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Robust Probabilistic Inference via a
Constrained Transport Metric
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Abstract. Flexible Bayesian models are typically constructed using limits of large
parametric models with a multitude of parameters that are often difficult to inter-
pret. In this article, we offer a novel alternative by constructing an exponentially
tilted empirical likelihood carefully designed to concentrate near a parametric
family of distributions of choice with respect to a novel variant of the Wasserstein
metric, which is then combined with a prior distribution on model parameters to
obtain a robustified posterior. The proposed approach finds applications in a wide
variety of robust inference problems, where we intend to perform inference on the
parameters associated with the centering distribution in the presence of outliers.
Our proposed transport metric enjoys great computational simplicity and is in-
herently parallelizable, exploiting the Sinkhorn regularization for discrete optimal
transport problems. We demonstrate superior performance of our methodology
when compared against state-of-the-art robust Bayesian inference methods. We
also demonstrate the equivalence of our approach with a non-parametric Bayesian
formulation under a suitable asymptotic framework, thereby testifying to its flex-
ibility.

Keywords: empirical likelihood, entropy, non-parametric Bayes, robust inference,
Wasserstein metric.

1 Introduction
In most modeling exercises, our objective is limited to approximating a few key fea-
tures of the true data-generating mechanism to ensure interpretable inference. It is
often futile, if not misleading, to try to model small-scale and complicated underlying
contaminating effects. Thus, the interplay between model adequacy and robustness is
a fundamental consideration in model-based inference. Consequently, robust inferential
methods (Huber, 2011) possess an influential body of literature, that has permeated
many modern areas of research including differential privacy (Dwork and Lei, 2009;
Avella-Medina, 2021; Liu et al., 2021), algorithmic fairness (Wang et al., 2020a; Du and
Wu, 2021), noise-robust training of deep neural nets (Han et al., 2018; Wang et al.,
2020b), sequential decision making (Xu and Mannor, 2010; Chen et al., 2019), transfer
learning (Shafahi et al., 2020), quantification learning (Fiksel et al., 2021), to name
a few. Bayesian procedures, being almost exclusively model-based, inevitably fall prey
to model mis-specification and/or perturbation of the data-generating mechanism – an
issue that exacerbates as sample size increases (Miller and Dunson, 2019). Credible in-
tervals obtained from such parametric Bayesian models under model mis-specification
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may not have the desired asymptotic coverage (Kleijn and van der Vaart, 2012). Non-
parametric Bayes methods are routinely used to guard against such mis-specification,
either by enlarging the parameter space to impart flexibility or by taking their limit
to construct infinite-dimensional prior distributions (Müller and Quintana, 2004; Kleijn
and van der Vaart, 2006; De Blasi and Walker, 2013).

Despite the success of non-parametric Bayes methods over the last few decades; see
Müller et al. (2015) for a comprehensive review; the presence of a large number of non-
identifiable parameters can be contentious, particularly when the interest is solely on
simpler features of the population. This has led to a proliferation of pseudo-likelihood-
based approaches (Chernozhukov and Hong, 2003; Jiang and Tanner, 2008; Hooker
and Vidyashankar, 2011; Minsker et al., 2017; Grünwald and van Ommen, 2017; Miller
and Dunson, 2019) targeted towards specific parameters of interest. However, these
approaches typically lack generative model interpretations, making the calibration of
the associated dispersion or temperature parameters challenging (Holmes and Walker,
2017; Grünwald and van Ommen, 2017).

Empirical likelihood (EL; Owen (2001)), which approximates the underlying dis-
tribution with a discrete distribution supported at the observed data points, offers an
attractive alternative. Exponentially tilted Empirical Likelihood (ETEL) is a variant of
this idea that minimizes the Kullback–Leibler divergence of this discrete distribution
with the empirical distribution of the observed data subject to satisfying the estimating
equation. Both EL and ETEL obtain the induced maximum likelihood of the param-
eter of interest defined through estimating equations, by effectively profiling out the
nuisance parameters. One can import such likelihoods in a Bayesian framework (Lazar,
2003; Schennach, 2005; Chib et al., 2018, 2021). In fact, posterior credible intervals
obtained from ETEL based Bayesian procedures have the correct frequentist coverage
(Chib et al., 2021), thereby effectively circumnavigating the longstanding criticism as-
sociated with Bayesian inference under model mis-specification.

In this article, our goal is to develop a flexible Bayesian semi-parametric procedure
that centers around a postulated parametric family Fθ, without explicitly modeling
aspects of the underlying data-generating mechanism that are irrelevant to us. Alterna-
tively, one may consider a non-parametric Bayes procedure (Ferguson, 1973; Teh, 2010;
Antoniak, 1974; Lavine, 1994; Verdinelli and Wasserman, 1998), where the parametric
guess Fθ (with density fθ) assumes the role of the base measure, with the precision
parameter controlling the extent of concentration around Fθ. However, unlike these
approaches, we desire our approach to be devoid of nuisance parameters, and that the
inference is solely targeted to the parameter of interest while retaining the interpretation
of a generative probability model. In a sense, these goals are similar to that of EL (or
ETEL), where one can simply consider the estimating equation E[∂ log fθ(X)/∂θ] = 0
to infer about the parameter θ. However, such estimating equations simply enforce spe-
cific constraints on the moments of the distribution, and will not be able ensure the
vicinity of the distribution near a parametric family Fθ of interest.

In pursuit of this, we propose a novel adaptation of ETEL by centering P around
Fθ using a suitable distance metric D, that encapsulates a more holistic discrepancy
between the two distributions. More specifically, we restrict P within the neighborhood
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D[P, Fθ] < ε, for some radius ε > 0. The proposed methodology is termed as D-BETEL.
In an inferential task, this framework provides a good balance between modeling flexi-
bility by adaptively tuning ε and interpretability, since we have the provision to invoke a
non-parametric likelihood that concentrates around an interpretable parametric guess,
where the nuisance parameters are profiled out within the ETEL framework. Naturally,
a key ingredient in our proposal is the choice of the metric D that yields a non-trivial
distance between Fθ and the empirical distribution on the observed data, and at the
same time enjoys computational simplicity and straightforward extension to multivari-
ate cases. Because Fθ is potentially absolutely continuous with respect to the Lebesgue
measure and the empirical distribution on the observed data is discrete, it rules out
many standard distances, for example, Kullback–Leibler, Hellinger, total variation, χ2

etc. The 2-Wasserstein metric (Villani, 2003; Panaretos and Zemel, 2019), despite some
limitations discussed later, provides a viable choice.

In ensuing applications, other than the choice of the metric, an equally important
aspect is to allow the user to select from relatively broader class of distributions Fθ.
Although having a fully flexible Fθ defeats the purpose of constructing a procedure de-
void of nuisance parameters, we choose to work with elliptical mixture models (EMMs),
which offers the user a sufficiently large class to choose from. We also note that the
2-Wasserstein metric does not allow for a computationally efficient multivariate exten-
sion, even for EMMs. To this end, we propose an important special case of D-BETEL,
with a novel adaptation of the 2-Wasserstein metric by a restriction and an augmen-
tation scheme. In the restriction scheme, we assume Fθ to be an EMM and adapt D
by further restricting the coupling measures to the class of EMMs, which considerably
reduce the computational cost and yet encompasses a rich class of coupling measures.
However, this renders the metric to depend only on the mean and variance-covariance
matrix of Fθ, and ignores finer comparison in the tails. We address this in the augmen-
tation scheme, where we augment the coupling measure with a product of univariate
couplings. This is tantamount to adding a sum of univariate Wasserstein metrics to our
adaptation, which effectively captures tail features. Further, the restriction scheme can
exploit an entropic regularization of discrete optimal transport (Le et al., 2019; Cuturi,
2013), that remains expressive and computationally tenable even in multivariate cases.
The resulting regularized optimal transport metric for EMMs is termed as AugmeNteD
and REstricted Wasserstein metric or ANDREW, and is utilized as a convenient metric
of choice for the application section.

The rest of the article is organized as follows. Section 2 introduces the proposed
Bayesian exponentially tilted empirical likelihood framework with distributional con-
straints in complete generality, and presents a posterior computation scheme. Section 3
presents an important special case of the proposed D-BETEL methodology, incorpo-
rating the elliptical mixture model as the centering family of distribution Fθ and a
principled and computationally efficient adaptation of optimal transport as the dis-
tance metric D. In Section 4, we investigate the population-level target of inference
under the distributionally constrained exponentially tilted empirical likelihood, cen-
tral to D-BETEL, and examine its robustness properties to model misspecification. In
Section 5, we demonstrate that one may view our proposed methodology as a non-
parametric Bayes approach based on asymptotic equivalence relationship between our
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framework and a hierarchical setup similar to the mixture of finite mixture models. Sec-
tion 6 presents two applications of the proposed methodology, in model based clustering
and generalized linear models. Finally, we conclude with a discussion.

2 D-BETEL: Bayesian ETEL with distributional
constraints

Let 𝒮n−1 : = {v ∈ Rn : vi ≥ 0, i = 1, . . . , n,
∑︁n

i=1 vi = 1} be the (n− 1)-dimensional
unit simplex, and define ℋ(v) = −∑︁n

i=1 vi log vi to be the Shannon entropy of a proba-
bility vector v ∈ 𝒮n−1, with the standard convention 0 log 0 = 0. Let x = (x1, . . . , xn)T

denote the observed data, which are assumed to be i.i.d. samples from a probability
distribution P on 𝒳 ⊆ Rm. Let {Fθ : θ ∈ Θ ⊆ Rd} be a parametric family of distribu-
tions posited for the xis. We develop a flexible Bayesian semi-parametric procedure that
centers around this parametric family, while allowing for flexible departures from it. The
proposed methodology can be extended beyond the i.i.d. setting; see Section 6.2 for an
illustration in the regression context. Our approach draws inspiration from the Bayesian
exponentially tilted empirical likelihood (Bayesian ETEL or BETEL; Schennach (2005))
for moment condition models.

