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Structural Averaged Controllability for Linear
Ensemble Systems: Single-input Case

Xudong Chen'* and Bahman Gharesifard?

Abstract—We consider continuum ensembles of lin-
ear time-invariant control systems with single inputs.
A sparsity pattern is said to be structurally averaged
controllable if it admits an averaged controllable linear
ensemble system. We provide a necessary and sufficient
condition for a sparsity pattern to be structurally
averaged controllable.

I. INTRODUCTION

In this paper, we address the problem of structural
averaged controllability introduced in [1]. Specifically, we
consider continuum ensembles of linear time-invariant con-
trol systems with single inputs. The (A,b) pairs of the
individual systems are sparse, sharing a common sparsity
pattern (or structure as the terminology used in Lin’s
seminal work [2]). The sparsity pattern is said to be struc-
turally averaged controllable if it admits linear ensemble
systems, compliant with the sparsity pattern, that are
averaged controllable. A precise definition will be given
shortly in Subsection II-A.

Ensemble control originated from quantum spin sys-
tems [3, 4], and provides an alternative approach for con-
trolling large-scale multi-agent systems, which is by nature
resilient and scalable [5] — instead of controlling a single
large networked system, we control a large population of
small, independent ones.

A major technical challenge of ensemble control stems
from the requirement that the control input be generated
irrespective of the parameters of the individual systems.
Roughly speaking, the larger the parameterization space
is, the more individual systems are contained in the ensem-
ble and hence, the more difficult it is to simultaneously
control all of them. Over the last decade, there have
been steady efforts in obtaining necessary and/or sufficient
conditions for ensemble systems to be controllable or even
path-controllable (see e.g., [5-12]).

Amongst these recent advances, we mention a negative
result established in [11], which states that real-analytic
linear ensemble systems are not LP-controllable, for 2 <
p < oo, when the underlying parameterization spaces are
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multidimensional. For this type of pathological case, one
has to relax the notion of controllability and seek for
the controllable characteristics of the ensemble system.
We formulate these characteristics as integrated outputs,
where the integration is taken over the parameterization
space. The choice of such formulation is rooted in the study
of statistical properties of the ensemble system.

A simple, yet important integrated output is the state-
average. For linear ensemble systems, a necessary and
sufficient condition for averaged controllability has been
obtained in [13]. The result, reproduced in Lemma 1, can
be viewed as a variation of the Kalman rank condition
adapted to averaged control. A natural question then
arises as follows: How easy (or difficult) can this condition
be satisfied? We address this question from the structural
system theory point of view. Specifically, we investigate
the set of sparsity patterns for the (A,b) pair and charac-
terize the ones that are structurally averaged controllable.
It should be clear that the more sparsity patterns that are
structurally averaged controllable one can have, the more
averaged controllable linear ensemble systems there are.
The question posed above can thus be translated to the
following: Are those sparsity patterns rare or abundant?
In this paper, we will provide a solution to this question
by establishing a necessary and sufficient condition for a
sparsity pattern to be structurally averaged controllable.
The result is formulated in Theorem 1.

In the earlier work [1], we have shown that structural
averaged controllability is strictly weaker than structural
controllability introduced by Lin [2] for finite-dimensional
linear time-invariant systems. In fact, it is not hard to
construct sparsity patterns that are structurally averaged
controllable, but not structurally controllable. We refer the
reader to [1, Proposition 2] for an example.

However, it remained open how large the gap is. Only
a few preliminary results were obtained in [1], where we
carried out case studies for a special class of sparsity pat-
terns. A major technical challenge was in choosing appro-
priate functions for the nonzero entries of the sparse pair
(A,b) such that the analysis of the associated averaged-
controllability matrix (2) is tractable. More specifically,
we considered the case where the parameterization space
is the unit closed interval (equipped with the Lebesgue
measure) and the sparsity pattern of (4, b), in its graphical
representation, has no cycles except a self-loop on a spe-
cific node. We then chose the nonzero entries of (A, b) to be
monomials, with a rule that specifies their degrees, so that
the averaged-controllability matrix (2) can be related to a
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variation of the Hilbert matrix, which allows us to compute
its rank explicitly. However, the aforementioned rule can
hardly be extended to the general case, especially when
there exist multiple cycles in the directed graph associated
with the sparsity pattern of (A4,b).

In this paper, we resolve this technical issue by inte-
grating a new set of ideas and tools, which enable us
to provide a complete solution to the structural average
controllability problem for a much broader class of linear
ensemble systems.

The remainder of the paper is organized as follows:
At the end of this section, we present key notions and
notations used throughout the paper. In Section II, we
formulate precisely the problem and state the main result.
Section III is dedicated to the proof of the main result.
This paper ends with conclusions.

Notations. We gather here key notions and notations.
Graphs. Let G = (V, E) be a directed graph (or simply
digraph), possibly with self-loops. The node and edge sets
of G are V and E, respectively. We denote by v;v; a
directed edge from v; to v;; we call v; an in-neighbor of vj,
and v; an out-neighbor of v;. For a subgraph G’ = (V', E')
of G, we let

Nouwt(G') :={v; € V | there is a v; € V' s.t. vjv; € E}.

We define Ni,(G’) in a similar way.

A walk T from v; to v; is a sequence of nodes 7 =
Vi ...V, With v;; = v; and v;, = vj, such that each
Vi Vi, for j =1,...,k — 1, is an edge of G. The length
of the walk, denoted by ¢(7), is the number of edges
contained in it. A walk is said to be closed if its starting
and ending nodes are the same. A walk is a path if there
is no repetition of nodes in the sequence. A walk is a cycle
if there is no repetition of nodes except the repetition of
starting and ending nodes. Note that a self-loop at a node
v; is a cycle of length 1. Given two walks 71 = v;, ... v;,
and 75 = vy, ...v;, such that the ending node v;, of 7
coincides with the starting node v;, of 7, we can obtain
a new walk by concatenating 7 and 7o:

T = T1T2 = V;, “'Uikvjz "'sz'

In case 7 has only a single node v;,, we have 7 = 7. It
should be clear that (1) = £(11) + £(72).

The digraph G is said to be weakly connected if the undi-
rected graph, obtained from G by ignoring the orientations
of its edges, is connected.

A node v; is said to be a successor of v; if there exists a
path in G from v; to v;, and v; is said to be a predecessor
of v;. We say that G is strongly connected if for any two
distinct nodes v, and vg, vy is both a successor and a
predecessor of v,. A graph with only a single node is, by
default, strongly connected. Such a graph is said to be
trivial if it has no self-loop.

