph learning
performance of the methods. svGL performance is also in-
cluded as baseline. For both learning the individual views
and consensus graphs, JEMGL models perform better than the

3This is because of the fact that sparsity is imposed through £1-norm regular-
ization in JEMGL. However, it is known that £; -norm can fail to impose sparsity
in graphical lasso framework when a Laplacian matrix is learned [51].

-e-svGL -*- JEMGLg -*- JEMGLyps -*- mvGLg, -+ mvGLy, |

Run Time vs N Run Time vs n

+2 _| +2Z _
— 10 (a) 10 {b) H____..-—-'c""""r..
= +1 | & e © e & +1 . g e
= 107 4 —— ! i 10 /'/
E qorofe—r— oo {s=—"
=
=]
3 10714 1071+ ————
v 0 '_______-a—————-‘____" 0 "
1072 1072
T T T T T T T T
3 4 5 6 50 100 150 200
Number of Views Number of Nodes
Fig. 2. Comparison of the proposed methods to two JEMGL models in terms

of time complexity. Performance of svGL is shown as baseline.

proposed methods when the data is generated using a Gaus-
sian filter (h(L) = LT). However, JEMGL¢ and JEMGL s has
worse view performance when heat filter (h(L) = exp(—aL),
a =5 in this experiment) and Tikhonov filter (h(L) = (I +
aL)™!, a =10 in this experiment) are used. In some cases,
its performance is even worse than svGL. In terms of consensus
performance, JEMGLy,g is worse than the proposed methods
for heat and Tikhonov filters, while JEMGL has comparable
results. Note that, in JEMGL, graph signals are modeled using
a Gaussian graphical model whose precision matrix is equal
to the graph Laplacian, which is the case when h(L) = LT.
Therefore, while JEMGL performs well when the underlying
assumptions are valid, it does not generalize well to other graph
signal models. On the other hand, the proposed methods can
perform well across different graph filters, since it uses the more
general assumption of smoothness rather than Gaussian graph-
ical models. Finally, performance of svGL is overall lower than
the proposed approach, indicating the importance of data sharing
across views when learning multiview graphs. Interestingly,
sVGL has a similar performance to mvGL,, and mvGL,, for
the consensus graph when signals are generated with Tikhonov
filter; however, its view performance is still worse.

The proposed methods are also compared to the two JEMGL
methods in terms of their time complexity. Datasets are gen-
erated as above with the graph filter set to the Gaussian filter.
Fig. 2 shows the time complexity of the methods as a function
of number of views (V) and number of nodes (n). In both cases,
svGL is the fastest method, which is expected as it infers each
view separately without any regularization making it an easier
optimization problem. The proposed methods are much faster
than JEMGL models. The figure also shows that the different
methods’ time complexity increases at a similar rate with number
of views. On the other hand, rate of increase with respect to the
number of nodes is higher for JEMGL compared to the proposed
methods. This is due to the fact that JEMGL’s time complexity is
cubic in the number of nodes (similar to most Gaussian graphical
models), while mvGL,;, and mvGL,, are both quadratic in the
number of nodes.

2) Comparison to mvGLPY: In this experiment, the pro-
posed consensus-based methods are compared to their pairwise
counterparts in order to observe advantages of consensus-based
regularization over widely employed pairwise regularization.

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



168 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025

|'- svGL E mvGL;, ElmvGL]Y B mvGL,, EmvGLYY

(a) View performance across signal types

1.00
L1ix Bk
%
FEEE *+iéé &

0.90

—

& 0.80

0.70 *

0.60

Gaussian Heat Tikhonov

(b) Consensus performance across signal types

T3T:
ﬁl

Tikhonov

ETTRTIY
TRy TR

:

0.7

F1

Gaussian Heat
Fig. 3. Comparison of the proposed methods to their pairwise version across
different smooth graph signals types. Performance of svGL is shown as baseline.

«-SVGL -*-mvGLy, -*-mvGLE™ o mvGLy, -+ mvGLEY |

Run Time vs N Run Time vs n

1070 -{(a) 10*" -|(b)
= _— =t =
o ——————==] 1+0] , —
E g —— - —
2 1071 —_—
. —1
g — 7 | ee——]
= —2
107~ 1072~
1 1 1 1 1 1 1 1
3 4 5 6 50 100 150 200
Number of Views Number of Nodes
Fig.4. Comparison of the proposed methods to their pairwise version in terms

of time complexity. Performance of svGL is shown as baseline.

The experiment setup is the same as the previous experiment.
Fig. 3 reports the performance of learning views and consensus
graphs across different graph filters. In terms of learning views,
both regularization types perform very similar to each other and
they both perform better than svGL as expected. mvGL,, and
m\,fGL,?:'V are also observed to perform slightly better than £5-
norm-based regularization. In terms of consensus performance,
mvGL,, and vasz:v has very similar performance. However,
m\,fGL};:V has worse performance than its consensus-based coun-
terpart mvGL,,. The reason for this is that the regularization
term7(-) in mvGL,, allows one to impose sparsity to the learned
consensus graph, while this is not possible for vaLE: leading
to a poor learning performance.

Second, two regularization types are compared based on their
time complexity. Fig. 4(a) reports run time of the different
methods as a function of number of views. For N = 3, both
regularization types have similar run time. Pairwise regulariza-
tion requires more run time than consensus-based regularization
as NV increases, since it has a time complexity that is quadratic in
N, while the proposed method is linear in V. Fig. 4(b) shows the
run time as a function of number of nodes. The proposed method
runs faster than pairwise regularization for all considered values

of n. While both regularization types have time complexity that
is quadratic in number of nodes, we observe that the difference
between run times of mvGL and mvGLP" increase with number
of nodes. This could be due to the difference between conver-
gence rates of the optimization procedure. Namely, both mvGL
and mvGLPY are solved with the same ADMM-based optimiza-
tion. While mvGL has N ¢(-) terms, m\,fGL,?:'V has N(N —1)/2
¢(+) terms to impose similarity across views. Higher number of
terms in mvGLPY may increase the number of iterations required
for ADMM-based optimization to converge.

In conclusion, although the performance of pairwise and
consensus-based regularization is very similar, consensus-based
regularization requires less run time, which makes it more
preferable especially for large number of views. Moreover, we
observe some improvements in learning consensus graph when
£ regularization is used, since the proposed framework can
impose more structure to the learned consensus graph.

