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Structural Averaged Controllability for Linear

Ensemble Systems: Single-input Case

Xudong Chen1,∗ and Bahman Gharesifard2

Abstract—We consider continuum ensembles of lin-
ear time-invariant control systems with single inputs.
A sparsity pattern is said to be structurally averaged
controllable if it admits an averaged controllable linear
ensemble system. We provide a necessary and sufficient
condition for a sparsity pattern to be structurally
averaged controllable.

I. Introduction

In this paper, we address the problem of structural
averaged controllability introduced in [1]. Specifically, we
consider continuum ensembles of linear time-invariant con-
trol systems with single inputs. The (A, b) pairs of the
individual systems are sparse, sharing a common sparsity
pattern (or structure as the terminology used in Lin’s
seminal work [2]). The sparsity pattern is said to be struc-
turally averaged controllable if it admits linear ensemble
systems, compliant with the sparsity pattern, that are
averaged controllable. A precise definition will be given
shortly in Subsection II-A.

Ensemble control originated from quantum spin sys-
tems [3, 4], and provides an alternative approach for con-
trolling large-scale multi-agent systems, which is by nature
resilient and scalable [5] — instead of controlling a single
large networked system, we control a large population of
small, independent ones.

A major technical challenge of ensemble control stems
from the requirement that the control input be generated
irrespective of the parameters of the individual systems.
Roughly speaking, the larger the parameterization space
is, the more individual systems are contained in the ensem-
ble and hence, the more difficult it is to simultaneously
control all of them. Over the last decade, there have
been steady efforts in obtaining necessary and/or sufficient
conditions for ensemble systems to be controllable or even
path-controllable (see e.g., [5–12]).

Amongst these recent advances, we mention a negative
result established in [11], which states that real-analytic
linear ensemble systems are not Lp-controllable, for 2 ≤
p ≤ ∞, when the underlying parameterization spaces are
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multidimensional. For this type of pathological case, one
has to relax the notion of controllability and seek for
the controllable characteristics of the ensemble system.
We formulate these characteristics as integrated outputs,
where the integration is taken over the parameterization
space. The choice of such formulation is rooted in the study
of statistical properties of the ensemble system.

A simple, yet important integrated output is the state-
average. For linear ensemble systems, a necessary and
sufficient condition for averaged controllability has been
obtained in [13]. The result, reproduced in Lemma 1, can
be viewed as a variation of the Kalman rank condition
adapted to averaged control. A natural question then
arises as follows: How easy (or difficult) can this condition
be satisfied? We address this question from the structural
system theory point of view. Specifically, we investigate
the set of sparsity patterns for the (A, b) pair and charac-
terize the ones that are structurally averaged controllable.
It should be clear that the more sparsity patterns that are
structurally averaged controllable one can have, the more
averaged controllable linear ensemble systems there are.
The question posed above can thus be translated to the
following: Are those sparsity patterns rare or abundant?
In this paper, we will provide a solution to this question
by establishing a necessary and sufficient condition for a
sparsity pattern to be structurally averaged controllable.
The result is formulated in Theorem 1.

In the earlier work [1], we have shown that structural
averaged controllability is strictly weaker than structural
controllability introduced by Lin [2] for finite-dimensional
linear time-invariant systems. In fact, it is not hard to
construct sparsity patterns that are structurally averaged
controllable, but not structurally controllable. We refer the
reader to [1, Proposition 2] for an example.

However, it remained open how large the gap is. Only
a few preliminary results were obtained in [1], where we
carried out case studies for a special class of sparsity pat-
terns. A major technical challenge was in choosing appro-
priate functions for the nonzero entries of the sparse pair
(A, b) such that the analysis of the associated averaged-
controllability matrix (2) is tractable. More specifically,
we considered the case where the parameterization space
is the unit closed interval (equipped with the Lebesgue
measure) and the sparsity pattern of (A, b), in its graphical
representation, has no cycles except a self-loop on a spe-
cific node. We then chose the nonzero entries of (A, b) to be
monomials, with a rule that specifies their degrees, so that
the averaged-controllability matrix (2) can be related to a
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variation of the Hilbert matrix, which allows us to compute
its rank explicitly. However, the aforementioned rule can
hardly be extended to the general case, especially when
there exist multiple cycles in the directed graph associated
with the sparsity pattern of (A, b).

In this paper, we resolve this technical issue by inte-
grating a new set of ideas and tools, which enable us
to provide a complete solution to the structural average
controllability problem for a much broader class of linear
ensemble systems.

The remainder of the paper is organized as follows:
At the end of this section, we present key notions and
notations used throughout the paper. In Section II, we
formulate precisely the problem and state the main result.
Section III is dedicated to the proof of the main result.
This paper ends with conclusions.

Notations. We gather here key notions and notations.

Graphs. Let G = (V, E) be a directed graph (or simply
digraph), possibly with self-loops. The node and edge sets
of G are V and E, respectively. We denote by vivj a
directed edge from vi to vj ; we call vi an in-neighbor of vj ,
and vj an out-neighbor of vi. For a subgraph G′ = (V ′, E′)
of G, we let

Nout(G
′) := {vj ∈ V | there is a vi ∈ V ′ s.t. vivj ∈ E}.

We define Nin(G′) in a similar way.
A walk τ from vi to vj is a sequence of nodes τ =

vi1
. . . vik

, with vi1
= vi and vik

= vj , such that each
vij

vij+1
, for j = 1, . . . , k − 1, is an edge of G. The length

of the walk, denoted by `(τ), is the number of edges
contained in it. A walk is said to be closed if its starting
and ending nodes are the same. A walk is a path if there
is no repetition of nodes in the sequence. A walk is a cycle
if there is no repetition of nodes except the repetition of
starting and ending nodes. Note that a self-loop at a node
vi is a cycle of length 1. Given two walks τ1 = vi1 . . . vik

and τ2 = vj1 . . . vj`
such that the ending node vik

of τ1

coincides with the starting node vj1
of τ2, we can obtain

a new walk by concatenating τ1 and τ2:

τ = τ1τ2 := vi1 . . . vik
vj2 · · · vj`

.

In case τ2 has only a single node vj1
, we have τ = τ1. It

should be clear that `(τ) = `(τ1) + `(τ2).
The digraph G is said to be weakly connected if the undi-

rected graph, obtained from G by ignoring the orientations
of its edges, is connected.

A node vj is said to be a successor of vi if there exists a
path in G from vi to vj , and vi is said to be a predecessor
of vj . We say that G is strongly connected if for any two
distinct nodes vp and vq, vq is both a successor and a
predecessor of vp. A graph with only a single node is, by
default, strongly connected. Such a graph is said to be
trivial if it has no self-loop.

A node vr is said to be a root of G if any other node
is a successor of vr. We call G a directed tree if it has a
unique root vr and for any other node vi of G, there exists
a unique path from vr to vi.

Given a subset V ′ of V , the subgraph G′ = (V ′, E′) of
G is said to be induced by V ′ if the edge set E′ satisfies
the following condition: if two nodes vi, vj ∈ V ′ are such
that vivj ∈ E, then vivj ∈ E′.

Let G = (V, E) and H = (W, F ) be two digraphs. A
graph homomorphism π : G → H is a map from V to W
such that if vivj is an edge in G, then π(vi)π(vj) is an
edge in H. One can extend the map π to the edge sets
π : E → F , sending vivj to π(vivj) := π(vi)π(vj). Then,
for a subgraph G′ = (V ′, E′) of G, we let π(G′) be the
subgraph of H with π(V ′) the node set and π(E′) the
edge set. Conversely, for a subgraph H ′ = (W ′, F ′) of H,
we define π−1(H ′) := (π−1(W ′), π−1(F ′)).