Moment condition models are specified by a collection of moment conditions
EP

[︁
g(X,ψ)

]︁
= 0r, where ψ : = ψ(P ) ∈ Γ is the parameter of interest, g : 𝒳 × Γ → Rr

is a vector of known functions or estimating equations (r ≥ d), the expectation EP is
taken with respect to the unknown generating distribution P , and 0r refers to a vec-
tor of zeros in Rr. Operating under a non-parametric Bayesian framework, Schennach
(2005) proposed a flexible prior on P with an entropy-maximizing flavor. Under a spe-
cific asymptotic regime that allowed analytic marginalization of nuisance parameters
describing the generative model, the corresponding marginal posterior distribution of
ψ, given a random sample x = (x1, . . . , xn)T from P , was shown to approach a limiting
distribution. This is called the BETEL posterior, given by,

πMCM(ψ | x1, . . . , xn) ∝ π(ψ) LMCM(ψ), (2.1)

where the ‘likelihood’ LMCM(·) is called the exponentially tilted empirical likelihood,

LMCM(ψ) =
n∏︂

i=1
w⋆

i (ψ), w⋆(ψ) =
{︃

arg max
w∈𝒮n−1

ℋ(w) :
n∑︂

i=1
wig(xi, θ) = 0

}︃
, (2.2)

and π(·) denotes a prior distribution on Γ. Here and elsewhere, we use MCM as an
acronym for moment condition model.

The maximization problem in (2.2) admits a non-trivial closed-form solution when
the convex hull of ∪n

i=1g(xi, ψ) contains the origin, leading to LMCM(ψ) =
∏︁n

i=1 w
⋆
i (ψ),

with

w⋆
i (ψ) = exp[λ(ψ)Tg(xi, ψ)]∑︁n

j=1 exp[λ(ψ)Tg(xj , ψ)]
, λ(ψ) = arg min

η
n−1

n∑︂
i=1

exp[ηTg(xi, ψ)].
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When the convex hull condition is not satisfied, πMCM(ψ | x1, . . . , xn) is set to zero. The
minimization problem defining λ(ψ) is convex, which leads to efficient computation of
the ETEL likelihood LMCM, and the corresponding BETEL posterior πMCM can be sam-
pled using standard Markov Chain Monte Carlo (MCMC) procedures. Chib et al. (2018)
significantly contributed towards the theoretical underpinning of BETEL for moment
condition models, proving Bernstein–von Mises (BvM) theorems and model selection
consistency results under model mis-specification. They also numerically displayed its
utility in wide-ranging econometric and statistical applications.

The feature of BETEL most relevant to our purpose is that while motivated from
a non-parametric Bayesian angle, it operationally avoids a complete probabilistic spec-
ification of the data-generating mechanism. That is, the user only needs to specify a
prior distribution on the parameter of interest ψ. In a similar spirit, our goal is to avoid
a full non-parametric modeling of the data-generating distribution, and only place a
prior distribution on the (typically low-dimensional) parameter θ describing the center-
ing model Fθ. A direct application of the ETEL to our setup is challenging as moment
conditions describing parameters of general parametric models, especially those beyond
exponential families, can be quite cumbersome or even unavailable in an analytically
tractable form. Moreover, there is no unique way of describing a finite number of mo-
ment restrictions describing Fθ. Instead, our approach is to design a modified likelihood
by constraining a weighted empirical distribution of the observed data

νw,x : =
n∑︂

i=1
wiδxi (2.3)

to be close to the parametric model Fθ with respect to a statistical metric. Specifically,
we propose a likelihood function

LDCM(θ) : =
n∏︂

i=1
w⋆

i (θ), w⋆(θ) =
{︃

arg max
w∈𝒮n−1

ℋ(w) : D[Fθ, νw,x] ≤ ε

}︃
, (2.4)

where D[·, ·] is an appropriate statistical distance, ε > 0 is a concentration parameter
which controls fidelity to the centering model, and DCM is an acronym for distribu-
tionally constrained model. With this DCM likelihood, and a prior distribution on the
parameter θ, the corresponding posterior distribution is

π(θ | x1, . . . , xn) ∝ π(θ) LDCM(θ). (2.5)

We refer to our formulation in (2.4) – (2.5) as the Bayesian ETEL subject to distribu-
tional constraint (D-BETEL).

The idea of centering the distribution of the observed data around a pre-specified
parametric model is not new. In fact, the Dirichlet process prior (Ferguson, 1973; Teh,
2010) in Bayesian non-parametric is exactly designed to achieve this. Other related
approaches include Antoniak (1974); Lavine (1994); Verdinelli and Wasserman (1998).
Notably, the traditional non-parametric priors are often accompanied by a large number
of uninterpretable nuisance parameters that result in a computational overhead. On
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the contrary, D-BETEL directly arrives at a marginal posterior of the parameter of
interest in a principled manner. We show in Section 5 that the D-BETEL posterior
arises organically from a non-parametric Bayes model by marginalization of the nuisance
parameters specifying a mixing measure, which has a mixture of finite mixtures (MFM;
Miller and Harrison (2018)) interpretation. Therefore, D-BETEL inherits the flexibility
of Bayesian nonparametric models while operationally being devoid of high-dimensional
nuisance parameters.

A key ingredient in our proposal is the metric D. A basic requirement is that D (i)
returns a non-trivial distance between a discrete and a continuous distribution. For the
ensuing applications we also require that D: (ii) allows a straightforward multivariate
extension, (iii) is computationally feasible and efficient, and (iv) effectively captures
the discrepancies at the tail of the distributions. The requirement (i) itself rules out
the applicability of many popular statistical distances/divergences like the Kullback–
Leibler divergence, Hellinger distance, total variation distance, χ2 distance, etc. The
Cramer–von Mises metric on R satisfies (i), (iv), but its multivariate extension is not
immediate. The p-Wasserstein metric (Villani, 2003) satisfies (i), (ii), and (iv), and is
an attractive candidate. To discuss this further, we recall some relevant facts about the
p-Wasserstein metric first.

Definition 1. For p ≥ 1, the Wasserstein space Pp(Rd) is defined as the set of prob-
ability measures μ with finite moment of order p, that is, {μ :

∫︁
Rd ∥x∥p dμ(x) < ∞},

where ∥ · ∥ is the Euclidean norm on Rd.

Definition 2. For p0, p1 ∈ Pp(Rd), let 𝒞(p0, p1) ⊂ Pp(Rd × Rd) denote the subset of
joint probability measures (or couplings) ν on Rd × Rd with marginal distributions p0
and p1, respectively. Then, the p-Wasserstein distance Wp between p0 and p1 is defined
as W p

p (p0, p1) = infν∈𝒞(p0,p1)
∫︁
Rd×Rd ∥y0 − y1∥p dν(y0, y1).

If both p0 ≡ Fθ and p1 ≡ νw,x belong to Pp(R) with quantile functions F−1
0 , F−1

1
respectively, we have tractable expression (Panaretos and Zemel, 2019) W p

p (p0, p1) =∫︁
[0,1]

[︁
F−1

0 (q) − F−1
0 (q)

]︁p
dq. However, such closed-form expressions beyond one dimen-

sion are unavailable. Fortunately, numerical approximations for the case p = 2 (i.e.,
the W2 metric) are ubiquitous (Taskesen et al., 2022; Cuturi, 2013; Delon and Desol-
neux, 2020), even beyond one dimension. In particular, semi-discrete optimal transport
schemes (Taskesen et al., 2022), that compute the W2 distance between a discrete and
a potentially continuous probability measure, are broadly applicable to our problem,
and approximate numerical algorithm are available in the literature (Mirebeau, 2015;
Kitagawa et al., 2017; Gerber and Maggioni, 2017). One may ensure further compu-
tational efficiency of D-BETEL, while maintaining fidelity towards required statistical
considerations, via principled adaptations of the W2 metric applicable for judiciously
chosen family of Fθ; refer to Section 3 for a special case.

Another key ingredient of the D-BETEL mechanism is the hyper-parameter ε which
determines how tightly νw,x sits around Fθ with respect to D. Clearly, it bears similar-
ity to the concentration parameter in a Dirichlet process (Ferguson, 1973; Teh, 2010)
which dictates fidelity to the base measure. While there is substantial literature on
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tuning the concentration parameter of the Dirichlet process mixture model (Escobar
and West, 1995; Ishwaran and Zarepour, 2000; McAuliffe et al., 2006), it still remains
a notoriously difficult task. Since the nuisance parameters are effectively marginalized
out in D-BETEL, we adopt a simple predictive approach to devise a data-driven and
principled tuning scheme in Section 5. We now outline a posterior computation scheme
for sampling from the D-BETEL posterior.