A node v, is said to be a root of G if any other node
is a successor of v,.. We call G a directed tree if it has a
unique root v, and for any other node v; of G, there exists
a unique path from v, to v;.

Given a subset V’ of V| the subgraph G’ = (V', E’) of
G is said to be induced by V' if the edge set E’ satisfies
the following condition: if two nodes v;,v; € V' are such
that v;v; € E, then v;v; € E'.

Let G = (V,E) and H = (W, F) be two digraphs. A

graph homomorphism 7 : G — H is a map from V to W
such that if v;v; is an edge in G, then 7(v;)m(v;) is an
edge in H. One can extend the map 7 to the edge sets
7 : E — F, sending v;v; to m(v;v;) := 7(v;)w(v;). Then,
for a subgraph G’ = (V' E’) of G, we let 7(G’) be the
subgraph of H with w(V’) the node set and w(E’) the
edge set. Conversely, for a subgraph H' = (W', F’) of H,
we define 7= (H') := (7= 1(W'), 7= L(F")).
Miscellanies. Let G = (V, E) be a graph on n nodes, and
V' ={vi,, -+ ,v;, } be a subset of V, with ¢; < -+ < i.
For a vector = € R, we let z|y» € R¥ be the subvector of
x given by x|y := (x;,,...,%;, ). The notation extends to
matrices: specifically, for X € R™*"™ with z1,...,z,, € R"
its columns, we let

Xy = [z1]vr, - xn|v].

For a matrix C € R™"*™, we let ||C]| be the induced
matrix 2-norm. Let ¥ be an arbitrary topological space.
A function f : ¥ — R™ ™ is bounded if exists a number
~v > 0 such that ||f(o)]| < v for all ¢ € X. We denote
by CJ(X,R"*™) the space of all bounded, continuous
functions from ¥ to R™™™. For each f € C)(¥,R"*™),
we define

[ fllo == sup [|f(a)]l.
oex

The topology on CY(¥,R™*™) induced by the norm is
called the uniform topology.

In this paper, we will deal with matrices with finitely
many row, but infinitely many columns. Given such a
matrix

C= [017027037"']7

we let Cp,) = [C1,...,Cy] be the finite-dimensional
submatrix of C' obtained by keeping only the first m
columns. We say that C has full rank (i.e., rank n) if there
exists a positive integer m such that Cj,,) has rank n.

For a positive integer n and for two real numbers p and
q, we write p =, ¢ if (r=9)/n is an integer.

We denote by N the set of all nonnegative integers
(including 0).

with C; € R™ for all j > 1,

II. PROBLEM FORMULATION AND MAIN RESULT
A. Problem formulation
Let ¥ be a manifold, possibly with boundary, and u be
a Borel probability measure on ¥ whose support contains
an open set. We consider a continuum ensemble of linear
time-invariant systems driven by a single control input:

0
o4t 0) = A(0)(t,0) + b(o)u(t),

where z(t,0) € R" is the state of the individual system
indexed by o at time ¢, u(t) € R is the common control

forceX, (1)
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input, and A : ¥ — R ™ and b : ¥ — R™ are bounded,
continuous functions. The control input is said to be
admissible if for any T' > 0, the function u : [0,7] — R
is integrable.

Let x(t) : ¥ — R™ be the profile of system (1) at time ¢,
defined by sending a parameter o to the corresponding
state x(t,o). It should be clear that if x(0) is bounded
and continuous, then so is x(t) for any admissible control
input. Denote by Z(t) the average of the individual states
at time t¢:

x(t) == / z(t,o)dp.
b
We have the following definition:

Definition 1. System (1) is averaged controllable if for
any initial profile x(0) € CY(X,R™), any target z* € R",
and any time T > 0, there exists an admissible control
input u(t) such that the solution of (1) generated by u(t)
satisfies x(T') = x*.

Since the ensemble system (1) is determined by the
(A,b) pair, we will simply say that (A,b) is averaged
controllable if (1) is. We have the following necessary
and sufficient condition adapted from [13] for averaged
controllability:

Lemma 1. Ensemble system (1) is averaged controllable
if and only if the following column-infinite matriz:

C(A,b) == [/Ebdu,/EAbdu,/EAdeu,---] (2)

is of full rank, i.e., rank n.

In this paper, we deal with sparse (A, b) pairs. By con-
vention, the sparsity pattern is represented by a digraph
G = (V,E) on (n+ 1) nodes as follows:

e The node set V is a disjoint union of two subsets:
Va = {aq,...,a,} and a singleton V3 := {B}. The
a-nodes correspond to the n scalar states z;, and the
[B-node corresponds to the single input w.

o There is a directed edge from «; to oy if a;; # 0.
There is a directed edge from S to «; if b; # 0. The
[B-node does not have any in-neighbor.

We call G, defined above, the digraph induced by the
pair (A,b).

Let G,.1 be the collection of all weakly connected di-
graphs G on (n + 1) nodes, with n a-nodes and a single
[B-node, satisfying the condition that § has no in-neighbor.
Given a digraph G € G, 1, a pair (A,b) € C)(Z, Rnx(n+1)
is said to be compliant with G if the digraph induced
by (A4,b) is a subgraph of G. Further, we let

V(@) = {(A,b) € CY(Z, R D)
| (A,b) is compliant with G}.

It should be clear that V(G) is a subspace. We now have
the following definition:

Definition 2. A digraph G € G, is structurally
averaged controllable if there exists a pair (A, b) € V(G)
such that it is averaged controllable.

We recall that the digraph G € G, is said to be
structurally controllable if there exists a matrix pair
(A,0) € R*™™™ x R™, compliant with G, such that the
finite-dimensional linear system @(t) = Ax(t) + bu(t) is
controllable. It has been shown [1, Proposition 1] that
if G is structurally controllable, then G is structurally
averaged controllable. (As mentioned earlier, we assumed
in [1] that ¥ is the closed unit interval [0,1] with p the
Lebesgue measure. The same result still holds for the
general setting as considered in this paper, and one can use
the same arguments in the proof to establish the result.)
However, the converse is not true, i.e., structural averaged
controllability does not imply structural controllability. A
counter-example has been exhibited in the proof of [1,
Proposition 2].

B. Main result

In this subsection, we present a necessary and sufficient
condition for G € G,, 1 to be structurally averaged control-
lable. Our presentation relies on the notion of the so-called
strong component decomposition:

Definition 3. Let G = (V, E) be an arbitrary weakly con-
nected digraph. The strong component decomposition
(SCD) of G is a node-set decomposition V. = UN Vi,
where the V;’s are disjoint, such that the following hold:
1) For eachi =0,...,N, the subgraph G; induced by V;
is strongly connected.
2) Let G' be an arbitrary strongly connected subgraph of
G. Then, G' is a subgraph of G; for somei =10,... N.
We call G;’s the strong components of G.