Miscellanies. Let G = (V, E) be a graph on n nodes, and
V ′ = {vi1

, · · · , vik
} be a subset of V , with i1 < · · · < ik.

For a vector x ∈ Rn, we let x|V ′ ∈ Rk be the subvector of
x given by x|V ′ := (xi1

, . . . , xik
). The notation extends to

matrices: specifically, for X ∈ Rn×m with x1, . . . , xm ∈ Rn

its columns, we let

X|V ′ := [x1|V ′ , · · · , xn|V ′ ] .

For a matrix C ∈ Rn×m, we let ‖C‖ be the induced
matrix 2-norm. Let Σ be an arbitrary topological space.
A function f : Σ → Rn×m is bounded if exists a number
γ > 0 such that ‖f(σ)‖ < γ for all σ ∈ Σ. We denote
by C0

b(Σ,Rn×m) the space of all bounded, continuous
functions from Σ to Rn×m. For each f ∈ C0

b(Σ,Rn×m),
we define

‖f‖∞ := sup
σ∈Σ

‖f(σ)‖.

The topology on C0
b(Σ,Rn×m) induced by the norm is

called the uniform topology.
In this paper, we will deal with matrices with finitely

many row, but infinitely many columns. Given such a
matrix

C = [C1, C2, C3, · · · ], with Cj ∈ Rn for all j ≥ 1,

we let C[m] := [C1, . . . , Cm] be the finite-dimensional
submatrix of C obtained by keeping only the first m
columns. We say that C has full rank (i.e., rank n) if there
exists a positive integer m such that C[m] has rank n.

For a positive integer n and for two real numbers p and
q, we write p ≡n q if (p−q)/n is an integer.

We denote by N the set of all nonnegative integers
(including 0).

II. Problem Formulation and Main Result

A. Problem formulation

Let Σ be a manifold, possibly with boundary, and µ be
a Borel probability measure on Σ whose support contains
an open set. We consider a continuum ensemble of linear
time-invariant systems driven by a single control input:

∂

∂t
x(t, σ) = A(σ)x(t, σ) + b(σ)u(t), for σ ∈ Σ, (1)

where x(t, σ) ∈ Rn is the state of the individual system
indexed by σ at time t, u(t) ∈ R is the common control
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input, and A : Σ → Rn×n and b : Σ → Rn are bounded,
continuous functions. The control input is said to be
admissible if for any T > 0, the function u : [0, T ] → R

is integrable.
Let χ(t) : Σ → Rn be the profile of system (1) at time t,

defined by sending a parameter σ to the corresponding
state x(t, σ). It should be clear that if χ(0) is bounded
and continuous, then so is χ(t) for any admissible control
input. Denote by x̄(t) the average of the individual states
at time t:

χ̄(t) :=

∫

Σ

x(t, σ)dµ.

We have the following definition:

Definition 1. System (1) is averaged controllable if for
any initial profile χ(0) ∈ C0

b(Σ,Rn), any target x∗ ∈ Rn,
and any time T > 0, there exists an admissible control
input u(t) such that the solution of (1) generated by u(t)
satisfies χ̄(T ) = x∗.

Since the ensemble system (1) is determined by the
(A, b) pair, we will simply say that (A, b) is averaged
controllable if (1) is. We have the following necessary
and sufficient condition adapted from [13] for averaged
controllability:

Lemma 1. Ensemble system (1) is averaged controllable
if and only if the following column-infinite matrix:

C(A, b) :=

[
∫

Σ

b dµ,

∫

Σ

Ab dµ,

∫

Σ

A2b dµ, · · ·

]

(2)

is of full rank, i.e., rank n.

In this paper, we deal with sparse (A, b) pairs. By con-
vention, the sparsity pattern is represented by a digraph
G = (V, E) on (n + 1) nodes as follows:

• The node set V is a disjoint union of two subsets:
Vα := {α1, . . . , αn} and a singleton Vβ := {β}. The
α-nodes correspond to the n scalar states xi, and the
β-node corresponds to the single input u.

• There is a directed edge from αj to αi if aij 6= 0.
There is a directed edge from β to αi if bi 6= 0. The
β-node does not have any in-neighbor.

We call G, defined above, the digraph induced by the
pair (A, b).

Let Gn,1 be the collection of all weakly connected di-
graphs G on (n + 1) nodes, with n α-nodes and a single
β-node, satisfying the condition that β has no in-neighbor.
Given a digraph G ∈ Gn,1, a pair (A, b) ∈ C0

b(Σ,Rn×(n+1))
is said to be compliant with G if the digraph induced
by (A, b) is a subgraph of G. Further, we let

V(G) := {(A, b) ∈ C0
b(Σ,Rn×(n+1))

| (A, b) is compliant with G}.

It should be clear that V(G) is a subspace. We now have
the following definition:

Definition 2. A digraph G ∈ Gn,1 is structurally
averaged controllable if there exists a pair (A, b) ∈ V(G)
such that it is averaged controllable.

We recall that the digraph G ∈ Gn,1 is said to be
structurally controllable if there exists a matrix pair
(A, b) ∈ Rn×n × Rn, compliant with G, such that the
finite-dimensional linear system ẋ(t) = Ax(t) + bu(t) is
controllable. It has been shown [1, Proposition 1] that
if G is structurally controllable, then G is structurally
averaged controllable. (As mentioned earlier, we assumed
in [1] that Σ is the closed unit interval [0, 1] with µ the
Lebesgue measure. The same result still holds for the
general setting as considered in this paper, and one can use
the same arguments in the proof to establish the result.)
However, the converse is not true, i.e., structural averaged
controllability does not imply structural controllability. A
counter-example has been exhibited in the proof of [1,
Proposition 2].

B. Main result

In this subsection, we present a necessary and sufficient
condition for G ∈ Gn,1 to be structurally averaged control-
lable. Our presentation relies on the notion of the so-called
strong component decomposition:

Definition 3. Let G = (V, E) be an arbitrary weakly con-
nected digraph. The strong component decomposition
(SCD) of G is a node-set decomposition V = ∪N

i=0Vi,
where the Vi’s are disjoint, such that the following hold:

1) For each i = 0, . . . , N , the subgraph Gi induced by Vi

is strongly connected.
2) Let G′ be an arbitrary strongly connected subgraph of

G. Then, G′ is a subgraph of Gi for some i = 0, . . . , N .

We call Gi’s the strong components of G.

Note that a subgraph Gi can be a single node (with
or without self-loop). The β-node itself forms a strong
component, which we denote by G0.

Let Gcyc = (Vcyc, Ecyc) be the union of the nontrivial
strong components (i.e., components that contain cycles).
A strong component Gi is not in Gcyc if and only if Gi

comprises a single node without a self-loop.
Let V +

cyc be the set of successors of nodes in Vcyc, and
G+

cyc be the subgraph induced by V +
cyc. The essential part

of G that determines whether G is structurally averaged
controllable is introduced in the following definition:

Definition 4. Given a digraph G ∈ Gn,1, let V ∗ := V −
V +

cyc and G∗ be the subgraph of G induced by V ∗. We call
G∗ the core of G.

It should be clear from the construction that a node vi

is in G∗ if and only if it is not a successor of any cycle in
G. In particular, G∗ is acyclic and contains β. See Figure 1
for illustration.

We now state the main result of this paper:

Theorem 1. Let G ∈ Gn,1 and G∗ be its core. Then, G
is structurally averaged controllable if and only if β is the
root of G and, moreover, G∗ has a directed spanning path.