Posterior computation

We sample from the D-BETEL posterior π(θ | x1, . . . , xn) ∝ π(θ) LDCM(θ) via the
Metropolis–Hastings (MH) algorithm in all our examples, with carefully-designed pro-
posal schemes for the parameter of interest θ. Refer to Sections 6.1 and 6.2 for specific
instances of the sampler in model-based clustering, and generalized linear regression
exercises, respectively. Implementation of any MH algorithm requires evaluation of the
‘likelihood’ LDCM, which we discuss below. Throughout the remainder of this section,
we assume the availability of an efficient numerical implementation of D that facilitates
the posterior sampling scheme proposed in the sequel.

We undertake a closer look at the constrained entropy maximization problem at
the core of our likelihood formulation in (2.4), and note that log

∏︁n
i=1 w

−wi
i = logn −∑︁n

i=1 wi log(wi/(1/n)). For fixed θ ∈ Θ, solving the above maximization problem in (2.4)
is equivalent to finding the probability vector (w1, . . . , wn) that minimizes the Kullback–
Leibler divergence between the probabilities w1, . . . , wn assigned to each sample and the
empirical probabilities 1/n, . . . , 1/n, subject to the distance constraint D[Fθ, νw,x] < ε.
Unfortunately, unlike the case for LMCM (2.2), the optimization problem for LDCM (2.4)
does not allow a closed form solution. However, we can access augmented Lagrangian
methods (Conn et al., 1991; Birgin and Martínez, 2008) and conic solvers (Becker et al.,
2011) via the R interface (R Core Team, 2022) of constrained non-linear optimization
solvers (for example, NLopt, Johnson (2022) and CVX, Grant and Boyd (2008)). In
particular, for fixed θ ∈ Θ and ε > 0, we can express the non-linear programming
problem in (2.4) in standard form as:

min
w∈𝒮n−1

−ℋ(w), subject to D[Fθ, νw,x] ≤ ε.

The associated Lagrangian function ℒ : Rn × R → R is defined as

ℒ(w, λ∗) = −ℋ(w) + λ⋆ D[Fθ, νw,x], (2.6)

where λ⋆ is the Lagrange multiplier, and the Lagrange dual function v : R → R takes
the form

v(λ⋆) = inf
w∈𝒮

ℒ(w, λ⋆). (2.7)

This dual formulation enables us to access off-the-shelf augmented Lagrangian based
optimization algorithms (Conn et al., 1991; Birgin and Martínez, 2008) to compute
LDCM. This completes the description of our posterior computation scheme.
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We conclude the section by noting that utilizing off-the-shelf algorithms for semi-
discrete optimal transport towards calculating the D-ETEL likelihood can still be pro-
hibitive, since solving semi-discrete optimal transport problems are at least #P -hard
(Taskesen et al., 2022) and each evaluation of D-BETEL likelihood involves repeated
computation of D. This motivates the need for a specialized adaptation of the W2 metric
and judicious choice of the centering family of distributions Fθ. To that end, the next
section is devoted to a important special case of our proposed D-BETEL methodology,
that remains computationally feasible across the ensuing applications.

3 D-BETEL with an AugmeNteD and REstricted
Wasserstein metric (ANDREW) for Elliptical Mixture
Models (EMM)

In this section, we present an important special case of the proposed D-BETEL method-
ology, introducing a principled and computationally efficient adaptation of W2 as the
distance metric D for a specific choice of the centering parametric family Fθ. Specifically,
we restrict the centering family Fθ to Elliptical Mixture Models (EMM), which form a
flexible family of generative models. EMMs notably include Gaussian and t location-
scale mixtures, which can approximate a broad variety of density shapes, including
multi-modality and skewness.

Given a center m ∈ Rd, a positive (semi-)definite scale matrix Σ ∈ Rd×d, and a
generator function h : [0,∞) → (0,∞), the elliptical distribution EDh(m,Σ) is defined
to be the distribution with characteristic function

t → exp(itTm) h(tTΣt), t ∈ Rd. (3.1)

A multivariate Gaussian distribution Nd(m,Σ) has characteristic function of the form
in (3.1) with h(z) = exp(−z/2) for z > 0. Elliptical distributions (Muirhead, 2005)
correspond to general non-negative functions h, and include multivariate normal and
t distributions as special examples. A discrete mixture of such elliptical distributions,∑︁K

k=1 sk EDh(mk,Σk) with s = (s1, . . . , sK) ∈ ΔK−1, provides a flexible tool for sta-
tistical modeling (Cambanis et al., 1981; Holzmann et al., 2006) and probabilistic em-
bedding of complex objects (Muzellec and Cuturi, 2018; Le et al., 2019). Consequently,
such elliptical mixture models (EMM) serve as an attractive candidate for our para-
metric centering family Fθ, with θ =

(︁
s, {mk}Kk=1, {Σk}Kk=1

)︁
in the most general case.

In practice, one may assume additional structure by fixing K or setting Σk = Σ for all
k, or posit additional structure on Σk (such as Σk = σ2

kId), etc.

To proceed further, we introduce some notations. Let p0, p1 ∈ Pp(Rd) be two Gaus-
sian Mixture Models (GMMs), denoted by

pj =
Kj∑︂
k=1

sjkN(mjk,Σjk), sj = (sj1, . . . , sjKj )⊤ ∈ 𝒮Kj−1, j = 0, 1.

In the context of this article, p0 corresponds to the centering distribution Fθ and p1
corresponds to νw,x, as defined in equation (2.3), viewed as a limiting case of a GMM
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with K1 = n. The W2 distance between p0 and p1 does not admit a closed form ex-
pression. An interesting line of work (Delon and Desolneux, 2020; Bion-Nadal and Ta-
lay, 2019; Cuturi, 2013) has emerged that modifies the W2 metric, defined in (2), via
restricting the class of coupling measures 𝒞(p0, p1) to a carefully chosen sub-family,
which considerably reduces the computational cost and yet encompasses a rich class
of coupling measures. In particular, Delon and Desolneux (2020) defined a modified
W2 metric, denoted by MW2, by considering a restricted class of coupling measures
𝒞GMM :=

{︁𝒞(p0, p1) ∩ GMM2d,K0,K1

}︁
, where

GMM2d,K0,K1 =
{︃ K0∑︂

k=1

K1∑︂
l=1

πkl N(bkl,Ωkl) : πkl ≥ 0,
K0∑︂
k=1

K1∑︂
l=1

πkl = 1
}︃
,

denotes the collection of all (K0 × K1)-component mixture of Gaussian distributions
on R2d. This relaxation enables them to obtain a tractable expression for MW2(p0, p1).
Particularly, to the interest of the current article, we set p0 ≡ ∑︁K0

k=1 s0kN(m0k,Σ0k) and
p1 ≡ ∑︁K1

k=1 s1kδm1k . Suppose M = ((||m0k −m1l||2)) ∈ RK0×K1 denotes the quadratic
cost matrix and Π = ((πkl)) ∈ RK0×K1 denotes the weight matrix, then

MW2
2(p0, p1) : = inf

ν∈𝒞GMM
Eν ||X⋆

0 −X⋆
1 ||2 = inf

Π∈𝒞(s0,s1)

⟨︁
Π,M

⟩︁
+

K0∑︂
k=1

s0ktr(Σ0k).

One may equip the D-BETEL methodology with the D ≡ MW2
2. However, MW2

2 suffers
from two key limitations.

First, the expression involves the discrete optimal transport problem
infΠ∈𝒞(s0,s1)

⟨︁
Π,M

⟩︁
, that requires a cubic time complexity when solved via tra-

ditional simplex or interior-point methods. Fortunately, one may circumnavigate the
computational challenge by appealing to Cuturi (2013), that proposed a entropic
restriction on 𝒞(s0, s1), that in turn introduces entropic regularization term to the
discrete optimal transport objective. This entropic regularization term make the
discrete optimal transport problem strictly convex, and ensures that one can access
linear convergence via Sinkhorn’s fixed point iterations. In a shared spirit, one may
restrict GMM2d,K0,K1 further to GMMα

2d,K0,K1
by imposing the entropic restriction on

𝒞(s0, s1) as follows:{︃
Π = ((πkl)) ∈ RK0×K1 : Π1K1 = s0,ΠT1K0 = s1, DKL

[︁
Π || s0s

T
1
]︁ ≤ α

}︃
,

and define a collection of couplings 𝒞GMM,α =
{︁𝒞(p0, p1)∩GMMα

2d,K0,K1

}︁
. Particularly,

to the interest of the current article, if p0 ≡ ∑︁K0
k=1 s0kN(m0k,Σ0k), p1 ≡ ∑︁K1

k=1 s1kδm1k ,
we get a computationally convenient adaptation of MW2

2(p0, p1) as follows

MW2
2,α(p0, p1) : = inf

ν∈𝒞GMM,α

Eν ||X⋆
0 −X⋆

1 ||2 = inf
Π∈𝒞(s0,s1)

[︃⟨︁
Π,M

⟩︁− 1
λα

ℋ(Π)
]︃
+

K0∑︂
k=1

s0ktr(Σ0k),

where λα depends on α and ℋ(Π) = −∑︁
k,l πkl log πkl.
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The second key limitation of MW2(p0, p1) is that its expression relies solely on the
first and second-order moments of Fθ, rendering it incapable of adequately capturing
the tail behavior. Even if we replace the GMMs by a versatile class of EMMs and restrict
the class of coupling measures 𝒞(p0, p1) to 𝒞EMM,α = 𝒞(p0, p1)∩EMMα

2d,K0,K1
, then also

MW2
2,EMM,α(p0, p1) : = inf

ν∈{𝒞EMM,α}
Eν ||X⋆

0 −X⋆
1 ||2

= inf
Π∈𝒞(s0,s1)

[︃⟨︁
Π,M

⟩︁− 1
λα

ℋ(Π)
]︃

+ νh

K0∑︂
k=1

s0ktr(Σ0k)

only depends on first and second-order moments, and we fail to capture the tail behavior
of Fθ. For example, in Figure 1, let

p0 ≡
K0∑︂
k=1

s0ktη(m0k,Σ0k), p′0 ≡
K0∑︂
k=1

s0ktη′(m0k,Σ′
0k), p1 ≡

K1∑︂
k=1

s1kδm1k

and set η′ = η/m, Σ′
0k = η−2m

η−2 Σ0k for some m ∈ Z+ such that the variances of the mul-
tivariate t-distributions tη(m0k,Σ0k) and tη′(m0k,Σ′

0k) match for k = 1, . . . ,K0. Then,
MW2

2,EMM,α(p0, p1) = MW2
2,EMM,α(p′0, p1), despite the differences in the tail behaviors

of p0 and p1. In Supplementary Section 5 (Chakraborty et al., 2025), we compare D-
BETEL with D = MW2 and D = WAR, proposed in the sequel, on generalized linear
regression task.