3) Comparison Across Performance Metrics: In order to en-
sure that the previous discussion is valid across different perfor-
mance metrics, methods are compared using AUPRC, accuracy
and NMI. The experiment setup is the same as previous experi-
ments and Fig. 5 shows the results. The view performance results
are consistent with the previous discussion. Namely, JEMGLq
and JEMGL | g have the highest AUPRC, Accuracy and NMI val-
ues when data is generated with the Gaussian filter. For heat and
Tikhonov, they perform worse than mvGL,, , mvGL,, and their
pairwise counterparts, indicating the importance of smoothness
assumption. Both mvGL and mvGLPY perform better than svGL
in terms of all metrics. Although there are cases mvGL,, is better
than mvGL}"" and vice versa, their overall performance is almost
the same. Similar to before, £; -norm is also observed to perform
better than £5-norm.

Results for learning the consensus graph are also consistent
with the observations in the previous two experiments. For Gaus-
sian filter, svGL is the worst performing method, while JEMGL ¢
and JEMGL g are the best ones. As in Section V-A1, JEMGLa
has comparable results as mvGL,, for heat and Tikhonov filters,
while JEMGLy,g does not perform well. In terms of NMI and
accuracy, comparison of consensus and pairwise regularization
is the same as Section V-A2. For AUPRC, we observe a different
result: mvGL,, and mvGL})' perform similarly and they are
better than mvGL,, and vaL?:" . This is due to the way AUPRC
measures the performance. As mentioned, AUPRC compares
edge weights to ground truth and does not consider the sparsity of
the learned graph. Thus, we observe that mvGLy, and mvGLy"
learn better edge weights than mvGL,, and vaL?:". However,
they are worse in terms of capturing sparsity.

4) Sensitivity to Data Parameters: We study the effect of the
different data parameters, such as the number of views or signals,
on the performance of mvGL. The experiment is conducted on
a dataset where views are independently generated from Gy
as before where 1% of Gy’s edges are removed and the same
amount of new edges are added. We evaluate the performance
of mvGL with respect to varying number of views N, number
of signals p, amount of noise 7, perturbation amount r and
graph model used to generate Gj. The remaining parameters
are h(L) = L' and n = 100.

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



KARAASLANLI AND AVIYENTE: MULTIVIEW GRAPH LEARNING WITH CONSENSUS GRAFH 169

Gaussian Heat Tikhonov
F1 AUPRC Accuracy  NMI Fl AUPRC Accuracy NMI F1 AUPRC Accuracy  NMI

svGL  0.6757 0.6321 0.9359 0.3798 0.8708 0.9010 0.9725 0.6802 0.8675 0.8510 0.9739 0.6713
JEMGLg; 0.8916 0.8846 09784 0.7162 0.8756 0.8735 0.9750 0.6882 0.9164 0.9129 0.9833 0.7677
JEMGLyLz 09103 0.8904 0.9823 0.7565 0.8064 0.7569 0.9612 0.5625 0.8725 0.8410 0.9744 0.6778
vaLff 0.8725 0.8391 0.9751 0.6818 0.9105 0.9295 0.9814 0.7585 0.9427 0.9339 09886 0.8330
vaL;’: 0.8674 0.8359 0.9742 0.6729 0.9029 0.9228 0.9798 0.7423 0.9376 0.9290 0.9876 0.8207
mvGLy, 0.8716 0.8363 0.9749 0.6804 0.9122 0.9314 0.9818 0.7620 0.9425 0.9314 0.9886 0.8327
mVGLeg 0.8660 0.8321 0.9740 0.6706 0.9015 0.9229 0.9795 0.7395 0.9350 0.9245 0.9871 0.8143
svGL 0.8745 0.8093 0.9772 0.7185 0.9233 0.9582 0.9838 0.7897 0.9717 0.9609 0.9944 0.9062
JEMGLgs 09552 09671 09909 0.8591 0.9344 0.9329 0.9869 0.8080 0.9650 0.9706 0.9930 0.8856
JEMGLLs 0.9658 0.9605 0.9931 0.8878 0.8725 0.8687 0.9744 0.6786 0.9376 0.9370 0.9875 0.8155
vaL:’r' 0.9290 0.9046 0.9862 0.8032 0.9269 0.9510 0.9847 0.7962 0.9733 0.9687 0.9946 0.9126
mvGLYY  0.8658  0.9163  0.9713  0.6709 0.7794 0.9521 0.9442  0.5658 0.8542 0.9785 0.9656  0.6805
mvGLy,  0.9268 0.8956 0.9859 0.8022 0.9278 0.9451 0.9851 0.7964 0.9689 0.9560 0.9939 0.9027
vaLez 0.9235 0.9134 0.9849 0.7859 0.9102 0.9504 0.9807 0.7664 0.9622 0.9556 0.9924 0.8882

Fig. 5.
top-2 highest scores are shown in boldface.

Comparison of the methods using different performance measures. Top table shows view performance. Bottom table shows consensus performance. The

[—o— svGL —¢— mvGLy —*— mvGLy, |

F'1 vs Number of Views F'1 vs Number of Signals

F1 vs Data Noise F1 vs Perturbation Amount

(&) =" (b) o= 0.90(c) (d)
0.85 f‘ﬁ 0.80 - /.__..-ﬂ""‘ ey —, 0.90 — o\
0.80- 1 0.80 T —,
- 0.70 - L S
= _— 0.80 C
0.75 :
0.60 o 0.70 -
. —
0.704 - | o504 / HH""“'“‘*--H. 0.70 i
1 1 1 1 1 1 1 1 0-60 1 1 1 1 1 1 1 1
(e) = () 0.95(g) _|(R)
0.90 - /:/ 0.90 - / %’ . 0.95 —
'/ / --_______:\ i
7 ' / 090 = |~ T~
& 0.85 - /. 0.0 / — 0.90— .é. \,
\ I 0854 . -ﬁh"‘““‘“---..
0.80 - o / ~— .
°| 0.85 \
. 0.70 = 0.80 .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 5 6 200 300 400 500 0.1 0.2 0.3 0.4 5%  10%  15%  20%

Number of Views Number of Signals

Data Noise Perturbation Amount

Fig. 6. Effect of data parameters on the performance of the proposed methods. (a)—(d) show the performance when learning view graphs. (e)—(h) show the
consensus graph learning performance. Performance of svGL is shown as baseline.

