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Tracking Displacement of a Worm-Like Robot
With Multiple Sensor Configurations
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Abstract—Worm-like robots that mimic the peristaltic loco-
motion of earthworms have high robustness to complex envi-
ronments. These robots’ movements are driven by the defor-
mation of the body, but this compliance in the body brings
challenges for tracking and control. This work compares
three sensing methods to track a worm-like robot’s displace-
ment: the actuator forward modeling method (AFMM), the
stretch and pressure sensor method (SPSM), and the inertial
measurement unit method (IMUM). Each of these methods is
compared against a true displacement determined by vision
tracking. Based on experimental results, SPSM yields the
lowest average error (underestimating the true value by 17%
on average), AFMM is slightly higher (20% underestimation),
and the IMU result has a comparatively large average error (77% overestimation). AFMM failed to track the robot’s
backward slip, while both SPSM and IMUM showed the ability of slip detection.

Index Terms— Bio-inspired robots, contact sensing, distributed sensing, position tracking, soft robots.

I. INTRODUCTION

SOFT robots’ locomotion can be compliant with the envi-
ronment [1]. Unlike rigid robots, soft robots change shape

to adapt to irregular spaces with different control methods [2].
Soft robots are uniquely suited to navigate narrow spaces,
or uneven ground [3]. Path planning algorithms can be applied
to soft robots, such as the Gaussian mixture model and the
Gaussian mixture regression [4], the Voronoi diagrams and
the Dijkstra’s algorithm [5], and rapid random tree algorithm
with Bezier curve [6], [7]. However, with their indefinite form,
forward modeling to estimate these robots’ configurations and
conditions can become highly unreliable [8]. Direct sensing
contributes to improving controllability; it helps feedback
adjustment by providing real-time proprioception and percep-
tion. In addition, in specific surroundings, the special structure
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and sensing ability of soft robots create challenges in modeling
and control [9]. Soft robot motion includes the nonlinear
response of the structure as well as unpredictable factors such
as friction and contact force. Robot deformation also interrupts
soft robot localization [10], and that, in combination with
various environments, challenges the localization of soft robots
without effective sensing methods.

For rigid robots, sensing methods for proximity awareness
and obstacle detection are well-established with many sensors.
Research has been done with depth sensors and camera
vision for the localization and 3-D mapping of mobile robots.
A sensor array has been used to compile a 2-D obstacle map
of a robot’s surrounding environment [11], and a depth camera
has been used to build a virtual obstacle map with respect to its
robot’s coordinate changes on that map [12]. These methods
add environmental obstacle sensing and mapping abilities for
rigid robots but may have difficulties exhibiting soft robots’
flexibility advantage in environmental sensing as well.

Soft robots, with a more flexible structure, require more
contact and deformation sensing to use their shape-changing
features. Many researchers have made progress in sensing
the deformation of soft actuators with different types of
sensors [13], [14], [15], [16], [17], [18]. A recent study demon-
strated the control of a T-shaped soft robot using two rolled
dielectric elastomer (DE) actuators [18]. That system estimates
the soft robot’s position by collecting electrical measurements
from the material, estimating its displacement according to
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those measurements, and reconstructing the robot’s position
from the DE displacement. Giffney’s team [13] applied a
combination of carbon nanotube strain sensors inside a soft
pneumatic actuator to detect the actuator’s bending angle by
measuring the strain resistance change. The final position
could be estimated by the bending angle. Other flexible
structures also applied sensors in position sensing. A smart
SensorTape is a tape-shaped, flexible sensor network [17].
It includes inertial measurement units (IMUs) at each node;
each IMU detects the tape’s deformation and measures the
motion information used to estimate the tape’s motion and 3-D
shape. These studies demonstrate the necessity and efficiency
of sensor implementation for a soft robot. However, these
implementations are limited to single-shape deformation and
are majorly focused on sensing the actuator.

In contrast to these examples, attempts to directly obtain
position or body shape readings for soft robots are still limited.
A study [19] applied multiple 6-degree of freedom (DOF)
force sensors to a rigid linked worm-like robot. With the
ultraprecise sensors placed directly on the contact points,
their experimental results perfectly matched the external vision
tracking results. The deformation of a soft robot could be
well determined by sensing the robot’s contact points with
the environment. However, this requires a suite of sensors that
effectively perceive this contact force.

Our study aims for more economic and generally applicable
solutions for robots that are compliant and can adaptively
deform their shape to better match their environment. For our
work, it is important to measure not only the actuators but also
the robot’s contact points and body deformation for precise
locomotion tracking.