If G is acyclic, then its core G∗ is G itself. In this
case, Theorem 1 states that G is structurally averaged
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α1

β

α2

α4

α6α8 α3

α5

α7 α9

Fig. 1: The digraph shown in the figure is weakly connected. The SCD yields 6 strong components, including 4 trivial ones
G0 = {β}, G1 = {α1}, G4 = {α8}, G5 = {α9}, and 2 nontrivial ones, namely, G2 the subgraph induced by {α2, α4, α6} and G3

the subgraph induced by {α3, α5, α7}. The subgraph Gcyc consists of G2 and G3. The subgraph G+
cyc consists of Gcyc, the nodes

α8 and α9, and the edges α6α8 and α7α9. Finally, the core G∗ is the subgraph induced by {β, α1}.

controllable if and only if G contains a directed spanning
path with β the root. Note, in particular, that the same
condition is also necessary and sufficient for G to be
structurally controllable [2].

Also, note that the necessary and sufficient condition in
Theorem 1 can be checked efficiently. Given the digraph
G = (V, E), one can first perform the SCD of G to
obtain the core G∗, and then check whether G∗ contains
a directed spanning path. The first task can be done by
using the Tarjan’s algorithm [14], whose time complexity
is O(|V | + |E|). The second task can be translated to the
problem of computing the length of a longest path in G∗

and checking whether the length matches the order of G∗,
whose time complexity is again O(|V | + |E|).

We now address the openness and density of the set
of averaged controllable pairs (A, b) in the space V(G).
To this end, we equip with C0

b(Σ,Rn×(n+1)) the uniform
topology, and V(G) the subspace topology. For a given
G ∈ Gn,1, let

V∗(G) := {(A, b) ∈ V(G) | (A, b) is averaged controllable}.

We have the following result:

Proposition 2. Suppose that G is structurally averaged
controllable; then, V∗(G) is open and dense in V(G).

Proof. We establish openness and density of V∗(G) sub-
sequently.

Proof that V∗(G) is open. Let (A, b) ∈ V∗(G). Then, by
Lemma 1, the matrix C(A, b) has full rank. Let m ≥ n
be such that the submatrix C[m](A, b) has rank n. Now,
consider the map ρ : V(G) → Rn×m defined by

ρ(A′, b′) := C[m](A
′, b′). (3)

It should be clear that the map ρ is continuous. Since
C[m](A, b) is of full rank, there exists an open neighbor-
hood V of C[m](A, b) in Rn×m such that any matrix in V
has rank n. Then, U := ρ−1(V) is an open neighborhood
of (A, b) in V(G), contained in V∗(G).

Proof that V∗(G) is dense. The arguments below will be
similar to those in [2]. Since G is structurally averaged
controllable, there exists at least a pair (A∗, b∗) in V∗(G).
We still let m ≥ n be such that C[m](A∗, b∗) has rank n.
For ease of presentation, we assume that m = n so that
C[m](A∗, b∗) is a square matrix of full rank (otherwise, one

can always pick n columns out of C[m](A∗, b∗) to obtain
such a matrix). Let ρ be defined as in (3). Now for any
(A, b) ∈ V(G), we consider a polynomial map δ : R → R

defined as follows:

δ(s) := det(ρ(A′(s), b′(s))),

where

(A′(s), b′(s)) := s(A∗, b∗) + (1 − s)(A, b).

Since (A′(1), b′(1)) = (A∗, b∗), we have that δ(1) 6= 0.
Thus, δ is not identically zero, so it has at most n distinct
real roots. This, in particular, implies that any open
neighborhood of 0 in R contains some s such that δ(s) 6= 0.
Since (A′(0), b′(0)) = (A, b), we have that there exist an
arbitrarily small s > 0 such that

s(A∗, b∗) + (1 − s)(A, b) ∈ V∗(G).

This completes the proof.

III. Proof of the Main Result

This section is dedicated to the proof of Theorem 1.
In Subsection III-A, we establish the necessity part: We
show that if G is structurally averaged controllable, then
G satisfies the condition in Theorem 1 (i.e., the condition
that β is the root of G and G∗ contains a directed spanning
path). The arguments for establishing the necessity part is
more or less straightforward. The proof of the sufficiency
part is more involved. We outline below the proof.

Sketch of proof for the sufficiency part. The property of
being structurally averaged controllable is monotone with
respect to edge addition. Specifically, if G = (V, E) is
structurally averaged controllable, then so is any graph
G′ = (V, E′) obtained by adding new edges into G (i.e.,
E′ ) E). In Subsection III-B, we introduce a special
class of graphs G, termed reduced graphs, satisfying the
following two properties: (1) G satisfies the condition of
Theorem 1, and (2) any graph G′ satisfies this condition
can be trimmed, via edge removal, to a reduced graph.
By monotonicity, to establish sufficiency, it suffices to
show that every reduced graph is structurally averaged
controllable.

The reason we choose to work with reduced graph is for
ease of analysis: Specifically, for G a reduced graph, we
will be able to obtain an explicit characterization of all
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walks with β the starting node. Such a characterization
is instrumental in analyzing and computing the infinite
matrices C(A, b), for (A, b) ∈ V(G). More specifically, the
ijth entry of C(A, b) is, in general, given by

∑

τ P (τ),
where the sum is over all walks τ of length j from β
to αi, and P (τ) is the product of the entries in (A, b)
corresponding to the edges in τ . If G is reduced, then such
a walk τ , if exists, is unique.

In Subsection III-C, we characterize the walks in re-
duced graphs and describe reachable sets of nodes in
G (i.e., nodes that can be reached from β by walks of
particular length). Then, in Subsection III-D, we construct
a particular (A, b) pair in V(G) for G reduced. Each
nonzero entry of (A, b) will be of the form fν(e), where e
is the edge of G corresponding to the entry, f : Σ → R≥0

is some continuous function, and ν : E → R≥0 specifies
the power of f for each edge e. In this way, the ijth entry
of C(A, b), if nonzero, can be expressed as

cij = f
∑

e∈τ
ν(e)

, (4)

where τ is the unique walk from β to αi of length j. The
expression (4) will be made explicit in Subsection III-E.

Leveraging these computational results, we focus in
Subsection III-F on a class of submatrices of C(A, b) and
show that they are full rank. Finally, in Subsection III-G,
we show that the entire matrix C(A, b) has rank n.

A. Proof of Necessity

In this subsection, we establish the following result:

Proposition 3. If G ∈ Gn,1 is structurally averaged
controllable, then G is rooted with β the unique root and,
moreover, its core G∗ contains a directed spanning path.

Proof. We first show that G is rooted and then show that
G∗ contains a directed spanning path.

Proof that G is rooted. Since β has no incoming neighbor,
if G is rooted, then β has to be the unique root. Now,
suppose that G is not rooted; then, there exists at least
one node αi of G such that there does not exists a path
from β to αi. We label all such nodes as α1, . . . , αk, for
1 ≤ k ≤ n. Then, for any pair (A, b) ∈ V(G), we have that

A =

[

A11 0
A21 A22

]

and

[

0
b2

]

(5)

where A11 is k-by-k, A22 is (n−k)-by-(n−k), and b2 is (n−
k)-dimensional. We partition x = (x1; x2) correspondingly.
Then, the dynamics of x1 are described by

ẋ1(t, σ) = A11(σ)x1(t, σ),

which are not affected by the control input u(t). It should
be clear that the above sub-system is not averaged con-
trollable and, hence, the entire system is not averaged
controllable. Since the arguments hold for all pairs (A, b) ∈
V(G), we have to conclude that G is not structurally
averaged controllable, which contradicts the hypothesis of
the proposition.