Fig. 6 shows the experiment results for mvGL,, and mvGL,, .
svGL performance is also reported as baseline. Comparison of
JEMGL and mvGLP"¥ to the proposed method is the same as
the previous experiments. Thus, they are not included in this
discussion. We start with highlighting what is common to all
subfigures. First, both models have higher performance than
svGL in terms learning view and consensus graphs, indicating
that the proposed optimization problem in (3) can effectively
share information across views irrespective of which ¢(-) is used.
In most cases, mvGL,, is better than mvGL,, in identifying
consensus graphs. Although not very apparent in the figures,
mvGL,, performs slightly better than mvGL,, in learning view

graphs as well. The reason for this observation is that the per-
turbation model used to generate simulated data is more inline
with mvGL,, assumptions. Namely, each view is independently
generated from the consensus graph by a small amount of edge
removal and addition. Thus, if an edge differs across views, only
a few number of views are different than the consensus graph.
This relation between views and consensus graph is more inline
with mvGL,, assumptions as discussed in Section IV-D.

Next, we discuss how data parameters affect the proposed
methods. Fig. 6(a) and (e) show the performance when N is
increased from 3 to 6 (p = 500, 5 = 0.1, r = 10) for views
and consensus graph, respectively. Performance of mvGL,, and

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



170 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025

|-- svGL [ mvGL,, vang‘

(a) View perf. (b) Consensus perf.
1.00
0.90 P 'l' Tt *
T g 3 x
; t ST
= 0.80 * i +
0.70 +
0.60 *
ER BA RGG ER BA RGG
Fig. 7. Performance of the proposed methods across different graph models

for learning views (a) and learning consensus graph (b). Performance of svGL
is shown as baseline.

mvGLy, in learning the views and the consensus improves with
more views as expected, since the proposed methods have more
data to learn from. The view performance of svGL stays the
same as it does not share information across views. Since the
consensus graph of svGL is the median of views, Fig. 6(e)
shows an uptrend with more views. However, we also observe
that svGL’s consensus performance drops with odd number
of views, which is the effect of the median operator and no
information sharing across views. Comparing this to mvGL,,,
which in theory also learns the consensus as the median of views,
we observe that it does not suffer from such instabilities. Thus,
while one can learn a consensus graph from svGL, learning
the consensus through a joint learning scheme improves the
results. Fig. 6(b) and (e) show the performance of methods
with respect to p (N =6, n = 0.1, r = 10). As expected, the
performance of all methods improves with increasing number
of signals. Fig. 6(c) and (f) show the effect of noise on methods
(p =500, N = 6, r = 10). All methods suffer from increasing
data noise. However, the performances of mvGL,, and mvGL,,
drop less than svGL, since they share information across views
which makes them more robust to noise. Fig. 6(d) and (h) show
the effect of perturbation amount = on learning the views and
consensus graph, respectively. As we increase the perturbation,
views become less similar to the consensus graph and to each
other. Therefore, we observe a drop in performance of mvGL,,
and mvGL,, as expected. For svGL, view performance stays the
same since it learns each view independently. As views become
less similar to the consensus, svGL’s consensus performance
also drops similar to the proposed methods.

Finally, we inspect the graph learning performance across
three graph models: Erd6s—Rényi, Barabdsi—Albert and ran-
dom geometric graph (RGG). In ER graphs, node pairs are
independently connected with probability 0.1. BA model is a
growth model where a graph is generated by iteratively growing
an initial star graph with 6 nodes. At each iteration, a new
node is added to the graph with 5 edges that are preferentially
attached to existing nodes with the highest degree. For RGG,
we used the setup from [15], where 100 2D points are randomly
drawn from [0, 1)2 and they are connected to each other with
weight exp(—||x; — x;||3/0?) where x; is the coordinates of
ith point and o = 0.25. Weights smaller than 0.6 are set to
0, while the remaining ones are set to 1. Fig. 7 shows the

[-o- mvGLg, -* vang‘

View Performance Consensus Performance

0.95 - 47
@ eSS ®)
0.90 1 g mg e g | \
“-""‘-- .——”—.‘-'
@ 0.85- E ’\
0.80 - %
0.75 -1
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 1 2 3 4 5
# Views Perturbed # Views Perturbed
Fig.8. Comparison of mvGL,, and mvGL,, on an the perturbation model g;

described in Section V-AS. (a) and (b) show the performance of learning views
and consensus, respectively.

F1 scores of mvGL,,, mvGL,, and svGL. Proposed methods
consistently outperform svGL across all three graph models
when learning view graphs. For the consensus graph, svGL has
similar performance to mvGL,, and mvGL,;, when RGG is used
and it underperforms otherwise. Consistent with the previous
work [15], performance of methods are slightly better for RGG
than ER and the lowest F1 scores are obtained for BA.

5) Comparison of mvGL,y, and mvGLg,: In the previous ex-
periments, mvGL,, is observed to perform better than mvGL,, .
In this section, we compare the two methods to investigate cases
where one is more suitable than the other. Comparison is per-
formed on a dataset where G| is generated using ER model with
n = 100 nodes and edge probability 0.1. We generated N = 6
views from G| as follows. First, each view graph is initialized as
G' = Gy. Next, 100 edges of Gy are selected randomly and each
selected edge is removed from randomly chosen k view graphs.
Similarly, 100 unconnected node pairs are selected randomly
from G and each pair is connected by an edge in randomly
selected k view graphs. This model is also edge removal and
addition model, i.e., W =W —E!: oW+ E, ® (1 - W),
used in previous experiments. However, in this case E} and E
are dependent across views resulting in the same edges being
perturbed across views for large values of k. The remaining pa-
rameters of the simulation are 7 = 10, k(L) = L' and p = 500.
Fig. 8 shows the performance of mvGL,;, and mvGL,,. For
k < 3, both methods have similar view performance and
mvGL,, performs better than mvGL,, in learning the consensus
graph. The reason for this is that when k is small, deviations
of views from the consensus graph is independent. Thus, this
setup is more inline with the assumption of mvGL,, . For k > 3,
mvGL,;, and mvGL,, still have similar view performance.
However, this time mvGL,, seems to have better consensus
performance. When £ is large, more views deviate from the
consensus graph; thus we have a dataset closer to the assumption
of mvGL,, . View performance of both methods drops for k& = 3,
since views deviate the most from each other at this value of
k. We also observe that mvGL,, has higher performance than
mvGL,, for k = 3. The reason for this could be that mvGL,,
is less restrictive since it allows more views to deviate from
consensus graph at the same time as discussed in Section I'V-D.
Finally, increasing k drops the performance of both methods in

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



KARAASLANLI AND AVIYENTE: MULTIVIEW GRAPH LEARNING WITH CONSENSUS GRAFH 171

View Perf. Consensus Perf.