Previously, our research noticed a displacement difference
between the simulation and the physical tests due to backward
slip and created a control strategy in the simulation environ-
ment for slip reduction during the robot’s locomotion [20].
That method searched all possible controls for slip reduction
(for all actuators) and returned the optimal slip-reducing
motion control. A more detailed study was also conducted
to get the numerical displacement with slip along the robot’s
physical locomotion [21]. In addition, novel research on cre-
ating effective locomotion by utilizing each segment’s force
feedback was also conducted [22]. This research implemented
stable heteroclinic channels (SHCs) controller to minimize the
slip. This controller has also been combined with a more
popular robotic control framework, and the resulting frame-
work offers users visualization of the control system [23].
To implement these algorithms into the physical worm-like
robot and further study its control and localization, methods
to track real-time slip are essential. In this article, we introduce
new sensing methods, including hardware designs and control
algorithms to detect a soft, worm-like robot’s forward motion
and backward slip.

In this work, we use three different sensing methods to
determine the robot’s position, and designed pressure sensors
and stretch sensors that accurately detect the robot’s forward
and fallback displacement. These sensing methods are: 1) the
actuator forward modeling method (AFMM); 2) the stretch
and pressure sensor method (SPSM); and 3) the inertial
measurement unit method (IMUM). For the first method,

four compliant mesh segments of the worm-like robot are
controlled by single actuators to expand or contract the diam-
eter of the segment [24]. When the robot locomotes, actuator
velocity is recorded and the displacement of the robot is
predicted in two dimensions [25]. For the second method, the
pressure and stretch sensors’ housing is made by an industrial
Polyjet 3-D printer, and each unit contains a force-sensing
resistor (FSR). The resistance of the FSR changes under
load [26], thus it is used to detect vertical pressure at the con-
tact points. This detected force is converted to displacement.
For the third method, an IMU is mounted in the center of
each segment. IMUs record accelerations in three directions,
and thus can be used to estimate the position of their respec-
tive segments. The baseline method uses a vision tracking
algorithm from the MATLAB Computer Vision Toolbox. The
toolbox finds featured pixels on the robot’s nodes and tracks
the pixels’ motions and positions based on the video recording.
The vision-based tracking method is widely used in various
soft robot planning scenarios for capturing motions [27], [28],
[29], [30].

Comparing these three different methods with a “ground
truth” from vision tracking, we show that the results of the
stretch sensor and pressure sensors most accurately reflect the
forward and backward displacement of the robot with a lower
error rate, which will help future robots navigate challenging
environments.

II. DEVELOPMENT OF THE ROBOT

A. Platform Structure
We have built a four-segment, wormlike robot. Each seg-

ment is built separately with the same design and assembled
together. As shown in Fig. 1, each segment is composed of
two parts: the outer mesh frame and the actuator mount. The
outer mesh frame maintains a round shape via the rhombus
structure of the polyethylene tube. The outer mesh frame is
compliant and can change shape when the actuator tightens
the cables. When the actuator cables are released to their
maximum length, the robot frame returns to its default axial
shape. The rubber bands along the frame’s joints provide a
return force and hold the frame at its maximum radius. The
actuator mount is connected to the bottom joint of the frame.
It holds two actuators on the left side and the right side that
control the outer mesh frame’s radius. Control is achieved
by adjusting the length of actuating cables that pass along
the outer mesh frame’s joints. Stretch sensors and pressure
sensors are also mounted on the frame. All of these sensors
are connected to the segment printed circuit board (PCB) on
the top of the actuator mount. The IMU is directly mounted
on the center of the PCB.

The robot’s front and side views are shown in Fig. 1. The
actuators tighten or loosen wires to tighten (or relax) the frame
in the ZY -plane; this produces locomotion along the X -axis.
Rubber bands are tied at the two sides of the platform and
robot structure in the Y -axis; this keeps the platform stable
during locomotion. The stretch sensors read each segment’s
extension force in the X -axis and the IMUs sense the plat-
form’s acceleration in the X -axis. When the robot’s segments
deform, the pressure sensors can detect various contact forces
in the Z -axis.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on July 01,2025 at 11:31:06 UTC from IEEE Xplore.  Restrictions apply. 



16240 IEEE SENSORS JOURNAL, VOL. 23, NO. 14, 15 JULY 2023

Fig. 1. Robot structure and sensor placement.

B. Circuit System
To manage a large number of sensors and actuators,

we designed a multilayer system to manage the power and
control. The structure of the entire system is shown in Fig. 2.
In our robot, each data processing unit (red dashed box in
Fig. 2) is integrated into a PCB and is mounted on the top of
the actuator mount for each segment.

The PCB regulates power voltage and handles the trans-
mission and conversion of the inter-integrated circuit (I2C)
data flow. For each segment, all surface sensor data (from
pressure and stretch sensors) are collected by a multichannel
ADC (LTC2499). These readings then pass to the higher
level controller through the I2C bus. The IMU (BNO055)
also outputs its readings as I2C signals. All these sensors are
connected in parallel to the PCB’s local I2C bus. An address
translator (LTC4316) is connected between the local bus and
the main I2C bus to shift the I2C address for commands
and data. The amount of shift for each address is based
on its reference input voltages, which are controlled by a
digital potentiometer (MCP4661) on the PCB. We assigned
potentiometers to each board with different output voltages.
In this way, the same type of sensor chips on each segment
PCB can be assigned to different addresses, allowing easy
segment addition without limits.