Proof that G∗ contains a directed spanning path. Let
n∗ := |V ∗| be the order of G∗. We label the nodes of G
in the way that the first n∗ nodes α1, . . . , αn∗ are in G∗

and the remaining nodes are in G+
cyc. It should be clear

from its construction that any node of G is either in G∗

or the successor of some node in G∗. It follows that for
any pair (A, b) in V(G), the matrix A is again lower block
triangular in the form of (5), but with A11 being n∗-by-n∗.
Partitioning x = (x1; x2) and b = (b1; b2) correspondingly,
we obtain
[

ẋ1(t, σ)
ẋ2(t, σ)

]

=

[

A11(σ) 0
A21(σ) A22(σ)

] [

x1(t, σ)
x2(t, σ)

]

+

[

b1(σ)
b2(σ)

]

u(t).

Note, in particular, that the dynamics of x1(t, σ) do not
depend on x2(t, σ). It follows that if the pair (A, b) is
averaged controllable, then so is (A11, b1). Consequently,
if G is structurally averaged controllable, then so is G∗.

Thus, to complete the proof, it suffices to show that if
G∗ does not contain a directed spanning path, then G∗ is
not structurally averaged controllable. More specifically,
we show below that under such a hypothesis of G∗, any
pair (A11, b1) ∈ V(G∗) is not averaged controllable.

To this end, for a node αi in G∗, let dep(αi) be the
length of the longest path in G∗ from β to αi. The depth
of β is set to be 0. Since G∗ does not contain a directed
spanning path, we have that

dep(αi) < n∗, for all αi ∈ V ∗. (6)

Now, consider the entries of Ak
11b1. The ith entry of Ak

11b1

is nonzero only if there exists a walk in G∗ of length (k+1)
from β to αi. Because G∗ is acyclic, all walks in G∗ are
paths. It then follows from (6) that

Ak
11b1 = 0, for all k ≥ n∗ − 1,

which implies that the matrix C(A11, b1) has at most (n∗−
1) nonzero columns (i.e., the first (n∗ − 1) columns) and,
hence, its rank is less than n∗. By Lemma 1, (A11, b1) is
not averaged controllable.

B. Reduced graphs

In this subsection, we introduce a special class of di-
graphs, termed reduced graphs (Definition 6), owning the
property that any digraph satisfying the condition in
Theorem 1 can be reduced, via edge removal, to a reduced
one.

We start by introducing the notion of a skeleton graph S
associated with an arbitrary digraph G, which is obtained
by condensing the strong components of G into single
nodes. Precisely, we have

Definition 5. Let G = (V, E) be weakly connected and
Gi, for i = 0, . . . , N , be the strong components of G. The
skeleton graph of G, denoted by S = (W, F ), is a directed
graph on (N + 1) nodes w0, . . . , wN whose edge set F is
determined by the following rule: There exists a directed
edge wiwj if there exists a directed edge in G from a node
of Gi to a node of Gj.
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6

Note that S may have self-loops: A node wi has a self-
loop if and only if Gi has a cycle. By the second item of
Definition 3, the skeleton graph S will be acyclic if all its
self-loops are removed.

w2w4 w1

w0

w3 w5

Fig. 2: The skeleton graph S of the digraph shown in Figure 1.
Node w0 corresponds to the β node, w2 and w3 correspond
to the two nontrivial strong components while the others
correspond to the trivial ones.

Next, we introduce the map π : G → S, defined
by sending a node vi′ ∈ Vi to the node wi. It should
be clear from Definition 5 that the map π is a graph
homomorphism.

Let G∗ be the core of G and S∗ := π(G∗). It is not hard
to see from Definitions 4 and 5 that S∗ is the core of S
and that G∗ and S∗ are isomorphic under π|G∗ . We now
have the following definition:

Definition 6. A rooted digraph G ∈ Gn,1 is reduced if it
satisfies the following conditions:

1) Let S be the skeleton graph of G and S∗ be its core.
Then, S is a directed tree and S∗ is a directed path.

2) For each edge wiwj of S, with wi 6= wj, the set
π−1(wiwj) is a singleton.

3) If wp ∈ S has a self-loop, then it is an out-neighbor of
S∗. Moreover, for any such node wp, Gp = π−1(wp)
is a cycle.

For example, a reduced graph of the digraph shown in
Figure 1 can be obtained by removing the edge α7α3 and
the self-loop on α7, as shown in Figure 3. Note that there
are multiple ways to obtained a reduced graph. To wit,
one can obtain another reduced graph by removing the
edge α5α3 and the self-loop on α7 (while keeping the edge
α7α3).

It should be clear that any reduced graph G satisfies the
condition in Theorem 1. We establish the following result:

Proposition 4. Let G = (V, E) ∈ Gn,1 satisfy the condi-
tion of Theorem 1. Then, there is a subgraph G′ = (V, E′)
of G, with the same node set V , such that G′ is reduced.

Proof. Let S be the skeleton graph of G and π : G → S be
the graph homomorphism. Let w0 := π(β) and S∗ be the
core of S. Since G∗ and S∗ are isomorphic, S∗ contains a
directed spanning path, denoted by P .

Let S(0) be a directed spanning tree of S such that it
contains P and all the self-loops. It should be clear that
P is the core of S(0). We will now remove edges out of G
leading to a subgraph G(0) whose skeleton graph is S(0).
Consider the edges wiwj in S, with wi 6= wj . There are
two cases: (i) If wiwj is not in S(0), then we remove all the

edges in π−1(wiwj). (ii) If wiwj is in S(0), then we remove
all but one of the edges in π−1(wiwj). It should be clear
that the resulting graph G(0) has S(0) as its skeleton graph
and, moreover, satisfies the first two items of Definition 6.

Next, we consider the nodes in S(0) with self-loops. For
convenience, we label these nodes as w1, . . . , wq, and let
G1, . . . , Gq be the corresponding strong components. We
will now construct a reduced graph G′ by removing from
each Gp, for p = 1, . . . , q, some selected edges, which will
be specified below. We will use G(p) to denote the graph
obtained by removing the selected edges in ∪p

i=1Gi, S(p)

the skeleton graph of G(p), and π(p) : G(p) → S(p) the
graph isomorphism. Along the edge-removal procedure, we
will show by induction that G(p) satisfies the first two
items of Definition 6 and, moreover, the core of S(p) is
(isomorphic with) the path P .

The base case p = 0 has been established above. For the
inductive step, we assume that G(p−1) has been obtained,
with 1 ≤ p ≤ q, and will construct G(p) by removing
edges from Gp. Note that Gp is a strong component of
G(p−1). We will still use wp to denote the node π(p−1)(Gp)
in S(p−1).

By the induction hypothesis, S(p−1) is a directed tree
and since wp cannot be the root, there is a unique node
wi in S(p−1), with wi 6= wp, such that wi is an in-neighbor
of wp. Furthermore, there is a unique edge in G(p−1),
denoted by viαp0

, such that π(viαp0
) = wiwp. In case wp

has out-neighbors other than itself, we denote them by
wj1 , . . . , wjm

. Similarly, for each ` = 1, . . . , m, there is a
unique edge αp`

αj`
such that π(αp`

αj`
) = wpwj`

. It should
be clear that the nodes αp`

, for 0 ≤ ` ≤ m, are in Gp. To
this end, we consider two cases:

Case 1: wp /∈ Nout(P ). Since Gp = (Vp, Ep) is strongly
connected, there is a directed spanning tree Tp = (Vp, E′

p),
without self-loop, of Gp rooted at the node αp0 . We remove
all the edges in Ep − E′

p and obtain G(p). In other words,
we replace Gp with Tp. It follows that the skeleton graph
S(p) can be obtained from S(p−1) by replacing the node
wp with Tp, the edge wiwp with wiαp0

, and the edges
wpwj`

with αp`
wj`

for ` = 1, . . . , m. It should be clear
that G(p) satisfies the first two items of Definition 6. We
claim that the core of S(p) is still P . To establish the claim,
it suffices to show that the nodes of Tp are successors of
some node with a self-loop in S(p). We exhibit below such
a node. Consider the (unique) path in S(p−1) from β to
wp. Traversing the path, we let wp′ be the first node such
that wp′ /∈ P . Then, wp′ has a self-loop because otherwise
wp′ would belong to the core of S(p−1), contradicting the
induction hypothesis that P is the core. Since wp is not
an out-neighbor of P , wp′ 6= wp and wp′ belongs to S(p).
It follows that all nodes of Tp are successors of wp′ .

