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T his   w or k   w as s u p p ort e d  b y t h e   N ati o n al  S ci e n c e  F o u n d ati o n  u n d er   Gr a nt   C  C F- 2 3 0 8 4 7 3.

A  B S T R  A C T Esti  m ati o n  of  t h e  c o n diti o n al  i n d e p e n d e n c e  gr a p h  (  CI  G)  of  hi g h- di  m e nsi o n al    m ulti v ari at e
G a ussi a n  ti  m e  s eri es  fr o  m    m ulti- attri b ut e  d at a  is  c o nsi d er e d.   E xisti n g    m et h o ds  f or  gr a p h  esti  m ati o n  f or
s u c h  d at a  ar e  b as e d  o n  si n gl e- attri b ut e   m o d els   w h er e  o n e  ass o ci at es  a  s c al ar ti  m e  s eri es   wit h  e a c h  n o d e.
I n    m ulti- attri b ut e  gr a p hi c al    m o d els,  e a c h  n o d e  r e pr es e nts  a  r a n d o  m  v e ct or  or  v e ct or  ti  m e  s eri es.  I n  t his
p a p er   w e  pr o vi d e  a  u ni fi e d t h e or eti c al  a n al ysis  of   m ulti- attri b ut e  gr a p h l e ar ni n g f or  d e p e n d e nt ti  m e  s eri es
usi n g  a  p e n ali z e d l o g-li k eli h o o d  o bj e cti v e f u n cti o n f or  m ul at e d i n t h e fr e q u e n c y  d o  m ai n  usi n g t h e  dis cr et e
F o uri er tr a nsf or  m  of t h e ti  m e- d o  m ai n  d at a.    We  c o nsi d er  b ot h  c o n v e x (s p ars e- gr o u p l ass o)  a n d  n o n- c o n v e x
(l o g-s u  m  a n d  S  C  A  D  gr o u p  p e n alti es)  p e n alt y/r e g ul ari z ati o n f u n cti o ns.   We  est a blis h s uf fi ci e nt  c o n diti o ns i n
a  hi g h- di  m e nsi o n al s etti n g f or  c o nsist e n c y ( c o n v er g e n c e  of t h e i n v ers e  p o  w er s p e ctr al  d e nsit y t o tr u e  v al u e
i n t h e  Fr o b e ni us  n or  m), l o c al  c o n v e xit y   w h e n  usi n g  n o n- c o n v e x  p e n alti es,  a n d  gr a p h r e c o v er y.    We  d o  n ot
i  m p os e  a n y  i n c o h er e n c e  or  irr e pr es e nt a bilit y  c o n diti o n  f or  o ur  c o n v er g e n c e  r es ults.    We  als o  e  m piri c all y
i n v esti g at e s el e cti o n  of t h e t u ni n g  p ar a  m et ers  b as e d  o n t h e   B a y esi a n i nf or  m ati o n crit eri o n, a n d ill ustr at e  o ur
a p pr o a c h  usi n g n u  m eri c al e x a  m pl es  utili zi n g b ot h s y nt h eti c a n d r e al d at a.

I  N  D E X  T E  R  M S Gr a p h  esti  m ati o n,  i n v ers e  s p e ctr al  d e nsit y  esti  m ati o n,    m ulti- attri b ut e  d at a,  s p ars e  gr a p h
l e ar ni n g, ti  m e s eri es, u n dir e ct e d  gr a p h.

I.  I  N T R  O  D  U C TI  O  N

Gr a p hi c al    m o d els  ar e  a  us ef ul  t o ol  f or  a n al y zi n g    m ulti v ari-
at e  d at a   w h er e  c o n diti o n al i n d e p e n d e n c e  pl a ys  a n i  m p ort a nt
r ol e  [ 1],  [ 2],  [ 3],  [ 4].  L et  G  =  (V , E  )  d e n ot e  a  gr a p h    wit h
a  s et  of  p  v erti c es  ( n o d es)  V  = {  1 , 2 , . . . , p }  = [ p ],  a n d  a
c orr es p o n di n g  s et  of ( u n dir e ct e d)  e d g es  E  ⊆  [ p ] ×  [ p ].   C o n-
si d er  a  st ati o n ar y,  z er o-  m e a n,  p −  di  m e nsi o n al    m ulti v ari at e
G a ussi a n ti  m e  s eri es  x (t ),  t  =  0 , ±  1 , ±  2 , . . .,   wit h it h  c o  m-
p o n e nt  x i(t ),  a n d  c orr el ati o n  ( c o v ari a n c e)    m atri x  f u n cti o n
R x x (τ ) =  E  {x (t +  τ )x T (t )}, τ  =  0 , ±  1 , . . ..  Gi v e n {x (t )}, i n
t h e  c orr es p o n di n g  gr a p h G  ,  e a c h  c o  m p o n e nt  s eri es {x i(t )}  is
r e pr es e nt e d b y a n o d e (i i n V  ), a n d ass o ci ati o ns b et  w e e n c o  m-
p o n e nts  {x i(t )}  a n d  {x j (t )}  ar e r e pr es e nt e d  b y  e d g es  b et  w e e n
n o d es  i a n d  j of  G  . I n a c o n diti o n al i n d e p e n d e n c e gr a p h (  CI  G),
t h er e is  n o e d g e  b et  w e e n  n o d es i a n d  j (i. e., {i, j}  ∈  E ) if a n d
o nl y if (iff)  x i(t ) a n d x j (t ) ar e c o n diti o n all y i n d e p e n d e nt gi v e n
t h e  r e  m ai ni n g  p - 2  s c al ar  s eri es  x (t ),  ∈  [ p ],  =  i,  =  j.

( T his is a g e n er ali z ati o n of t h e   CI  G f or r a n d o  m v e ct ors   w h er e
{i, j}  ∈  E  iff [  ]i j =  0 (  =  (E  {x (t )x  (t )} )−  1 ) [ 4], [ 5], [ 6].)

D e n ot e t h e p o  w er s p e ctr al d e nsit y ( P S  D)   m atri x of  {x (t )} b y
S x ( f ),   w h er e S x ( f ) = ∞

τ =  −  ∞ R x x (τ )e −  ι2 π  f τ a n d  ι =
√

−  1.
I n  [ 6]  it    w as  s h o  w n  t h at  c o n diti o n al  i n d e p e n d e n c e  of  t  w o
ti  m e  s eri es  c o  m p o n e nts  gi v e n  all  ot h er  c o  m p o n e nts  of  t h e
ti  m e  s eri es, is  e n c o d e d  b y  z er os i n t h e i n v ers e  P S  D, t h at is,
{i, j}  ∈  E  iff t h e  (i, j)-t h  el e  m e nt  of  S −  1

x ( f ), [S −  1
x ( f )]i j =  0

f or  e v er y  f .    H e n c e  o n e  c a n  us e  esti  m at e d  i n v ers e  P S  D  of
o bs er v e d ti  m e  s eri es t o i nf er t h e  ass o ci at e d  gr a p h. I n  [ 6]  t h e
l o  w- di  m e nsi o n al c as e is a d dr ess e d.   N o n p ar a  m etri c fr e q u e n c y-
d o  m ai n  a p pr o a c h es f or  gr a p h  esti  m ati o n i n  hi g h- di  m e nsi o n al
s etti n gs (s a  m pl e si z e  n  is l ess t h a n  or  of t h e  or d er  of  p )  h a v e
b e e n c o nsi d er e d i n  [ 7] usi n g a gr o u p-l ass o p e n alt y, a n d i n  [ 8],
[ 9], [ 1 0] usi n g a s p ars e- gr o u p l ass o  p e n alt y.   T h e f o c us  of t his
p a p er  is  o n  hi g h- di  m e nsi o n al  s etti n gs   w h er e  t h e  n u  m b er  of
gr a p h  n o d es  p  ( e. g., ti  m e s eri es  di  m e nsi o n) is s  m all er t h a n  or
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c o  m p ar a bl e  t o  t h e  d at a  s a  m pl e  si z e  n  [ 1 1].  I n  p arti c ul ar,  i n
a  hi g h- di  m e nsi o n al s etti n g,  as  n  →  ∞  , p

n →  c  >  0 f or  s o  m e
c o nst a nt  c , i nst e a d  of p

n →  0  as i n  cl assi c al l o  w- di  m e nsi o n al
st atisti c al  a n al ysis  fr a  m e  w or k  [ 1 1,   C h a pt er  1].  S u c h   m o d els
f or  t h e  i.i. d.  {x (t )}  c as e  h a v e  b e e n  e xt e nsi v el y  st u di e d  [ 4],
[ 5],  [ 1 1].  If p

n 1,    w e  us e  t h e  t er  m  l o  w- di  m e nsi o n al  f or
s u c h c as es i n t his  p a p er.   A s p ars e- gr o u p  n o n- c o n v e x l o g-s u  m
p e n alt y is i n v esti g at e d i n  [ 1 2] t o r e g ul ari z e t h e  pr o bl e  m  c o n-
si d er e d i n [ 1 0],   m oti v at e d  b y [ 1 3].  R efs. [ 7], [ 9], [ 1 0] pr o vi d e
p erf or  m a n c e a n al ysis a n d g u ar a nt e es.

P ar a  m etri c    m o d eli n g  ( a ut or e gr essi v e  (  A  R)  or  a ut or e gr es-
si v e   m o vi n g  a v er a g e  (  A  R  M  A)   m o d els)  b as e d  a p pr o a c h es i n
l o  w- di  m e nsi o n al  s etti n gs  f or    CI  G  esti  m ati o n  f or  ti  m e  s e-
ri es  ar e  dis c uss e d  i n  [ 1 4],  [ 1 5],  [ 1 6],  [ 1 7],  a  m o n g  ot h ers.
T h es e  p a p ers ar e f o c us e d  o n al g orit h  m  d e v el o p  m e nt a n d t h e y
d o  n ot  pr o vi d e  a n y  p erf or  m a n c e  g u ar a nt e es  (s u c h  as  [ 1 0,
T h e or e  m  1]  or    T h e or e  m  1  i n  t his  p a p er).    C o  m p ar e d    wit h
t his  p a p er  or  [ 1 0]  w h er e  t h e  hi g h- di  m e nsi o n al  c as e  is  c o n-
si d er e d,  [ 1 4],  [ 1 5],  [ 1 6],  [ 1 7]  c o nsi d er  a  l o  w- di  m e nsi o n al
s etti n g.  F or  i nst a n c e,  i n  t h e  si  m ul ati o n  e x a  m pl e  1  of  [ 1 7],
o n e  h as  a  1 0- di  m e nsi o n al   A  R  M  A   m o d el i  m pl yi n g  a  1 0- n o d e
gr a p h  ( p  =  1 0  i n  o ur  n ot ati o n)    w hil e  t h e  d at a  s a  m pl e  si z e
us e d t o ill ustr at e t h e  p erf or  m a n c e  of t h eir  al g orit h  m is  1 0 2 4
(n  =  1 0 2 4  i n  o ur  n ot ati o n),  l e a di n g  t o  p / n  =  0 .0 0 9 8  1.
I n  c o ntr ast,  i n  t h e  s y nt h eti c  d at a  e x a  m pl e  i n  [ 1 0,  S e c.  6. 1],
o n e  h as  p  =  1 2 8  a n d  n  ∈ { 1 2 8 , 2 5 6 , 5 1 2 , 1 0 2 4 , 2 0 4 8 },  l e a d-
i n g t o p / n  ∈ { 1 , 0 .5 , 0 .2 5 , 0 .1 2 5 , 0 .0 6 2 5 }.  St atisti c al a n al ysis
i n  t h e  hi g h- di  m e nsi o n al  c as e  r e q uir es  a  diff er e nt  s et  of  a n-
al yti c al  t o ols  [ 3],  [ 1 1].    Esti  m ati o n   of    A  R  M  A    m o d els  f or
hi g h- di  m e nsi o n al    G a ussi a n  ti  m e  s eri es    wit h o ut  c o nsi d eri n g
gr a p hi c al   m o d eli n g as p e cts is  dis c uss e d i n  [ 1 8] w h er e i n  [ 1 8,
E x a  m pl e  1] ,  o n e  h as p  =  2 0 0   wit h  v ar yi n g  v al u es  of  s a  m pl e
si z e n  wit h s o  m e v al u es  of  n  <  5 0.