Fig. 2. Primary controller controls the PCB of each segment using
the I2C channel. IMUs, pressure sensors, and stretch sensors can be
installed on each segment’s PCB. Sensor reading will be sent back to
the primary controller through the I2C channel.

On the center segment’s PCB (the third segment for our
test), an additional central controller (Arduino MKR 1010)
is mounted. It is directly connected to the major I2C bus,
sends all reprogrammed commands to each segment, and
transfers the merged real-time sensor readings to the computer.
An additional voltage regulator is also on the center segment
to convert the 12-V input voltage to 5 and 3.3 V working
voltages for the entire system.

Actuator data and commands are passed through the
DYNAMIXEL Protocol (DXL) bus. The 12-V voltage for the
actuators (xl430-w250-t) can also be delivered through it. All
actuators are serially connected through the DXL bus and the
controller is also connected to it through an expansion board
(DYNAMIXEL Shield).

III. SENSING SYSTEM OF THE ROBOT

A. Force Sensitive Resistor
The FSR400 module is used to build our stretch sensors and

pressure sensors. When force is applied to the FSR’s sensitive
surface, its resistance decreases accordingly.

In order to get the best FSR accuracy, each sensor needs
to be calibrated separately. A sample relation between the
resistance of the FSR and the applied normal force is pro-
vided in the manufacturer’s manual. With the voltage divider,
we obtain the relation between the normal force and the output
voltage. Three repeat tests are performed on the same FSR.
We gradually increase the load weight to increase the applied
normal force. The result is shown in Fig. 3. Based on the test
results and the sample data from the manual, we expect a
logarithmic relationship

ln F = p1 ln R + p2 (1)

p1 and p2 are parameters that can be determined by
measurements.

According to our tests on different FSR units, we also notice
that these parameters vary for different units. But for any given
FSR, the parameters will remain consistent and will match the
test results, as shown in Fig. 3(c).
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Fig. 3. (a) Platform for the FSR force-resistance relation test. (b)
Solid lines are three repeated tests on the FSR with 10-KΩ reference
resistor. Dashed lines are the sample curve provided in the FSR manual.
(c) Force-resistance test on four FSR units of the same model
(FSR400 s). The dots are the test results and the dashed lines are the
linear regression between ln (F) and ln (Rfsr).

B. Pressure Sensors
The pressure sensors are placed where the robot contacts

the ground, at the bottom vertex of the robot frame of each
segment (red circle in Fig. 4). When a segment contracts in
length and expands along its radius, it touches the ground and
supports the whole robot as an anchor while other segments
move. The pressure sensor detects the normal force from the
ground to indicate if and how well the segment is anchoring.
Furthermore, such information is later used in combination
with stretch sensor readings to help indicate slipping.

As shown in Fig. 4(c), the pressure sensor design is an
assembly of four parts: base, case, plate, and contact node.
Fig. 4(b) also shows the hardness assignment for each part.
The plate and base are made of fully rigid material. The case
is made of a material with 15% softness to provide essential
deformation during assembly as well as to maintain the whole
structure’s shape. The bottom of the contact node is fully rigid
to transfer force to the sensor. The upper sphere is 30% soft
to reduce the friction and force of impact from the ground.

Pressure sensors are also installed on the vertices of the
outer frame of the wormlike robot. During the robot’s loco-
motion, The normal force from any contacted environment will
be applied to the contact node and then transferred to the FSR
through the node’s bottom surface.

C. Stretch Sensors
Stretch sensors are designed to estimate the distance

between two vertices. Elastic components (rubber bands) con-
nect both sides of the sensors to the mounted vertices. The

Fig. 4. (a) Installation of the pressure sensor at the bottom of the
segment. (b) Assignment of the pressure sensor material. (c) Assembly
of parts of the pressure sensor component.

Fig. 5. (a) Installation of the stretch sensor on the side of the segment.
(b) Stretch sensor assembly. (c) Parts of the stretch sensor components.

tension of the elastic components is then passed to the FSR
inside its case. This tension is the only force source in the
entire stretch sensor structure when gravity is ignored. The
stiffness coefficient of the elastic components was measured to
be 19.9 N/m. Once force is applied to a stretch sensor, we can
calculate the deformed length of the elastic components and
obtain the real-time distance between the two vertices.

To fulfill this function, the structure of the stretch sensors
is designed to be completely rigid except for the elastic
components, so the deformation can be viewed only from the
elastic components. The pressure sensor contains three parts:
the slide, the base, and the top hook, as shown in Fig. 5. The
FSR is inserted at the bottom of the base, and the upper column
of the top hook contacts its sensitive area. The slide is inserted
into the base and remains fixed after assembly. The two elastic
components are connected to the bottom of the top hook on
one side and the hole of the slide on the other side. When
tension is applied to the elastic components, it will be passed
to the FSR through the structure.