Note that a subgraph G; can be a single node (with
or without self-loop). The S-node itself forms a strong
component, which we denote by Gy.

Let Geye = (Veye; Feye) be the union of the nontrivial
strong components (i.e., components that contain cycles).
A strong component G; is not in Gy if and only if G;
comprises a single node without a self-loop.

Let V. f. be the set of successors of nodes in Vey., and
G be the subgraph induced by V.{.. The essential part
of G that determines whether G is structurally averaged
controllable is introduced in the following definition:

Definition 4. Given a digraph G € G, 1, let V¥ :=V —
VCJ}CC and G* be the subgraph of G induced by V*. We call

G* the core of GG.

It should be clear from the construction that a node v;
is in G* if and only if it is not a successor of any cycle in
G. In particular, G* is acyclic and contains 3. See Figure 1
for illustration.

We now state the main result of this paper:

Theorem 1. Let G € G, 1 and G* be its core. Then, G
is structurally averaged controllable if and only if B is the
root of G and, moreover, G* has a directed spanning path.

If G is acyclic, then its core G* is G itself. In this
case, Theorem 1 states that G is structurally averaged
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Fig. 1: The digraph shown in the figure is weakly connected. The SCD yields 6 strong components, including 4 trivial ones
Go = {8}, G1 ={a1}, G+ = {as}, G5 = {aw}, and 2 nontrivial ones, namely, G2 the subgraph induced by {2, a4, as} and G3
the subgraph induced by {as, as, ar}. The subgraph Geye consists of G2 and Gs. The subgraph Gﬂ'yc consists of Gcyc, the nodes
as and ag, and the edges asas and arag. Finally, the core G* is the subgraph induced by {3, a1}.

controllable if and only if G contains a directed spanning
path with § the root. Note, in particular, that the same
condition is also necessary and sufficient for G to be
structurally controllable [2].

Also, note that the necessary and sufficient condition in
Theorem 1 can be checked efficiently. Given the digraph
G = (V,E), one can first perform the SCD of G to
obtain the core G*, and then check whether G* contains
a directed spanning path. The first task can be done by
using the Tarjan’s algorithm [14], whose time complexity
is O(|V| + | E|). The second task can be translated to the
problem of computing the length of a longest path in G*
and checking whether the length matches the order of G*,
whose time complexity is again O(|V| + |E|).

We now address the openness and density of the set
of averaged controllable pairs (A,b) in the space V(G).
To this end, we equip with CS(E,R"X(”“)) the uniform
topology, and V(G) the subspace topology. For a given
G €Gp, let

V.(G) :=={(A,b) € V(G) | (A,b) is averaged controllable}.

We have the following result:

Proposition 2. Suppose that G is structurally averaged
controllable; then, V. (G) is open and dense in V(QG).

Proof. We establish openness and density of V,(G) sub-
sequently.

Proof that V.(G) is open. Let (A,b) € V.(G). Then, by
Lemma 1, the matrix C(A,b) has full rank. Let m > n
be such that the submatrix Ci,,;(A,b) has rank n. Now,
consider the map p : V(G) — R™*™ defined by

p(Alv b/) = C[m] (A/7 b/) (3)

It should be clear that the map p is continuous. Since
Cim)(A,b) is of full rank, there exists an open neighbor-
hood V of Cjy,;(A,b) in R"*™ such that any matrix in V
has rank n. Then, U := p~!(V) is an open neighborhood
of (4,b) in V(G), contained in V,(G).

Proof that V,.(G) is dense. The arguments below will be
similar to those in [2]. Since G is structurally averaged
controllable, there exists at least a pair (A, b.) in V.(G).
We still let m > n be such that Cp,j(Ax,bs) has rank n.
For ease of presentation, we assume that m = n so that
Cim](Ax, bs) is a square matrix of full rank (otherwise, one

can always pick n columns out of Cf,,(Ax,bs) to obtain
such a matrix). Let p be defined as in (3). Now for any
(A,b) € V(G), we consider a polynomial map ¢ : R — R
defined as follows:

0(s) := det(p(A(s),'(5))),

where
(A'(s),b/(5)) = 5(Av,by) + (1 — 8)(A,b).

Since (A’(1),b'(1)) = (A, bs), we have that §(1) # 0.
Thus, § is not identically zero, so it has at most n distinct
real roots. This, in particular, implies that any open
neighborhood of 0 in R contains some s such that §(s) # 0.
Since (A’(0),b'(0)) = (A,b), we have that there exist an
arbitrarily small s > 0 such that

(A, b))+ (1 —8)(A,b) € V. (G).
This completes the proof. O

III. PROOF OF THE MAIN RESULT

This section is dedicated to the proof of Theorem 1.
In Subsection III-A, we establish the necessity part: We
show that if G is structurally averaged controllable, then
G satisfies the condition in Theorem 1 (i.e., the condition
that § is the root of G and G* contains a directed spanning
path). The arguments for establishing the necessity part is
more or less straightforward. The proof of the sufficiency
part is more involved. We outline below the proof.

Sketch of proof for the sufficiency part. The property of
being structurally averaged controllable is monotone with
respect to edge addition. Specifically, if G = (V, E) is
structurally averaged controllable, then so is any graph
G’ = (V,E') obtained by adding new edges into G (i.e.,
E' 2 FE). In Subsection III-B, we introduce a special
class of graphs G, termed reduced graphs, satisfying the
following two properties: (1) G satisfies the condition of
Theorem 1, and (2) any graph G’ satisfies this condition
can be trimmed, via edge removal, to a reduced graph.
By monotonicity, to establish sufficiency, it suffices to
show that every reduced graph is structurally averaged
controllable.

The reason we choose to work with reduced graph is for
ease of analysis: Specifically, for G a reduced graph, we
will be able to obtain an explicit characterization of all
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walks with 8 the starting node. Such a characterization
is instrumental in analyzing and computing the infinite
matrices C(A,b), for (A,b) € V(G). More specifically, the
ijth entry of C(A,b) is, in general, given by > _P(7),
where the sum is over all walks 7 of length j from g
to a;, and P(7) is the product of the entries in (A,b)
corresponding to the edges in 7. If G is reduced, then such
a walk 7, if exists, is unique.