I n    m a n y  a p pli c ati o ns,  t h er e    m a y  b e    m or e  t h a n  o n e  r a n-
d o  m  v ari a bl e  ( or  s c al ar ti  m e  s eri es)  ass o ci at e d   wit h  a  n o d e.
T his cl ass  of  gr a p hi c al   m o d els  h as  b e e n c all e d   m ulti- attri b ut e
gr a p hi c al   m o d els i n  [ 1 9], [ 2 0] w h er e  a  hi g h- di  m e nsi o n al s et-
ti n g  is  c o nsi d er e d,  a n d  v e ct or  gr a p hs  or  n et  w or ks  i n  [ 2 1],
[ 2 2], [ 2 3]  w h er e  a l o  w- di  m e nsi o n al  s etti n g is  c o nsi d er e d.  I n
a  g e n e r e g ul at or y  n et  w or k,  o n e   m a y  h a v e  diff er e nt   m ol e c ul ar
pr o fil es  a v ail a bl e  f or  a  si n gl e  g e n e,  s u c h  as  pr ot ei n,    D  N  A
a n d    R  N  A.  Si n c e  t h es e    m ol e c ul ar  pr o fil es  ar e  o n  t h e  s a  m e
s et  of  bi ol o gi c al  s a  m pl es, t h e y  c o nstit ut e   m ulti- attri b ut e  d at a
f or  g e n e r e g ul at or y  gr a p hi c al   m o d els i n [ 1 9].   T h e   m oti v ati o n
f or  v e ct or  gr a p hi c al    m o d els  c o nsi d er e d  i n  [ 2 1],  [ 2 2],  [ 2 3]
is  n et  w or k  a n al ysis  f or  h u  m a n  f  M  RI  d at a.  I n  t his  p a p er  i n
S e cti o n  VI-  B  ,   w e   m o d el  air- q u alit y  a n d   m et e or ol o gi c al  d at a
a c q uir e d at  diff er e nt   m o nit ori n g st ati o ns i n   B eiji n g  [ 2 4], [ 2 5]
as    m ulti- attri b ut e  d at a,   wit h    m e as ur e  m e nts  of  e a c h  v ari a bl e
at  m  st ati o ns    m o d el e d  as  m  attri b ut es.  S u c h  gr a p hi c al    m o d-
els  h a v e  b e e n  c o nsi d er e d  i n  t h e  lit er at ur e  o nl y  f or  r a n d o  m
v e ct ors (i. e.,  o bs er v ati o ns  ori gi n at e fr o  m  a n i.i. d. r a n d o  m s e-
q u e n c e),  n ot f or ti  m e  s eri es  gr a p hi c al   m o d els.   T h e  o bj e cti v e
of  t his  p a p er  is  t o  fill  t his  g a p.    A d diti o n all y,    w e  c o nsi d er
b ot h  c o n v e x  (s p ars e- gr o u p l ass o  [ 2 6], [ 2 7])  a n d  n o n- c o n v e x
(l o g-s u  m  [ 1 3]  a n d   S  m o ot hl y    Cli p p e d    A bs ol ut e    D e vi ati o n

( S  C  A  D)  [ 2 8], [ 2 9])  p e n alt y  f u n cti o ns.  It  is   w ell- k n o  w n  t h at
us e  of  n o n- c o n v e x  p e n alti es  c a n  yi el d   m or e  a c c ur at e  r es ults
c o  m p ar e d t o t h e l ass o p e n alt y, i. e., t h e y c a n pr o d u c e s p ars e s et
of s ol uti o n li k e l ass o, a n d a p pr o xi  m at el y u n bi as e d c o ef fi ci e nts
f or l ar g e c o ef fi ci e nts,  u nli k e l ass o [ 1 3], [ 2 8], [ 2 9].   T his   m oti-
v at es  c o nsi d er ati o n  of  t h e  S  C  A  D  a n d  l o g-s u  m  p e n alti es  (i n
a d diti o n t o t h e l ass o  p e n alt y) i n t his  p a p er.   As  n ot e d  e arli er,
a  s p ars e- gr o u p  n o n- c o n v e x  l o g-s u  m  p e n alt y  is  i n v esti g at e d
i n [ 1 2]  t o  r e g ul ari z e t h e  si n gl e- attri b ut e  pr o bl e  m  c o nsi d er e d
i n [ 1 0] w h er e it is s h o  w n e  m piri c all y t h at t h e l o g-s u  m p e n alt y
si g ni fi c a ntl y o ut p erf or  ms t h e l ass o p e n alt y.   H e n c e t h e i nt er est
i n n o n- c o n v e x  p e n alti es i n t his p a p er.

A.    R E L  A T E  D    W  O R  K

T h er e  a p p e ars  t o  b e  n o  pri or  r e p ort e d    w or k  o n  gr a p hi c al
m o d eli n g  f or    m ulti- attri b ut e  d e p e n d e nt  ti  m e  s eri es  i n  hi g h-
di  m e nsi o n al  s etti n gs.  Pri or   w or k  o n  gr a p hi c al    m o d eli n g  f or
si n gl e- attri b ut e d e p e n d e nt ti  m e s eri es i n l o  w- di  m e nsi o n al s et-
ti n gs  is  c o n c er n e d    wit h  t esti n g    w h et h er  {i, j}  ∈ E  f or  all
p ossi bl e  e d g es  i n  t h e  gr a p h,  b as e d  o n  s o  m e  n o n p ar a  m etri c
fr e q u e n c y- d o  m ai n t est st atisti c s u c h  as  p arti al  c o h er e n c e  [ 6],
[ 3 0],  [ 3 1],  [ 3 2],  [ 3 3]  w hi c h  r e q uir es   esti  m at es   of  S x ( f ).
T h es e  a p pr o a c h es  d o  n ot  s c al e  t o  hi g h  di  m e nsi o ns   w h er e  p
is  c o  m p ar a bl e  t o  or  l ar g er  t h a n  t h e  s a  m pl e  si z e  n .  As  a n
alt er n ati v e t o n o n p ar a  m etri c   m o d eli n g of ti  m e s eri es, p ar a  m et-
ri c  gr a p hi c al    m o d els  utili zi n g  (  G a ussi a n)  v e ct or    A  R  (  V A  R)
pr o c ess    m o d els  of  x (t )  h a v e  b e e n  pr o p os e d  i n  [ 1 6],  [ 3 4],
[ 3 5],  [ 3 6]  a n d    A  R  M  A   pr o c ess  ( a n d  r el at e d)    m o d els    m a y
b e  f o u n d  i n  [ 1 4], [ 1 5], [ 1 7],  b ut  t h es e  a p pr o a c h es  ar e  s uit-
a bl e  o nl y  f or  l o  w- di  m e nsi o n al  s etti n gs  as  dis c uss e d  e arli er.
T h es e  a p pr o a c h es  d o  n ot  a d dr ess  t h e    m ulti- attri b ut e  c as e.
Gr a p hi c al    m o d eli n g  f or  si n gl e- attri b ut e  d e p e n d e nt  ti  m e  s e-
ri es  i n  hi g h- di  m e nsi o n al  s etti n gs  h as  b e e n  c o nsi d er e d  usi n g
n o n p ar a  m etri c fr e q u e n c y- d o  m ai n  a p pr o a c h es i n  [ 7], [ 8], [ 9],
[ 1 0] wit h c o n v e x l ass o-r el at e d r e g ul ari z ati o n a n d i n  [ 1 2] wit h
n o n- c o n v e x l o g-s u  m r e g ul ari z ati o n.   A ti  m e- d o  m ai n a p pr o a c h
wit h l o g-s u  m p e n alt y   m a y b e f o u n d i n  [ 3 7].

M ulti- attri b ut e gr a p hi c al   m o d eli n g i n hi g h- di  m e nsi o n al s et-
ti n g  gi v e n  i.i. d.  d at a  h as  b e e n  a d dr ess e d  i n  [ 1 9], [ 2 0]  usi n g
c o n v e x  l ass o-r el at e d  r e g ul ari z ati o n  a n d  i n  [ 3 8]  usi n g  n o n-
c o n v e x  S  C  A  D  p e n alt y.    W h e n  c o n v e x  r e g ul ari z ati o n is  us e d,
t h e  o v er all  o pti  mi z ati o n  pr o bl e  m  is  c o n v e x    w h er e  a  gl o b al
o pti  m u  m  s ol uti o n  is  g u ar a nt e e d,    w h er e as    wit h  n o n- c o n v e x
p e n alti es, o n e c a n o bt ai n  o nl y a l o c al o pti  m u  m.

T his  p a p er  b uil ds  o n t h e   w or k r e p ort e d i n  [ 1 0].   A  d et ail e d
c o  m p aris o n  b et  w e e n t his  p a p er  a n d  [ 1 0]  ( als o  [ 1 2]) is  gi v e n
l at er i n   R e  m ar k 4  i n  S e cti o n V  aft er   w e  h a v e i ntr o d u c e d  all
t h e t e c h ni c al  d et ails f a cilit ati n g t h e c o  m p aris o n.

B.    O  U R   C  O  N T RI  B  U TI  O  N S

I n  t his  p a p er    w e  pr o vi d e  a  u ni fi e d  t h e or eti c al  a n al ysis  of
m ulti- attri b ut e  gr a p h l e ar ni n g f or  d e p e n d e nt ti  m e s eri es  usi n g
a p e n ali z e d l o g-li k eli h o o d o bj e cti v e f u n cti o n i n t h e fr e q u e n c y
d o  m ai n.    We  c o nsi d er  t h e  c o n v e x  s p ars e- gr o u p  l ass o  as   w ell
as t h e  n o n- c o n v e x l o g-s u  m  a n d  S  C  A  D  gr o u p  p e n alti es.   T h e
n o n- c o n v e x  o pti  mi z ati o n  pr o bl e  m  (  w h e n  usi n g  n o n- c o n v e x
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p e n alti es)  is  s ol v e d  vi a  it er ati v e  c o n v e x  o pti  mi z ati o n,  b as e d
o n   a  l o c al-li n e ar   a p pr o xi  m ati o n  ( L L  A)  [ 2 9],  [ 3 9]  t o  t h e
n o n- c o n v e x  p e n alt y  a n d  a n  alt er n ati n g  dir e cti o n    m et h o d  of
m ulti pli ers  (  A  D  M  M)    m et h o d.   T h e    A  D  M  M    m et h o d  us e d  i n
t his  p a p er  f oll o  ws  [ 1 0]  a n d  diff er e n c es  b et  w e e n  [ 1 0]  a n d
t his   p a p er   ar e   e x pl ai n e d  l at er  i n   S e cti o n  I  V  a n d  i n    R e-
m ar k  4  i n  S e cti o n V  .    We  est a blis h  s uf fi ci e nt  c o n diti o ns i n  a
hi g h- di  m e nsi o n al s etti n g f or  c o nsist e n c y ( c o n v er g e n c e  of t h e
i n v ers e  p o  w er  s p e ctr al  d e nsit y t o tr u e  v al u e i n t h e  Fr o b e ni us
n or  m) i n   T h e or e  m  1 , l o c al c o n v e xit y   w h e n  usi n g  n o n- c o n v e x
p e n alti es i n   T h e or e  m  2 , a n d gr a p h r e c o v er y i n   T h e or e  m 3 .  We
d o n ot i  m p os e a n y i n c o h er e n c e or irr e pr es e nt a bilit y c o n diti o n
f or  o ur   T h e or e  ms  1 – 3  (s e e   R e  m ar k  3  i n  S e cti o n  V  ).    We  il-
l ustr at e o ur a p pr o a c h usi n g n u  m eri c al e x a  m pl es utili zi n g b ot h
s y nt h eti c a n d r e al (  B eiji n g air- q u alit y  [ 2 4], [ 2 5]) d at a.

A pr eli  mi n ar y v ersi o n of t his p a p er a p p e ars i n a c o nf er e n c e
p a p er  [ 4 0]  w h er e  pr o ofs  of   T h e or e  ms  1  a n d  3  a n d   L e  m  m a
1  ar e  n ot  gi v e n,  a n d  o nl y  a s k et c h  of  pr o of  of   T h e or e  m  2  a p-
p e ars.   T h e or e  m  1  i n [ 4 0] h as a n err or. S y nt h eti c d at a e x a  m pl es
ar e diff er e nt i n t his p a p er a n d  [ 4 0].