Figure 1: The plots show that MW2,EMM,α fails to capture the differences in the
tail behavior of the probability distributions. Let p0 ≡ ∑︁K0

k=1 s0ktη(m0k,Σ0k), p′0 ≡∑︁K0
k=1 s0ktη′(m0k,Σ′

0k), p1 ≡ ∑︁K1
k=1 s1kδm1k and set η′ = η/m, Σ′

0k = η−2m
η−2 Σ0k

for m ∈ {3, 4}, such that the variances of the multivariate t-distributions
tη(m0k,Σ0k) and tη′(m0k,Σ′

0k) match for k = 1, . . . ,K0. Then, MW2
2,EMM,α(p0, p1) =

MW2
2,EMM,α(p′0, p1), despite p0 and p1 being different probability distributions. In this

plot, the two panels correspond to η ∈ {9, 12}, respectively. Since the expression of
WAR, proposed in the sequel, additionally involves the marginal quantiles given by∑︁d

k=1
∫︁ 1
0
(︁
F−1

0k (z)−F−1
1k (z)

)︁2
dz, it is capable of capturing the difference in the tail due

to the different d.f. of the t.
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Proposed metric

In view of the discussion so far in this section, we finally describe a new and care-
fully crafted strategy based on augmentation succeeded by restriction in the space of
coupling measures that yield a transport metric that not only automatically inher-
its computational tractability of MW2

2,α(p0, p1), and is capable of accessing improved
computational algorithms based on an entropic regularization of the discrete optimal
transport (Cuturi, 2013), but also remains expressive. In essence, our novel strategy
presents a general recipe for devising increasingly expressive transport metrics and de-
scribing a corresponding modified class of couplings, of which ANDREW introduced
next is a specific example. To that end, we augment the class of coupling measures
𝒞(p0, p1) ⊂ Pp(Rd ×Rd) into a class of coupling measures 𝒞(p⋆0, p⋆1) ⊂ Pp(R2d ×R2d),
and then restrict 𝒞(p⋆0, p⋆1) to a carefully chosen sub-class of couplings. We describe the
details below.

Definition 3. Let p0, p1 ∈ Pp(Rd) with pj =
∑︁Kj

k=1 sjkEDh(mjk,Σjk), (j = 0, 1). Next,
we shall consider an augmentation followed by a restriction scheme as follows:
(a) Augmentation: Define probability distribution p⋆0 ∈ P2(R2d) as

p⋆0 : = p0 ⊗ ˜︁p0, with ˜︁p0 : = p01 ⊗ . . .⊗ p0d

and p0i the i-th marginal of p0. Clearly, if X0 ∼ p0, and ˜︁X0 independent of X0 is
distributed as ˜︁p0, then X⋆

0 = (X0, ˜︁X0)T ∼ p⋆0. Similarly, define p⋆1. By construction we
have

𝒞(p⋆0, p⋆1) = 𝒞(p0, p1) ⊗ 𝒞(˜︁p0, ˜︁p1) = 𝒞(p0, p1) ⊗
{︁⊗d

i=1 𝒞(p0i, p1i)
}︁
.

(b) Restriction: Suppose

EMM2d,K0,K1 =
{︃ K0∑︂

k=1

K1∑︂
l=1

πkl EDh(bkl,Ωkl) : πkl ≥ 0,
K0∑︂
k=1

K1∑︂
l=1

πkl = 1
}︃

denote the collection of all (K0×K1)-component mixture of identifiable elliptical distri-
butions on R2d. Define a subset EMMα

2d,K0,K1
of EMM2d,K0,K1 by imposing the entropic

restriction
DKL

[︁
Π || s0s

T
1
]︁ ≤ α, where Π = ((πkl)) ∈ RK0×K1

is the joint probability matrix of the mixture weights, and s0, s1 are the respective
marginals, that is, Π1K1 = s0,ΠT1K0 = s1. Finally, define a collection of couplings
Rα(p⋆0, p⋆1) ⊂ 𝒞(p⋆0, p⋆1) as

Rα(p⋆0, p⋆1) = 𝒞EMM,α ⊗ {︁⊗d
i=1 𝒞(p0i, p1i)

}︁
, 𝒞EMM,α = 𝒞(p0, p1) ∩ EMMα

2d,K0,K1
.

Refer to Figure 2 for a schematic representation of the proposed augmentation and
restriction strategy. With these notations in place, we define ANDREW as

W 2
AR(p0, p1) = inf

ν∈Rα(p⋆
0 ,p

⋆
1)

Eν ||X⋆
0 −X⋆

1 ||2. (3.2)
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Figure 2: The augmentation and restriction scheme to construct Rα(p⋆0, p⋆1), left: con-
struction of

{︁𝒞EMM,α = 𝒞(p0, p1) ∩ EMMα
2d,K0,K1

}︁
, right: construction of

{︁ ⊗d
i=1

𝒞(p0i, p1i)
}︁

with d = 2.

To cater to our original goal of centering the D-BETEL around an EMM, we now
present a simplified form of WAR for the case when one of p0, p1 is discrete.

Theorem 1. Suppose p0 ≡ ∑︁K0
k=1 s0kEDh(m0k,Σ0k), p1 ≡ ∑︁K1

k=1 s1kδm1k , and M =
((||m0k − m1l||2)) ∈ RK0×K1 be the quadratic cost matrix. Then, there exists λα de-
pending on α such that, W 2

AR(p0, p1) =

inf
Π∈𝒞(s0,s1)

[︃⟨︁
Π,M

⟩︁− 1
λα

H(Π)
]︃

+ νh

K0∑︂
k=1

s0ktr(Σ0k) +
d∑︂

k=1

∫︂ 1

0

(︁
F−1

0k (z) − F−1
1k (z)

)︁2
dz,

where
⟨︁
Π,M

⟩︁
= tr(ΠTM), H(Π) = −∑︁

k,l πkl log πkl and F−1
jk (·) is the quantile func-

tion of Xjk.

We defer the proof and a cascade of required lemmas to Supplementary Section
1, and make some remarks about ANDREW here. We recall that, in the posterior
computation scheme for D-BETEL, each evaluation of the likelihood involves several
computations of the distance D[Fθ, νw,x] = WAR[Fθ, νw,x]. Importantly, the expression
above is completely tractable and computationally feasible. The entropic regularization
term in WAR makes the discrete optimal transport problem strictly convex, and conse-
quently, it can access linear convergence via Sinkhorn’s fixed point iterations (Cuturi,
2013). Secondly, since the expression of WAR additionally involves the marginal quan-
tiles, it is capable of capturing the difference in the tail. We believe the flexibility and
the computational simplicity of our novel Wasserstein metric may render itself useful in
many optimal transport-based machine learning applications, beyond what we discuss
here, see the discussion section for some specific application domains.
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4 Population level target of D-ETEL
In this section, we explore the population-level target of inference under the distribu-
tionally constrained exponentially tilted empirical likelihood (D-ETEL) mechanism in
(2.4), which lies at the heart of D-BETEL, and the robustness it brings under model
misspecification. We conduct this exploration via a combination of analytical calcula-
tions and numerical simulations. Precisely characterizing the target of estimation for
D-ETEL in an analytical fashion is difficult and beyond the scope of this article. The
difficulty arises from nonlinearities in the objective function as we discuss below. Even
in the EL literature, where the objective function is comparatively simpler, such charac-
terizations are not straightforward; see Section 2.3 of Schennach (2007) for a discussion.
In this section, we fix D to be the Wasserstein metric with the squared Euclidean norm
(Villani, 2003), denoted by W2.