In Subsection III-C, we characterize the walks in re-
duced graphs and describe reachable sets of nodes in
G (i.e., nodes that can be reached from S by walks of
particular length). Then, in Subsection ITI-D, we construct
a particular (A4,b) pair in V(G) for G reduced. Each
nonzero entry of (A,b) will be of the form f*(¢), where e
is the edge of G' corresponding to the entry, f : ¥ — Rx>¢
is some continuous function, and v : E — R>( specifies
the power of f for each edge e. In this way, the ijth entry
of C(A,b), if nonzero, can be expressed as

Cij = feer "), (4)
where 7 is the unique walk from g to «; of length j. The
expression (4) will be made explicit in Subsection III-E.

Leveraging these computational results, we focus in
Subsection III-F on a class of submatrices of C(A,b) and
show that they are full rank. Finally, in Subsection III-G,
we show that the entire matrix C(A,b) has rank n. O

A. Proof of Necessity

In this subsection, we establish the following result:

Proposition 3. If G € G, 1 is structurally averaged
controllable, then G is rooted with (8 the unique root and,
moreover, its core G* contains a directed spanning path.

Proof. We first show that G is rooted and then show that
G* contains a directed spanning path.

Proof that G is rooted. Since  has no incoming neighbor,
if G is rooted, then § has to be the unique root. Now,
suppose that G is not rooted; then, there exists at least
one node a; of G such that there does not exists a path
from B to «;. We label all such nodes as aq,...,ax, for
1 < k < n. Then, for any pair (4,b) € V(G), we have that

_ A O 0
A= {Azl AQJ and [b2] ®)
where Ay is k-by-k, Ags is (n—k)-by-(n—k), and bs is (n—

k)-dimensional. We partition = (x1;x3) correspondingly.
Then, the dynamics of x; are described by

i?l(t, 0') = All(o—)xl(t7 0)7

which are not affected by the control input u(¢). It should
be clear that the above sub-system is not averaged con-
trollable and, hence, the entire system is not averaged
controllable. Since the arguments hold for all pairs (A4, b) €
V(G), we have to conclude that G is not structurally
averaged controllable, which contradicts the hypothesis of
the proposition.

Proof that G* contains a directed spanning path. Let
n* := |V*| be the order of G*. We label the nodes of G
in the way that the first n* nodes a,...,a,~ are in G*
and the remaining nodes are in G,.. It should be clear
from its construction that any node of G is either in G*
or the successor of some node in G*. It follows that for
any pair (A, b) in V(G), the matrix A is again lower block
triangular in the form of (5), but with A;; being n*-by-n*.
Partitioning z = (z1;22) and b = (by; b2) correspondingly,
we obtain

|:L.El(t7o—):| _ [An(g) 0 } |:‘T1(ta U)} i {bl(g)] u(?)

L'Eg(t,O') o A21(0’) AQQ(O’) {EQ(t, 0’) bQ(G’) ’
Note, in particular, that the dynamics of x1(¢,0) do not
depend on z5(t,0). It follows that if the pair (A,b) is
averaged controllable, then so is (Aj1,b1). Consequently,
if G is structurally averaged controllable, then so is G*.

Thus, to complete the proof, it suffices to show that if
G* does not contain a directed spanning path, then G* is
not structurally averaged controllable. More specifically,
we show below that under such a hypothesis of G*, any
pair (A11,b1) € V(G*) is not averaged controllable.

To this end, for a node «; in G*, let dep(a;) be the
length of the longest path in G* from 8 to «;. The depth
of B is set to be 0. Since G* does not contain a directed
spanning path, we have that

dep(a;) < n*, forall a; € V™. (6)

Now, consider the entries of A¥ b;. The ith entry of A% b,
is nonzero only if there exists a walk in G* of length (k+1)
from S8 to a;. Because G* is acyclic, all walks in G* are
paths. It then follows from (6) that

A¥ by =0, forall k>n*—1,

which implies that the matrix C(A;1, b1) has at most (n*—
1) nonzero columns (i.e., the first (n* — 1) columns) and,
hence, its rank is less than n*. By Lemma 1, (A411,b1) is
not averaged controllable. O

B. Reduced graphs

In this subsection, we introduce a special class of di-
graphs, termed reduced graphs (Definition 6), owning the
property that any digraph satisfying the condition in
Theorem 1 can be reduced, via edge removal, to a reduced
one.

We start by introducing the notion of a skeleton graph S
associated with an arbitrary digraph G, which is obtained
by condensing the strong components of G into single
nodes. Precisely, we have

Definition 5. Let G = (V, E) be weakly connected and
Gy, fori=0,...,N, be the strong components of G. The
skeleton graph of G, denoted by S = (W, F), is a directed
graph on (N + 1) nodes wy,...,wn whose edge set F is
determined by the following rule: There exists a directed

edge w;w; if there exists a directed edge in G from a node
of G to a node of G;.
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Note that S may have self-loops: A node w; has a self-
loop if and only if G; has a cycle. By the second item of
Definition 3, the skeleton graph S will be acyclic if all its
self-loops are removed.

0 0
@—® O—0—6

N

Fig. 2: The skeleton graph S of the digraph shown in Figure 1.
Node wo corresponds to the S node, w2 and ws correspond
to the two nontrivial strong components while the others
correspond to the trivial ones.

Next, we introduce the map # : G — S, defined
by sending a node vy € V; to the node w;. It should
be clear from Definition 5 that the map =m is a graph
homomorphism.

Let G* be the core of G and S* := 7(G*). It is not hard
to see from Definitions 4 and 5 that S* is the core of S
and that G* and S* are isomorphic under 7|g~. We now
have the following definition:

Definition 6. A rooted digraph G € G,, 1 is reduced if it
satisfies the following conditions:

1) Let S be the skeleton graph of G and S* be its core.
Then, S is a directed tree and S* is a directed path.

2) For each edge w;,w; of S, with w; # w;j, the set
7Y (w;wj) is a singleton.

3) If w, € S has a self-loop, then it is an out-neighbor of
S*. Moreover, for any such node w,, G, = 7~ (w,)
s a cycle.

For example, a reduced graph of the digraph shown in
Figure 1 can be obtained by removing the edge aras and
the self-loop on a7, as shown in Figure 3. Note that there
are multiple ways to obtained a reduced graph. To wit,
one can obtain another reduced graph by removing the
edge asas and the self-loop on a7 (while keeping the edge
aras).

It should be clear that any reduced graph G satisfies the
condition in Theorem 1. We establish the following result:

Proposition 4. Let G = (V, E) € G, 1 satisfy the condi-
tion of Theorem 1. Then, there is a subgraph G' = (V, E’)
of G, with the same node set V', such that G’ is reduced.