C.    O  U T LI  N E   A  N  D   N  O T A TI  O  N

T h e r est  of t h e  p a p er is  or g a ni z e d  as f oll o  ws.   T h e  u n d erl yi n g
s yst e  m   m o d el a n d t h e r es ulti n g l o g-li k eli h o o d f or  m ul ati o n  of
t h e  pr o bl e  m ar e  pr es e nt e d i n  S e cti o n II.   T h e c o n v e x a n d  n o n-
c o n v e x p e n alt y f u n cti o ns a n d t h eir pr o p erti es ( b as e d o n  [ 4 1]),
a n d t h e r es ulti n g p e n ali z e d n e g ati v e l o g-li k eli h o o d f u n cti o n is
dis c uss e d  i n  S e cti o n  III.   A  s ol uti o n t o t h e  n o n- c o n v e x  o pti-
mi z ati o n  pr o bl e  m is  pr o vi d e d i n  S e cti o n  I  V.  S el e cti o n  of t h e
t u ni n g p ar a  m et ers b as e d o n   BI  C is pr es e nt e d i n  S e cti o n I  V-  A.
I n S e cti o n V  w e pr o vi d e a t h e or eti c al a n al ysis of t h e pr o p os e d
a p pr o a c h,  r es ulti n g  i n   T h e or e  ms  1 – 3 .   N u  m eri c al  r es ults  ar e
pr es e nt e d i n  S e cti o n  VI  a n d pr o ofs of   T h e or e  ms  1 , 2  a n d  3  ar e
gi v e n i n t h e t  w o a p p e n di c es.

T h e s u p ers cri pts  ∗ ,  a n d  H  d e n ot e t h e c o  m pl e x c o nj u g at e,
tr a ns p os e a n d   H er  miti a n ( c o nj u g at e tr a ns p os e) o p er ati o ns, r e-
s p e cti v el y,  a n d  t h e  s ets  of  r e al,  p ositi v e  r e al  a n d  c o  m pl e x
n u  m b ers  ar e  d e n ot e d  b y  R  ,  R + a n d  C  ,  r es p e cti v el y.    Gi v e n
A  ∈  C p ×  p ,  w e  us e  φ mi n (A  ),  φ m a x (A  ),  |A  |,  tr(A  )  a n d  etr(A  )
t o d e n ot e t h e   mi ni  m u  m ei g e n v al u e,   m a xi  m u  m ei g e n v al u e, d e-
t er  mi n a nt, tr a c e,  a n d  e x p o n e nti al  of tr a c e  of A  ,  r es p e cti v el y.
We  us e  A  0  a n d  A  0 t o  d e n ot e t h at   H er  miti a n  A  is  p osi-
ti v e s e  mi- d e fi nit e a n d  p ositi v e  d e fi nit e, r es p e cti v el y, a n d I p is
t h e  p  ×  p  i d e ntit y    m atri x.  F or  B  ∈  C p ×  q ,   w e  d e fi n e  t h e  o p-
er at or  n or  m, t h e  Fr o b e ni us  n or  m a n d t h e  v e ct ori z e d 1 n or  m,
r es p e cti v el y, as  B  = φ m a x (B H B  ),  B F =  tr(B H B  ) a n d
B 1 = i, j |B i j|,    w h er e  B i j is  t h e  (i, j)-t h  el e  m e nt  of  B  ,

als o  d e n ot e d  b y  [ B  ]i j.  F or  v e ct or θ  ∈  C
p ,   w e  d e fi n e  θ 1 =

p
i=  1 |θ i| a n d  θ 2 = p

i=  1 |θ i|2 ,  a n d   w e  als o  us e  θ  f or

θ 2 .   T h e   Kr o n e c k er  pr o d u ct  of   m atri c es A  a n d  B  is  d e n ot es
b y  A  ⊗  B  .  Gi v e n A  ∈  C p ×  p , A + =  di a g( A  ) is a  di a g o n al   m a-
tri x    wit h  t h e  s a  m e  di a g o n al  as  A  ,  a n d  A − =  A  −  A + is  A
wit h  all  its  di a g o n al  el e  m e nts  s et  t o  z er o.   Gi v e n  A  ∈  C n ×  p ,
c ol u  m n  v e ct or  v e c( A  ) ∈  C n p d e n ot es  t h e  v e ct ori z ati o n  of  A
w hi c h  st a c ks  t h e  c ol u  m ns   of  t h e    m atri x  A  .    T h e   n ot ati o n

x  ∼  N c (m  ,  )  d e n ot es  a  c o  m pl e x  r a n d o  m  v e ct or  x  t h at  is
cir c ul arl y  s y  m  m etri c ( pr o p er),  c o  m pl e x   G a ussi a n   wit h   m e a n
m  a n d  c o v ari a n c e  ,  a n d x  ∼  N r (m  ,  )  d e n ot es r e al- v al u e d
G a ussi a n  x  wit h   m e a n  m  a n d c o v ari a n c e  .

II.    S Y S T E  M   M  O  D E L

C o nsi d er  p  j oi ntl y   G a ussi a n, z er o-  m e a n st ati o n ar y,  v e ct or s e-
q u e n c es  {z i(t )}t∈ Z ,  z i(t ) ∈  R

m ,  i ∈  [ p ].  I n  a    m ulti- attri b ut e
ti  m e  s eri es   gr a p hi c al    m o d el,    w e   ass o ci at e  {z i(t )}t∈ Z wit h
t h e it h n o d e of a n u n dir e ct e d gr a p h G  =  (V , E  )   w h er e V  =  [ p ]
is t h e  s et  of  p  n o d es  ( v erti c es)  a n d  E  ⊆  V  ×  V  is t h e  s et  of
u n dir e ct e d  e d g es t h at  d es cri b e t h e  c o n diti o n al  d e p e n d e n ci es
a  m o n g  t h e  p  s e q u e n c es  {{z i(t )}t∈ Z ,  i ∈  V  }.   Si  mil ar  t o  t h e
s c al ar  c as e ( m  =  1),  e d g e  {i, j}  ∈  E  iff t h e  s e q u e n c es {z i(t )}
a n d  {z j (t )} ar e c o n diti o n all y i n d e p e n d e nt gi v e n t h e r e  m ai ni n g
p  −  2  v e ct or s e q u e n c es  {z (t )},  ∈  V  \{ i, j}.

D e fi n e t h e  m p  - di  m e nsi o n al s e q u e n c e

x (t ) =  z 1 (t ),  z 2 (t ),  · · · ,  z m (t )  ∈  R m p .  ( 1)

Ass o ci at e  {x (t )}t∈ Z wit h a n e nl ar g e d gr a p h ¯G  =  (V̄  , Ē  )   w h er e
V̄  =  [m p  ]  a n d Ē  ⊆ V̄  × V̄  .  T h e  t h  c o  m p o n e nt  of  {z j (t )},
d e n ot e d  b y  {[z j]  (t )},  ass o ci at e d    wit h  t h e  n o d e  j  of  G  ,  is
t h e s c al ar s e q u e n c e {x q (t )}, x q =  [x ]q , q  =  ( j −  1) m  +  , j ∈
[ p ]  a n d  ∈  [m  ].    T h e  s c al ar  s e q u e n c e  {x q (t )}  is  ass o ci at e d
wit h  n o d e  q  of  e nl ar g e d  gr a p h ¯G  .   C orr es p o n di n g t o t h e  e d g e
{ j, k }  ∈ V  ×  V  i n G  , t h er e  ar e m 2 e d g es  {q , r }  ∈ V̄  × V̄  i n ¯G
w h er e  q  =  ( j −  1) m  +  u  a n d  r  =  (k  −  1) m  +  v  wit h  u , v  ∈
[m  ].

As  i n  S e cti o n  I,  d e n ot e  t h e  p o  w er  s p e ctr al  d e nsit y  ( P S  D)
m atri x of  {x (t )} b y  S x ( f ).   H er e  f  is t h e n or  m ali z e d fr e q u e n c y,
i n   H z.   Gi v e n a   m atri x A  ∈  C (m p  )×  (m p  ),  w e  us e A ( j k) t o d e n ot e
t h e m  ×  m  s u b  m atri x of A  w h os e (  u , v )t h el e  m e nt is gi v e n  b y

[A ( j k)]u v =  [A  ]( j−  1) m  +  u ,(k −  1) m  +  v ,  u , v  ∈  [m  ].  ( 2)

B y  [ 6,   T h e or e  m  2. 4],  i n  t h e  CI  G  G  =  (V , E  )  of  t h e    m ulti-
attri b ut e ti  m e s eri es  {x (t )} t∈ Z ori gi n ati n g vi a  ( 1),  w e  h a v e

{ j, k }  ∈  E  ⇔  S −  1
x ( f )

( j k)
≡  0  ( 3)

pr o vi d e d  S x ( f )  0  ∀  f . (  N ot e t h at   w hil e   m ost  of t h e  dis c us-
si o n  a n d  all  of  t h e  n u  m eri c al  r es ults  i n  [ 6]  p ert ai n  t o  s c al ar
ti  m e  s eri es  p er  n o d e, t h e t h e or y is  s h o  w n t o  a p pl y t o  v e ct or
s eri es p er  n o d e als o.)

A.    P R  O  B L E  M  F  O R  M  U L  A TI  O  N

We  o bs er v e  a   fi nit e- d ur ati o n  s e g  m e nt  {x (t )} n −  1
t=  0 of  a  r e al-

i z ati o n  of  a n m p  −  di  m e nsi o n al  st ati o n ar y   G a ussi a n  s e q u e n c e
{x (t )}t∈ Z .   O ur  o bj e cti v e  is  t o  first  esti  m at e  t h e  i n v ers e  P S  D
S −  1

x ( f )   at   disti n ct  fr e q u e n ci es,   a n d  t h e n   s el e ct  t h e   e d g e
{ j, k }  i n  t h e  gr a p hi c al    m o d el  G  b as e d  o n    w h et h er  or  n ot
(S −  1

x ( f ))( j k) =  0  f or  e v er y  f .   T h e  si n gl e  attri b ut e  c as e (m  =
1)  h as  b e e n  dis c uss e d i n  [ 1 0] wit h s p ars e- gr o u p l ass o  p e n alt y
a n d  i n  [ 1 2]  wit h  s p ars e- gr o u p  l o g-s u  m  p e n alt y.  Si n c e  f or  a
r e al- v al u e d  ti  m e  s eri es,  S x ( f ) =  S H

x (−  f ),  a n d  S x ( f )  is  p e-
ri o di c  i n  f  wit h   p eri o d   o n e,   k n o  wl e d g e   of  S x ( f )  i n  t h e
i nt er v al [ 0, 0. 5] c o  m pl et el y s p e ci fi es S x ( f ) f or  ot h er  v al u es  of
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f .   H e n c e, it is  e n o u g h t o  c h e c k if (S −  1
x ( f ))( j k) =  0  f or  e v er y

f  ∈  [ 0, 0 .5].
Gi v e n  {x (t )} n −  1

t=  0 ,  d e û n e  t h e  ( n or  m ali z e d)    D F T  d x ( f  )  of

x (t ), (ι =
√

−  1),

d x ( f  ) =
1

√
n

n −  1

t=  0

x (t ) e x p (−  ι2 Ã  f  t ) ,  ( 4)

w h er e

f =  / n ,  =  0 , 1 , . . . , n  −  1 .  ( 5)

Si n c e  {x (t )} is   G a ussi a n, s o is d x ( f  ).   As dis c uss e d i n [ 1 0], t h e

s et  of  c o  m pl e x- v al u e d  r a n d o  m  v e ct ors  {d x ( f  )} n / 2
=  0 , n  e v e n,

is  a  s uf û ci e nt  st atisti c  f or  a n y  st atisti c al  i nf er e n c e  pr o bl e  m,
i n cl u di n g  o ur pr o bl e  m of esti  m ati o n of i n v ers e  P S  D.

We  n e e d t h e f oll o  wi n g  ass u  m pti o n i n  or d er t o i n v o k e  [ 4 2,
T h e or e  m  4. 4. 1] , us e d e xt e nsi v el y l at er.

A 1)   T h e  m p  −  di  m e nsi o n al ti  m e s eri es  {x (t )} t∈ Z is  z er o-  m e a n
st ati o n ar y a n d   G a ussi a n, s atisf yi n g

@

τ =  −  @

|[R x x (τ )]k | <  @  f or e v er y k ,  ∈ V̄  .