0.06 0.9
0.14 = 0.8
~ 0.22 0.7
% 0.30 0.6
0.38 0.5
0.46 0.4

0.50 0.62 074 086 098 0.50 062 074 0.86 0.98
Similarity (3)

@)

Density

Similarity (3)

Fig. 9. Sensitivity of mvGLy, ’s performance to its hyperparameters. Perfor-
mance is measured with F1 score.

learning the consensus graph, since the views deviate more from
the consensus graph for larger values of k.

6) Hyperparameter Sensitivity: Finally, we discuss sensitiv-
ity of the proposed method to its hyperparameters. We con-
sider a dataset where Gy is generated as an ER graph with
edge probability 0.1. From Gy, N = 6 views are independently
generated as in Section V-Al. The remaining parameters are
n = 100, p = 500, 7 = 10 and h(L) = L. Fig. 9 shows the
sensitivity of mvGLy, to its hyperparameters.* The x-axis is the
similarity between the views (corresponding to 3 parameter) and
the y-axis is the density of the learned graphs (corresponding to
a parameter). Fig. 9 shows that the density of learned graphs
is important for both learning the views and the consensus. In
particular, the performance is maximized when the density of
learned graphs is close to that of ground truth, which is 0.1
for this dataset. Similarity of views has less influence on the
performance than density. For learning the views, there is a
large region of /3 values (those that yield a similarity larger
than 0.8) where mvGL,, performs well. In terms of consensus
performance, mvGL,, is less sensitive to 3 such that a good
performance is obtained even when similarity across views is as
low as 0.5.

B. EEG Dataset

In this section, the proposed method is applied to EEG record-
ings collected from multiple subjects, where the goal is to learn
the functional connectivity networks (FCNs) for each subject.
Traditional neuroimaging studies collapse data from multiple
subjects to make inferences about functional connectivity pat-
terns within a group of subjects. While studying group level
brain connectivity is crucial for detecting disorders, designing
effective treatment and mapping brain networks, recent research
in functional connectome fingerprinting points out inter-subject
variability during cognitive tasks [52], [53]. In this section, we
apply the proposed methods to learn both subject level individual
FCNs, i.e., G's, as well as the group level FCN, i.e., Gy. The
graphs learned by the proposed framework are validated by (i)
comparing them to those found by svGL and (ii) comparing their
topology to existing literature.

“Sensitivity analysis of mvGLg, is not reported, as it leads to the same
conclusions as mvGLy, .

a) Data description: The EEG data is recorded from 20
subjects performing a cognitive control-related error processing
task [54]. The data collection was conducted by following the ex-
perimental protocol approved by the Institutional Review Board
(IRB) of the Michigan State University (IRB: LEGACY 13-144).
The EEG signals are recorded with a BioSemi ActiveTwo system
using a cap with 64 Ag—AgCl electrodes placed at standard
locations of the International 10-20 system. The sampling rate
was 512 Hz. The collected data is processed using standard
artifact rejection algorithms [55], followed by the volume con-
duction minimization from the Current Source Density (CSD)
Toolbox [56].

During recordings, subjects perform a letter version of the
speeded reaction Flanker task, where a string of five letters,
either congruent (e.g., SSSSS) or incongruent (e.g., SSTSS),
is shown at each trial. Subjects use a standard mouse to react
to the center letter and the goal is to capture the Error-Related
Negativity (ERN) after an error response. Each trial begins with
a flanking stimulus (e.g., SS SS) of 35 ms followed by the target
stimuli (e.g., SSSSS/SSTSS) displayed for about 100 ms. There
is a 1200 to 1700 ms break between trials. Each subject performs
480 trials, where number of trials with error response ranges
from 34 to 139 across subjects. In this paper, data from error
trials are employed for graph learning and only 34 error trials
corresponding to each subject are taken into account to ensure
that the subjects have the same amount of data.

b) Preprocessing: Before performing graph learning, we
preprocess the EEG data as follows. Let X € R64%512 pe the
EEG recordings of the sth subject’s kth trial, where 64 is the
number of electrodes and 512 is the number of time points. Thus,

each row of X°° corresponds to EEG signals from an electrode.
Based on our previous work [57], which indicates increased
error related activity for the 6 frequency band (47 Hz) and
time window (approximately 0—100 ms), we first bandpass filter

each row of X°* within the 6 band and then consider samples
from 0-100 ms. We perform graph learning using the data
matrix, X¢¥ € R64*50 obtained after filtering and windowing
operations.

c) “Ground-truth”-based comparison: Since it is not possi-
ble to know the true FCNs for EEG data, we consider a data-
driven way of generating “ground-truth™ graphs similar to [25].
In particular, we generate two different types of “ground-truth”
graphs using svGL as follows.

In the first case, we learn a “ground-truth” graph structure
for each subject separately using svGL. For each subject s,
a data matrix X° € R®*™ is constructed from all 34 X**
matrices, where m = 34 x 50 and 34 is the number of trials.
A “ground-truth” graph G* with edge density of 0.15 is then
learned from X¢ using svGL. Next, for each subject, we con-
struct a partial data matrix X< € R64*™« from the first | 34y
X ¢k matrices, where 0 < p < landm, = |34u| x 50. Graphs
are then learned using mvGL,, and svGL from X following
the same setup used for simulated data and then compared to
“ground-truth” G*’s using F1 score.

The accuracy of recovery results are reported in Fig. 10(a)
for different values of p. As can be seen, mvGL,, has higher

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



172 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025

|-e- svGL -*-svGL - Cons. -*- mvGLg, mvGLg, - Cons. .

F1 vs. fraction of trials F1 vs. fraction of trials

080 {(a) o) :
0.70 - - /.._.—---""'
- N
- 0.60 = ./:7I.-—. - /./._'...-.-l et -
o o—t .
0.50 e -
/7 : e
0.40 - ‘/ - e
0.30 - .

I I I I I I I I I | I I I I I
) 0 2 Q ] ) ]
R N N I S R S q‘ 0 P F B

p n

Fig. 10. Performance of different methods when “ground-truth” graphs are
constructed with svGL using all EEG trials. (a) A “ground-truth™ graph is
constructed for each subject using all available trials of the subject. (b) A single
“ground-truth™ graph is constructed across all trials and subjects.

performance than svGL for values of p up to 0.3. When the
number of graph signals to learn from is low, mvGL,, performs
better, indicating that the proposed method can share informa-
tion across different graphs improving the accuracy. For p > 0.3,
the performance of mvGL,, and svGL become similar to each
other. The figure also reports the performance of the consensus
graph of mvGL,, and svGL, where for the latter the median
of the views is used to obtain the consensus graph similar to
the simulations. Both consensus graphs are compared to each
subject’s “ground-truth” G* and average F1 score across subjects
is reported. Since the consensus graphs cannot account for
individual variability, their performance is lower than that for
the view graphs learned by mvGL,, and svGL.