Recall that P denotes the unknown data generative model of interest. A proposed
parametric class of models {Fθ : θ ∈ Θ ⊆ Rd} aims to adequately describe P . Suppose
Fθ admits a probability density function fθ. Under model misspecification, that is, when
P /∈ {Fθ : θ ∈ Θ ⊆ Rd}, a statistical procedure targets the best approximation of P
within the proposed parametric family {Fθ : θ ∈ Θ ⊆ Rd} in an appropriate sense. For
example, under appropriate regularity conditions, the maximum likelihood estimator of
θ, denoted by θ⋆, converges to the KL projection of P within {Fθ : θ ∈ Θ ⊆ Rd}, that
is, to

θ⋆ = arg min
θ

KL(P ||Fθ) = arg min
θ

EX∼P [− log fθ(X)], (4.1)

as the sample size n → ∞ (White, 1982). Moreover, a usual Bayesian posterior also con-
tracts around the same target parameter θ⋆ under similar regularity conditions (Kleijn
and van der Vaart, 2006). The proposed D-BETEL procedure replaces the usual para-
metric likelihood L(θ) =

∏︁n
i=1 fθ(Xi) with the exponentially tilted empirical likelihood

LDCM(θ) =
∏︁n

i=1 w
⋆
i (θ) in (2.4), where the role of the parametric family Fθ is en-

capsulated inside the weights {w⋆
i (θ)}ni=1. Therefore, it is natural to investigate which

population summary the D-ETEL procedure targets. We offer a characterization below,
and provide an empirical illustration of its robustness over the nearest KL point θ⋆.

Inspecting the dual formulation in (2.6), it becomes apparent that the population-
level target of D-ETEL can be obtained by the following two-step procedure:: (i) for a
given θ ∈ Θ, obtain

Q̂θ = arg min
Q

[︁
KL(Q ||P ) + λ⋆ D(Fθ, Q)

]︁
, (4.2)

where the minimization is over all probability measures Q. The class of densities Q̂θ

can be interpreted as an enlargement of Fθ. Then, in step (ii) we set

θ† = arg max
θ∈Θ

EX∼P [log Q̂θ(X)]. (4.3)

This follows since for large sample sizes, P is adequately described by the empirical
distribution of the data ν(1/n,...,1/n)T,x, Pθ takes the form of a weighted empirical dis-
tribution νw,x as in (2.3) and KL(νw,x || ν(1/n,...,1/n)T,x) = logn − (−∑︁n

i=1 wi logwi).
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Figure 3: Here P denotes the unknown data generative model of interest. A proposed
parametric class of models {Fθ : θ ∈ Θ ⊆ Rd} aims to adequately describe P . The
{Q̂θ, θ ∈ Θ} should be interpreted as an enlargement of the class {Fθ, θ ∈ Θ}, obtained
via D-ETEL mechanism. This explains the robustness of the D-ETEL estimator θ†,
compared to the MLE θ⋆, under model misspecification, i.e, when P /∈ {Fθ : θ ∈ Θ}.

In particular, when ε → 0, or equivalently λ⋆ → ∞, we recover the parametric inference
based on the family of distributions Fθ. When ε > 0, we can imagine {Q̂θ, θ ∈ Θ} to
be an enlargement of {Fθ, θ ∈ Θ}, refer to Figure 3 for a visual representation. In that
case, assuming P /∈ {Fθ : θ ∈ Θ ⊆ Rd}, D-ETEL targets (θ†, P † : = Pθ†) such that
KL(P † ||P ) is minimum and θ† lies on the boundary of {θ : D(Fθ, P

†) ≤ ϵ}.
Note that, the optimization problem in (4.2)-(4.3) does not admit a closed-form

solution even for the simplest choices of Fθ, for example, Gaussian. So, in the
context of specific examples, we resort to solving the sample version of the op-
timization problem in (4.2)-(4.3) with an adequately large sample size. Then, we
use the θ that maximizes LDCM as a proxy for θ†. In what follows, we consider
an example, where the data is generated from a mildly skewed skew-normal distri-
bution (Azzalini and Dalla Valle, 1996). This imitates a data generation scheme,
where the underlying true distribution is univariate normal in the presence of mild
contamination. The goal is to compute the target of estimation for the maxi-
mum likelihood procedure and for D-ETEL with Fθ as univariate normal distribu-
tion.

Example 1 (Skew-normal distribution). Motivated by the model based cluster-
ing example in Miller and Dunson (2019); see also Cai et al. (2020a); we generate
a sample of size n = 500 from a univariate skew-normal distribution (Azzalini and
Dalla Valle, 1996) with pdf f(x) = 2φ(x)Φ(αx), x ∈ R and the skewness parameter
α ̸= 0. To model the generated data, we first consider the parametric class of mod-
els Fμ,σ2 = {N(μ, σ2), μ ∈ R, σ2 > 0} and compute the maximum likelihood estimate
of (μ, σ2). This involves calculating the best KL projection of the empirical distribu-
tion of the observed data within the parametric class Fμ,σ2 . As an alternative, we also
consider computing the D-ETEL estimate of (μ, σ2) with the centering family of distri-
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Figure 4: Skew-normal distribution. We plot the density estimates fθ⋆ corresponding
to the MLE in (4.1) and fθ† corresponding to the D-ETEL estimator in (4.3), where the
data is generated from a univariate skew normal distribution (Azzalini and Dalla Valle,
1996) and the parametric family of interest is Fμ,σ2 = {N(μ, σ2), μ ∈ R, σ2 > 0}.
In particular, we generate a sample of size n = 500 from a univariate skew-normal
distribution with pdf f(x) = 2φ(x)Φ(αx), x ∈ R, with varying values of the skew-
ness parameter α ∈ {1, 5}. The plot consider D-ETEL estimates for varying value
of ε ∈ {3, 3.5}. The specific values of ε is guided by the hyper-parameter tuning
scheme, introduced in (5.4). In particular, the considered values of ε correspond to
the two highest κ’s in (5.4). For moderate skewness (α = 1), the MLE of (μ, σ2)
or θ⋆ is (0.52, 0.70), and D-ETEL estimates with ε = 3, 3.25 are (0.34, 0.45) and
(0.39, 0.51), respectively. For larger skewness (α = 5), the MLE of (μ, σ2) or θ⋆ is
(0.75, 0.38), and D-ETEL estimates with ε = 3, 3.25 are (0.58, 0.24) and (0.63, 0.28),
respectively.

butions Fμ,σ2 , based on the equation (2.4). This involves computing the best weighted
empirical distribution of the observed data within the ε neighborhood of the para-
metric class Fμ,σ2 with respect to the metric D, as described in (4.2)-(4.3). Figure 4
plots the true skew normal density, and density estimates f(μ⋆,σ2⋆) corresponding to the
MLE and f(μ†,σ2†) corresponding to the D-ETEL estimator for varying values of ε. For
moderate skewness (α = 1), the normal distributions with parameters estimated via
D-ETEL provides a satisfactory description of the data generating mechanism, com-
pared to the normal distributions with parameters estimated via maximum likelihood.
For larger skewness (α = 5), the normal distributions with parameters estimated via
D-ETEL still provides a better visual description of the data generating mechanism,
compared to the normal distributions with parameters estimated via maximum likeli-
hood.

Having formally characterized the target of estimation of the D-ETEL method, it
is instructive to examine the robustness properties of the proposed framework. For a
heuristic justification of the robustness of D-ETEL, readers are referred to the Supple-
mentary Section 2.
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5 Non-parametric Bayes interpretation of D-BETEL
Before we move on to the specific applications of D-BETEL, we shall discuss a key
feature of our proposal, that we briefly alluded to earlier, in concrete terms. In particu-
lar, we demonstrate that one may view our proposed methodology as a non-parametric
Bayes approach based on centering mixture models around a specific parametric family
by establishing an intriguing asymptotic equivalence relationship between our frame-
work and a hierarchical setup similar to the mixture of finite mixture (MFM) models
(Miller and Harrison, 2018). MFM and related non-parametric Bayesian priors (Fer-
guson, 1973; Antoniak, 1974; Pitman and Yor, 1997; Gnedin, 2009) can be recovered
as variants of the popular Gibbs-type priors (Gnedin and Pitman, 2005). Such Gibbs-
type priors are characterized by predictive distributions that are a linear combination
of the prior guess and a weighted empirical measure. The asymptotic properties of the
Gibbs-type priors are extensively studied in De Blasi et al. (2013). In the context of
the current article, the asymptotic equivalence of the proposed framework and a hi-
erarchical setup similar to the mixture of finite mixture (MFM) models enables us to
formally identify D-BETEL as a generative model – a feature illusive to many exist-
ing pseudo-likelihood-based robust Bayesian methods. In particular, we offer a concrete
probabilistic justification to D-BETEL by building a Bayesian hierarchical generative
model centered around Fθ so that the marginal posterior of θ converges in distribu-
tion to the D-BETEL posterior under a limiting environment motivated by Schennach
(2005). This result is established in Theorem 2. For notational convenience, we assume
that the data dimension m and the parameter dimension d are identical; however, this
assumption is not essential for the subsequent analysis.