D. Inertial Measurement Unit
The Adafruit BNO055 is chosen as the IMU unit in each

segment. It is a 9-axis absolute orientation sensor and contains
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Fig. 6. (a) When ∆S1 and ∆S2 are known for each timestamp, we can
update the shape of the segment and obtain the changed position and
direction of the segment. (b) Robot frame geometry relationship: Lt is a
constant length. When ∆S decreases, Lc expands. The relationship is
defined by (5). (c) Geometry relationship is highlighted on the physical
robot.

a magnetometer, an accelerometer, and a gyroscope. Based
on the accelerometer, this IMU can read X -, Y -, and Z -axes
accelerations. It calibrates all reading data by a sensor fusion
algorithm. A gravity falling test was used to verify the IMU’s
acceleration reading on one axis. We dropped the IMU in
its X -axis direction and verified that the acceleration in this
direction was between 9 and 10 m/s2. The sampling rate of
the IMU in the gravity falling test is 20 Hz.

IV. POSITION TRACKING METHODS

A. Robot Kinematics and Segment Position Modeling
Assumption: The robot is a rigid body, i.e., the tube seg-

ments rotate, but do not bend.
The robot frame is cylindrical and its surface is composed

of a rhombus structure. In our previous research, a simulation
was built in MATLAB code and an algorithm was provided
to update the corresponding node positions of the robot
frame [25]. The state of the robot at any timestep could be
completely represented by a matrix of these nodes. Here,
we follow the same algorithm, but replace the simulated
actuation and robot geometry with different sensor readings
(actuator velocity, pressure, and stretch sensor outputs) and
the robot’s physically measured configuration. This algorithm
is later applied to actuator velocity-based, and FSR-based
tracking to update the segment position for each sampled time
frame.

The robot’s geometry connects the left and right lengths of
each segment to the corresponding nodes (the vertices along
that segment). According to the algorithm, with the given
length of each controlling cable (Lc), we can get the right and
left lengths of each segment, Wr (1S1) and Wl (1S2), and we
can calculate the robot’s node positions at each timestamp
to find the segment positions and directions as shown in
Fig. 6(a) [25]

1P1,P2 = 1′

S1,S2 − 1S1,S2

1P = (1P1 + 1P2) /2

1α = arctan
1P1 − 1P2

D
. (2)
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where µ is the friction coefficient of the ground.

B. Actuator Forward Modeling Method
Assumption: The robot is a rigid body, i.e., its frame

(rhombus edges in Fig. 6) is free to rotate, but does not bend
or change lengths. Also if a slip occurs, the slip will be on
the side of the robot with fewer contracted segments from the
moving segments.

Each segment is controlled by two actuators. The actuators
rotate according to a preprogrammed command, which sets
the actuating cable to release or contract correspondingly. The
control cable changes the left and right lengths of the segment
(Wl , Wr ). Tracking the status of the actuators allows us to
estimate the configuration of each segment during locomotion.

The angular velocity of the actuator, ω, can be used to cal-
culate the angular position of the actuator ϕ = (π/30)

∫ t
0 ωdt.

The cross section of our worm-like robot is a hexagon
(Nr = 6) and the robot’s spool radius RS (15 mm) and tube
length L t (91 mm) were determined when it was built. The
cable length per rhombus Lc at the position angle ϕ can be
calculated as below [25]

Lc = 2L t cos
θL

2
cos

π

2Nr
−

2Rs

Nr
ϕ. (4)

When Lc reaches its maximum length, the rhombus angle θ

is θL . Once Lc is found, we calculate the interval of adjacent
segments, 1S , based on the relationship shown in Fig. 6(b)

1S =

√
L2

t −

(
Lc/2 cos

π

2Nr

)2

W = 31S . (5)

We then use a MATLAB algorithm to estimate all center
positions of the segment during robot locomotion, as shown
in Fig. 18 in the Appendix.

After integration and conversion using (4) and (5), we get
the segment lengths (Wl , Wr ). By comparing whether the
current segment radius is at its maximum value for each seg-
ment, we can determine whether the corresponding segment
is expanding or contracting.

For each timestamp, based on the changed control cable
lengths (Lc), we update all the segments’ positions in the
sequence. If a slip happens, for each segment, we count the
total number of contracted segments before and after it. When
the total number of contracted segments after this segment
is more than or equal to the number of contracted segments
before it, we consider the segment as moving forward. All
positional updates are done on the front edge of this segment;
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the rear edge is held in place. If more contracted segments
are before the updating segment than after it, then, the update
will be on the rear edge, and the front edge will remain in its
position.

After applying this process to all segments, we can obtain
the updated positions of all segment centers for the next sensor
sampling timestamp. Looping through this process for all time
frames with the corresponding sensor readings, we obtain a
time series for all the segments’ center positions.