Case 2: wp ∈ Nout(P ). We again let Tp = (Vp, E′
p) be a

directed spanning tree of Gp, without self-loop and rooted
at αp0

. Let αp′ be an in-neighbor of αp0
in Gp; such a

node exists since Gp is strongly connected and nontrivial.
Let G′

p := Tp ∪ {αp′αp0}. Then, G′
p has a unique cycle

C ′
p given by concatenating the path from αp0 to αp′ in Tp

with the edge αp′αp0
. Let E′′

p be the edge set of G′
p. We
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α1

β

α2

α4

α6α8 α3

α5

α7 α9

Fig. 3: A reduced graph obtained by removing edges out of the digraph shown in Figure 1.

obtain G(p) by removing the edges in Ep − E′′
p (i.e., by

replacing Gp with G′
p). The skeleton graph S(p) of G(p)

can be described as follows: Let S′
p be the skeleton graph

G′
p and π′

p : G′
p → S′

p be the graph homomorphism. Then,
S′

p is a directed tree and w′
0 := π′

p(C ′
p) is the root with a

self-loop. Let w′
` := π′

p(αp`
), for ` = 1, . . . , m (these (`+1)

nodes w′
0, . . . , w′

` may not be distinct). Then, S(p) can be
obtained from S(p−1) by replacing the node wp with S′

p,
the edge wiwp with wiw

′
0, and the edges wpwj`

with w′
`wj`

for ` = 1, . . . , m. It should be clear that G(p) satisfies the
first two items of Definition 6. Since the root w′

0 of S′
p has

a self-loop, every node of S′
p is a successor of w′

0. Also,

any successor wp′ of wp in S(p−1), for w′
p 6= wp, is now

a successor of w′
0. Thus, P remains as the core of S(p).

Furthermore, since wp is an out-neighbor of P in S(p−1)

and since S(p−1) is a directed tree, wi must be a node of
P . Since wiw

′
0 is an edge of S(p), w′

0 is an out-neighbor
of P .

Finally, let G′ := G(q), S′ := S(q), and π′ := π(q). By
construction, G′ satisfies the third item of Definition 6.
Indeed, if a node w′

p ∈ S′ has a self-loop, then it comes
from Case 2 in the above edge-removal procedure, thus
being an out-neighbor of P . The corresponding strong
component π′−1(w′

p) is a cycle C ′
p.

C. Walks and reachable node sets

For the remainder of the paper, we will assume that
G ∈ Gn,1 is rooted and reduced. Each strong component
of G is either a cycle or a single node without self-loop.
In this subsection, we will first characterize all the walks
τ in G with β the starting node, and then describe sets of
reachable nodes by walks of particular lengths.

1) Characterization of walks in G: Let G∗ be the core
of G, which is a path without self-loops. It should be clear
that if τ is a walk from β to some αi ∈ G∗, then τ has
to be a path (which is unique). We will now deal with the
case where αi /∈ G∗.

Recall that Gcyc is the union of all nontrivial strong
components of G. Since G is reduced, Gcyc is a collection
of disjoint cycles. We label these cycles as Gp = (Vp, Ep),
for p = 1, . . . , q. Let V +

p be the successors of Vp in G, and
G+

p be the subgraph induced by V +
p . Since G is reduced, it

follows from item 2 of Definition 6 that for each Gp, there
is a unique node αp0 in Gp such that it is an out-neighbor
of G∗:

{αp0} = Nout(G
∗) ∩ Gp. (7)

For instance, in Figure 3, α2 and α3 are the unique nodes
connecting G∗ to the 3-cycle α2α4α6α2 and the 2-cycle
α3α5α3, respectively.

We make a few simple observations: First, note that
there is a unique path in G, denoted by τβαp0

, from β to
αp0

. All nodes of τβαp0
, except αp0

, belong to G∗. Next,
we express the cycle Gp as Gp = αp0αp1 · · · αp`−1

αp0 . If we
remove the edge αp`−1

αp0 , then G+
p becomes a directed

tree with αp0
the root. This, in particular, implies that

for any node αi ∈ G+
p , there is a unique path, denoted by

ταp0 αi
, from αp0

to αi.
For convenience, we denote by Gm

p the closed walk in G
obtained by traversing m times the cycle Gp, with αp0

the
starting (and ending) node. We allow m to be 0 and set
G0

p := αp0
.

The following result is an immediate consequence of the
above arguments:

Lemma 2. Let αi ∈ G+
p and τ be a walk in G from β to

αi. Then, τ can be expressed as a concatenation of three
walks:

τ = τβαp0
Gm

p ταp0 αi
.

Note that if we set m = 0, then the walk τ in the above
lemma becomes a path. It follows that for every α-node
αi in G, there is a unique path from β to αi. We denote
this path by τβαi

and define the depth of αi as

dep(αi) := `(τβαi
). (8)

To illustrate, consider again the digraph in Figure 3. The
nodes of depth 1 are {α1, α2}, the nodes of depth 2 are
{α3, α4}, {α5, α6} depth 3, {α7, α8} depth 4, and α9 is of
depth 5.

2) On reachable sets: For a positive integer j, let V (j)
be the set of α-nodes αi ∈ G such that there is a walk τ
of length j from β to αi. For each p = 1, . . . , q, we let

V +
p (j) := V +

p ∩ V (j).

We describe below these sets and present relevant proper-
ties, which will be used for computing the columns of the
infinite matrix C(A, b).

For ease of notation, let `p := `(Gp). We start with the
following result:

Lemma 3. For any positive integer j,

V +
p (j) = {αi ∈ V +

p | dep(αi) ≤ j and dep(αi) ≡`p
j}.

(9)

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2025.3566318

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen's University. Downloaded on July 01,2025 at 11:31:49 UTC from IEEE Xplore.  Restrictions apply. 



8

Moreover, for any αi ∈ V +
p (j), there is a unique walk of

length j from β to αi.

Proof. Consider all the walks τ from β to αi. By Lemma 2,

`(τ) = `(τβαi
) + m`p = dep(αi) + m`p, for m ∈ N.

Thus, amongst these walks, there exists a τ of length j
if and only if (9) holds. Moreover, such a walk is unique
given by

τ = τβαp0
G

j−dep(αi)

`p
p ταp0 αi

.

This completes the proof.

Let αp0
be given as in (7). Amongst all nodes in G+

p ,
αp0

has the minimum depth. Thus, V +
p (j) = ∅ if and only

if j < dep(αp0
). As j increases, the sequence of sets V +

p (j)
will eventually be periodic. We make it precise below. Let

dp := max
αi∈V +

p

dep(αi).