Proof. Let S be the skeleton graph of G and 7 : G — S be
the graph homomorphism. Let wgy := 7(8) and S* be the
core of S. Since G* and S* are isomorphic, S* contains a
directed spanning path, denoted by P.

Let S© be a directed spanning tree of S such that it
contains P and all the self-loops. It should be clear that
P is the core of (9. We will now remove edges out of G
leading to a subgraph G(©) whose skeleton graph is S(®,
Consider the edges w;w; in §, with w; # w;. There are
two cases: (4) If w;w; is not in S(© then we remove all the

edges in 7! (w;w;). (#4) If w;w; is in S, then we remove
all but one of the edges in m~!(w;w;). It should be clear
that the resulting graph G(®) has S(©) as its skeleton graph
and, moreover, satisfies the first two items of Definition 6.

Next, we consider the nodes in S with self-loops. For
convenience, we label these nodes as wy,...,w,, and let
G1,...,G4 be the corresponding strong components. We
will now construct a reduced graph G’ by removing from
each Gp, for p =1,...,q, some selected edges, which will
be specified below. We will use G®) to denote the graph
obtained by removing the selected edges in UY_,G;, S ()
the skeleton graph of G, and 7(® : G®) — S®) the
graph isomorphism. Along the edge-removal procedure, we
will show by induction that G(?) satisfies the first two
items of Definition 6 and, moreover, the core of S®) is
(isomorphic with) the path P.

The base case p = 0 has been established above. For the
inductive step, we assume that G®~1 has been obtained,
with 1 < p < ¢, and will construct G® by removing
edges from G,. Note that G}, is a strong component of
G~V We will still use w,, to denote the node 7~ (G))
in S-1),

By the induction hypothesis, S®~1) is a directed tree
and since w, cannot be the root, there is a unique node
w; in S®Y | with w; # wp, such that w; is an in-neighbor
of wp. Furthermore, there is a unique edge in G-,
denoted by v;ay,, such that 7(v;0p,) = w;wp. In case wy
has out-neighbors other than itself, we denote them by
Wj,, ..., w;, . Similarly, for each £ = 1,...,m, there is a
unique edge oy, @, such that 7(a,,a;,) = wpw;,. It should
be clear that the nodes «,, for 0 < £ < m, are in Gy,. To
this end, we consider two cases:

Case 1: w, ¢ Nou(P). Since G, = (V,, E,) is strongly
connected, there is a directed spanning tree T}, = (V;, E},),
without self-loop, of G, rooted at the node a,,. We remove
all the edges in E), — E, and obtain G®). In other words,
we replace G, with T},. It follows that the skeleton graph
S®) can be obtained from S®~1) by replacing the node
w, with T}, the edge w;w, with w;q,,, and the edges
wpw;, with op,w;, for £ = 1,...,m. It should be clear
that G(P) satisfies the first two items of Definition 6. We
claim that the core of S®) is still P. To establish the claim,
it suffices to show that the nodes of T}, are successors of
some node with a self-loop in S®). We exhibit below such
a node. Consider the (unique) path in S®=1 from S to
wy. Traversing the path, we let w,s be the first node such
that w, ¢ P. Then, w, has a self-loop because otherwise
wy would belong to the core of S (=1 contradicting the
induction hypothesis that P is the core. Since w, is not
an out-neighbor of P, w, # w, and w, belongs to S®.
It follows that all nodes of T}, are successors of w.

Case 2: wy € Nout(P). We again let T, = (V,,, E})) be a
directed spanning tree of G, without self-loop and rooted
at ap,. Let ap be an in-neighbor of ay, in Gp; such a
node exists since G, is strongly connected and nontrivial.
Let G}, := T, U{apap,}. Then, G}, has a unique cycle
C,, given by concatenating the path from ay, to oy in T),
with the edge oy, ap,. Let E} be the edge set of G, We
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Fig. 3: A reduced graph obtained by removing edges out of the digraph shown in Figure 1.

obtain G®) by removing the edges in E, — E” (i.e., by
replacing G, with GJ,). The skeleton graph S{’)’) of G(p)
can be described as follows: Let .S, be the skeleton graph
Gy, and 7, : G}, — S, be the graph homomorphism. Then,
S,, is a directed tree and wy := 7,(C;,) is the root with a
self-loop. Let wy := m,(ay,), for £ =1,...,m (these (£+1)
nodes wj, . .., wj, may not be distinct). Then, S can be
obtained from S~ by replacing the node w, with S,
the edge w;w, with w;w(, and the edges w,w,, with wjw;,
for £ =1,...,m. It should be clear that G®) satisfies the
first two items of Definition 6. Since the root wy of S} has
a self-loop, every node of 51’7 is a successor of w(. Also,
any successor wy of w, in SV, for wl # w,, is now
a successor of w). Thus, P remains as the core of S®)

Furthermore, since w, is an out-neighbor of P in Se=1)
and since S?P~1) is a directed tree, w; must be a node of
P. Since w;w}, is an edge of S w} is an out-neighbor
of P.

Finally, let G’ := G, 8" := §@ and 7’ := 7(9). By
construction, G’ satisfies the third item of Definition 6.
Indeed, if a node w;,, € S’ has a self-loop, then it comes
from Case 2 in the above edge-removal procedure, thus
being an out-neighbor of P. The corresponding strong
component 7'~ (w}) is a cycle Cj,. O

C. Walks and reachable node sets

For the remainder of the paper, we will assume that
G € Gy, 1 is rooted and reduced. Each strong component
of G is either a cycle or a single node without self-loop.
In this subsection, we will first characterize all the walks
7 in G with £ the starting node, and then describe sets of
reachable nodes by walks of particular lengths.

1) Characterization of walks in G: Let G* be the core
of G, which is a path without self-loops. It should be clear
that if 7 is a walk from 8 to some a; € G*, then 7 has
to be a path (which is unique). We will now deal with the
case where «; ¢ G*.

Recall that Geyc is the union of all nontrivial strong
components of G. Since G is reduced, Gy is a collection
of disjoint cycles. We label these cycles as G, = (V,, Ep),
for p=1,...,q. Let V,;/ be the successors of V,, in G, and
G} be the subgraph induced by V,*. Since G is reduced, it
follows from item 2 of Definition 6 that for each G, there
is a unique node a,, in G, such that it is an out-neighbor
of G*:

{apy} = Nout(G

NGy (7)

For instance, in Figure 3, oo and a3 are the unique nodes
connecting G* to the 3-cycle asaqagas and the 2-cycle
asasag, respectively.