It f oll o  ws fr o  m [ 4 2,   T h e or e  m  4. 4. 1] t h at  u n d er ass u  m pti o n
(  A 1),  as y  m pt oti c all y  ( as  n  →  @  ),  d x ( f  ),  ∈  [(n / 2)  −  1],
(n  e v e n),  ar e i n d e p e n d e nt  pr o p er (i. e.,  cir c ul arl y  s y  m  m etri c),
c o  m pl e x    G a ussi a n  N c (0 , S x ( f  ))  r a n d o  m   v e ct ors,  r es p e c-
ti v el y.   Als o, as y  m pt oti c all y, d x ( f0 ) a n d d x ( fn / 2 ), (n  e v e n), ar e
i n d e p e n d e nt r e al   G a ussi a n N r (0 , S x ( f0 )) a n d N r (0 , S x ( fn / 2 ))
r a n d o  m   v e ct ors,   r es p e cti v el y,  i n d e p e n d e nt   of  d x ( f  ),  ∈
[(n / 2)  −  1].   We   will i g n or e t h es e t  w o fr e q u e n c y p oi nts  f0 a n d
fn / 2 .

D e û n e

D  =  d x ( f1 )  · · ·  d x ( f(n / 2) −  1 )  ∈  C (m p  )×  ((n / 2) −  1) .  ( 6)

We ass u  m e t h at  S x ( f  ) is l o c all y s  m o ot h ( a st a n d ar d ass u  m p-
ti o n i n P S  D esti  m ati o n [ 4 2]), s o t h at S x ( f  ) is ( a p pr o xi  m at el y)
c o nst a nt   o v er  K  =  2 m t +  1   c o ns e c uti v e  fr e q u e n c y   p oi nts.
Pi c k

f̃k =
(k  −  1) K  +  m t +  1

n
,  k  =  1 , 2 , . . . , M  ,  ( 7)

M  =
n

2
−  m t −  1  / K  , ( 8)

l e a di n g  t o  M  e q u all y  s p a c e d  fr e q u e n ci es f̃k i n  t h e  i nt er v al
( 0, 0. 5),  at  i nt er v als  of  K  / n .    We  st at e  t h e  l o c al  s  m o ot h n ess
ass u  m pti o n as ass u  m pti o n (  A 2).

A 2)    Ass u  m e t h at f or  =  −  m t , −  m t +  1 , . . . , m t ,

S x ( f̃k , ) =  S x ( f̃k ) , ( 9)

w h er e f̃k , = ((k  −  1) K  +  m t +  1  + ) / n  .  ( 1 0)

U n d er ass u  m pti o ns (  A 1)-(  A 2), t h e j oi nt p df  of  D  is

fD (D  ) =

M

k =  1

⎡

£
m t

=  −  m t

e x p  −  g kl −  g ∗
kl

Ã m p |S −  1
x ( f̃k )|1 / 2 |S − ∗

x ( f̃k )|1 / 2

¤

⎦ ,

( 1 1)

g kl =
1

2
d H

x ( f̃k , )S −  1
x ( f̃k )d x ( f̃k , ) , ( 1 2)

w h er e  A − ∗ st a n ds f or ( A −  1 )∗ . P ar a  m etri zi n g i n t er  ms of t h e i n-
v ers e  P S  D   m atri x k :=  S −  1

x ( f̃k ), t h e n e g ati v e l o g-li k eli h o o d,
u p t o s o  m e irr el e v a nt c o nst a nts, is gi v e n  b y

−  l n fD (D  ) ?  L  (  ) ( 1 3)

:=

M

k =  1

1

2
−  l n(| k |) −  l n(| ∗

k |) +  tr Ŝ k  k + Ŝ
∗
k

∗
k

( 1 4)

w h er e

=  [ 1 , 2 ,  · · ·  , M ] ∈  C (m p  )×  (m p  M  ) ,  ( 1 5)

Ŝ k =
1

K

m t

=  −  m t

d x ( f̃k , )d H
x ( f̃k , ) . ( 1 6)

N ot e t h at Ŝ k r e pr es e nts  P S  D  esti  m at or  at fr e q u e n c y f̃k usi n g
u n  w ei g ht e d fr e q u e n c y- d o  m ai n s  m o ot hi n g  [ 4 2].

O ur  o bj e cti v e is t o esti  m at e  gi v e n  {x (t )} n −  1
t=  0 , a n d t o i nf er

t h e u n d erl yi n g   CI  G b as e d o n esti  m at e d  .

III.    P E  N  A LI Z E  D   N E  G  A TI V E  L  O  G - LI  K E LI  H  O  O  D

T o e nf or c e s p arsit y a n d t o   m a k e t h e pr o bl e  m   w ell- c o n diti o n e d
(  w h e n K  <  p ), as i n [ 1 0],   w e pr o p os e t o   mi ni  mi z e a p e n ali z e d
v ersi o n ¯L  (  )  of L  (  )   w h er e   w e  p e n ali z e (r e g ul ari z e) at  b ot h
el e  m e nt-  wis e a n d  gr o u p-  wis e.   We h a v e

¯L  (  ) =  L  (  ) +  α P e (  ) +  ( 1 −  α )P g (  ),  ( 1 7)

P e (  ) =

M

k =  1

m p

i=  j

Ä λ [ k ]i j , ( 1 8)

P g (  ) =  m
√

M

p

q =

Ä λ
(q  M  )

F ( 1 9)

w h er e (q  M  ) ∈  C m  ×  (m  M  ) is d e û n e d as

(q  M  ) := (q  )
1 , (q  )

2 ,  · · · , (q  )
M ,  ( 2 0)

(q  )
i , i ∈  [M  ], is  d e û n e d  as i n  ( 2), λ  >  0,  α  ∈  [ 0, 1],  m

√
M

i n ( 1 9)  r e ü e cts  t h e  n u  m b er  of  gr o u p  v ari a bl es  [ 4 3],  a n d  f or
u  ∈  R  , Ä λ (u ) is  a  p e n alt y  f u n cti o n t h at is  f u n cti o n  of  |u |.  I n
( 1 8), t h e  p e n alt y t er  m is a p pli e d t o e a c h  off- di a g o n al el e  m e nt
of k a n d i n  ( 1 9), t h e p e n alt y t er  m is a p pli e d t o t h e off- bl o c k-
di a g o n al gr o u p of  m 2 M  t er  ms vi a (q  M  ), d e û n e d i n ( 2 0).  T h e
p ar a  m et er  α  ∈  [ 0, 1] < b al a n c es = el e  m e nt-  wis e a n d gr o u p-  wis e
p e n alti es  [ 1 0], [ 2 6]

T h e f oll o  wi n g p e n alt y f u n cti o ns ar e c o nsi d er e d:
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L ass o .  F or s o  m e »  >  0,

ρ » (u ) =  » |u |,  u  ∈  R  .  ( 2 1)

L o g-s u  m .  F or s o  m e »  >  0 a n d 1  >  0,

ρ » (u ) =  »  l n  1  +
|u |

.  ( 2 2)

S  m o ot hl y   Cli p p e d   A bs ol ut e   D e vi ati o n ( S  C A  D) .  F or s o  m e
»  >  0 a n d  a  >  2,

ρ » (u ) =

§
ª̈

ª©

» |u |  f or |u |  f »
2 a » |u |  −|u |2 −  » 2

2( a −  1) f or »  <  |u | <  a »
» 2 (a +  1)

2 f or |u |  g a » .

( 2 3)

I n t h e t er  mi n ol o g y  of [ 4 1],  all  of t h e  a b o v e t hr e e  p e n alti es
ar e  < ¼  - a  m e n a bl e =  f or  s o  m e  ¼  g  0.   As  d e fi n e d  i n  [ 4 1,  S e c.
2. 2] , ρ » (u ) is ¼  - a  m e n a bl e f or s o  m e ¼  g  0 if

i)    T h e  f u n cti o n  ρ » (u )  is  s y  m  m etri c  ar o u n d  z er o,  i. e.,
ρ » (u ) =  ρ » (−  u ) a n d ρ » ( 0) =  0.

ii)    T h e f u n cti o n ρ » (u ) is n o n- d e cr e asi n g  o n R + .
iii)    T h e f u n cti o n ρ » (u )/ u  is n o n-i n cr e asi n g  o n R + .
i v)    T h e f u n cti o n ρ » (u ) is diff er e nti a bl e f or u  =  0.
v)    T h e f u n cti o n  ρ » (u ) + ¼

2 u 2 is c o n v e x, f or s o  m e ¼  g  0.

vi)  li  m u →  0 + ρ  (u ) =  »  w h er e  ρ  (u ) := d ρ » (u )
d u .

It  is  s h o  w n  i n  [ 4 1,    A p p e n di x    A],  t h at  all  of  t h e  a b o v e
t hr e e  p e n alti es  ar e  ¼  - a  m e n a bl e    wit h  ¼  =  0  f or    L ass o  a n d
¼  =  1 / (a  −  1) f or  S  C  A  D. I n  [ 4 1] t h e l o g-s u  m  p e n alt y is  d e-
fi n e d as  ρ » (u ) =  l n( 1 +  » |u |)   w h er e as i n [ 1 3], it is  d e fi n e d as
ρ » (u ) =  »  l n( 1 + |u | ).    We  f oll o  w  [ 1 3]  b ut    m o dif y  it  s o  t h at
pr o p ert y ( vi) i n t h e  d e fi niti o n  of  ¼  - a  m e n a bl e  p e n alti es  h ol ds.

I n  o ur  c as e  ¼  = » f or  t h e  l o g-s u  m  p e n alt y  si n c e d 2 ρ » (u )
d u 2 =

−  »  / (  + |  u |)2 f or u  =  0.
T h e  a b o v e t hr e e  p e n alt y f u n cti o ns  als o  h a v e t h e f oll o  wi n g

pr o p erti es:
vii)   F or  s o  m e  C » >  0  a n d  δ » >  0, t h e  f u n cti o n  ρ » (u )  h as  a

l o  w er  b o u n d

ρ » (u ) g  C » |u | f or |u |  f δ » .  ( 2 4)

viii) d ρ » (u )
d |u | f  »  f or u  =  0.

Pr o p ert y ( viii) is str ai g htf or  w ar d t o v erif y.  F or   L ass o,  C » =
»  a n d  δ » =  ∞  .  F or  S  C  A  D, C » =  »  a n d  δ » =  » .  Si n c e l n( 1 +
x ) g  x / ( 1 +  x )  f or  x  >  −  1,    w e  h a v e  l n( 1  +  x ) g  x / C 1 f or
0  f  x  f  C 1 −  1,  C 1 >  1.   Ta k e  C 1 =  2.   T h e n l o g-s u  m  ρ » (u ) g
»
2 |u | f or  a n y |u |  f  , l e a di n g t o C » = »

2 a n d  δ » =  .  We  m a y

a n d   will t a k e C » = »
2 f or l ass o a n d  S  C  A  D p e n alti es as   w ell.

I V.    O  P TI  MI Z  A TI  O  N

F or  n o n- c o n v e x  ρ » (u ),   w e   will  us e  a l o c al li n e ar  a p pr o xi  m a-
ti o n ( L L  A) as i n [ 2 9], [ 3 9], t o yi el d

ρ » (u ) ≈  ρ » (|u 0 |) +  ρ » (|u 0 |)(|u |  − |u 0 |)  ⇒  ρ » (|u 0 |)|u | ,
( 2 5)

w h er e  u 0 is  a n  i niti al   g u ess,  ρ » (|u 0 |) =  »  / (|u 0 |  +  )  f or

L S P,  a n d  f or  S  C  A  D,  ρ » (|u 0 |) =  »  f or  |u |  f » , = a » −|  u |
a −  1 f or

»  <  |u | <  a » ,   a n d  =  0  f or  |u |  g a » .    T h er ef or e,    wit h  u 0

fi x e d,    w e  c o nsi d er  o nl y  t h e  l ast  t er  m  a b o v e  f or  o pti  mi z a-
ti o n    w.r.t.  u .  B y  [ 3 9,    T h e or e  m   1],  t h e    L L  A   pr o vi d es   a
m aj ori z ati o n  of  t h e  n o n- c o n v e x  p e n alt y,  t h er e b y  yi el di n g  a
m aj ori z ati o n-  mi ni  mi z ati o n  a p pr o a c h.  I n  f a ct,  b y  [ 3 9,   T h e o-
r e  m  2], t h e   L L  A is t h e  b est  c o n v e x   m aj ori z ati o n  of t h e   L S P
a n d  S  C  A  D  p e n alti es.   T h us  i n   L S P,    wit h  s o  m e  i niti al  g u ess
¯

k ,   w e r e pl a c e ρ » (|[ k ]i j|) →  »  / (|[ ¯
k ]i j|  +  ) =  : » ki j a n d

ρ » ( (q  M  )
F ) →  »  / ( ¯ (q  M  )

F +  ) =  : » q  M ,  l e a di n g  t o
a n  a d a pti v e  s p ars e- gr o u p  l ass o  c o n v e x  pr o bl e  m.   T h e  i niti al
g u ess  f oll o  ws  fr o  m t h e  s ol uti o n t o l ass o- p e n ali z e d  o bj e cti v e
f u n cti o n.  F or  S  C  A  D,    w e  h a v e  » ki j =  »  f or  |[ k ]i j|  f » , =
(a »  − |  [ k ]i j|)/ (a  −  1) f or  »  <  |[ k ]i j|  f a » ,  a n d =  0  ot h-
er  wis e, a n d si  mil arl y f or  » q  M .