In the second case, a single “ground-truth” graph across all
subjects is found using svGL. In particular, we construct a data
matrix X € R54*™ by concatenating 34 trial data matrices X ¥
from all subjects, where m = 34 x 50 x 20 and 20 is the number
of subjects. svGL is then applied to X to learn a graph Gy
with edge density of 0.15. Gy is considered to be the ground
truth graph for all subjects. mvGL,, and svGL are then applied
to previously constructed partial data matrices, i.e., X*®’s, to
learn the subject graphs. F1 scores are reported in Fig. 10(b),
where consensus graphs learned by both methods have higher
F1 score than learned view graphs. This result is expected,
since the “ground-truth” Gy mostly includes shared edges across
subjects as it is learned using signals from all subjects. It is
also observed that the consensus graph learned by mvGL,, has
the highest F1 value, indicating that shared structure is better
revealed by the proposed method than the consensus of svGL.
Finally, subject graphs learned by mvGL,, is better than those
learned by svGL for all o values. These results indicate that
the proposed method i) provides better performance when the
number of data samples is low by sharing information across
views, ii) efficiently captures the shared structure across views,
leading to better performance.

d) Smoothness-based comparison: Both mvGL and svGL
rely on the assumption that the data is smooth with respect to
the unknown graph structure. Therefore, we next compare their
performances based on the smoothness of the learned graphs.

—8— mvGLy, —8— svGL
x10¢ Total variation versus edge density
3.25 - =
3.00 — .
g 7 —
2275 = — -
=2 . -
2 2.50 = -/ -
- /
'B l
= 2.25 =
=
2.00 - / /
1.75 =
1 1 1
I].l I] 2 0.3 0.4 0.5
Edge Density
Fig. 11.  Total variation of test data on subject graphs learned.

To this end, we perform a five-fold cross validation by splitting
34 trials of each subject into five splits. One split is used as
training set to learn the subject graphs, while the remaining
ones are used as the test set, whose total variation (see (1)) with
respect to the learned subject graphs is calculated. svGL and
mvGL,, are used to learn the subject graphs with varying edge
densities and /3 parameter of mvGL,, is set to a value where
average pairwise correlation between subject graphs is around
0.75. Average total variation of the test dataset is reported in
Fig. 11. It can be seen that subject graphs found by mvGL,,
have lower total variation, indicating that mvGL,, manages to
learn graphs that fit the smoothness assumption better.

e) Community detection: Animportant goal of FCN analysis
is to identify the functionally related subnetworks. Community
detection can be used to partition the FCNs to achieve this
goal [58]. To further validate the subject graphs found by mvGL,
we detect the community structure of the learned graphs and
compare them to well-known networks in literature mvGL,,
is employed to learn subject graphs {G*}2% | and a consensus
graph G° using data from all available trlals We set aand 3 such
that the edge density and average pairwise correlation are 0.15
and 0.75, respectively. svGL is also used to learn subject graphs,
which is represented by {G¢, }22,. a parameter for svGL is set
similarly to have 0.15 edge den51ty

One common approach for analyzing the community structure
of FCNs across multiple subjects is to find the group community
structure, that represents the shared partitioning across a group of
subjects [59]. Existing works usually perform this task by first
finding each subject’s community structure and then employ-
ing consensus clustering [60]. Applying community detection
to the consensus graph learned by the proposed method can
eliminate this two-step process. To this end, we found com-
munity structures of graphs learned by mvGL,, and svGL by
maximjzing modularity [61] using Leiden algorithm [62]. Let

{P}20 =1 be the subjects’ community structure detected from
{G*}2",. Let P° be the community structure of G*. Similarly,
let {PZ,}2°, be the subjects’ community structure found from

graphs learned by svGL, i.e., {G%,}2° ;. Finally, let P¢, be the
group community structure of {P$ }2° found by consensus
clustering [60]. We calculate how consistent consensus commu-
nity structures, Pc and P¢,, are with the subjects’ community
structures, {P*}22, and {P%,}22,, using normalized mutual

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



KARAASLANLI AND AVIYENTE: MULTIVIEW GRAPH LEARNING WITH CONSENSUS GRAFH 173

TABLE 1
CONSISTENCY OF GROUP COMMUNITY STRUCTURES WITH SUBJECTS’
COMMUNITY STRUCTURES AS MEASURED BY NMI

{P*}y324 {P5}22,
Pe 0619 0.487
P, 0418 0.427

%o
o ©2 ¢ °
200000009
oo ®®
000000000
A A A A XY
@@@@@@@@@

Fig. 12. Community structure of the G learned by mvGL,, . Each node
corresponds to an electrode and the coloring indicates their community mem-
berships. The name of each electrode is coded based on the 10-20 system: Fp
for pre-frontal, F for frontal, T for temporal, P for parietal, O for occipital, and C

for central. Even numbers indicate right hemisphere locations, and odd numbers
indicate left hemisphere locations.

information (NMI) [63]. The results are reported in Table I
and it is seen that P is more consistent with both {P*}22,
and {P$,}2%,. Thus, mvGL learns a consensus graph whose
community structure is more consistent with the individual
subjects’ community structures.

We also study the community structure of G°, shown in
Fig. 12, by comparing it to previous literature. The result in-
dicates that there’s a consensus community centered around
frontal-central regions consistent with prior work indicating the
increased activation of medial prefrontal cortex (mPFC) during
cognitive control [64]. In prior work, these regions have also
been shown to have increased clustering and decreased path
length indicating a stronger community structure [65]. These
findings from EEG studies are also supported by spatial maps of
the fMRI-derived independent components suggesting distinct
contributions from a distributed fronto-striatal system to the pro-
cessing of conflicts, response-inhibition and error-monitoring,
respectively [66]. In addition, there are communities centered
around the left and right lateral prefrontal cortices and the visual
and motor regions consistent with the task.

VI. CONCLUSION

This paper introduced multiview graph learning based on the
smoothness assumption for applications where multiple views of

the same phenomenon are observed. The proposed framework
learns both the individual view graphs as well as a consensus
graph that captures the shared structured across views. The sim-
ilarity across the different views is ensured through a consensus
term between the individual view graphs and the consensus
graph. The resulting optimization problem is formulated in a
general way such that different functions could be employed
for the consensus and regularization terms. The results illustrate
the advantage of multiview graph learning over single graph
learning when there’s shared information across the views and
when the data is noisy.