We make a few simple observations: First, note that
there is a unique path in G, denoted by 73, , from S to

po- All nodes of 754, , except ay,, belong to G*. Next,
we express the cycle G as Gp = ap,ap, * - Qp,_, Op, . If we
remove the edge ayp, ,p,, then G} becomes a directed
tree with oy, the root. This, in particular, implies that
for any node o; € G/, there is a unique path, denoted by
Tapy s from oy, to a;.

For convenience, we denote by G}' the closed walk in G
obtained by traversing m times the cycle G, with a,,, the
starting (and ending) node. We allow m to be 0 and set
Gg = Oy

The following result is an immediate consequence of the
above arguments:

Lemma 2. Let a; € G;‘ and 7 be a walk in G from B to
«;. Then, T can be expressed as a concatenation of three
walks:

_ m
T = TBay, GP Topg i

Note that if we set m = 0, then the walk 7 in the above
lemma becomes a path. It follows that for every a-node
a; in G, there is a unique path from 3 to «;. We denote
this path by 73,, and define the depth of o; as

dep() == (7, )- (8)

To illustrate, consider again the digraph in Figure 3. The
nodes of depth 1 are {a1, a2}, the nodes of depth 2 are
{as, a4}, {as, a6} depth 3, {a7,as} depth 4, and ag is of
depth 5.

2) On reachable sets: For a positive integer j, let V()
be the set of a-nodes «; € G such that there is a walk 7
of length j from 8 to «;. For each p=1,...,¢q, we let

V,h(5) =V,r v ().
We describe below these sets and present relevant proper-
ties, which will be used for computing the columns of the
infinite matrix C(A,b).

For ease of notation, let ¢,
following result:

= ((G,). We start with the

Lemma 3. For any positive integer j,

V5 (j) = {ei € V" | dep(ay) < j and dep(a;) =, ]}( |
9
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Moreover, for any a; € V;;“(j), there is a unique walk of
length j from B to «;.

Proof. Consider all the walks 7 from S to «;. By Lemma 2,

UT) = U(TBq,;) + mly = dep(a;) +mby,, for m € N.

Thus, amongst these walks, there exists a 7 of length j
if and only if (9) holds. Moreover, such a walk is unique
given by

Jj—dep(a;)

T = Tgay,, Gp Topy cti

This completes the proof. O

Let ap, be given as in (7). Amongst all nodes in G,
ayp, has the minimum depth. Thus, Vp+ (j) = @ if and only
if j < dep(ay,). As j increases, the sequence of sets V,*(j)
will eventually be periodic. We make it precise below. Let

dyp := max dep(ay).
OériEVp
Note that d, > ¢,,. To wit, we write G, explicitly as G, =
QpoQip, *+~ O, Oy The path 7, can be obtained
.

by concatenating 7ga, and Ta, . Thus,

[eY
Pep—1

d, > dep(amrl) = E(Tﬁawrl) —
Z(Tﬁapo) + E(Tapoapep—l) > 1+ (ép - 1) = Ep.

We have the following result (an example illustrating the
result will be given at the end of the subsection):

Lemma 4. If j > d, — {,, then

Vp+(j + EP) = Vp+(j)7 (10)

and, moreover,
£,—1 .
Vit = ULV G ). (11)

Proof. We first establish (10). By (9), V,F(j) € V(7 +£y).
Suppose to the contrary that there exists a node «; such
that a; € V5 (5 + £,) — V' (j); then, using again (9), we
have that j < dep(a;) < j + £, and dep(a;) =, j. But
then, dep(e;) = j + ¢, > d,, which is a contradiction.
We next establish (11). On one hand, each node a; € V,F
belongs to sz (j) for some j (precisely, for j = dep(c;) +
mtp). On the other hand, if j #,, j/, then V,*(j) does not
intersect V,"(j’). Combining the arguments with (10), we
conclude that (11) holds. O

We will now extend Lemma 4 to the subsets V(j) for
sufficiently large j. To the end, let
q q
lrnax = r;ljic{ﬁp} and L:= chrrll{ﬁp}. (12)
where lcm stands for the least common multiple.

Recall that VCJ}CC is the set of successors of all nontrivial

strong components in G, and Gjyc is the subgraph induced
by Vif.. Since G is reduced,
Gl =Gy (13)

Also, recall that n* is the order of G*. We have the
following result:

Lemma 5. Suppose that j > n* and j > maxgzl(dp —4p);
then,

Vi+L)=V()
Moreover, for any k =0,... ,pax — 1,
V(i+k) € Upe oV (i+E)

i.e., there exists at least a node of V(j + k) such that it is
not contained in V(j+k') for any k' = 0,..., bmax — 1 with
K+ k.

and Vi, =Urs V(i +k). (14)

cyc

(15)

Proof. Since G* is a path without self-loop, for any j > n*,
V(j) is a subset of VI .. The fact that (14) holds then
follows directly from Lemma 4 and (13). To establish (15),
we let G, be such that £, = {pax. On one hand, we have
V,F(j + k) € V(j + k). On the other hand, it follows

from (11) and (13) that
ViG+kNVE+E)=2,

for any k' = 0,...,lmax — 1 with &’ # k. This completes
the proof. O

Example 1. Consider the reduced graph G in Figure 3.
The core G* has n* = 2 nodes. Let G7 := aszasas and
G := asayagas be the two cycles in G. Then, Gf is the
subgraph induced by V;" = {a3, a5, a7, a9} and G is the
subgraph induced by V," = {ag, a4, as, ag}. We have that
by =2, 0, = 3,d, =5, and dy = 4, 50 lpax = 3 and
L =lem{{y, ¢} = 6. For j > 4, we have that

Vi) = {{“3’0‘7}

{as, ag}

1f]52 0,
if j =, 1.

Similarly, for j > 2, we have that

{as} if j =50,
Vol () = { {az, a8} ifj=51,
{as} if j =3 2.
Finally, for j > 4, we obtain that
{as, a6, a7} if j =60,
{ag, a5, 08,00} if j =6 1,
V() = {az,aq, a7} lf] fﬁ 2,
{as, a6, 9} if j =6 3,
{ag,a3,a7,08} if j =6 4,
{ag, a5, a9} if j =¢ 5.
Note that the V1 (j)’s satisfy (14) and (15). O

D. Construction of the (A,b) pair

Let G € G,,1 be rooted and reduced. In this subsection,
we will construct a pair (A4,b) in V(G) and show, toward
the end of the section, that the pair is averaged control-
lable.

Since the edges of G = (V, E) correspond one-to-one
to the “free entries” of the (A,b) pair (specifically, edge
aja; corresponds to entry a;; and edge Ba; corresponds
to entry b;), we construct the matrix pair by assigning
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to each edge of G a continuous function. As announced
earlier, these functions will be of the form f¥(¢), where
f X — Ryg is a continuous function and v : £ — Ry
determines the power of f. We define f and v below.