Wit h   L L  A, t h e o bj e cti v e f u n cti o n is tr a nsf or  m e d t o

˜L  (  ) =  L  (  ) +  α P̃ e (  ) +  ( 1 −  α )P̃ g (  ),  ( 2 6)

P̃ e (  ) =

M

k =  1

m p

i=  j

» ki j [ k ]i j , ( 2 7)

P̃ g (  ) =  m
√

M

p

q =

» q  M
(q  M  )

F .  ( 2 8)

F or l ass o,   w e  h a v e  » ki j =  »  ∀ k , i, j a n d  » q  M =  »  ∀ q ,  .  We
f oll o  w  a n    A  D  M  M  a p pr o a c h,  as  o utli n e d  i n  [ 1 0],  f or  b ot h
l ass o a n d   L L  A t o   L S P/ S  C  A  D.   C o nsi d er t h e s c al e d a u g  m e nt e d
L a gr a n gi a n  [ 5 0] f or t his pr o bl e  m aft er v ari a bl e s plitti n g, gi v e n
b y

¯L ρ (  , {W  }, {U  } ) =  L  (  ) +  α P̃ e (W  )

+  ( 1 −  α )P̃ g (W  ) +
ρ

2

M

k =  1

k −  W k +  U k
2
F ,  ( 2 9)

w h er e  {W  }  = {W k ,  k  ∈  [M  ]}  r es ults  fr o  m  v ari a bl e  s plitti n g
w h er e i n t h e p e n alti es   w e us e  W k ’s i nst e a d of k ’s, a d di n g t h e
e q u alit y  c o nstr ai nt  W k = k , {U  }  = {U k ,  k  ∈  [M  ]}  ar e  d u al
v ari a bl es, a n d  ρ  >  0 is t h e < p e n alt y  p ar a  m et er =  [ 5 0].

T h e    m ai n  diff er e n c e  b et  w e e n  [ 1 0]  a n d  t his  p a p er  is  t h at
i n [ 1 0], W k a n d k ar e  p  ×  p  w h er e as i n t his  p a p er,   w e  h a v e
W k a n d k as ( m p  ) ×  (m p  )   m atri c es.   T h er ef or e, t h e a p pr o a c h
of  [ 1 0]  is  a p pli c a bl e  aft er   w e  a c c o u nt f or t h e  di  m e nsi o n  dif-
f er e n c e,  a n d  a d diti o n all y,  f or t h e  f a ct t h at  P g (W  )  a n d  P g (  )
ar e  p e n ali z e d sli g htl y  diff er e ntl y i n t h e t  w o  p a p ers (t h e f a ct or
m

√
M  is    missi n g  fr o  m  [ 1 0]).   S e e  [ 1 0]  f or  f urt h er  d et ails.

F or  n o n- c o n v e x  p e n alti es  ( n ot  c o nsi d er e d  i n  [ 1 0]),   w e  h a v e
a n  it er ati v e  s ol uti o n:  first  s ol v e   wit h  l ass o  p e n alt y,  t h e n  us e
t h e   L L  A  f or  m ul ati o n  a n d  s ol v e  t h e  r es ulti n g  a d a pti v e  l ass o
t y p e  c o n v e x  pr o bl e  m. I n  pr a cti c e, j ust t  w o it er ati o ns s e e  m t o
b e  e n o u g h.   A  ps e u d o c o d e f or t h e   A  D  M  M  al g orit h  m  us e d i n
t his  p a p er is  gi v e n i n   Al g orit h  m 1  w h er e   w e  us e t h e st o p pi n g
( c o n v er g e n c e) crit eri o n f oll o  wi n g [ 5 0,  S e c. 3. 3. 1] a n d v ar yi n g
p e n alt y  p ar a  m et er  ρ  f oll o  wi n g [ 5 0,  S e c.  3. 4. 1].   T h e  v ari a bl es
d e fi n e d i n  ( 3 0)– ( 3 6)  ar e  n e e d e d i n   Al g orit h  m  1  wit h (t+  1)

k ,

W (t+  1)
k , U (t+  1)

k as d e fi n e d t h er ei n:

e 1 =  [ (t+  1)
1 , . . . , (t+  1)

M ] F ( 3 0)
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T  U  G  N AI T:   O  N   C  O  N  DI TI  O  N A L I  N  D E P E  N  D E  N C E   G R A P  H  L E A R  NI  N  G  F R  O  M   M  U L TI- A T T RI B  U T E   G A  U S SI A  N   D E P E  N  D E  N T  TI  M E  S E RI E S

Al g o rit h  m 1:  A  D  M  M   Al g orit h  m f or  S ol vi n g  ( 2 6)– ( 2 9)

I n p ut: P S  D esti  m at or Ŝ k , k  ∈  [M  ] ( c o  m p ut e d  usi n g ( 4)
a n d  ( 1 6)), r e g ul ari z ati o n a n d  p e n alt y p ar a  m et ers » ki j

(i, j ∈  [m p  ], k  ∈  [M  ]), » q  M (q ,  ∈  [ p ]), ³  a n d  ρ  =  ρ̄ ,
t ol er a n c es τ a bs a n d  τ r el , v ari a bl e p e n alt y f a ct or  ¯¼  ,
m a xi  m u  m n u  m b er  of it er ati o ns  tm a x . I niti al g u ess ¯

k ,
k  ∈  [M  ].

O ut p ut:  Esti  m at e d ˆ
k , k  ∈  [M  ], a n d e d g e-s et Ê

1: I niti ali z e:  U ( 0)
k =  W ( 0)

k =  0 , ( 0)
k = ¯

k , ρ
( 0) =  ρ̄

2: c o n v er g e d  =  f als e, t  =  0
3:  w hil e  c o n v er g e d  =  f als e   a n d  t  ≤  tm a x , d o
4:    L et  V k J k V

H
k d e n ot e t h e ei g e n- d e c o  m p ositi o n  of

H er  miti a n Ŝ k −  ρ (t ) (W (t )
k −  U (t )

k ), k  ∈  [M  ],   wit h t h e
di a g o n al   m atri x  J k c o nsisti n g of its ei g e n v al u es.
D e fi n e a di a g o n al   m atri x J̃ k wit h  t h di a g o n al

el e  m e nt J̃ k =  −  J k +  J 2
k +  4 ρ (t ) / ( 2ρ (t ) )

w h er e  J k =  [J k ]  .  S et (t+  1)
k =  V k J̃ k V

H
k .

5:    D e fi n e s oft t hr es h ol di n g s c al ar o p er at or
T st (a ,  ́  ) :=  ( 1 −   ́/ |a |)+ a  a n d el e  m e nt  wis e   m atri x
s oft t hr es h ol di n g o p er at or  T st (A  ,  ³ ), s p e ci fi e d  b y
[T st (A  ,  ³ )]u v :=  T st ([A  ]u v ,  ³ ),   w h er e
(a )+ :=  m a x( 0  , a ) a n d u , v  ∈  [m  ].  F or k  ∈  [M  ],
d e fi n e  A k = (t+  1)

k +  U (t )
k a n d l et ( A k )(q  ) ∈  C m  ×  m

b e d e fi n e d as i n  ( 2).   T h e n t h e di a g o n al s u b bl o c ks
(W k )(q q ) ∈  C m  ×  m of  W k ar e u p d at e d as ( k  ∈  [M  ])

[(W (t+  1)
k )(q q )]u v =

[A (q q )
k ]u u if u  =  v

T st ([A (q q )
k ]u v ,

³ » ki j

ρ (t ) )  if u  =  v

q  ∈  [ p ],  u , v  ∈  [m  ], i =  (q  −  1) m  +  u ,
j =  (q  −  1) m  +  v .   T h e  off- di a g o n al m  ×  m
s u b bl o c ks  of W k ar e u p d at e d as

(W (t+  1)
k )(q  ) =  B  1  −

( 1 −  ³ )m
√

M  » q  M

ρ (t ) B F
+

w h er e  m  ×  m  B  h as its ( u , v )t h el e  m e nt as
[B  ]u v =  T st ([A (q  )

k ]u v ,  ³ »ki j / ρ
(t ) ),

i =  (q  −  1) m  +  u , j =  (  −  1) m  +  v .
6:    D u al u p d at e  U (t+  1)

k =  U (t )
k +  ( (t+  1)

k −  W (t+  1)
k ),

k  ∈  [M  ].
7:    C h e c k c o n v er g e n c e.   Wit h  e 1 , e 2 , e 3 , R

(t+  1)
p , R (t+  1)

d ,
τ pri a n d  τ d u al as d e fi n e d i n  ( 3 0)– ( 3 6), r es p e cti v el y,

l et d p =  R (t+  1)
p F a n d  d d =  R (t+  1)

d F . If
(d p ≤  τ pri ) a n d  (d d ≤  τ d u al ), s et c o n v er g e d =  t r u e.

8:    U p d at e p e n alt y  p ar a  m et er  ρ  :

ρ (t+  1) =

§
¨

©

2 ρ (t ) if d p >  ¼̄  d d

ρ (t )/ 2  if  d d >  ¼̄  d p

ρ (t ) ot h er  wis e  .

We als o n e e d t o s et  U (t+  1) =  U (t+  1) / 2 f or  d p >  ¼̄  d d

a n d U (t+  1) =  2 U (t+  1) f or d d >  ¼̄  d p .
9:  t  ←  t +  1

1 0:  e n d   w hil e
1 1:   D e n ot e t h e c o n v er g e d i n v ers e  P S  D esti  m at es as ˆ

k a n d

l et ˆ =  [ ˆ 1 ,  · · ·  , ˆ M ].   Wit h ˆ (q  M  )
as i n  ( 2 0), f or

q  =  , if ˆ (q  M  )
F >  0, assi g n e d g e  {q ,  }  ∈ Ê ,  els e

{q ,  }  ∈ Ê .

e 2 =  [W (t+  1)
1 , . . . , W (t+  1)

M ] F ( 3 1)

e 3 =  [U (t+  1)
1 , . . . , U (t+  1)

M ] F ( 3 2)

R (t+  1)
p = (t+  1)

1 −  W (t+  1)
1 ,  · · · , (t+  1)

M −  W (t+  1)
M

( 3 3)

R (t+  1)
d =  ρ (t ) W (t+  1)

1 −  W (t )
1 ,  · · · ,  W (t+  1)

M −  W (t )
M

( 3 4)

τ pri =  m p
√

M  τ a bs +  τ r el m a x(  e 1 , e 2 ) ( 3 5)

τ d u al =  m p
√

M  τ a bs +  τ r el e 3 / ρ
(t ) . ( 3 6)

O ur   A  D  M  M- b as e d  o pti  mi z ati o n al g orit h  m is as f oll o  ws.
1)    Gi v e n  M  a n d  K  =  2 m t +  1, c al c ul at e Ŝ k . I niti ali z e it er-

ati o n  m̃  =  1, ( 0) =  0 , ¯ =  [ ¯ 1 , . . . , ¯ M ] = ( 0) a n d
us e ¯ t o c o  m p ut e » ki j ’s a n d » q  M .

2)    E x e c ut e   Al g orit h  m  1  wit h i niti al g u ess ¯
k , k  ∈  [M  ].

3)    Q uit  if  usi n g  l ass o,  els e  s et ( m̃  ) = ˆ a n d ¯ = ( m̃  )

t o r e- c o  m p ut e » ki j ’s a n d » q  M ’s  vi a t h e   L L  A.   L et  m̃  ←
m̃  +  1.