Note that dp ≥ `p. To wit, we write Gp explicitly as Gp =
αp0

αp1
· · · αp`p−1

αp0
. The path τβαp`p−1

can be obtained

by concatenating τβαp0
and ταp0 αp`p−1

. Thus,

dp ≥ dep(αp`p−1
) = `(τβαp`p−1

) =

`(τβαp0
) + `(ταp0 αp`p−1

) ≥ 1 + (`p − 1) = `p.

We have the following result (an example illustrating the
result will be given at the end of the subsection):

Lemma 4. If j > dp − `p, then

V +
p (j + `p) = V +

p (j), (10)

and, moreover,

V +
p = t

`p−1
k=0 V +

p (j + k). (11)

Proof. We first establish (10). By (9), V +
p (j) ⊆ V +

p (j+`p).
Suppose to the contrary that there exists a node αi such
that αi ∈ V +

p (j + `p) − V +
p (j); then, using again (9), we

have that j < dep(αi) ≤ j + `p and dep(αi) ≡`p
j. But

then, dep(αi) = j + `p > dp, which is a contradiction.
We next establish (11). On one hand, each node αi ∈ V +

p

belongs to V +
p (j) for some j (precisely, for j = dep(αi) +

m`p). On the other hand, if j 6≡`p
j′, then V +

p (j) does not
intersect V +

p (j′). Combining the arguments with (10), we
conclude that (11) holds.

We will now extend Lemma 4 to the subsets V (j) for
sufficiently large j. To the end, let

`max :=
q

max
p=1

{`p} and L :=
q

lcm
p=1

{`p}. (12)

where lcm stands for the least common multiple.
Recall that V +

cyc is the set of successors of all nontrivial
strong components in G, and G+

cyc is the subgraph induced
by V +

cyc. Since G is reduced,

G+
cyc = tq

p=1G+
p . (13)

Also, recall that n∗ is the order of G∗. We have the
following result:

Lemma 5. Suppose that j > n∗ and j > maxq
p=1(dp −`p);

then,

V (j + L) = V (j) and V +
cyc = ∪`max−1

k=0 V (j + k). (14)

Moreover, for any k = 0, . . . , `max − 1,

V (j + k) 6⊆ ∪`max−1
k′=0,k′ 6=kV (j + k′), (15)

i.e., there exists at least a node of V (j + k) such that it is
not contained in V (j +k′) for any k′ = 0, . . . , `max −1 with
k′ 6= k.

Proof. Since G∗ is a path without self-loop, for any j > n∗,
V (j) is a subset of V +

cyc. The fact that (14) holds then
follows directly from Lemma 4 and (13). To establish (15),
we let Gp be such that `p = `max. On one hand, we have
V +

p (j + k) ⊆ V (j + k). On the other hand, it follows
from (11) and (13) that

V +
p (j + k) ∩ V (j + k′) = ∅,

for any k′ = 0, . . . , `max − 1 with k′ 6= k. This completes
the proof.

Example 1. Consider the reduced graph G in Figure 3.
The core G∗ has n∗ = 2 nodes. Let G1 := α3α5α3 and
G2 := α2α4α6α2 be the two cycles in G. Then, G+

1 is the
subgraph induced by V +

1 = {α3, α5, α7, α9} and G+
2 is the

subgraph induced by V +
2 = {α2, α4, α6, α8}. We have that

`1 = 2, `2 = 3, d1 = 5, and d2 = 4, so `max = 3 and
L = lcm{`1, `2} = 6. For j ≥ 4, we have that

V +
1 (j) =

{

{α3, α7} if j ≡2 0,

{α5, α9} if j ≡2 1.

Similarly, for j ≥ 2, we have that

V +
2 (j) =











{α6} if j ≡3 0,

{α2, α8} if j ≡3 1,

{α4} if j ≡3 2.

Finally, for j ≥ 4, we obtain that

V +(j) =







































{α3, α6, α7} if j ≡6 0,

{α2, α5, α8, α9} if j ≡6 1,

{α3, α4, α7} if j ≡6 2,

{α5, α6, α9} if j ≡6 3,

{α2, α3, α7, α8} if j ≡6 4,

{α4, α5, α9} if j ≡6 5.

Note that the V +(j)’s satisfy (14) and (15).

D. Construction of the (A, b) pair

Let G ∈ Gn,1 be rooted and reduced. In this subsection,
we will construct a pair (A, b) in V(G) and show, toward
the end of the section, that the pair is averaged control-
lable.

Since the edges of G = (V, E) correspond one-to-one
to the “free entries” of the (A, b) pair (specifically, edge
αjαi corresponds to entry aij and edge βαi corresponds
to entry bi), we construct the matrix pair by assigning

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2025.3566318

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen's University. Downloaded on July 01,2025 at 11:31:49 UTC from IEEE Xplore.  Restrictions apply. 



9

to each edge of G a continuous function. As announced
earlier, these functions will be of the form fν(e), where
f : Σ → R≥0 is a continuous function and ν : E → R≥0

determines the power of f . We define f and ν below.
1) Construction of f : Let (U , φ) be a chart on Σ, i.e.,

U is an open set in Σ and φ : U → V is a diffeomorphism,
with V ⊆ Rn an open neighborhood of 0 in Rn. Without
loss of generality, we can assume that U is contained in the
support of the measure µ (introduced at the beginning
of Subsection II-A) and that V contains the closed unit
ball B:

B := {z ∈ Rn | ‖z‖ ≤ 1}.

Let f̃ : B → R be defined as:

f̃(z) := ‖z‖. (16)

Let K := φ−1(B). We then define f : Σ → R as

f(σ) :=

{

f̃(φ(σ)) if σ ∈ K,

1 otherwise.
(17)

It should be clear that f is continuous and that the set
{fk}k∈N is linearly independent, where f0 = 1 is the
constant function taking value 1 everywhere. Further, we
let F be the uniform closure of the space spanned by fk

for all k ∈ N,

F := uniform closure of the span{fk}k∈N.

The following lemma follows directly from the Stone-
Weierstrass theorem:

Lemma 6. The space F comprises all continuous functions
g : Σ → R such that g is constant over Σ − K and that
g(σ) = g(σ′) for any two points σ, σ′ ∈ K, with ‖φ(σ)‖ =
‖φ(σ′)‖.

2) Construction of ν: Recall that dep(αi) is the depth
of αi defined in (8). Relabel, if necessary, the α-nodes in G
such that

if dep(αi) < dep(αj), then i < j.

This can be done by using, for example, the breadth-first
search algorithm. The labeling of the α-nodes of the graph
shown in Figure 3 satisfies this property.

We will now partition the edge set E into five subsets Ei,
for i = 1, . . . , 5, and define ν|Ei

. Let Vappx := V +
cyc − Vcyc,

and Gappx = (Vappx, Eappx) be the subgraph induced by
Vappx. We call Gappx the appendix of G. Define the subsets
Ei of E as follows:































E1 := E∗,

E2 := {viαj ∈ E | vi ∈ G∗ and αj ∈ Gcyc},

E3 := Ecyc,

E4 := {αiαj ∈ E | αi ∈ Gcyc and αj ∈ Gappx},

E5 := Eappx.

(18)

The edges in E2 link nodes from G∗ to Gcyc, and edges in
E4 link nodes from Gcyc to Gappx.

Let λ be a positive and irrational number, which we fix
in the sequel. We now define ν(e) as follows:

Case 1: e ∈ E1. We set ν(e) := 0.
Case 2: e ∈ E2. Let Gp be the cycle incident to e, and

αp0
be given as in (7). Then, e can be written as e = viαp0

.
We set ν(e) := p0λ.