1) Construction of f: Let (U, ) be a chart on %, i.e.,
U is an open set in ¥ and ¢ : U — V is a diffeomorphism,
with ¥V C R™ an open neighborhood of 0 in R™. Without
loss of generality, we can assume that U/ is contained in the
support of the measure p (introduced at the beginning
of Subsection II-A) and that V contains the closed unit
ball B:

B:={zeR"||z]| <1}.

Let f: B — R be defined as:

f(2) = l2ll. (16)
Let K := ¢~ 1(B). We then define f : ¥ — R as
_ Jf(s(0) ifoeK,
fo):= {1 otherwise. (a7

It should be clear that f is continuous and that the set
{f*}ren is linearly independent, where f0 = 1 is the
constant function taking value 1 everywhere. Further, we

let F be the uniform closure of the space spanned by f*
for all k € N,

F := uniform closure of the span{f*},en.

The following lemma follows directly from the Stone-
Weierstrass theorem:

Lemma 6. The spaceF comprises all continuous functions
g : X — R such that g is constant over ¥ — K and that
g(o) = g(a’) for any two points 0,0’ € K, with ||¢(0)| =
I

Collp

2) Construction of v: Recall that dep(«;) is the depth
of a; defined in (8). Relabel, if necessary, the a-nodes in G
such that

if dep(e;) < dep(ey;), then ¢ < j.

This can be done by using, for example, the breadth-first
search algorithm. The labeling of the a-nodes of the graph
shown in Figure 3 satisfies this property.

We will now partition the edge set E into five subsets Ej,
for i =1,...,5, and define v|g,. Let Voppx := VCJer — Veye,
and Gappx = (Vappx, Eappx) be the subgraph induced by
Vappx- We call Gappx the appendix of G. Define the subsets
E; of E as follows:

E, .= E*,

Ey :={viaj € E|v; € G* and o € Geyc},

E3 = Eeye,

E,:={oja; € E|a; € Geye and o € Gappx |,
Es = FEappx-

(18)

The edges in E link nodes from G* to Geyc, and edges in
E, link nodes from Geye t0 Gappx-

Let A be a positive and irrational number, which we fix
in the sequel. We now define v(e) as follows:

Case 1: e € Ey. We set v(e) :=0.

Case 2: e € E5. Let G, be the cycle incident to e, and
ap, be given as in (7). Then, e can be written as e = v;a,, .
We set v(e) := po.

Case 3: e € E3. Let G, be the cycle that contains e. We
write G, explicitly as Gp = ap,0p, -+ Qp, _, 0py. Then,

we set ,
A
=2 fe=qw, .«
I/(e)t {L Pep—1-"P0

0  otherwise,

where L is defined in (12).

Case 4: e € E4. Let G, be the cycle and a; € Guppx be
the node incident to e. We still let a,, be given as in (7).
We then set v(e) = (j — po)A. Note that (j —pg) > 0
because dep(c;) > dep(ay,).

Case 5: e € E5. We write e = a5 and set v(e) := (j —
i)A. Note that (j — i) > 0 because dep(c;) — dep(ay) = 1.

We illustrate the map v in Figure 4 for the graph shown
in Figure 3.

E. Computation of C(A,b)

Let (A4,b) € V(G) be given as above, and C(A,b) be
defined as in (2). In this subsection, we present explicit
expressions of the entries of the matrix C(A,b).

To this end, let 7 be the set of walks in G. We extend v :
E — R>q by defining the map over the set 7. Specifically,
for a walk 7 = v;, - - - v;,, we define

k

v(r) =

J

1

I/(’Uij vij+1).
1

(19)

Let 7 be a walk from S to some «;. We compute below
v(7). The case where o; € G* is simple: The only walk
from S to o in G is the path 7g4,, which is contained in
G*. Since v(e) = 0 for all e € G*, v(784,;) = 0. For the
other cases, we have the following result:

Lemma 7. Let «; € G;f and 7 be a walk from B to «.
Then,

 [por+ KOG o, € Gy,
v(r) = i ddep(an) e ot
L K P p-
Proof. By Lemma 2, we can express T as 7T =
TBap, Gp Tapya;- 1t follows from (19) that
v(T) = 1/(7'5%0) +mv(G,) + V(Tapoai).

By construction of v, we have that v(7ga, ) = PoA,

v(Gp) = %’, and
I/(T ) . 0 if a; € Gp,
T (i —po)A if oy € G — Gy
Finally, by the fact that 754, = TBapy Tap, s and dep(a;) =
U(Tgq,), we have
/(1) — ,
o Hr) = den(a)
by
which completes the proof. O
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Fig. 4: Illustration of the map v on the digraph G shown in Figure 3. The values of v(e) are treated as edge weights and are
shown on the corresponding edges e. The 5 subsets E;, introduced in (18), are given by Ei := {Ba1}, E2 = {Basz,aias},
Es = {asas, asas} U {azou, asas, asas}, Es = {asar, asas}, and Es = {arag}. Note that L = 6.

For a later purpose, we express v(7) as a sum of two
parts:

v(t) = (r)A+ VQ(T)%,

where v1(7) and v, (7) are given by

0 if a; € G*,
vi(1) == ¢ po if a; € G, for some cycle G, (20)
1 if a; € Gappx~
and
0 if a; € G¥,
vo(T) 1= {g d i o+ (21)
(1) —dep(a;) if o; € oy

We call v (7)A (resp. v2(7)/L) the irrational part (resp.,
rational part) of v(7).

Recall that V' (j) comprises all the a; such that there is
a walk 7 of length j in G from f to «;. By Lemma 3, such
a walk 7 is unique for each «; € V(j). Also, recall that
the function f : ¥ — Rxq is defined in (16) and (17).

We have the following result for the matrix C(A,b)
introduced in (2):

Lemma 8. Let ¢;; be the ijth entry of C(A,b). Then,

[ aievi,
Cij = >
0 otherwise,
where T is the unique walk of length j from B to .

Proof. The nonzero entries of (A,b) are by construction
(@) with e € G the corresponding edges. It follows that
the ith entry of the vector A771b is given by > _ ),
where the sum is over all walks in G of length j from
to a;. By Lemma 3, such a walk, if exists, is unique. This
completes the proof. O

F. On a class of submatrices of C(A,b)

In this subsection, we focus on a special class of subma-
trices of C'(A,b), and show that every such submatrix has
full rank. The result will be used in the next subsection to
establish that the matrix C'(A,b) itself has full rank.