4)    R e p e at st e ps  2  a n d  3  u ntil  c o n v er g e n c e.   T h e  c o n v er g e d
ˆ is  t h e  fi n al  esti  m at e  of  t h e  i n v ers e  P S  D’s.  ( F or  t h e
n u  m eri c al  r es ults  s h o  w n i n  S e cti o n  VI  ,   w e t er  mi n at e d
aft er  t  w o  it er ati o ns  of  st e ps  2  a n d  3,  si  mil ar  t o  [ 2 9],
[ 3 9].)

F or t h e  n u  m eri c al  r es ults i n  S e cti o n  VI  ,  w e  us e d   ̄¼  =  1 0,
ρ̄  =  2,  =  0 .0 0 0 1 f or l o g-s u  m  p e n alt y,  a  =  3. 7 ( as i n  [ 2 8],
[ 2 9])  f or  t h e  S  C  A  D  p e n alt y,  τ a bs =  τ r el =  1 0 −  4 a n d  tm a x =
2 0 0.

A.    B.I. C.  F  O R  T  U  NI  N  G   P A R  A  M E T E R  S E L E C TI  O  N

Gi v e n  n  a n d  c h oi c e  of  K  a n d  M  ,    w e  f oll o  w  t h e    B a y esi a n
i nf or  m ati o n crit eri o n (  BI  C) as  gi v e n i n [ 1 0], t o s el e ct »  (  wit h
³  =  0 .0 5 fi x e d), f or all p e n alt y f u n cti o ns.   T h e   B a y esi a n i nf or-
m ati o n crit eri o n (  BI  C) of  [ 1 0] is gi v e n  b y

BI  C(  », ³ ) =  2 K

M

k =  1

−  l n | ˆ
k |  + tr Ŝ k

ˆ
k

+  l n( 2K  M  )

M

k =  1

( # of n o n z er o el e  m e nts i n ˆ
k ) .  ( 3 7)

We  us e   BI  C t o s el e ct  »  fr o  m  o v er a  gri d  of  v al u es.   We s e ar c h
o v er  »  i n t h e r a n g e [» ,  »u ] s el e ct e d vi a t h e f oll o  wi n g h e uristi c
(si  mil ar  t o  [ 1 0], [ 2 0]).    We  fi n d  t h e  s  m all est  » ,  l a b el e d » s  m ,
f or   w hi c h   w e  g et  a  n o- e d g e    m o d el  (i. e.,  |Ê |  = 0).   T h e n   w e
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s et  λ u =  λ s  m / 2  a n d  λ  =  λ u / 1 0.   T h e  gi v e n  c h oi c e  of  λ u pr e-
cl u d es  < e xtr e  m el y =  s p ars e   m o d els   w hil e t h at  of  λ pr e cl u d es
< v er y =  d e ns e   m o d els.

We n ot e t h at t h er e e xist ot h er g e n er al a p pr o a c h es f or t u ni n g
p ar a  m et er s el e cti o n s u c h as cr oss- v ali d ati o n.   Cr oss- v ali d ati o n
g e n er all y  i n v ol v es  first  p artiti o ni n g  t h e  d at a  i nt o  K  -s u bs ets
(K  =  5  or  1 0  f ol ds),  i. e.,  K  n o n- o v erl a p pi n g  s u bs ets  pi c k e d
r a n d o  ml y.   T h e n K  −  1 s e g  m e nts a ct as tr ai ni n g d at a f or   m o d el
fitti n g a n d t h e r e  m ai ni n g s e g  m e nt is us e d as t est ( or v ali d ati o n)
s et.   T u ni n g  p ar a  m et er    w o ul d  b e  pi c k e d  t o    mi ni  mi z e  a  t est
s et   m e as ur e ( e. g.,  n e g ati v e l o g-li k eli h o o d  or s o  m e  ot h er  n o n-
p e n ali z e d  ori gi n al  o bj e cti v e  f u n cti o n)  aft er  a v er a gi n g  o v er
s e v er al p artiti o ns. F or i nst a n c e, [ 2 7] us es s u c h a   m et h o d   w h er e
t h e   d at a  is  ass u  m e d  t o   b e  i.i. d.   F or   d e p e n d e nt   d at a    wit h
fr e q u e n c y- d o  m ai n  a p pr o a c h es,  t h er e  ar e  s e v er al  u nr es ol v e d
iss u es.  F or i nst a n c e, t h e   D F T  o v er tr ai ni n g  a n d t est  d at as ets
w o ul d  h a v e  diff er e nt  r es ol uti o n  si n c e  s a  m pl e  si z e   w o ul d  b e
diff er e nt.   M or e o v er, t o  pr es er v e ti  m e  d e p e n d e n c y,  o n e c a n n ot
s a  m pl e as f or i.i. d.  d at a;  o n e   m ust s a  m pl e  bl o c k-  wis e t o  k e e p
c o nti g u o us  d at a- p oi nts t o g et h er.   T h es e  ar e  u nr es ol v e d iss u es
w hi c h pr e cl u d es t h e us e of cr oss- v ali d ati o n i n o ur c as e.

V.   T  H E  O  R E TI C  A L   A  N  A L Y SI S

We  n o  w all o  w  p , M  , K  (s e e ( 7), ( 8)), a n d λ  t o  b e f u n cti o ns  of
s a  m pl e si z e n , d e n ot e d as p n , M n , K n a n d  λ n , r es p e cti v el y.   We
t a k e  p n t o  b e  a  n o n- d e cr e asi n g f u n cti o n  of n ,  as is t y pi c al i n
hi g h- di  m e nsi o n al s etti n gs.   N ot e t h at  K n M n ≈  n / 2.  Pi c k  K n =
a 1 n

´ a n d  M n =  a 2 n
1 −  ´ f or s o  m e  0.5  <   ́  <  1,  0  <  a 1 , a 2 <

∞  ,  s o t h at  b ot h M n / K n ²  0  a n d  K n / n  ²  0  as  n  ²  ∞  ( cf.
[ 1 0,   R e  m ar k  1]).

R e c all t h at   w e  h a v e t h e  ori gi n al   m ulti- attri b ut e  gr a p h  G  =
(V , E  )   wit h |V  |  = p n a n d t h e e nl ar g e d  gr a p h ¯G  =  (V̄  , Ē  )   wit h
|V̄  |  = m p n .   We ass u  m e (  A 3) b el o  w r e g ar di n g G  .

(  A 3)    D e n ot e t h e tr u e  e d g e  s et  of t h e  gr a p h  b y  E 0 , i  m pl y-
i n g t h at E 0 = {{  j, k }  :  (S −  1

0 ( f ))( j k) ≡  0 ,  j =  k ,  0  f
f  f  0 .5 }  w h er e  S 0 ( f )  d e n ot es t h e tr u e  P S  D  of  x (t ).
(  We  als o  us e 0 k f or  S −  1

0 ( f̃k )   w h er e f̃k is  as i n ( 7),
a n d  us e 0 t o  d e n ot e t h e tr u e  v al u e  of  ).   Ass u  m e
t h at c ar d(E 0 ) = |  E 0 |  f s n 0 .

(  A 4)    T h e   mi ni  m u  m  a n d   m a xi  m u  m  ei g e n v al u es  of  m p n ×
m p n P S  D  S 0 ( f )  0  s atisf y

0  <  ³ mi n f  mi n
f ∈ [ 0,0 .5]

φ mi n (S 0 ( f ))

f  m a x
f ∈ [ 0,0 .5]

φ m a x (S 0 ( f )) f  ³ m a x <  ∞  .

H er e  ³ mi n a n d  ³ m a x ar e n ot f u n cti o ns  of  n  ( or  p n ).
L et ˆ

λ =  ar g   mi n : k 0
¯L  (  ).   T h e or e  m 1  est a blis h es l o-

c al  c o nsist e n c y  of ˆ
λ f or  n o n- c o n v e x  p e n alti es  a n d  gl o b al

c o nsist e n c y f or t h e c o n v e x  p e n alt y.
T h e or e  m  1:  ( L o c al   C o nsist e n c y).  F or τ  >  2, l et

C 0 =  8 0   m a x
, f

([S 0 ( f )]  )  N 0 / l n(m p n )   ( 3 8)

w h er e

N 0 =  2 l n( 1 6( m p n )τ M n ) . ( 3 9)

D e fi n e

R  =  8( 1  +  m  )C 0 / ³
2
mi n , ( 4 0)

r n =  M n (m p n +  m 2 s n 0 ) l n(m p n )/ K n =  o ( 1) ,  ( 4 1)

N 1 =  ar g   mi n {n  :  K n >  N 0 } , ( 4 2)

N 2 =  ar g   mi n {n  :  r n f  0 .1 / (R ³ mi n )} ,  ( 4 3)

N 3 =  ar g   mi n {n  :  r n f  / R } , ( 4 4)

N 4 =  ar g   mi n  n  :  λ n f
mi n (i, j): [ 0 ]i j =  0 |[ 0 ]i j|

a  +  1
,

( 4 5)

λ n =  2 C 0 l n(m p n )/ K n , ( 4 6)

λ n u 1 =  C 0
1  +  m

m
m 2 +

m p n

s n 0

l n(m p n )

K n
,  ( 4 7)

λ n u 2 =  m a x (R r n ,  λn u 1 ) . ( 4 8)

U n d er  ass u  m pti o ns  (  A 1)-(  A 4),  t h er e  e xists  a  l o c al    mi ni-
mi z er ˆ

λ of ¯L  (  ) s atisf yi n g

ˆ
λ − 0 F f  R r n ( 4 9)

wit h pr o b a bilit y  >  1  −  1 / (m p n )τ −  2 if
i)  f or  t h e  l ass o  p e n alt y  ρ λ (t ) =  λ |t|,  s a  m pl e  si z e  n  >

m a x  {N 1 , N 2 } a n d  λ n s atis fi es λ n f  λ n f  λ n u 1 ,
ii)  f or   t h e   S  C  A  D   p e n alt y  ρ λ (t ),   s a  m pl e   si z e  n  >

m a x  {N 1 , N 2 , N 4 } a n d  λ n =  λ n u 2 ,
iii)  s a  m pl e   si z e  n  >  m a x  {N 1 , N 2 , N 3 }  a n d  λ n s atis fi es

λ n f  λ n f  λ n u 1 f or t h e l o g-s u  m p e n alt y ρ λ (t ).
F or t h e l ass o p e n alt y, ˆ

λ is a gl o b al   mi ni  mi z er   w h er e as f or
t h e ot h er t  w o p e n alti es, it is a l o c al   mi ni  mi z er.  •

T h e pr o of of   T h e or e  m  1  is gi v e n i n   A p p e n di x A  .
R e  m ar k  1:  T h e or e  m  1  h el ps  d et er  mi n e  h o  w t o  c h o os e  M n

a n d  K n s o t h at  f or  gi v e n  p n , li  mn ²  ∞
ˆ

λ − 0 F =  0  (s e e
als o  [ 1 0,    R e  m ar k  2]).    T his  b e h a vi or  is  g o v er n e d  b y  ( 4 9),
t h er ef or e    w e   h a v e  t o  e x a  mi n e  r n .    As   n ot e d   b ef or e,  si n c e
K n M n ≈  n / 2, if  o n e  pi c ks  K n =  a 1 n

´ , t h e n M n =  a 2 n
1 −  ´ f or

s o  m e  0  <   ́  <  1,  0  <  a 1 , a 2 <  ∞  .  S u p p os e  t h at  p n +  m s n 0

s atis fi es  p n +  m s n 0 =  a 3 n
θ f or s o  m e 0 f  θ  <  1, 0  <  a 3 <  ∞  .