In the following, we first briefly introduce a generative model for the data points
x1, . . . , xn which closely mimics commonly used Bayesian nonparametric methods such
as the mixture of finite mixture of Gaussian. The description proceeds via a probabil-
ity model for the independent d-variate observations xi conditional on its own set of
parameters ηi ∈ Rd, that is, xi | ηi ind.∼ f(· | ηi) for i = 1, . . . , n. To impart flexibility,
the random effects ηi are independently drawn from a common mixing measure P (N)

defined on (Rd,ℬ(Rd)), where N is a positive integer involved in the description of
P (N). This renders the marginal density of xi | P (N) to be

∫︁
f(xi | ηi)P (N)(dηi), in-

dependently for i = 1, . . . , n. The mixing distribution P (N) is parameterized through
its associated nuisance parameters ξ⋆ =

(︁
k, b, {μh}kh=1

)︁
, where k ∈ N, b = (b1, . . . , bk)

such that each bh is a positive integer subject to the constraint
∑︁k

h=1 bh = N , and
μh = (μh,1, . . . , μh,d)T ∈ Rd for h = 1, . . . , k. The details on the construction of the
mixing measure P (N) is deferred to the next sub-section. Next, we induce a prior dis-
tribution on P (N) through a prior distribution on ξ⋆. To do so, we construct a joint
prior on (ξ⋆, θ) hierarchically by first specifying the marginal prior on the parameter
of interest θ, and then the conditional prior of ξ⋆ | θ in terms of a θ dependent slice
on the support of an unconditional distribution π∞,N (·) for ξ⋆. In essence, ξ∗ act as
a bridge between the data and the parameter of interest θ in the hierarchical formula-
tion. This is where our modeling departs from a typical non-parametric Bayes model,
where P (N) is the object of inference and θ is viewed as a derived quantity from P (N).
Instead, in our framework, θ retains its own identity and P (N) is viewed as an infinite-
dimensional nuisance parameter. In other words, (P (N), θ) describes a semi-parametric



A. Chakraborty, A. Bhattacharya, and D. Pati 17

object for inference, where P (N) is a flexible probability measure, and θ is the parameter
of interest.

A constrained generative mechanism
We specify the details for each of the pieces of the generative model from top down in
the sequel. First, the distribution f of the data given random effects is chosen to be an
appropriate uniform distribution. Specifically, given τ > 0, let

xi | ηi, P (N) ind.∼
d∏︂

l=1

Uniform(ηi,l − τ−1, ηi,l + τ−1), i = 1, . . . , n,

ηi | P (N) ∼ P (N),

(5.1)

where ηi = (ηi,1, . . . , ηi,d)T, i ∈ [N ]. The uniform kernel is chosen for analytic tractability
in ensuing calculations. We expect the main results to hold for more general kernels,
albeit with additional technical challenges.

Next, for any Borel set A ∈ ℬ(Rd), define P (N)(A) as P (N)(A) =
∑︁k

h=1 πhδμh
(A),

where conditional on k, the mixture weights (π1, . . . , πk) are constructed via normalized
counts, that is, (π1, . . . , πk) = (b1/N, . . . , bk/N). We specify distributions on the pieces
to define an unconditional distribution π∞,N (·) for ξ∗ = (k, μ1, . . . , μk, b1, . . . , bk)T,

(b1, . . . , bk) | k ∼ Multinomial(N ; 1/k, . . . , 1/k)

μh | k i.i.d.∼ H(N), h = 1, . . . , k, k ∼ p(k) ≡ Geometric(p),
(5.2)

where H(N) is a suitably chosen d-dimensional “base” distribution, refer to assump-
tions in Supplementary Section for details. Given a draw of k, the k atoms {μh}kh=1 are
drawn independently from H(N), and the count vector (b1, . . . , bk) that yields the mix-
ture weights is drawn from Multinomial(N ; 1/k, . . . , 1/k), instead of direct draws of the
mixture weights from a Dirichlet distribution, commonly used in the finite dimensional
version of the Dirichlet process (Ishwaran and Zarepour, 2002a,b), or in the mixture
of finite mixtures setup (Miller and Harrison, 2018). The distributional specification
π∞,N for ξ⋆ in (5.2) induces a mixture of finite mixtures (MFM; Miller and Harrison
(2018)) for P (N) given by P (N) =

∑︁∞
k=1 p(k)

[︂∑︁k
h=1(bh/N)δμh

]︂
. This completes the

construction of the mixing measure P (N).

Next, we construct a joint prior on (ξ⋆, θ) by first specifying a prior distribu-
tion π(·) on θ, and then the conditional distribution of ξ∗ | θ by restricting the
distribution π∞,N (·) to the slice Aε,N (θ) : = {ξ⋆ : D(P (N), Fθ) < ε} defined on
the support of ξ⋆, where the metric D and the scalar ε > 0 are as in (2.2). Thus,
πε,N (ξ⋆ | θ) ∝ π∞,N (ξ⋆) 1Aε,N (θ)(ξ⋆), that is, given a specific value of θ, only draws
from the unconditional prior π∞,N are retained for which P (N) and Fθ are ε-close under
the metric D. The joint prior on (ξ⋆, θ) can therefore be expressed as

πε,N (ξ⋆, θ) ∝ π(θ)πε,N (ξ⋆ | θ). (5.3)
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Figure 5: Left panel. the pdf fθ(x) corresponding to the centering distribution Fθ ≡
0.6×N(−1, 0.52) + 0.4×N(1, 0.52) in black and representative discrete distributions in
a D-neighborhood (with D chosen as WAR introduced in Section 3) of Fθ in red after
kernel smoothing, Middle panel. one particular P =

∑︁k
h=1 πhδμh

with k = 20 in the
WAR-neighborhood of Fθ with W 2

AR(P, Fθ) = 2.5, Right panel. histogram of a random
sample of size 100 drawn from fP (x) =

∫︁
f(x | η)P (dη) with τ = 102 in equation (5.1).

This completes our hierarchical specification. Figure 5 presents a schematic of the hier-
archical model in equations (5.1)–(5.3).

Combining the joint prior πε,N (ξ⋆, θ) with the generative model in (5.1), one obtains
the joint posterior distribution πε,N (θ, ξ⋆ | x1:n) of (θ, ξ⋆). A fully Bayesian analysis of
the posterior of πε,N (θ, ξ⋆ | x1:n) entails traversing the high-dimensional parameter
space of (ξ⋆, θ) to simultaneously learn (P (N), θ). Instead, motivated by Schennach
(2005), we marginalize πε,N (θ, ξ⋆ | x1:n) with respect to nuisance parameters ξ⋆ to
obtain the marginal posterior πε,N (θ | x1:n), that enables us to access targeted inference
on the parameter of interest θ. We shall operate in an asymptotic regime motivated by
Schennach (2005), where we let the hyper parameters τ ≡ τ(N), p ≡ p(N) and the base-
measure H(N) to evolve with N . Under this environment, we show that the marginal
posterior πε,N (θ | x1:n) converges to (2.5) as N → ∞.

Theorem 2. Fix the concentration parameter ε > 0 and sample size n. Suppose H(N), p
and τ satisfy the assumptions stated in Supplementary Section (3.1). Then the marginal
posterior πε,N (θ | x1:n) defined after (5.1)–(5.3) converges point-wise in θ to the D-
BETEL posterior in equation (2.5) as N → ∞,

|πε,N (θ | x1:n) − π(θ | x1:n)| → 0 as N → ∞.

An application of Scheffe’s theorem (Resnick, 2013) yields,

∥πε,N (· | x1:n) − π(· | x1:n)∥TV : = 1
2

∫︂
θ

|πε,N (θ | x1:n) − π(θ | x1:n)|dθ → 0 as N → ∞.

Due to space limitations, a detailed description of the asymptotic framework and
the proof of the theorem are deferred to the Supplementary Section 3. We conclude the
section by presenting a scheme for the tuning of the ε parameter.
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Hyper-parameter tuning
A key revelation from our presentation on the non-parametric Bayes interpretation of
D-BETEL is that the hyper-parameter ε bears clear similarity to the concentration
parameter in a Dirichlet process (Ferguson, 1973; Teh, 2010), as it determines how
tightly νw,x sits around Fθ with respect to D. Since the D-BETEL formulation enjoys
concrete probabilistic interpretation, we are able to provide a principled guideline for
hyper-parameter ε. To that end we recall that, given x1, . . . , xn, the Bayesian leave-
one-out estimate of out-of-sample predictive fit (Vehtari et al., 2016; Yao et al., 2018)
is ELPDε =

∑︁n
i=1 log π(xi | x−i), where π(xi | x−i) =

∫︁
π(xi | θ) π(θ | x−i) dθ is the

leave-one-out predictive density given the data without the i-th data point, and the cor-
responding standard error is SE[ELPDε] =

√
n
√︁

Var[log π(x1|x−1), . . . , log π(xn|x−n)].
When ε is too large, the distance-based restriction does not kick in and estimated
SE[ELPDε] is close to 0. So, we consider a decreasing sequence of ε values, say ε1, . . . , εh,
such that εi > εj ∀ 1 ≤ i < j ≤ h. A general strategy to select the sequence is to first
consider a grid over powers of 2 and then use a finer grid in the interval where ELPDε

undergoes steep change. Suppose εh0 is the largest value of ε for which the distance-
based restriction is active. Then, borrowing from the idea of pseudo Bayesian model
averaging (Yao et al., 2018), our estimate of the model parameter θ is

θ̂MA =
h∑︂

i=h0

κiθ̂i, with κi = exp(−ELPDεi)∑︁h
j=h0

exp(−ELPDεj )
, (5.4)

where θ̂i and exp(−ELPDεi) are the parameter estimate and estimated ELPD at ε = εi,
respectively. From the definition of ELPD, we can interpret it as a measure of the extent
of unequal weighting of the observations. In the presence of contamination, our approach
of selecting the hyper-parameter promotes unequal weighting of the observations to en-
sure – under weighting of outlying observations, and over-weighting observations around
the “center”. This inbuilt mechanism of ensuring immunity against outliers while main-
taining a valid generative model interpretation is what sets our method apart from lot
of the existing pseudo-likelihood based approaches. Finally, it is also important to point
out that, although θ̂MA in equation (5.4) is calculated via an weighted average, in prac-
tice θ̂MA and the associated highest posterior density (HPD) set typically degenerate
to those corresponding to a handful of values of ε. Thus this procedure inherits the
generative model interpretation of D-BETEL.