Case 3: e ∈ E3. Let Gp be the cycle that contains e. We
write Gp explicitly as Gp = αp0

αp1
· · · αp`p−1

αp0
. Then,

we set

ν(e) :=

{

`p

L if e = αp`p−1
αp0

0 otherwise,

where L is defined in (12).
Case 4: e ∈ E4. Let Gp be the cycle and αj ∈ Gappx be

the node incident to e. We still let αp0 be given as in (7).
We then set ν(e) = (j − p0)λ. Note that (j − p0) > 0
because dep(αj) > dep(αp0

).
Case 5: e ∈ E5. We write e = αiαj and set ν(e) := (j −

i)λ. Note that (j − i) > 0 because dep(αj) − dep(αi) = 1.
We illustrate the map ν in Figure 4 for the graph shown

in Figure 3.

E. Computation of C(A, b)

Let (A, b) ∈ V(G) be given as above, and C(A, b) be
defined as in (2). In this subsection, we present explicit
expressions of the entries of the matrix C(A, b).

To this end, let T be the set of walks in G. We extend ν :
E → R≥0 by defining the map over the set T . Specifically,
for a walk τ = vi1 · · · vik

, we define

ν(τ) :=

k−1
∑

j=1

ν(vij
vij+1). (19)

Let τ be a walk from β to some αi. We compute below
ν(τ). The case where αi ∈ G∗ is simple: The only walk
from β to αi in G is the path τβαi

, which is contained in
G∗. Since ν(e) = 0 for all e ∈ G∗, ν(τβαi

) = 0. For the
other cases, we have the following result:

Lemma 7. Let αi ∈ G+
p and τ be a walk from β to αi.

Then,

ν(τ) =

{

p0λ + `(τ)−dep(αi)
L if αi ∈ Gp,

iλ + `(τ)−dep(αi)
L if αi ∈ G+

p − Gp.

Proof. By Lemma 2, we can express τ as τ =
τβαp0

Gm
p ταp0 αi

. It follows from (19) that

ν(τ) = ν(τβαp0
) + mν(Gp) + ν(ταp0 αi

).

By construction of ν, we have that ν(τβαp0
) = p0λ,

ν(Gp) =
`p

L , and

ν(ταp0 αi
) =

{

0 if αi ∈ Gp,

(i − p0)λ if αi ∈ G+
p − Gp.

Finally, by the fact that τβαi
= τβαp0

ταp0 αi
and dep(αi) =

`(τβαi
), we have

m =
`(τ) − dep(αi)

`p
,

which completes the proof.
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α1

β

α2

α4

α6α8 α3

α5

α7 α9
3λ

1
2

6λ

4λ0 0

2λ

02λ

0
1
3

Fig. 4: Illustration of the map ν on the digraph G shown in Figure 3. The values of ν(e) are treated as edge weights and are
shown on the corresponding edges e. The 5 subsets Ei, introduced in (18), are given by E1 := {βα1}, E2 = {βα2, α1α3},
E3 = {α3α5, α5α3} ∪ {α2α4, α4α6, α6α2}, E4 = {α5α7, α6α8}, and E5 = {α7α9}. Note that L = 6.

For a later purpose, we express ν(τ) as a sum of two
parts:

ν(τ) = ν1(τ)λ + ν2(τ)
1

L
,

where ν1(τ) and ν2(τ) are given by

ν1(τ) :=











0 if αi ∈ G∗,

p0 if αi ∈ Gp for some cycle Gp,

i if αi ∈ Gappx.

(20)

and

ν2(τ) :=

{

0 if αi ∈ G∗,

`(τ) − dep(αi) if αi ∈ G+
cyc.

(21)

We call ν1(τ)λ (resp. ν2(τ)/L) the irrational part (resp.,
rational part) of ν(τ).

Recall that V (j) comprises all the αi such that there is
a walk τ of length j in G from β to αi. By Lemma 3, such
a walk τ is unique for each αi ∈ V (j). Also, recall that
the function f : Σ → R≥0 is defined in (16) and (17).

We have the following result for the matrix C(A, b)
introduced in (2):

Lemma 8. Let cij be the ijth entry of C(A, b). Then,

cij =







∫

Σ

fν(τ)dµ if αi ∈ V (j),

0 otherwise,

where τ is the unique walk of length j from β to αi.

Proof. The nonzero entries of (A, b) are by construction
fν(e), with e ∈ G the corresponding edges. It follows that
the ith entry of the vector Aj−1b is given by

∑

τ fν(τ),
where the sum is over all walks in G of length j from β
to αi. By Lemma 3, such a walk, if exists, is unique. This
completes the proof.

F. On a class of submatrices of C(A, b)

In this subsection, we focus on a special class of subma-
trices of C(A, b), and show that every such submatrix has
full rank. The result will be used in the next subsection to
establish that the matrix C(A, b) itself has full rank.

Let Cj be the jth column of C(A, b), so cij is the ith
entry of Cj . We define the support of Cj as supp(Cj) :=
{αi ∈ Vα | cij 6= 0}. By construction, f is positive almost
everywhere. It follows from Lemma 8 that

supp(Cj) = V (j) for all j ≥ 1. (22)

Let j∗ be a positive integer such that

j∗ > n∗ and j∗ >
q

max
p=1

(dp − `p), (23)

so j∗ satisfies the hypothesis of Lemma 5. Let L be given
as in (12). Consider the column vectors Cj∗+kL, for k ∈ N.
By Lemma 5 and (22), all these columns share the same
support. Let V ′ = {α′

1, . . . , α′
m} be the common support,

which is a subset of V +
cyc. Let C ′ be the submatrix of C

obtained by first taking the columns Cj∗+kL, for all k ∈ N,
and then removing the zero rows, i.e.,

C ′ := [Cj∗ , Cj∗+L, Cj∗+2L, · · · ]
∣

∣

V ′
. (24)

Let c′
ij be the ijth entry of C ′. We can express c′

ij

explicitly. Since α′
i ∈ V ′, there exists a unique walk,

denoted by τij , of length (j∗ + (j − 1)L) from β to α′
i.

Also, note that τij can be obtained from τi1 by inserting

the closed walk G
(j−1)L/`p
p for some p = 1, . . . , q. Thus, by

Lemma 7,

ν(τij) = ν(τi1) +
(j − 1)L

`p
ν(Gp) = ν(τi1) + j − 1.

For ease of notation, let τi := τi1. It then follows from
Lemma 8 that

c′
ij =

∫

Σ

fν(τi)+j−1dµ. (25)

We will now establish the following result:

Lemma 9. The submatrix C ′ given in (24) has full rank,
i.e., rank m.

Proof. The proof has two parts. In the first part, we show
that ν(τ1), . . . , ν(τm) are pairwise distinct. Building upon
this fact and Lemma 6, we show in the second part that
the matrix C ′ has full rank.

Part 1: Proof that ν(τ1), . . . , ν(τm) are pairwise distinct.
For any two numbers ν(τi) and ν(τi′), with i 6= i′, we
show that their difference is nonzero. From Lemma 7, we
have that

ν(τi) − ν(τi′) =

(ν1(τi) − ν1(τi′))λ + (ν2(τi) − ν2(τi′))
1

L
, (26)

where ν1 and ν2 are defined in (20) and (21), respectively.
Since λ is irrational, to show that (26) is nonzero, it suffices
to show that ν1(τi) 6= ν1(τi′).
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The ending nodes of τi and τi′ are α′
i and α′

i′ , respec-
tively. We claim that α′

i and α′
i′ do not belong to the same

cycle. Suppose not, say α′
i, α′

i′ ∈ Gp for some p = 1, . . . , q;
then, by Lemma 2 and by the fact that τi and τi′ have the
same length j∗, the two walks τi and τi′ have to be the
same:

τi = τi′ = τβαp0
Gm

p ταp0 αpk
,

where αpk
is the unique node in Gp such that k ≡`p

j∗ − dep(αp0
). But then, α′

i = α′
i′ = αpk

, which is a
contradiction. Since α′

i and α′
i′ do not belong to the same

cycle, we conclude from (20) that ν1(τi) 6= ν1(τi′).