T h e n f or  fi x e d  m  ,  w e  h a v e

O (r n ) =  O
(l n(n ))1 / 2 n ( 1−   ́ )/ 2 n θ / 2

n  ́ / 2

=  O
(l n(n ))1 / 2

n ( 2  ́ −  1 −  θ )/ 2

n ±  ∞
²  0 if  2  ́ −  1  −  θ  >  0  .  ( 5 0)

T h er ef or e,   w e   m ust  h a v e  1  >   ́  > 1
2 + θ

2 .  If θ  =  0  ( fi x e d
gr a p h si z e a n d  fi x e d  n u  m b er  of c o n n e ct e d e d g es   w.r.t. s a  m pl e
si z e  n ),   w e  n e e d 1

2 <   ́  <  1. If  θ  >  0,   ́ h as t o  b e i n cr e as e d
b e y o n d    w h at  is  n e e d e d  f or  θ  =  0,  i  m pl yi n g    m or e  s  m o ot h-
i n g   of   p eri o d o gr a  m  d x ( fm )d H

x ( fm )   ar o u n d  fk t o   esti  m at e
S x ( fk ) (r e c all ( 1 6)), l e a di n g t o f e  w er fr e q u e n c y t est p oi nts M n .
Cl e arl y,   w e  c a n n ot  h a v e  θ  g  1  b e c a us e  p n +  m s n 0 =  O  (n θ )
will r e q uir e   ́ >  1   w hi c h is i  m p ossi bl e.
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T  U  G  N AI T:   O  N   C  O  N  DI TI  O  N A L I  N  D E P E  N  D E  N C E   G R A P  H  L E A R  NI  N  G  F R  O  M   M  U L TI- A T T RI B  U T E   G A  U S SI A  N   D E P E  N  D E  N T  TI  M E  S E RI E S

We f oll o  w t h e  pr o of t e c h ni q u e  of  [ 4 1,   L e  m  m a  6] i n  est a b-
lis hi n g   L e  m  m a 1  w h os e pr o of is i n   A p p e n di x  B  .

L e  m  m a 1. ( L o c al   C o n v e xit y):  T h e o pti  mi z ati o n  pr o bl e  m

ˆ
» =  ar g    mi n

: k ∈ B k

¯L  (  ) , ( 5 1)

B k = k : k 0 , k f  0 .9 9  2 / (m  ¼
√

M n )  ,

( 5 2)

2 / (m  ¼
√

M n ) =

§
ªª̈

ªª©

∞  :    L ass o
2( a −  1)
m

√
M n

:  S  C  A  D

2
m

√
M n » n

:   l o g-s u  m,

( 5 3)

c o nsists  of  a stri ctl y  c o n v e x  o bj e cti v e f u n cti o n  o v er  a  c o n v e x
c o nstr ai nt s et, f or all t hr e e p e n alti es,   w h er e  » n is as d e fi n e d i n
T h e or e  m  1 .  •

L e  m  m a  1  a n d    T h e or e  m  1  l e a d  t o    T h e or e  m  2  w hi c h  is
pr o v e d i n   A p p e n di x  B  .

T h e or e  m 2:  Ass u  m e t h e c o n diti o ns of   T h e or e  m  1 .   T h e n ˆ
»

as  d e fi n e d i n   L e  m  m a  1  is  u ni q u e,  s atisf yi n g ˆ
» − 0 F f

R r n wit h  pr o b a bilit y  >  1  −  1 / (m p n )Ä −  2 if  R r n +  1 / ´ mi n f

0 .9 9 2 / (m  ¼
√

M n ), as d e fi n e d i n   L e  m  m a 1 .  •
R e  m ar k  2:  Wit h  l ass o,  ( 5 1)  is  o b vi o usl y  a  gl o b all y  c o n-

v e x  o pti  mi z ati o n  pr o bl e  m si n c e  B k = { k : k 0 },  h e n c e,
T h e or e  ms  1  a n d  2  yi el d  a  u ni q u e  gl o b al  o pti  m u  m.  F or  t h e

S  C  A  D  p e n alt y, 2( a −  1)
m

√
M n

=  O  (a 1 / 2 / n ( 1−  µ  )/ 4 )    wit h  M n as  i n

R e  m ar k  1 .  F or  fi x e d  S  C  A  D  p ar a  m et er  a ,   wit h  i n cr e asi n g  n
t h e c o n v e xit y r e gi o n s hri n ks.   T o c o u nt er t his, o n e c o ul d all o  w
a  t o  i n cr e as e,  b ut  t his    w o ul d    m a k e  S  C  A  D    m or e  li k e  l ass o.
T o c o nsi d er l o g-s u  m  p e n alt y,  usi n g  ( 4 1) a n d  ( 4 7),   w e e x pr ess

» n u 1 as  » n u 1 =  C 0 ( 1 +  m  )r n /  m 2 s n 0 M n ,   w hi c h t o g et h er   wit h
» n f  » n u 1 i  m pli es t h at

2

m
√

M n » n
g

2
√

s n 0

C 0 ( 1 +  m  )r n

n ±  ∞
²  ∞  .  ( 5 4)

N o  w   wit h i n cr e asi n g  n , t h e  c o n v e xit y r e gi o n  e x p a n ds,  u nli k e
S  C  A  D.

We  n o  w t ur n t o  gr a p h r e c o v er y.    We f oll o  w t h e  pr o of t e c h-
ni q u e  of  [ 4 5,   T h e or e  m  1 0]  i n  est a blis hi n g   T h e or e  m 3  w h os e
pr o of is i n   A p p e n di x  B  .  F or s o  m e µ n >  0, d e fi n e

Ê  =  {q ,  }  : ˆ (q  M n )

F
>  µ n >  0 , q  =  ,  ( 5 5)

E 0 =  {q ,  }  : (q  M n )
0 F

>  0 , q  =  ,  ( 5 6)

Ã̄ n =  R r n , ( 5 7)

½  =  mi n
{q ,  } ∈E 0

(q  M n )
0 F , ( 5 8)

N 5 =  ar g   mi n {n  :  Ã̄ n f  0 .4 ½ } , ( 5 9)

w h er e  R  a n d  r n ar e as i n  ( 4 0) a n d  ( 4 1), r es p e cti v el y.

T h e or e  m   3:  F or  µ n =  0 .5 ½  a n d  n  g  N 5 , Ê  =  E 0 wit h
pr o b a bilit y  >  1  −  1 / (m p n )Ä −  2 u n d er   t h e   c o n diti o ns   of
T h e or e  m  1 .

R e  m ar k  3:  I n  pr a cti c e    w e  d o  n ot  k n o  w  t h e  v al u e  of  ½ ,
h e n c e  c a n n ot  c al c ul at e  µ n n e e d e d  i n  ( 5 5).  F or  t h e  n u  m eri-
c al  r es ults  pr es e nt e d  i n  S e cti o n  VI  ,  w e  us e d µ n =  0.   Usi n g
s o  m e  i n c o h er e n c e   or  irr e pr es e nt a bilit y  c o n diti o ns  a n d  t h e
pri  m al- d u al    wit n ess    m et h o d  ( as  i n  [ 1 9],  [ 4 6]),  it    m a y   b e
p ossi bl e  t o  est a blis h  a  r es ult  si  mil ar  t o   T h e or e  m  3  b ut   wit h
µ n =  0.    We  l e a v e  t his  f or  f ut ur e  r es e ar c h.    We  d o  n ot  i  m-
p os e  a n y i n c o h er e n c e  or irr e pr es e nt a bilit y  c o n diti o ns i n t his
p a p er.

R e  m ar k 4:  We n o  w pr o vi d e a d et ail e d c o  m p aris o n b et  w e e n
t his  p a p er  a n d [ 1 0]  ( als o  [ 1 2]).   T h e  diff er e n c es  b et  w e e n t his
p a p er a n d  [ 1 0], [ 1 2] ar e as f oll o  ws.

i)    As  dis c uss e d i n  S e cs. II a n d  I  V, i n t his  p a p er   w e  h a v e
(m p  ) ×  (m p  )  i n v ers e  P S  D    m atri c es k ,  k  ∈  [M  ],  f or
a  p - n o d e   gr a p h,  c o  m p ar e d  t o  p  ×  p k ’s  i n  [ 1 0],
[ 1 2].   T his  r e q uir es  l ar g er  gr o u ps  c o  m pris e d  of  M  m 2

v ari a bl es  i n  t h e  gr o u p  p e n alt y  t er  m  P g (  )  gi v e n  b y
( 1 9),  c o  m p ar e d t o  gr o u ps  of M  v ari a bl es i n  [ 1 0], [ 1 2].
I n  [ 1 0],  [ 1 2]  t h e  gr o u p  p e n alt y  t er  m  is    missi n g  t h e
f a ct or

√
M  (s e e  [ 1 0,  ( 4 1)])  c orr es p o n di n g  t o  t h e  f a c-

t or m
√

M  i n ( 1 9)  of t his  p a p er.   T his  f a ct or  e q u als t h e
s q u ar e-r o ot of t h e n u  m b er of gr o u p v ari a bl es, f oll o  wi n g
t h e    w or k  of  [ 4 3].    A  c o ns e q u e n c e  of  t h e  e xtr a  f a ct or
m

√
M  is t h at i n   T h e or e  m  1  of t his  p a p er,  t h e  b o u n ds

o n  » n f or  t h e  l ass o  p e n alt y  d o  n ot  d e p e n d  o n  ³  (s e e
( 4 6) a n d  ( 4 7)),   w h er e as t h e  c orr es p o n di n g r es ult (  wit h
m  =  1) i n  [ 1 0, ( 6 9)] d e p e n ds  u p o n  ³ . I n [ 1 0,   T h e or e  m
1]  t h e l o  w er b o u n d o n » n c a n b e gr e at er t h a n t h e u p p er-
b o u n d f or  c ert ai n  c h oi c es  of  a  c o nst a nt  C 1 w h er e as  n o
s u c h a n o  m al y aris es i n t his p a p er.

ii)  I n [ 1 0] n o n- c o n v e x p e n alti es ar e n ot c o nsi d er e d. I n  [ 1 2]
n o n- c o n v e x  l o g-s u  m  r e g ul ari z ati o n  f or    CI  G  l e ar ni n g
f or  si n gl e- attri b ut e   G a ussi a n ti  m e  s eri es  h as  b e e n  pr o-
p os e d  r e pl a ci n g t h e l ass o  p e n alt y  of  [ 1 0].  It is  s h o  w n
e  m piri c all y  i n  [ 1 2]  t h at  t h e  l o g-s u  m  p e n alt y  si g ni fi-
c a ntl y  o ut p erf or  ms t h e l ass o  p e n alt y   wit h  F 1 s c or e  as
a  p erf or  m a n c e    m e as ur e.    A  t h e or e  m  c orr es p o n di n g  t o
T h e or e  m  1  of  t his  p a p er  a n d  t h at  of  [ 1 0]  is  st at e d
i n  [ 1 2]  wit h o ut  a n y  pr o of.    M or e o v er,  as  i n  [ 1 0],  f or
l a c k of t h e f a ct or

√
M  i n t h e gr o u p p e n alt y t er  m i n [ 1 2],

t h e  u p p er b o u n d  o n » n i n [ 1 2,   T h e or e  m]  d e p e n ds  o n  ³
a n d it  c a n  b e  s  m all er t h a n t h e l o  w er b o u n d  f or  c ert ai n
c h oi c es  of  a  c o nst a nt.   N o  s u c h  a n o  m al y  aris es i n t his
p a p er.

iii)  I n  t his  p a p er    w e  pr o vi d e  r es ults  f or  t  w o  n o n- c o n v e x
p e n alti es ( S  C  A  D  a n d l o g-s u  m) f or   CI  G l e ar ni n g fr o  m
m ulti- attri b ut e  ti  m e  s eri es.   T h e  t  w o  p e n alti es  r e q uir e
diff er e nt a n al ysis i n pr o vi n g   T h e or e  m  1  ( c o  m p ar e ( 8 5)–
( 9 5)  f or  l ass o  a n d  l o g-s u  m  p e n alti es    wit h  ( 9 7)– ( 1 0 2)
f or t h e  S  C  A  D  p e n alt y i n   A p p e n di x  A  ).    We  pr o vi d e  a
c o  m pl et e pr o of of  T h e or e  m  1  w h er e as  [ 1 2] h as n o pr o of
of its t h e or e  m.
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i v)    T h er e ar e n o r es ults c orr es p o n di n g t o o ur   L e  m  m a 1  a n d
T h e or e  ms  2  a n d 3  i n [ 1 0], [ 1 2] ( n ot n e e d e d i n [ 1 0] si n c e
it d o es  n ot c o nsi d er  n o n- c o n v e x  p e n alti es).

VI.    N  U  M E  RI C  A L   E X  A  M  P L E S

I n t his  s e cti o n   w e  pr es e nt  n u  m eri c al  r es ults  usi n g  b ot h  s y n-
t h eti c  a n d  r e al  d at a  t o  ill ustr at e  t h e  pr o p os e d  a p pr o a c h.    We
k n o  w  t h e  gr o u n d  tr ut h  i n  t h e  s y nt h eti c  d at a  e x a  m pl e   w hi c h
p er  mits  ass ess  m e nt  of  t h e  ef fi c a c y  of  o ur  a p pr o a c h es.   T h e
gr o u n d  tr ut h  is  u n k n o  w n  i n  t h e  r e al  d at a  e x a  m pl e  a n d  h er e
w e   wis h t o  vis u ali z e  a n d  e x pl or e t h e  c o n diti o n al  d e p e n d e n c y
str u ct ur e u n d erl yi n g t h e d at a.