C. Stretch and Pressure Sensors Method
Assumption: The friction coefficient remains constant,

and the difference between dynamic and static friction is
negligible.

In this method, we use readings from stretch sensors and
pressure sensors to obtain real-time conditions for segment
lengths, W (i)

l , W (i)
r , and the friction force from the ground,

f (i).
For stretch sensors, the total length between its two end

joints is linear to the force applied to the FSR

W = L init +
K
2

F (6)

where L init is the total length when no force is applied on the
sensor, K is the spring rate of the connecting spring of each
side, and F is the measured force.

For a pressure sensor, the friction is proportional to the
measured force

f = µN (7)

where µ is the friction coefficient between the robot contact
joint and the ground. Due to the aforementioned assumption,
all comparisons between f are equivalent to the comparison
between N .

As shown in Fig. 19 in the Appendix, we apply sensor read-
ings together with all previous configurations of the segment
edges (position and heading) to obtain the displacement of
the current time frame. By evaluating W (i)

l and W (i)
r , we can

obtain the changed shape of each segment i .
In the horizontal plane, all forces applied to each segment

are from the friction force of other segments

F (i)
=

n∑
i+1

f −

i−1∑
1

f. (8)

Therefore, we can determine the direction of slipping as the
same as the direction of F

Dir (i)
= sign(F (i)). (9)

When Dir (i)
≥ 0, the segment is pushing forward, there-

fore, its rear joint remains still while all deformation from
W (i)

l , W (i)
r occurs on its front. For the case Dir (i) < 0, the

segment is pushing backward. Its front joint remains fixed and
its rear deforms.

Each iteration starts from the head (i = 1). For the first case
(Dir (i)

≥ 0), all previous segments (1:i − 1) need to undergo
a position translation to match the newly added deformation
of the segment i .

Using the above method, we get the updated joint and center
positions of all segments. We can then update the time frame
to the next set of sensor readings. Similar to the AFMM,
we can loop through this process for all time frames with
the corresponding sensor readings to obtain a time series for
all the segments’ center positions.

D. IMU Method
Assumption: There is no significant rotation of the

entire robot body, i.e., the X -axis of the robot does not
move/rotate.

An IMU is mounted in the center of each segment. We col-
lect real-time acceleration of the axial direction of the segment
to indicate the displacement of the segment. The algorithm
is discussed below and outlined in Fig. 17 in the Appendix.
During robot movement, a given segment’s actuator velocities
are used to determine whether that segment is moving or fixed.
If the sum of absolute actuator velocities for the segment is
greater than zero, this segment is in the moving stage, and its
IMU’s axial acceleration reading, A(i)

x , is used to calculate the
displacement. Otherwise, the segment is in a fixed stage. For
the moving stage and the fixed stage, different calibrations are
applied to cancel the accumulative errors for accelerations and
velocities.

For the fixed stage, the segment should not move, which
means that the average acceleration during this stage is zero.
We apply linear regression to the original acceleration reading
from IMU and consider it as the accumulated error for this
stage. Subtracting this error from the original acceleration,
we get the calibrated acceleration. The calibrated acceleration
is then integrated over time to obtain the velocity of the
segment during this fixed stage. Since there is no movement,
the average velocity will also remain zero. Therefore, we apply
linear regression to the velocity as the cumulative error of
the velocity and subtract it from the original velocity for
calibration. Finally, by integrating the calibrated velocity,
we obtain the displacement of the segment during this fixed
stage.

For the moving stage, the actual acceleration changes during
the locomotion of the segment. There is also vibration in the
segment, which further complicates the acceleration results.
However, at the start and end time of the moving stage, both
acceleration and velocity will still remain zero. Therefore,
we apply linear regression to the accelerations of these two
times to calibrate the acceleration. Integrating the calibrated
acceleration, we get the velocity during this stage. We then
apply linear regression to the velocities of the start and
end time of this moving stage as the cumulative error of
the velocity. Subtracting the error from the velocities of the
whole moving stage, we get the calibrated velocity. We then
apply integration to the calibrated velocity over time and
obtain the displacement of the segment during this moving
stage.

At the end of each stage, both acceleration and velocity
are zero. Therefore, we can directly sum up these integrated
displacements and get the final displacement of the entire
locomotion.
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Fig. 7. Camera captured image from the top of the robot, five
checkerboard points (yellow), the specified square region (red), and the
vision tracking target spots (green crosses).

E. Vision Tracking
During our tests, we placed an overhead camera about 1.5 m

above the testing ground to record the wormlike robot’s whole
real-time locomotion in top view, as shown in Fig. 7. A vision-
tracking algorithm was applied to the recorded video to get the
robot’s real-time reference positions. These reference positions
are used later in this article as the ground truth positions
when comparing the measured errors of different tracking
methods. Note that such overhead recording is not a part of
the robot system, and is normally considered impractical to
implement in applications outside of a laboratory environment.
Therefore this method is only used as a test reference, not
an implementable approach like the other methods introduced
earlier in this article.