Part 2: Proof that C ′ has full rank. We show that the
only solution v ∈ Rm to v>C ′ is v = 0. We write v =
(v1, . . . , vm) and let g :=

∑m
i=1 vif

ν(τi). Then, by (25),
v>M = 0 implies that

∫

Σ

gfkdµ = 0, for all k ∈ N. (27)

By Lemma 6, any function fr, for r ∈ R≥0, belongs to F.
Thus, g belongs to F as well. Since the uniform closure of
the linear span of {fk}k∈N is F, (27) can hold if and only
if g = 0. Because ν(τ1), . . . , ν(τm) are pairwise distinct,
the functions fν(τ1), . . . , fν(τm) are linearly independent.
Thus,

∑m
i=1 vif

ν(τi) = 0 can hold if and only if v = 0.

G. Proof that (A, b) is averaged controllable

In this subsection, we complete the proof for the suf-
ficiency part of Theorem 1. Let (A, b) be given as in
Subsection III-D. We establish the following result:

Proposition 5. The matrix C(A, b) has full rank.

Proof. We exhibit below n linearly independent column
vectors out of C(A, b).

Recall that n∗ is the order of the core G∗. We claim that
the first n∗ columns of C(A, b) are linearly independent.
To wit, note that G∗ is a path without self-loop. For any
node αi ∈ G∗, the ith row has a unique nonzero entry,
namely, ci,dep(αi). More specifically, we have that

cij = δdep(αi),j

∫

Σ

fν(τβαi
)dµ

= δdep(αi),j

∫

Σ

1dµ = δdep(αi),j ,

where δ is the Kronecker delta. This establishes the claim.
If n∗ = n, then the proof is complete. Otherwise, we
let n+ := n − n∗ be the order of G+

cyc. Let j∗ be a
positive integer satisfying (23). By Lemma 5, V (j) does
not intersect V ∗ for all j ≥ j∗. Thus, if there exist n+

linearly independent vectors out of {Cj}j≥j∗ , then these
n+ vectors, together with the first n∗ columns of C(A, b),
form a basis of Rn. We exhibit below these n+ columns.

Let `max and L be given as in (12). We define subsets V ′
` ,

for ` = 0, . . . , `max − 1, of V +
cyc as follows: Set V ′

0 := V (j∗)
and

V ′
` := V (j∗ + `) − ∪`−1

k=0V (j∗ + k), for 1 ≤ ` ≤ `max − 1.

By Lemma 5, these subsets are nonempty and form a
partition of V +

cyc. Let m` := |V ′
` |, so n+ =

∑`max−1
`=0 m`.

Next, for each ` = 0, . . . , `max − 1, we define subsets of Rn

as follows:
C` := {Cj∗+`+kL | k ∈ N}.

Since `max ≤ L, if ` 6= `′, then C` ∩ C`′ = ∅. We will
now select for each ` = 0, . . . , `max − 1, m` columns out
of C`, and show that the total n+ columns are linearly
independent.

By Lemma 5 and (22), all the columns in C` share
the same support, given by V (j∗ + `), which contains
V ′

` as a subset. Since the subsets V ′
` form a partition

of V +
cyc, it suffices to show that for each `, there exist

m` vectors Cj1
, . . . , Cjm`

out of C` such that the sub-
vectors Cj1 |V ′

`
, . . . , Cjm`

|V ′

`
are linearly independent. But

this follows from Lemma 9: To wit, the following submatrix
of C(A, b):

[Cj∗+`, Cj∗+`+L, Cj∗+`+2L, · · · ]
∣

∣

V (j∗+`)
(28)

has full rank, so its rows are linearly independent. It
follows that if we replace V (j∗ + `) with its subset V ′

` ,
then the resulting submatrix is still of full rank, i.e., of
rank m`. This completes the proof.

IV. Conclusions

We have provided a complete characterization of the
sparsity patterns G that are structurally averaged control-
lable for the class of linear ensemble systems with single
inputs. Specifically, we have shown in Theorem 1 that G
is structurally averaged controllable if and only if it is
rooted (at the node that corresponds to the scalar control
input) and, moreover, its core G∗, obtained by removing
from G the cycles and their successors, contains a directed
spanning path. We will extend the result to the multi-input
case in the future work.
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[12] B. Danhane, J. Lohéac, and M. Jungers. “Condi-
tions for uniform ensemble output controllability,
and obstruction to uniform ensemble controllabil-
ity”. Mathematical Control and Related Fields 14.3
(2024), pp. 1128–1175.

[13] E. Zuazua. “Averaged control”. Automatica 50.12
(2014), pp. 3077–3087.

[14] R. Tarjan. “Depth-first search and linear graph al-
gorithms”. SIAM Journal on Computing 1.2 (1972),
pp. 146–160.

Xudong Chen is an Associate Professor in
the Department of Electrical and Systems
Engineering at Washington University in St.
Louis. He obtained the B.S. degree in Elec-
tronic Engineering from Tsinghua University,
Beijing, China, in 2009, and the Ph.D. degree
in Electrical Engineering from Harvard Uni-
versity, Cambridge, Massachusetts, in 2014.
He is an awardee of the 2020 Air Force Young
Investigator Program, a recipient of the 2021
NSF Career Award, the recipient of the 2021

Donald P. Eckman Award, and the recipient of the 2023 A.V. Balakr-
ishnan Early Career Award. His current research interests are in the
area of control theory, stochastic processes, optimization, network
science, and game theory.

Bahman Gharesifard (Senior Member,
IEEE) received the B.Sc. degree in Mechanical
Engineering, in 2002, and the M.Sc. degree in
Control and Dynamics, in 2005, from Shiraz
University, Iran, and Ph.D. in Mathematics
from Queen’s University, Canada, in 2009. He
is a Professor with the Department of Math-
ematics and Statistics at Queen’s University,
where has been appointed since 2013. He was
a Professor with the Electrical and Computer
Engineering Department at the University of

California, Los Angeles from 2021 to 2024, where he was the Area
Director for Signals and Systems 2023-2024. He was an Alexander von
Humboldt research fellow with the Institute for Systems Theory and
Automatic Control at the University of Stuttgart in 2019-2020. He
held postdoctoral positions with the Department of Mechanical and
Aerospace Engineering at University of California, San Diego (2009-
2012) and with the Coordinated Science Laboratory at the University
of Illinois at Urbana-Champaign (2012-2013). He received the 2019
CAIMS-PIMS Early Career Award, jointly awarded by the Canadian
Applied and Industrial Math Society and the Pacific Institute for
the Mathematical Sciences, an Alexander von Humboldt Foundation
research fellowship for experienced researchers in 2019, an NSERC
Discovery Accelerator in 2019, the SIAG/CST Best SICON Paper
Prize in 2021, and the Canadian Society for Information Theory
(CSIT) Best Paper Award in 2022. He has served on the Conference
Editorial Board of the IEEE Control Systems Society 2016-2020, and
is currently an Associate Editor for the IEEE Control System Let-

ters and IEEE Transactions on Network Control Systems. His
research interests include systems and controls, distributed control,
distributed optimization, machine learning, social and economic net-
works, game theory, geometric control theory, geometric mechanics,
and applied Riemannian geometry.

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2025.3566318

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen's University. Downloaded on July 01,2025 at 11:31:49 UTC from IEEE Xplore.  Restrictions apply. 