Future work will explore the use of different functions for con-
sensus and regularization such as information-theoretic func-
tionals or generalized norms. While mvGL,, and mvGL,, fo-
cus on edge-based similarity across the views, they can also
be extended to learn multiple graphs using the commonality
of node-based structures, e.g., hub nodes [31]. The proposed
approach’s time complexity is quadratic in the number of nodes,
which is not applicable to large-scale graphs. Future work will
also consider scalability.

APPENDIX A
VECTORIZATION OF (3)

In order to show how to vectorize the optimization problem
in (3), consider each term separately:
® For smoothness terms, let K? = XfoT, then we obtain
tr(Xt ' LiX?) = tr(XiX¢ ' L) = tr(K'L?), where the last
term can be written as:

w(K'L) =) > KiLi,

a=1p=1
n n n
_ 1 i 1 i
=2 Z Z KabLa.b + Z KaaLaa
a=1b=a+1 a=1

=9k' ¢ —d''S¢ = (2K — STd")" ¢,
where in the second line we used the fact that both K* and
L’ are symmetric matrices and we used diag(L') = —S¢*
in the third line.

® The Frobenius norm terms can be vectorized similarly
where we use the symmetric structure of L* and diag(L?) =

—Se:
L =327 LanTan
a=1 bh=1
= QZ Z Lsz;b + Z LiaLza
a=1b=a+1 a=1

=20 ¢+ £ STSE = £ (STS + 20) "

® Since all of the information for L* and L is in the upper
triangular parts of the matrices, ¢(-) and r(-) can simply be
converted to ¢,(-) and 7,(-), which return the same values
given the upper triangular parts.

¢ For the constraint L? € L (and L € L), we use the defi-
nition of L. which includes L, = L} < 0 and L1 =0.

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



174 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025

The former implies upper(L?) = £' < 0. L1 =0 is due
to diag(L?) = —S#" and it can be ignored as we are only
learning £°.

* Finally, tr(L’) = 2n constrains the sum of node degrees
to be 2n in the learned L. Since the sum of node degrees
can also be calculated by —21 " ¢*, we have the constraint
176" = —nin (4).

APPENDIX B
SOLUTION FOR ADMM STEPS

In this section, the optimization of two ADMM steps ((7) and
(8)) are given. As mentioned in the main text, (7) can be solved
separately for £*’s, vi’s and £:

& Equation (7) can be optimized for each £°, separately. For

this, rewrite the problem by ignoring all terms that do not

depend on £":
s . i iy, 26T 30 pin , Pllaigil|?
' = argmin £(€) 40 (€)+5 (3 —€)+§||z e |2
zl:
— argmin (2K — STdY)T# + aft (STS + 21)¢¢
zl:
v MT(%i L P |%z _ Bz‘l 2
Y 2 2
st. 17¢ = —n, (16)

where we substitute f(£') and convert the indicator func-
tion to a constraint in the second equality. (16) is a quadratic
problem with an equality constraint. Using its KKT condi-
tions, its minimizer can be found as:

¥ =11, [(2aS TS+ (4a+p)I) " 1(STd! — 2k +§+ p2?)]

where II; is the projection operator onto the hyperplane
{LeR™|17¢ = —n}.

e To solve (7) with respect to {v'}¥ , first define V €
R™*N where columns of V are v¥’s. Then, write (7) in
terms of V while ignoring all terms that do not depend
on'V:

N 2
¥V — argmin fe, (V) + £V — 5 4 4~
v 2 P P 2
= argmin fe,(V) + 5 [V - Al a7

where in the first step, we insert the scaled form of the
augmented Lagrangian into (7). In the second line, the sum-
mation term is written in a matrix form where A € R™*V
with A; = 2' — 2 — 1/pw'. The optimization problem
in (17) is the proximal operator of ¢, (-). For the proposed
models in Section IV-D, the proximal operator of ¢, (-) has
closed form solutions [45], [67].

¢ Finally, in order to solve (7) with respect to £; we rewrite
it while ignoring the terms that do not depend on £:

2

; (18)
2

P A 1z
.‘3:arg,rmitlfyru(ﬁ)+£ z—€+4+ -y
£ 2 P

where we again use the scaled form of the augmented
Lagrangian. (18) is the proximal operator of (). For
mvGL,,, 7,(+) is £1-norm, whose proximal operator is the
soft-thresholding operator [67].

The second step of ADMM given in (8) cannot be separated
across its variables. However, we solve it with BCD where it
is optimized with respect to z’s and z alternatingly with the
following subproblems:

. N P
minimize 22(z") + Pllzt — 2" + -y
z! 2 P2
2
Pllei _ i Lai .
+ =V —z"+z+ W' , Vi (19)
K P2
o N 2
s P IS S | 2 g
minimize zg(z)—|—2z; vi—z'+z+ —W ,
i=
P o2 L’
+ollz—24+=y| , (20)
K P ollz

which are derived from (8) by inserting the scaled version of
augmented Lagrangian and ignoring the constant terms. At the
kth iteration of BCD, z in (19) is set to the value obtained by
solving (20) at the (k — 1)th iteration. Similarly, z*’s in (19) are
set to the values obtained by solving (19) at the kth iteration.
Both (19) and (20) are proximal operators of 23(-), which is
equal to the projection onto RZ},.

REFERENCES

[1] M. Newman, Networks. London, U.K.: Oxford Univ. Press, 2018.

[2] O. Sporns, Discovering the Human Connectome. Cambridge, MA, USA:
MIT Press, 2012.

[3] H. Li and J. Gui, “Gradient directed regularization for sparse Gaussian
concentration graphs, with applications to inference of genetic networks,”
Biostatistics, vol. 7, no. 2, pp. 302-317, 2006.

[4] A. Ortega, P. Frossard, J. Kovatevi¢, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications.” Proc.
IEEE, vol. 106, no. 5, pp. 808-828, May 2018.

[5]1 M. Drton and M. H. Maathuis, “Structure learning in graphical modeling,”
Annu. Rev. Statist. Appl., vol. 4, pp. 365-393, 2017.

[6] X.Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs from
data: A signal representation perspective,” IEEE Signal Process. Mag.,
vol. 36, no. 3, pp. 44-63, May 2019.