We now have all the necessary ingredients for D-BETEL, and we illustrate the
proposed methodology in a number of specific applications. All the examples in the
following section use D-BETEL in (2.4) with our proposed transport metric ANDREW
in (3.2).

6 Applications
6.1 Model based clustering
Motivated by the model-based clustering example in Miller and Dunson (2019); see also
Cai et al. (2020a); we generate data from a bivariate skew-normal distribution (Azzalini
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and Dalla Valle, 1996) with probability density function f(x) = 2φ(x)Φ(αTx), x ∈ R2,
with the two-dimensional skewness parameter α ̸= (0, 0) to imitate a situation where the
underlying true distribution is bivariate normal in the presence of mild contamination. In
this sub-section, firstly, we wish to demonstrate that D-BETEL is resistant to presence
of mild perturbations in the data generating mechanism and can adequately describe
the above set up with a bivariate normal centering, without resorting to more complex
centering distributions. In particular, we want to demonstrate that, when the extent of
skewness in the data generating mechanism is small, D-BETEL would still be able to
model the data well with centering distribution Fθ ≡ N2(μ,Σ). Of course, as the extent
of skewness increases, D-BETEL would prefer Fθ ≡ ωN2(μ1,Σ1)+ (1−ω)N2(μ2,Σ2) as
the centering family, compared to Fθ ≡ N2(μ,Σ). Secondly, we shall showcase all our
tools in action on this simple example, and skip some of these details in later sections.

Throughout this example, for the purposes of model comparison via marginal like-
lihood, we follow the approach in Chib and Jeliazkov (2001) to approximate the
log marginal density logm(x | M) of a model M via logm(x | M) = log f(x |
M, θ∗) + log π(θ∗ | M) − log π(θ∗ | x,M), where log f(x | M, θ∗) and log π(θ∗ | M)
are, respectively, the log-likelihood and log prior of the model M at θ∗, preferably a
high-density point.

We generate data from a bivariate skew-normal distribution with varying value of
skewness parameter α ̸= (0, 0). We choose sample sizes n ∈ {100, 200, 300, 500}, and
set α = (2.5, 2.5)T, (3.0, 3.0)T, (3.5, 3.5)T – giving us 12 simulation set-ups in total.
First, we compare the following two fully parametric models: (i) M1, which models
the data as independent draws from Fθ ≡ N2(μ,Σ) with θ = (μ,Σ)T, and imposes
a diffuse N2(0, 103I2) prior on μ and Wishart2(ν0, V0) prior on Σ−1, independently.
(ii) M2, which used a mixture normal model Fθ ≡ ωN2(μ1,Σ1) + (1 − ω)N2(μ2,Σ2)
with θ = (ω, μ1,Σ1, μ2,Σ2)T, and imposes independent diffuse N2(0, 103I2) priors on
μ1, μ2, an U(0, 1) prior on ω, and independent Wishart2(ν0, V0) priors on Σ−1

1 and
Σ−1

2 . To explore the high-density neighborhoods of the posterior distributions, we use
coordinate-wise Metropolis–Hastings updates. For smaller sample sizes, the simpler
model M1 provides higher marginal likelihood compared to M2. However, as the
sample size grows, the more complex model M2 predictably starts being preferred,
refer to Figure 8 which plots the posterior model probability of M1 as a function
of sample size. Next, we consider the D-BETEL counterparts of M1 and M2, which
we refer to as M⋆

1 and M⋆
2, respectively, with M⋆

1 using a single normal distribution
Fθ ≡ N2(μ,Σ) with θ = (μ,Σ)T as the centering distribution, and M⋆

2 centered around
Fθ ≡ ωN2(μ1,Σ1) + (1 − ω)N2(μ2,Σ2) with θ = (ω, μ1,Σ1, μ2,Σ2)T. We use same the
prior specification and MH sampling scheme as before.

First, we showcase our data driven approach to tune the hyper-parameter ε for both
M⋆

1 and M⋆
2. Figures 6 and 7 present plots for ELPDε, SE(ELPDε) and κ, defined

in Section 5, as functions of log ε for two particular combination of (n, α) values. We
considered a grid of ε values over powers of 2 and then use a finer grid in the interval
where ELPDε undergoes steep change. For sufficiently large value of ε, the distance
based constraint practically becomes inactive, and consequently ELPDε plateaus out
and SE(ELPDε) ↓ 0. Finally, we obtain the D-BETEL based parameter estimates θ̂MA
as delineated in Section 5. Although θ̂MA in equation (5.4) is calculated via an weighted
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average, in practice θ̂MA typically degenerates to estimates corresponding to a handful
of values of ε, as apparent in the plot of κ as a function of log ε in Figures 6, 7. We
observe similar pattern for the remaining combinations of (n, α) values, and refrain from
presenting them here in order to avoid repetitiveness.

Figure 8 presents the posterior probability of selecting the simpler model with only
one bivariate normal component under the standard posterior, a fractional posterior
with varying temperature parameters, and D-BETEL. For the standard posterior, the
posterior probability of selecting the simpler model M1 drop below 0.5 as sample size in-
creases. On the contrary, D-BETEL is more resistant towards presence of mild skewness
in the data generating mechanism, and still prefer the simpler model across the sample
sizes we considered. The fractional posterior (Miller and Dunson, 2019) approach with
the temperature parameter decreasing with sample size is expected to enjoy similar nu-
merical results. In fact, the benefits of the fractional posterior (Miller and Dunson, 2019)
is already apparent in our simulations with the choice of the temperature parameter
equal to 0.25. However, unless the temperature parameter of the fractional posterior is
chosen to be appropriately small, it cannot reliably estimate the number of components
in finite mixture models, under mild model mis-specification (Cai et al., 2020b). Finally,
a comparison of computational times for the D-BETEL, the standard posterior, and the
fractional posterior-based approaches is presented in Table 1.

Figure 6: Hyper-parameter tuning for model based clustering with sample size
n = 100, skewness parameter α = (3.5,3.5)T. ELPDε gradually plateaus out and
SE(ELPDε) ↓ 0 as log ε ↑ for both the models. Consequently, weights κ corresponding
to a handful of ε values contribute meaningfully to the weighted sum in θ̂MA and rest
are ≈ 0.

Figure 7: Hyper-parameter tuning for model based clustering with sample size n = 200,
skewness parameter α = (2.5,2.5)T. ELPDε gradually plateaus out and SE(ELPDε) ↓ 0
as log ε ↑ for both the models. Consequently, weights κ corresponding to a handful of ε
values contribute meaningfully to the weighted sum in θ̂MA and rest are ≈ 0.
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Figure 8: Model based clustering. We are comparing the Bayes factor for selecting
the simpler model via D-BETEL, the standard posterior, and the fractional posterior
(Miller and Dunson, 2019) with different temperatures, across varying values of skewness
parameter α of the generating skew normal distribution and sample sizes. The top left
panel is for α = (2.5, 2.5)T, the top right panel is for α = (3, 3)T, the bottom left panel is
for α = (3.5, 3.5)T, and the bottom right panel is for α = (10, 10)T. In presence of mild
contamination, unlike the standard posterior, D-BETEL and fractional posterior with
low temperature still prefer the simpler model across the sample sizes. However, when
the extent of misspecification increases, that is, the skewness parameter α = (10, 10)T,
then D-BETEL chooses the more complicated model to account for the perturbation,
as expected.

n = 100 n = 200 n = 300 n = 500
D-BETEL 79.8 87.6 93.1 106.1
Standard Posterior 26.9 27.4 27.6 27.9
Fractional Posterior (0.25) 32.6 32.6 32.1 32.5
Fractional Posterior (0.5) 33.7 31.8 36.7 33.7
Fractional Posterior (0.75) 31.5 32.2 31.7 30.4

Table 1: (Time comparison for model based clustering). We are comparing the
average time (in seconds) required for comparing the two model via D-BETEL, the
standard posterior, and the fractional posterior (Miller and Dunson, 2019) with different
temperatures. We report run-times (in seconds) averaged over different values of the
skewness parameter α ∈ {(2.5, 2.5)T, (3, 3)T, (3.5, 3.5)T, (10, 10)T} of the generating skew
normal distribution, for varying sample sizes.
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6.2 Generalized linear regression
In many scientific applications, we are constrained to operate under stringent modeling
assumptions derived from the domain knowledge or common practice in the field. For
example, in a count regression problem, collaborators may require us to assume that
the conditional distribution of the counts follow a Poisson or a negative binomial dis-
tribution. In such cases, the parameters in the postulated model carry interpretability
to the domain experts. Then, using a moment condition based model as an alternative
to a fully parametric model is not desirable, even if the postulated parametric model is
inadequate. But D-ETEL provides a viable alternative in such cases.