The vision tracking method uses a top-view video record-
ing and the algorithm from the MATLAB Computer Vision
Tracking Toolbox to track an observed point from the video.
The algorithm code reads the first frame from the video
as an object frame, and we manually specify a square area
of the object frame (the red square shown in Fig. 7) for
the algorithm. The vision tracking algorithm will then focus
on a significant visible object within that range (a pressure
sensor holder of the robot’s fourth segment) and tracks it
in later frames. This is achieved by the minimum eigen-
value algorithm that captures all feature pixel points within
the region and tracks them in video using the Kanade–
Lucas–Tomasi algorithm. Finally, the vision tracking algorithm
can show captured points’ displacement in each frame from
the video (green crosses within the red rectangle shown
in Fig. 7).

The vision tracking algorithm records all captured points’
coordinates in pixels and converts one of the coordinates
of the well-captured points into millimeters. The conversion
rate is calculated based on the checkerboard background.
The checkerboard is printed with a 100-mm side length for
each square block. In the experimental test video, we track
checkerboard block corner positions 1 through 4, shown as
yellow circles in Fig. 7. The conversion rate is calculated

Fig. 8. Actuator angular velocities during locomotion.

Fig. 9. Segment radii of both sides determined from actuator velocities
during locomotion.

as the four points’ pixel distances divided by their physical
measured distance in mm, which is 1.23 (pixel/mm) for
Fig. 7. Additional verification is then applied using the corner
position of point 5. Its in-video distance to corner position 4
(243.46 pixels) is converted to physical distance (197.93 mm).
The true physical distance is 200 mm; this yields an error
of 1.0%.
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Fig. 10. (a) Relative pressure changes for each segment along the
robot’s locomotion based on the pressure sensor reading. (b) Normal-
ized friction distribution is applied on each segment in each phase of the
robot’s movement.

Additional testing for tracking consistency and reliability
was also conducted. We placed the robot as shown in Fig. 7
and kept it stationary. The vision tracking method was applied
to the red rectangle area and tracked the stationary object
for 63 s. The observed position data indicated a standard
deviation of 0.21 mm on the X -axis and 0.12 mm on the
Y -axis.

Based on the above analysis and test, we consider the vision
tracking method acceptably accurate and stable. The same
vision tracking method was applied for all the tests for the
reference displacement of the robot.

V. RESULTS

A. AFMM Tracking Result
The actuator outputs predict a steady motion pattern for

the robot. The segments are actuated in sequence with the
velocities shown in Fig. 8. After conversion and integration,
as detailed in Section IV-B, the radius of each segment Lc is
predicted to increase and decrease, as shown in Fig. 9. These

Fig. 11. Segment length changes for each segment based on stretch
sensors.

Fig. 12. (a) Original acceleration. There are three waves with four
phases each. (b) Correcting the velocity by canceling a linear error to
make the velocity at the starting and end time of the moving period equal
to zero. The gray line is the original integrated velocity. The blue line is
the estimated linear error. The red line is the corrected velocity.

measurements can be combined to predict robot locomotion
with a forward model. For example, the motion of the center
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Fig. 13. (a) Original acceleration and integrated velocity. There are
three waves with four phases each. (b) Correcting the velocity by
canceling a linear error to make the velocity at the starting and end time
of the moving period equal to 0. The gray line is the original integrated
velocity. The blue line is the estimated linear error. The red line is the
corrected velocity. The yellow line is the “true” observed velocity from
vision tracking.

of the fourth segment is shown in Fig. 15 to be compared with
the other methods below.

B. SPSM Tracking Result
We also tested displacement tracking using distributed sen-

sors along the surface of the robot frame, as described in
Section IV-C. Stretch sensors and pressure sensors are used
in combination.

This tracking starts with collecting data from all these
sensors and converting them into segment lengths (Fig. 11)
and relative pressures: 0 for no pressure and 1 for the sensor’s
maximum measurement range (Fig. 10).

Note that, unlike the actuator predictions, there are small
differences between the measured widths of the left and right
sides of the segments. Part of the reason for this is that
the left and right sensors are not at the same height (1).
Internal tension is different at different heights to counteract
the deformation of gravity.

Applying those real-time sensor readings to the forward
modeling, we obtain displacements of each segment during
the worm-like robot’s locomotion. The displacement of the
fourth segment is shown in Fig. 15.

C. IMU Method Tracking Result
For displacement tracking using the IMU acceleration mea-

surements, we collected all axial accelerations for all seg-
ments. Based on this data, we estimated the final displacement
by the method introduced in Section IV-D.

Fig. 12(a) shows an example of the collected data. The
IMU in the fourth segment vibrates when any segment moves.