[7]1 G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the
dots: Identifying network structure via graph signal processing,” IEEE
Signal Process. Mag., vol. 36, no. 3, pp. 1643, May 2019.

[8] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural
relational inference for interacting systems,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 2688-2697.

[9] J.Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance esti-
mation with the graphical Lasso,” Biostatistics, vol. 9, no. 3, pp. 432-441,
2008.

[10] D.Thanou, X.Dong, D. Kressner, and P. Frossard, “Learning heat diffusion
graphs,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 3, pp. 484-499,
Sep. 2017.

[11] S.Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network topology
inference from spectral templates,” JEEE Trans. Signal Inf. Process. Netw.,
vol. 3, no. 3, pp. 467483, Sep. 2017.

[12] B.Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat, “Char-
acterization and inference of graph diffusion processes from observations
of stationary signals,” IEEE Trans. Signal Inf. Process. Netw., vol. 4, no. 3,
pp- 481496, Sep. 2018.

[13] R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, “Identifying
the topology of undirected networks from diffused non-stationary graph
signals,” IEEE Open J. Signal Process., vol. 2, pp. 171-189, 2021.

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.



KARAASLANLI AND AVIYENTE: MULTIVIEW GRAPH LEARNING WITH CONSENSUS GRAFH

[14]

[15]

[16]

(17

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning Lapla-
cian matrix in smooth graph signal representations,” IEEE Trans. Signal
Process., vol. 64, no. 23, pp. 6160-6173, Dec. 2016.

V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. Artif.
Intell. Statist., 2016, pp. 920-929.

P. Berger, G. Hannak, and G. Matz, “Efficient graph learning from noisy
and incomplete data,” JEEE Trans. Signal Inf. Process. Netw., vol. 6,
pp. 105-119, 2020.

L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning discrete
structures for graph neural networks,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 1972-1982.

Y. Chen, L. Wu, and M. Zaki, “Iterative deep graph learning for graph
neural networks: Better and robust node embeddings,” in Proc. Adv. Neural
Inf. Process. Syst., 2020, vol. 33, pp. 19314-19326.

S. Zhang et al., “Inference of cell type-specific gene regulatory networks
on cell lineages from single cell omic datasets,” Nature Commun., vol. 14,
no. 1, 2023, Art. no. 3064.

A. Karaaslanli, S. Saha, T. Maiti, and S. Aviyente, “Kernelized multiview
signed graph learning for single-cell RNA sequencing data,” BMC Bioinf.,
vol. 24, no. 1, pp. 1-17, 2023.

R. E. Betzel, M. A. Bertolero, E. M. Gordon, C. Gratton, N. U. Dosenbach,
and D. S. Bassett, “The community structure of functional brain networks
exhibits scale-specific patterns of inter-and intra-subject variability,” Neu-
roimage, vol. 202, 2019, Art. no. 115990.

M. De Domenico, “Multilayer modeling and analysis of human brain
networks,” Giga Sci., vol. 6, no. 5, 2017, Art. no. gix004.

K. Tsai, O. Koyejo, and M. Kolar, “Joint Gaussian graphical model
estimation: A survey,” Wiley Interdiscipl. Rev. Comput. Statist., vol. 14,
no. 6, 2022, Art. no. e1582.

P. Danaher, P. Wang, and D. M. Witten, “The joint graphical Lasso for
inverse covariance estimation across multiple classes,” J. Roy. Statist. Soc.
B., vol. 76, no. 2, pp. 373-397, 2014.

M. Navarro, Y. Wang, A. G. Marques, C. Uhler, and S. Segarra, “Joint
inference of multiple graphs from matrix polynomials,” J. Mach. Learn.
Res., vol. 23, no. 1, pp. 3302-3336, 2022.

Y. Yuan, D. W. Soh, K. Guo, Z. Xiong, and T. Q. S. Quek, “Joint
network topology inference via structural fusion regularization,” IEEE
Trans. Knowl. Data Eng., vol. 35, no. 10, pp. 10351-10364, Oct. 2023.
S. Hara and T. Washio, “Learning a common substructure of multiple
graphical Gaussian models,” Neural Netw., vol. 38, pp. 23-38, 2013.

W. Lee and Y. Liu, “Joint estimation of multiple precision matrices with
common structures,” J. Mach. Learn. Res., vol. 16, no. 1, pp. 1035-1062,
2015.

X. Zhang and Q. Wang, “A graph-assisted framework for multiple graph
learning,” IEEE Trans. Signal Inf. Process. Netw., vol. 10, pp. 162-178,
2024.

1. Guo, E. Levina, G. Michailidis, and J. Zhu, “Joint estimation of multiple
graphical models,” Biometrika, vol. 98, no. 1, pp. 1-15, 2011.

K. Mohan, P. London, M. Fazel, D. Witten, and S.-1. Lee, “Node-based
learning of multiple Gaussian graphical models,” J. Mach. Learn. Res.,
vol. 15, no. 1, pp. 445488, 2014.

1. Ma and G. Michailidis, “Joint structural estimation of multiple graphical
models,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 5777-5824, 2016.

F. Huang and S. Chen, “Joint learning of multiple sparse matrix Gaussian
graphical models,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 11,
Pp. 26062620, Nov. 2015.

M. Navarro and S. Segarra, “Joint network topology inference via a shared
graphon model,” IEEE Trans. Signal Process., vol. 70, pp. 5549-5563,
2022.

H. P. Maretic and P. Frossard, “Graph Laplacian mixture model,” I[EEE
Trans. Signal Inf. Process. Netw., vol. 6, pp. 261-270, 2020.

H. Araghi, M. Sabbaqi, and M. Babaie-Zadeh, “k-Graphs: An algorithm
for graph signal clustering and multiple graph learning,” IEEE Signal
Process. Lett., vol. 26, no. 10, pp. 1486-1490, Oct. 2019.

A. Karaaslanli and S. Aviyente, “Simultaneous graph signal clustering and
graph learning,” in Proc. Int. Conf. Mach. Learn., 2022, pp. 10762-10772.
V. Kalofolias, A. Loukas, D. Thanou, and P. Frossard, “Learning time
varying graphs,” in Proc. 2017 IEEE Int. Conf. Acoust., Speech Signal
Process., 2017, pp. 2826-2830.

K. Yamada, Y. Tanaka, and A. Ortega, “Time-varying graph learning based
on sparseness of temporal variation,” in Proc. 2019 IEEE Int. Conf. Acoust.,
Speech Signal Process., 2019, pp. 5411-5415.