Suppose we observe data {(yi, xi) ∈ R × Rd}ni=1 on a response variable y and
covariates x for n individuals. In generalized linear regression set up, we model the
response by an exponential family distribution:

f(yi | θi, φ) = exp
[︃
yiθi − b(θi)

a(φ) + c(yi, φ)
]︃
,

where a(·), b(·), c(·) are known functions such that mi = b′(θi), σ2
i = φb′′(θi) are,

respectively, the mean and variance of the distribution, and there exists a one-to-
one continuously differentiable link function g(·) such that g−1(xT

i β) = b′(θi). The
log-likelihood of the parameter of interest β is l(β | x, y) =

∑︁n
i=1 li(β | xi, yi) =∑︁n

i=1
[︁yiθi−b(θi)

a(φ) +log c(yi, φ)
]︁
, where θi is a function of mi. The corresponding Fisher’s

score function S = (S0, S1, .., Sd)T: Sj = ∂l
∂βj

=
∑︁n

i=1

[︃
(yi−mi)

a(φ)
1
Vi

∂mi

∂βj

]︃
= 0 with

Vi = ∂mi

∂θi
= b′′(θi). For simplicity of exposition, we express S =

∑︁n
i=1 ηi, where

ηij = ∂li
∂βj

, ηi = (ηi0, ηi1 , . . . , ηid)T, i = 1, . . . , n, j = 0, . . . , d. The score statistic
S is asymptotically normal with mean 0 (Haynes, 2013) and ni captures the deviation
from 0 for the i-th observation. With that intuition, to conduct robust Bayesian infer-
ence on β, we posit D-BETEL on {ηi}ni=1 with a finite mixture of (d+1)-variate normal
densities, that is, Fθ ≡ ∑︁K

j=1 πj N(μj ,Σj) with θ = (π1, . . . , πk, μ1, . . . , μk,Σ1, . . . ,Σk)T

such that
∑︁K

j=1 πjμj = 0 as our choice for centering parametric guess.

We generate data from a Poisson random effects model, log(mi) = β0 +
β1xi + hi, yi ∼ Poisson(mi), i = 1, . . . , n, where β0 = 5, β1 = 1, xi ∼
N(5, 1) and hi ∼ (1 − p) 1{0} + p N(1, 0.12), in order to mimic a situa-
tion where a small proportion of outliers are present in the data-set. We place
flat N(0, 1002) priors on log σ2

1(β), log σ2
2(β), β0 and β1 and a U(−1, 1) prior on

ρ(β), independently. We devise a Metropolis–Hastings algorithm to update g(β) =
(log σ2

1(β), log σ2
2(β), ρ(β), β0, β1)T at (t + 1)th iteration using the 1-step proposal

scheme: g(t+1)(β) ∼ N5
(︁
g(t)(β), k ∇g(β̂m) I−1(β̂m) ∇T g(β̂m)

)︁
, where I(β̂m)) is the

Fisher’s information matrix evaluated at the maximum likelihood estimator β̂m of β,
and k is a tuning parameter.

Under model misspecification, the maximum likelihood estimator of θ converges to
the KL projection of true data generating mechanism within {Fθ : θ ∈ Θ ⊆ Rd},
as the sample size n → ∞, modulo appropriate regularity conditions (White, 1982).
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Moreover, a usual Bayesian posterior also contracts around the same target param-
eter under similar regularity conditions (Kleijn and van der Vaart, 2006). So, it is
instructive to compare the inference based on D-BETEL, with that based on the stan-
dard Bayesian approach. Additionally, the we include comparison with BETEL with
moment conditions derived from score equations of the Poisson regression model to
numerically demonstrate that such a procedure, as expected, is not capable of han-
dling model misspecification. In the context of generalized linear regression frame-
work, setting up meaningful moment conditions is somewhat unwieldy. Consequently,
such moment conditions derived from the score equations are common in the litera-
ture.

In Table 2, we expand on the performance of D-BETEL for varying extent of
perturbations in the data generating mechanism with sample size n = 100, rela-
tive to popular practical approaches. In particular, we compare D-BETEL against
a standard posterior as well as Bayesian analysis with the estimating equations set
to E[∂ log l(β | X,Y )/∂β] = 0 to infer about the parameter β. In particular, the
Bayesian inference based on the moment restrictions is conducted via Bayesian ex-
ponentially tilted empirical likelihood (Schennach, 2005; Chib et al., 2018). From
Table 2, we report the L1 error of posterior means, length of the HPD sets and
associated coverage probabilities (within braces) for D-BETEL and competing ap-
proaches. It is evident that D-BETEL is more resistant towards presence of outliers
when compared with the standard Bayesian and MCM based approaches, across all
the sample sizes and proportion of contamination in the data sets that we consid-
ered. Also, D-BETEL provides slightly wider credible sets compared to the stan-
dard posterior based approach, while maintaining high coverage probability. Addi-
tional simulation results for n = 250, 500 are presented in the Supplementary Sec-
tion 4.

D-BETEL Standard posterior MCM
p θ ||θ − θ̂||1 HPD ||θ − θ̂||1 HPD ||θ − θ̂||1 HPD
0.10 β0 0.02 0.18 (1.00) 0.35 0.12 (0.20) 0.41 0.22 (0.10)

β1 0.01 0.02 (1.00) 0.07 0.02 (0.20) 0.06 0.04 (0.22)
0.12 β0 0.02 0.22 (1.00) 0.31 0.12 (0.35) 0.47 0.35 (0.14)

β1 0.01 0.04 (1.00) 0.08 0.02 (0.59) 0.06 0.06 (0.32)
0.15 β0 0.06 0.22 (0.94) 0.47 0.11 (0.00) 0.54 0.23 (0.06)

β1 0.01 0.04 (0.94) 0.06 0.02 (0.00) 0.09 0.05 (0.18)
Table 2: Generalized linear regression (Poisson regression). Here the sample
size n is 100. We compare standard posterior yielded from the fully parametric model,
moment condition model (MCM) based on the maximum likelihood equations, and D-
BETEL based parameter estimates over 50 replicated simulations with proportion of
outlier p = 0.10, 0.12, 0.15. D-BETEL is more resistant towards presence of outliers
all values of p considered, however it provides slightly wider 95% credible sets while
maintaining the high coverage probability. Additional simulation results for n = 250, 500
is presented in sequel.
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7 Discussion
Generative probabilistic models are immensely popular in applications as they pro-
vide a general recipe for statistical inference using the maximum likelihood or Bayesian
framework. However, it is also well understood that the resulting inference can cru-
cially depend on the modeling assumptions. In this article, we introduced a flexible
Bayesian semi-parametric modeling framework D-BETEL, and demonstrated it’s util-
ity to conduct robust inference under perturbations of the data-generating mechanism.
D-BETEL is endowed with a fully data-driven hyper-parameter tuning scheme, and en-
joys a valid generative model interpretation, which is scarce in pseudo-likelihood based
robust Bayesian methods. R scripts to reproduce the results presented in the article are
available at zovialpapai/D-BETEL.

While semi-parametric in nature, a particularly attractive feature of D-BETEL is
that the user only needs to specify a plausible family of probability models Fθ for the
data along with a prior distribution for the parameter of interest θ, and does not need
to explicitly model departures from the parametric guess as is typical with nonparamet-
ric Bayesian techniques, all nuisance parameters are implicitly marginalized out and a
marginal posterior for θ is returned. It remains possible to retrieve a discretized esti-
mate of the generating distribution to allow a more fine-grained analysis of how the data
departs from the parametric guess. The proposed approach is also very general, while
we have illustrated its usage for i.i.d. and independent non-i.i.d (i.n.i.d.) setups, exten-
sions to broader classes of dependent data models should be straightforward. Studying
theoretical properties of D-BETEL, especially second-order properties, is an interesting
avenue for future work.

While developing the methodology, we proposed a general framework to devise ex-
pressible and computationally efficient optimal transport metrics. We believe this frame-
work may have far-reaching utility beyond the scope of the current article, since optimal
transport metric has become increasingly popular in the context of Bayesian analysis
in recent years. On the theory side, optimal transport has been utilized in studying
convergence properties of latent mixing measures (Nguyen, 2013), posterior concentra-
tion of the base probability measure of a Dirichlet measure (Nguyen, 2016), posterior
contraction in finite mixture of regression models (Do et al., 2025), posterior contrac-
tion in Gaussian mixture models (Guha et al., 2023), to name a few. On the method-
ological side, the Wasserstein metric has been adopted in measuring dependence in
Bayesian non-parametric models (Catalano et al., 2021, 2024), approximate Bayesian
computation (Bernton et al., 2019), Bayesian non-parametric distributionally robust
optimization (Ning and Ma, 2023), memory efficient and minimax distribution estima-
tion (Jacobs et al., 2023), etc. While these applications exhibit substantial promise for
future development, yet the usage of transport metrics remain underexplored within the
Bayesian framework.

Finally, in this article, we demonstrated that D-BETEL is asymptotically equiva-
lent to a hierarchical setup similar to the mixture of finite mixture models (Miller and
Harrison, 2018). A potential future work may explore if one can device similar tech-
niques to conduct targeted inference on parameters of interest when considering other

https://github.com/zovialpapai/D-BETEL
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non-parametric Bayesian priors, e.g. Pitman-Yor multinomial prior (Lijoi et al., 2020),
normalized infinitely divisible multinomial processes (Lijoi et al., 2023), etc.
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Supplementary Material to “Robust probabilistic inference via a constrained transport
metric” (DOI: 10.1214/25-BA1535SUPP; .pdf). Supplementary section 1 presents the
proof of Theorem 1 on derivation of the modified optimal transport metric ANDREW,
and related auxiliary results. Supplementary Section 2 presents a heuristic justification
of the robustness of D-ETEL. Supplementary Section 3 provides proofs of theorems sup-
porting a nonparametric Bayesian interpretation of the proposed D-BETEL methodol-
ogy. In Supplementary Section 4, additional simulation results for the generalized linear
regression setting with outliers, corresponding to sample sizes n = 250 and 500, are
presented. In Supplementary Section 5, we compare D-BETEL with D = MW2 and
D = WAR on a generalized linear regression task.
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