Fig. 14. (a) Backward slip of the fourth segment. The fourth segment is
deforming, and its tracking point slips backward. (b) Deformation of the
movement direction. There are errors in the final direction and the initial
direction.

Fig. 15. Tracking results of displacement of the fourth segment over
time. The robot completed two full waves during its locomotion.

We applied an error cancellation algorithm based on two
principles: 1) the average axial acceleration of the segment
should be zero when no actuator is functioning and 2) the
start and end of the axial acceleration should be zero during
the period when the actuator is running. The linear regression
of the errors and the acceleration after these errors have been
corrected are shown in Fig. 12(b).

Furthermore, we applied the corrected acceleration to get
the integrated velocity, as shown in Fig. 13, and applied a
similar algorithm to correct the velocity error. The average
axial velocity should be zero when no actuator is functioning.
The start and end of the axial acceleration should be zero
during the period when the actuator is running. The estimated
errors and corrections are shown in Fig. 13.

After the above process, we can obtain the final displace-
ment by integrating the corrected velocity. The result of our
sample test for the fourth segment is shown in Fig. 15.

D. Comparison With Vision Tracking
The displacement tracking results of each method show con-

sistent differences. Fig. 15 shows the displacement tracking
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Fig. 16. (a) Displacements between each phase and during an entire wave. (b) Accumulated errors during each phase and during an entire wave.
Normalized by wave displacement [data in (a.v)].

results of these methods over time for the fourth segment of
the robot.

In our test, the robot completed two full waves. Each
moving wave contains four segments that deform and move
in sequence. The segments move via deformation, but this
deformation causes slips due to the change in the relative
distance between the segments and nonuniform manufacturing
errors along the robot frame. Slip can reduce total displace-
ment [Fig. 14(a)] and cause directional drifting [Fig. 14(b)].
This can be visually observed and tracked using the vision
tracking method. During the test, backward slip (Fig. 14) has
a more significant impact on the final displacement of the
robot. All segment deformations can cause the backward slip
of other segments, including those not being actuated.

We divided locomotion during a whole wave into four
phases which encompass the change between each moving
and stopping stage, as shown by the purple numbering in
Fig. 15. The deformation and movement of the other segments
will also cause slips in the fourth segment. Fig. 15 shows a
backward slip during phases 3 and 4 of each wave. The vision
tracking method, SPSM, and IMUM detected that the fourth
segment slipped back as the displacement reading decreased

in phases 3 and 4 (downward arrows in Fig. 15). In contrast,
though AFMM is smooth and reasonable, it does not capture
backward slips or the influence of neighboring segments on a
given segment.

We repeated the displacement test five times, and in each
test, the robot moved at least two full waves. The first two
phases are excluded due to transients. Vision tracking and the
three other methods are compared after a pause at the end of
each phase (which allows vibrations of the IMU to diminish).
The average displacements and accumulated errors for each
wave are shown in Fig. 16(a.v) and 16(b.v). The whole wave
error is also summarized in Table I. The relative error results
are in percentage and are calculated based on (10) and the
absolute error results are in millimeters based on (11)

relErri =
Xmi − Xvi

Xvi
(10)

absErri = Xmi − Xvi . (11)

In the equations, relErr is the relative error, absErr is
the absolute error, i is the wave index, Xm is the total
displacement measured from the different tracking methods,
and Xv is the total displacement of the vision tracking record.
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TABLE I
OVERALL COMPARISON OF THE THREE TRACKING METHODS:

RELATIVE ERROR (PERCENTAGE) AND ABSOLUTE ERROR (MM)

In addition, we use the same test results to analyze the
relative errors generated for each phase. Since all waves repeat
the same locomotion command, the errors during each phase
are consistent. Phase-level errors allow us to better understand
how errors occur and the performance of each method during
the different locomotion stages of the robot. The results of the
displacement and error statistics are shown in Fig. 16. Note
that because the actual total displacements for each phase vary
significantly, we define the comparable error with respect to
the whole wave displacement of that phase, as shown in the
following:

phsErri, j =
(Xmi, j − Xmi, j−1) − (Xvi, j − Xvi, j−1)

Xvi,2 − Xvi−1,2
. (12)

Here, phsErr is the relative error of each phase, i is the wave
index, and j is the phase index. When j −1 = 0, we decrease
i by 1 and set j to 4.

From these results, we can see that for AFMM, the outputs
of the actuators are stable. The actuators followed our designed
velocity commands to provide periodic actuation of each
segment to move forward. Very limited environment errors
and interference are introduced at this level. Therefore, the
AFMM results show the lowest standard deviation of errors
among all tracking methods, and we consider this method to
be the most stable. However, because it lacks the ability to
sense environmental interference, it yields a result that is far
different from the actual. As a result, although this method
showed a relatively low error during the displacement of full
waves [Fig. 16(b.v)], it provides the least accurate tracking
result during locomotion phases 3-4 and 4-1 (Fig. 16). These
two phases introduce a large amount of slip that the actuators
cannot track.