S. Sardellitti, S. Barbarossa, and P. Di Lorenzo, “Enabling prediction
via multi-layer graph inference and sampling,” in Proc. 13th Int. Conf.
Sampling Theory Appl., 2019, pp. 1-4.

[41]

[42]

[43]

[44
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[541

[55]

[56]

[571

[58]
[59]
[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

175

D. L. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83-98, May 2013.

J. Miettinen, S. A. Vorobyov, and E. Ollila, “Modelling graph errors:
Towards robust graph signal processing,” 2019, arXiv: 1903.08398.

Q. Han, K. Xu, and E. Airoldi, “Consistent estimation of dynamic
and multi-layer block models,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1511-1520.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy.
Statist. Soc. B., vol. 58, no. 1, pp. 267-288, 1996.

F. Bach et al., “Optimization with sparsity-inducing penalties,” Found.
Trends Mach. Learn., vol. 4, no. 1, pp. 1-106, 2012.

J. Huang and T. Zhang, “The benefit of group sparsity.” Ann. Stat., vol. 38,
no. 4, pp. 1978-2004, 2010, doi: 10.1214/09-A0S778.

S. Boyd et al., “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1-122, 2011.

H.-J. M. Shi, S. Tu, Y. Xu, and W. Yin, “A primer on coordinate descent
algorithms,” 2016, arXiv:1610.00040.

J. Eckstein and W. Yao, “Understanding the convergence of the alternating
direction method of multipliers: Theoretical and computational perspec-
tives,” Pac. J. Optim., vol. 11, no. 4, pp. 619-644, 2015.

Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in non-
convex nonsmooth optimization,” J. Sci. Comput., vol. 78, pp. 29-63,
2019.

. Ying, J. V. De Miranda Cardoso, and D. Palomar, “Nonconvex sparse
graph learning under Laplacian constrained graphical model,” in Proc.
Adv. Neural Inf. Process. Syst., 2020, vol. 33, pp. 7101-7113.

E. S. Finn et al., “Functional connectome fingerprinting: Identifying in-
dividuals using patterns of brain connectivity,” Nature Neurosci., vol. 18,
no. 11, pp. 1664-1671, 2015.

J. Liu, X. Liao, M. Xia, and Y. He, “Chronnectome fingerprinting:
Identifying individuals and predicting higher cognitive functions using
dynamic brain connectivity patterns,” Hum. Brain Mapping, vol. 39, no. 2,
pp- 902-915, 2018.

T. P. Moran, D. Taylor, and J. S. Moser, “Sex moderates the relationship
between worry and performance monitoring brain activity in undergradu-
ates,” Int. J. Psychophysiol., vol. 85, no. 2, pp. 188-194, 2012.

A. Delorme and S. Makeig, “EEGLAB: An open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis,” J. Neurosci. Methods, vol. 134, no. 1, pp. 9-21, 2004.

C. E. Tenke and J. Kayser, “Generator localization by current source
density (CSD): Implications of volume conduction and field closure at
intracranial and scalp resolutions,” Clin. Neurophysiol., vol. 123, no. 12,
pp. 2328-2345, 2012.

S. Aviyente, E. M. Bernat, W. S. Evans, and S. R. Sponheim, “A phase
synchrony measure for quantifying dynamic functional integration in the
brain,” Hum. Brain Mapping, vol. 32, no. 1, pp. 80-93, 2011.

O. Sporns and R. F. Betzel, “Modular brain networks,” Annu. Rev. Psychol.,
vol. 67, pp. 613-640, 2016.

R. F. Betzel and D. S. Bassett, “Multi-scale brain networks,” Neuroimage,
vol. 160, pp. 73-83, 2017.

A. Lancichinetti and S. Fortunato, “Consensus clustering in complex
networks,” Sci. Rep., vol. 2, no. 1, pp. 1-7, 2012.

M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, no. 2, 2004, Art. no. 026113.
V. A. Traag, L. Waltman, and N. J. Van Eck, “From Louvain to Leiden:
Guaranteeing well-connected communities,” Sci. Rep., vol. 9, no. 1, 2019,
Art. no. 5233.

L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Comparing com-
munity structure identification,” J. Statist. Mmechanics: Theory Exp., vol.
2005, no. 09, 2003, Art. no. POS00S.

A. Ozdemir, M. Bolanos, E. Bernat, and S. Aviyente, “Hierarchical
spectral consensus clustering for group analysis of functional brain
networks,” IEEE Trans. Biomed. Eng., vol. 62, no. 9, pp. 2158-2169,
Sep. 2015.

M. Bolanos, E. M. Bernat, B. He, and S. Aviyente, “A weighted small
world network measure for assessing functional connectivity.” J. Neurosci.
Methods, vol. 212, no. 1, pp. 133-142, 2013.

R. J. Huster et al., “Multimodal imaging of functional networks and event-
related potentials in performance monitoring,” Neuroimage, vol. 56, no. 3,
pp. 1588-1597, 2011.

N. Parikh et al., “Proximal algorithms,” Found. Trends Optim.,vol. 1, no. 3,
pp. 127-239, 2014.

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.1214/09-AOS778

176

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025

Abdullah Karaaslanli received the B.S. degree in
electrical and electronics engineering from Bogazici
University, Istanbul, Turkey in 2017, and the Ph.D.
degree in electrical engineering from Michigan State
University, East Lansing, ML, USA, in 2023. He is
currently a Postdoctoral Researcher with the Depart-
ment of Electrical and Computer Engineering, Michi-
gan State University. His research interests include
various graph related signal processing and machine
learning problems, such as graph topology inference,
community detection, and graph-based methods for
crowdsourcing.

Selin Aviyente (Senior Member, IEEE) received the
B.S. degree (with Hons.) in electrical and electron-
ics engineering from Bogazici University, Istanbul,
Turkey, in 1997, and the M.S. and Ph.D. degrees in
electrical engineering: systems from the University of
Michigan, Ann Arbor, M1, USA, in 1999 and 2002,
respectively. In 2002, she joined the Department of
Electrical and Computer Engineering, Michigan State
University, East Lansing, MI, USA, where she is
currently a Professor. Her research interests include
statistical signal processing, higher order data rep-
resentations, and complex network analysis. She was the recipient of the 2005
Withrow Teaching Excellence Award and the 2008 National Science Foundation
(NSF) CAREER Award. She is an Associate Editor for [EEE TRANSACTIONS
ON INFORMATION THEORY and a Senior Area Editor IEEE Signal Processing
Magazine. She is also on several technical committees for IEEE Signal Process-
ing Society.

Authonzed licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 11:27:00 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