Let C; be the jth column of C(A,b), so ¢;; is the ith
entry of C;. We define the support of C; as supp(Cj) =
{ay; € Vi | ¢i5 # 0}. By construction, f is positive almost
everywhere. It follows from Lemma 8 that

supp(C;) =V (j) forall j > 1. (22)

Let 5% be a positive integer such that

j*>n" and j*> m%i((dp —4p), (23)
p=

so j* satisfies the hypothesis of Lemma 5. Let L be given
as in (12). Consider the column vectors Cj«4r,, for k € N.
By Lemma 5 and (22), all these columns share the same
support. Let V' = {af,...,a},} be the common support,
which is a subset of VC;C Let C’ be the submatrix of C
obtained by first taking the columns Cj- 1, for all k € N,
and then removing the zero rows, i.e.,

C" = [Cj+,Cjir, Cjrsar, - (24)

’] {v"
Let c;; be the ijth entry of C’. We can express cj;
explicitly. Since o) € V', there exists a unique walk,
denoted by 7;;, of length (j* + (j — 1)L) from 3 to af.
Also, note that 7;; can be obtained from 7;; by inserting
the closed walk G,(,j_l)L/é” for some p =1, ...,q. Thus, by

Lemma 7,

(-1L
lp

For ease of notation, let 7;

Lemma 8 that

v(ri;) = v(ta) + v(Gp) =v(tn)+j—1.

:= 7;1. It then follows from

= [ £ (25)
>

We will now establish the following result:

Lemma 9. The submatriz C' given in (24) has full rank,
i.e., rank m.

Proof. The proof has two parts. In the first part, we show
that v(m),...,v(7,) are pairwise distinct. Building upon
this fact and Lemma 6, we show in the second part that
the matrix C’ has full rank.

Part 1: Proof that v(11),...,v(Tm) are pairwise distinct.
For any two numbers v(7;) and v(7y), with i # @/, we
show that their difference is nonzero. From Lemma 7, we
have that

virm) —v(ty) =

(v1(7i) = va(ri A + (va(m) — V2(Ti'))%, (26)

where v; and vy are defined in (20) and (21), respectively.
Since A is irrational, to show that (26) is nonzero, it suffices
to show that vy (1;) # v1(70).
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The ending nodes of 7; and 7+ are o} and «f,, respec-
tively. We claim that o} and «f, do not belong to the same
cycle. Suppose not, say o}, al, € Gp forsome p=1,...,¢;
then, by Lemma 2 and by the fact that 7; and 7, have the
same length j*, the two walks 7; and 7;; have to be the
same:

— — m
Ti = Tit = Thoy, GP Topg oy, »

where «y,, is the unique node in G, such that k =,
j* — dep(ap,). But then, o] = af, = «p,, which is a
contradiction. Since o and ¢}, do not belong to the same
cycle, we conclude from (20) that vy () # v1 (7).

Part 2: Proof that C' has full rank. We show that the
only solution v € R™ to v'C’ is v = 0. We write v =
(U1,...,0) and let g := S°7 v f(7). Then, by (25),
v M = 0 implies that

/ gffdp =0, forall k€N. (27)

b

By Lemma 6, any function f", for r € R>¢, belongs to F.
Thus, g belongs to F as well. Since the uniform closure of
the linear span of {f*}ien is F, (27) can hold if and only
if g = 0. Because v(7),...,v(n,) are pairwise distinct,
the functions f*(™), ..., f*(™) are linearly independent.
Thus, >, v; f*(") = 0 can hold if and only if v =0. O

G. Proof that (A,b) is averaged controllable

In this subsection, we complete the proof for the suf-
ficiency part of Theorem 1. Let (A,b) be given as in
Subsection ITI-D. We establish the following result:

Proposition 5. The matriz C(A,b) has full rank.

Proof. We exhibit below n linearly independent column
vectors out of C'(A4,D).

Recall that n* is the order of the core G*. We claim that
the first n* columns of C'(A,b) are linearly independent.
To wit, note that G* is a path without self-loop. For any
node «; € G*, the ith row has a unique nonzero entry,
namely, ¢; dep(a,)- More specifically, we have that

Cij = 6dep(ai)’j /E fy(‘rﬁai)du

= 5dep(ozi)7j /E 1d# = 6dep(ai)7j7

where ¢ is the Kronecker delta. This establishes the claim.
If n* = n, then the proof is complete. Otherwise, we
let n* := n — n* be the order of Gf.. Let j* be a
positive integer satisfying (23). By Lemma 5, V(j) does
not intersect V* for all 5 > j*. Thus, if there exist n™
linearly independent vectors out of {C;};>;+, then these
nT vectors, together with the first n* columns of C(A,b),
form a basis of R”. We exhibit below these n* columns.
Let £iax and L be given as in (12). We define subsets V7,
for £ =0,...,max — 1, of VI as follows: Set Vj := V(5*)

cyc
and

V) =V (" +0) —UtV(G*+k), for 1 <€< Ll — 1.
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By Lemma 5, these subsets are nonempty and form a
partition of Vi . Let my := |V/|, so n* = Soime .
Next, for each £ = 0,...,lnax — 1, we define subsets of R"
as follows:

C[ = {Cj*+l+kL | ke N}

Since lpax < L, if £ # ¢/, then C, N Cp = @. We will
now select for each £ = 0,...,0nax — 1, my columns out
of Cy, and show that the total n™ columns are linearly
independent.

By Lemma 5 and (22), all the columns in C, share
the same support, given by V(j* + ¢), which contains
V/ as a subset. Since the subsets V; form a partition
of V.i., it suffices to show that for each ¢, there exist
myg vectors Cj,...,Cj, ~out of Cp such that the sub-
vectors Cj, |vy, ..., Cj,, |v; are linearly independent. But
this follows from Lemma 9: To wit, the following submatrix
of C'(A,b):

[Cjete, Cirvevrs Cioporar, ] ‘V(j*ﬂf) (28)

has full rank, so its rows are linearly independent. It
follows that if we replace V(j* + ¢) with its subset V//,
then the resulting submatrix is still of full rank, i.e., of
rank my. This completes the proof. O

IV. CONCLUSIONS

We have provided a complete characterization of the
sparsity patterns G that are structurally averaged control-
lable for the class of linear ensemble systems with single
inputs. Specifically, we have shown in Theorem 1 that G
is structurally averaged controllable if and only if it is
rooted (at the node that corresponds to the scalar control
input) and, moreover, its core G*, obtained by removing
from G the cycles and their successors, contains a directed
spanning path. We will extend the result to the multi-input
case in the future work.
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