SPSM results best reflect the actual position and give stable
results in different waves. This method introduces a relatively
larger standard deviation of error for most cases compared to
AFMM, however, it can detect a backward slip. The statistics
in Fig. 16 also show good tracking for all four phases; its mean
error when compared to vision tracking was the smallest of
the three other methods.

IMUM results in the largest standard deviation for all
tracking. From Fig. 16, we can see that most of this deviation
is introduced from the phase 4-1 movement. For all other
phases, the IMUM’s average errors are relatively reasonable.
Its mean error during the phase 3-4 movement in Fig. 16 is

Fig. 17. IMUM diagram. The segment displacement is updated using
the acceleration reading from the IMU.

also lower than that of AFMM. This shows that it can also
detect the error generated by the environment, such as the
backward slip.

VI. CONCLUSION

In this research, we designed a four-segment worm-like
robot with multiple sensor setups. The design includes the
platform structure (Fig. 1), the data handling circuit system
(Fig. 2), and the sensing system. Specifically, in order to
ensure the accuracy and reliability of the sensors, we demon-
strated calibration methods for the FSRs (Fig. 3) and their
corresponding holding stand for their application as pres-
sure sensors (Fig. 4), and calibration methods for the stretch
sensors (Fig. 5). We presented a simplified kinematic model
(Fig. 6) for the robot locomotion. Based on this model and
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Fig. 18. AFMM diagram. The center position of the segment is updated
using actuator velocity readings.

the applied sensors, we introduced three different methods to
track the displacement of the worm-like robot: the AFMM, the
stretch and pressure sensors method (SPSM), and the IMUM.
An additional vision-tracking method is also provided as the
displacement reference (Fig. 7).

Multiple repeated tests are conducted with the same envi-
ronment and the same locomotion control. We collected dis-
placement results (Figs. 8–13) for each tracking method with
the visual records (Fig. 14) and compared them with vision
tracking data to obtain the tracking errors of each method
(Figs. 15 and 16).

From the results, we evaluated and compared the three
methods. AFMM can provide tracking with good average
errors (it underestimated the displacement of a wave by an
average of 20%) and the lowest standard deviation (22%).
But it lacks the ability to detect detailed information about
the interaction with the environment, such as a backward
movement due to slipping. SPSM indicates a similar error
standard deviation (24%) and the lowest average error (17%
underestimation). It can also detect backward slips. IMUM
records and integrates the segment acceleration data to obtain

Fig. 19. SPSM diagram. The center position of the segment is updated
using readings from the stretch sensors and pressure sensors.

real-time displacement. It has a more significant average error
(77% overestimation) and a less ideal error standard deviation
(105%). The acceleration reading is independent of the relative
deformation of the segments. Therefore, this method can
naturally track the backward slip.

If we sort them according to the stability of the result,
AFMM and SPSM are good choices. For tracking displace-
ment that contains an unfinished step with the best error
stability, the stretch sensor method is the best.

In conclusion, we have demonstrated several possible ways
to do locomotion tracking for a worm-like robot with dis-
tributed sensors. These methods can also be adopted for other
compliant robots that have high degrees of freedom.

One limitation of this work is that we did not compare
combinations of sensor configurations. The three tested meth-
ods are based on different algorithms and assumptions. They
each have their best performance during different phases of
the locomotion and therefore can be complementary (Fig. 16).
Together, they have the best potential for accurate localization
through sensor fusion. An extended Kalman filter [31], for
example, may utilize all three methods and merge the results
with dynamical weights based on the reliability of the sensor
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readings. This approach may effectively reduce signal noise
and more accurately estimate the robot’s position.

Another limitation of this work is that the experiments were
performed on flat ground. On flat, smooth ground, wheels,
or other locomotion approaches are likely to be the simplest
way of locomoting. The potential advantages of peristaltic
locomotion occur when space for large wheels is limited and
when terrain roughness precludes the use of small wheels.
Tracking locomotion positions is likely to be more difficult
on more challenging terrain.

For the current stage, we tested the robot’s locomotion on a
plane surface with a straightforward path. These results will be
beneficial for further research in a more complex test ground
and for locomotion paths with turning. Locomotion tracking
will be an essential input into peristaltic gait control. Within
a gait period, any fallback can be limited by balancing the
extension and retraction of segments. Within a gait cycle,
especially along nonuniform terrain, a fallback is an indicator
that the anchoring time of one segment is over and the next
should begin. Over several gait cycles, locomotion tracking
can serve as a reward as new gaits are created, executed,
and compared—allowing a robot to try gaits with different
numbers of moving and anchoring segments or different
combinations of peristalsis, undulation, turning, and rolling.

APPENDIX

Figs. 17–19 correspond to the IMUM, AFMM, and SPSM
algorithms described in Sections IV-B–IV-D, respectively.
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