A.   S Y  N T  H E TI C   D A T A

C o nsi d er  a  gr a p h   wit h  p  =  6 4  n o d es,  e a c h  n o d e   wit h  m  =  4
attri b ut es.   T h e  ti  m e  s eri es  d at a  {x (t )}  is  g e n er at e d  usi n g  a
v e ct or a ut or e gr essi v e   m o d el  of or d er  3 (  V A  R( 3)):

x (t ) =

3

i=  1

A ix (t −  i) +  w  (t ) ,  x (t ) ∈  R m p ,  ( 6 0)

w h er e  w  (t ) is i.i. d. z er o-  m e a n   G a ussi a n   wit h pr e cisi o n   m atri x
eit h er ˜ = ˜

1 (l a b el e d    M o d el  1)  or ˜ = ˜
1 + ˜

2 (l a b el e d
M o d el 2).  F or   M o d el 1,   w e cr e at e 8 cl ust ers ( c o  m  m u niti es) of
8  n o d es  e a c h,  e a c h  n o d e   wit h  m  =  4  attri b ut es,   w h er e  n o d es
wit hi n  a  c o  m  m u nit y  ar e  n ot  c o n n e ct e d t o  a n y  n o d e i n  ot h er

c o  m  m u niti es.   T o  g e n er at e ˜
1 ,  w e s et [ ˜ (q  )

1 ]u v =  0 .5 |u −  v | f or
q  =  ∈  [ 8], u  =  v ,  u , v  ∈  [m  ] ( n ot ati o n as i n 2 ), a n d it is z er o

ot h er  wis e.  F or  q  =  ,  w e  h a v e ˜ (q  )
1 =  0 .   We a d d γ  I m p t o ˜

1

a n d c h o os e  γ  t o   m a k e t h e   mi ni  m u  m ei g e n v al u e of ˜
1 +  γ  I m p

e q u al t o  0. 5 .   T h e  p ar a  m et ers  of   V A  R( 3)   m o d el ar e  g e n er at e d

si  mil arl y  b y  h a vi n g  A (q  )
i =  0  f or  q  =  ,  a n d  o nl y  1 0  %  of

t h e  e ntri es  of A (q q )
i ’s  ar e  n o n z er o   wit h t h e  n o n z er o  el e  m e nts

i n d e p e n d e ntl y a n d u nif or  ml y distri b ut e d o v er [−  0 .6 , 0 .6].   We
t h e n c h e c k if t h e   V A  R( 3)   m o d el is st a bl e, a n e c ess ar y a n d s uf-
fi ci e nt  c o n diti o n f or   w hi c h is t h at t h e r o ots  of  a (z ) = |  I m p −

3
i=  1 A iz

−  i|  = 0 s h o ul d all  h a v e   m o d ul us  <  1; t his c o n diti o n
is  e q ui v al e nt  t o  h a vi n g  all  ei g e n v al u es  of  t h e  c orr es p o n di n g
( 3m p  ) ×  ( 3m p  )  c o  m p a ni o n   m atri x t o  h a v e   m o d ul us <  1  [ 4 7,
S e c.  8. 2. 3] .   A d diti o n all y, i n  or d er t o  a v oi d  a  <l o n g = i  m p uls e
r es p o ns e,    w e  r e q uir e  t h e  r o ots  of  a (z )  t o  h a v e    m o d ul us  ≤
0 .9 5.  S u p p os e  t his  c o n diti o n  is  vi ol at e d    wit h  |z m a x | >  0 .9 5
w h er e  |z m a x |  = ar g   m a x ∈ [ 3m p  ]{|z  |  :  a (z  ) =  0 }. I n t his c as e,
w e  s c al e  A i’s  t o Ā i =  γ iA i,  γ  =  0 .9 5 / |z m a x |.  It  is  e as y  t o
s e e t h at t h e  r o ots  of  ā (z ) = |  I m p − 3

i=  1 Ā iz
−  i|  = a (z / γ  ) =

0  n o  w all h a v e   m o d ul us  ≤  0 .9 5.
F or    M o d el  2,    w e  all o  w  s o  m e  i nt er a cti o n  b et  w e e n  t h e  8

cl ust ers  vi a ˜
2 w hi c h is  g e n er at e d  vi a  a n   Er d ös-  R è n yi  gr a p h

str u ct ur e   w h er e  t h e  p  n o d es  ar e  c o n n e ct e d    wit h  pr o b a bilit y

p er =  0 .0 0 2.   T o  g e n er at e ˜
2 ,  w e  s et ˜ (q  )

2 =  0  f or  q  =  ∈
[ 8], a n d f or q  =  b ut c o n n e ct e d i n t h e   Er d ös-  R è n yi gr a p h, t h e

e ntri es  of ˜ (q  )
2 ar e i n d e p e n d e ntl y  a n d  u nif or  ml y  distri b ut e d

o v er [ −  0 .4 , −  0 .1]  ∪  [ 0.1 , 0 .4], a n d ar e z er o if n ot c o n n e ct e d.
First  1 0 0  s a  m pl es  ar e  dis c ar d e d  t o  eli  mi n at e  tr a nsi e nts.

T his  s et- u p l e a ds t o  a p pr o xi  m at el y  1 1  %  a n d  1 3  %  c o n n e ct e d

T A  B L E  1.  M o d el  1:  F 1 S c or e s,   H a  m  mi n g   Di st a n c e s  a n d  Ti  mi n g s,   A v er a g e d

O v er  1 0 0   R u n s

T A  B L E  2.  M o d el  2:  F 1 S c or e s,   H a  m  mi n g   Di st a n c e s  a n d  Ti  mi n g s,   A v er a g e d

O v er  1 0 0   R u n s

e d g es  i n    m o d els  1  a n d  2,  r es p e cti v el y.  I n  e a c h  r u n,   w e  c al-
c ul at e d  t h e  tr u e   P S  D  S ( f )  f or  f  ∈  [ 0, 0 .5]  at  i nt er v als  of

0. 0 1,  a n d  t h e n  t a k e  {q ,  }  ∈ E  if f (S −  1 ( f ))(q  ) 2
F >

1 0 −  2 m a x q ,  ∈ [ p ] f (S −  1 ( f ))(q  ) 2
F ,  els e  {q ,  }  ∈  E .

F or  a  t y pi c al  r e ali z ati o n  (r u n),   Fi g.  1  s h o  ws  h e at  m a ps  of

l o g1 0 f =  0: 0 .0 1: 5 |[S −  1 ( f )]i j|  ,  i, j ∈  [ 2 5 6],  f or    m o d els   1

a n d 2.
Si  m ul ati o n   r es ults   b as e d   o n   1 0 0   r u ns   ar e   s h o  w n   i n

Ta bl es  1 – 4  w h er e  t h e  p erf or  m a n c e    m e as ur es  ar e  F 1 -s c or e
a n d    H a  m  mi n g  dist a n c e  f or  ef fi c a c y  i n  e d g e  d et e cti o n.    All
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T  U  G  N AI T:   O  N   C  O  N  DI TI  O  N A L I  N  D E P E  N  D E  N C E   G R A P  H  L E A R  NI  N  G  F R  O  M   M  U L TI- A T T RI B  U T E   G A  U S SI A  N   D E P E  N  D E  N T  TI  M E  S E RI E S

FI  G  U  R E   1.  Tr u e l o g 1 0 ( f =  0: 0 .0 1: 5 |[S −  1 (f )]i j |), i,  j ∈  [ 2 5 6], f or  e xt e n d e d  gr a p h s f or  a  si n gl e   M o nt e   C arl o r u n:  m  p  =  4  ×  6 4  =  2 5 6   n o d e s.

T A  B L E  3.  M o d el  2:  F 1 S c or e s  a n d   H a  m  mi n g   Di st a n c e s   U si n g  L o g- S u  m

P e n alt y,   A v er a g e d   O v er  1 0 0   R u n s

T A  B L E  4.  M o d el  2,  V ar yi n g   A R   M o d el   Or d er:  V A R(  L )  a s i n ( 6 1),

L  ∈ { 1 , 2 , 3 , 4 }. F 1 S c or e s  a n d   H a  m  mi n g   Di st a n c e s   U si n g  L o g- S u  m   P e n alt y,

A v er a g e d   O v er  1 0 0   R u n s

al g orit h  ms   w er e  r u n  o n  a    Wi n d o  w  1 0  Pr o  o p er ati n g  s yst e  m
wit h  pr o c ess or I nt el(  R)   C or e( T  M) i 7- 1 0 7 0 0   C P  U   @ 2. 9 0  G  H z
wit h  3 2  G  B    R  A  M,  usi n g    M  A T L  A  B    R 2 0 2 3 a.    T h e  F 1 -s c or e
is d e fi n e d as F 1 =  2  ×  pr e cisi o n  ×  r e c all/ ( pr e cisi o n +  r e c all)
w h er e  pr e cisi o n  = | Ê  ∩  E 0 |/ |Ê |,  r e c all = | Ê  ∩  E 0 |/ |E 0 |,  a n d

E 0 a n d Ê  d e n ot e t h e tr u e a n d esti  m at e d e d g e s ets, r es p e cti v el y.
T h e   H a  m  mi n g  dist a n c e  is  b et  w e e n Ê  a n d  E 0 ,  s c al e d  b y  0. 5
t o  c o u nt  o nl y  disti n ct  e d g es.  F or  o ur  pr o p os e d  a p pr o a c h,   w e
c o nsi d er  M  =  4 f or t hr e e s a  m pl es si z es  n  ∈ { 1 2 8 , 2 5 6 , 1 0 2 4 }
i n   Ta bl e 1  f or   M o d el  1  a n d   Ta bl e 2  f or   M o d el  2.  F or M  =  4,
w e  us e d  K  =  2 m t +  1  =  1 5 , 3 1 , 1 2 7 f or  n  =  1 2 8 , 2 5 6 , 1 0 2 4,
r es p e cti v el y.   We fi x e d α  =  0 .0 5 a n d  λ  w as s el e ct e d b y s e ar c h-
i n g  o v er  a  gri d  of  v al u es  t o    m a xi  mi z e  t h e  F 1 -s c or e  ( o v er
1 0 0  r u ns),  or  vi a    BI  C  as  i n  S e cti o n  I  V-  A.    We  us e d  l ass o
( c o n v e x), l o g-s u  m ( n o n- c o n v e x,  =  0 .0 0 0 1)  or  S  C  A  D ( n o n-
c o n v e x,  a =  3. 7)  p e n alti es.    W h e n  λ ’s  ar e  pi c k e d t o   m a xi  mi z e
t h e F 1 s c or e, it is  s e e n t h at t h e l o g-s u  m  p e n alt y  o ut p erf or  ms
t h e  l ass o  a n d  t h e  S  C  A  D  p e n alti es  i n  b ot h   Ta bl e  1  (  M o d el
1)  a n d   Ta bl e  2  (  M o d el  2)  i n  t er  ms  of  t h e  F 1 -s c or e  as    w ell
as  t h e   H a  m  mi n g  dist a n c e,   w h er e as  t h e  S  C  A  D  p e n alt y  d o es
n ot   off er    m u c h  i  m pr o v e  m e nt   o v er  l ass o.    As   dis c uss e d  i n
R e  m ar k  2 ,  t h e  < c o n v e xit y =  r e gi o n  f or  t h e  l o g-s u  m  p e n alt y
is  li k el y  t o  b e    m u c h  l ar g er  t h a n  t h at  f or  S  C  A  D.    Wit h  t h e
l ass o  p e n alt y,  c o  m p ut ati o n al ti  m e is  cl os e t o  h alf  of t h at  f or
l o g-s u  m  or  S  C  A  D,   w hi c h is  n ot s ur prisi n g si n c e t h e l att er ar e
i niti ali z e d  usi n g  t h e  l ass o  r es ult  ( cf.  S e cti o n  I  V).    W h e n  λ ’s
ar e  pi c k e d  vi a   BI  C ( o nl y f or t h e l o g-s u  m  p e n alt y), t h er e is  a
dr o p i n t h e  F 1 s c or e a n d i n cr e as e i n t h e   H a  m  mi n g  dist a n c e as
c o  m p ar e d t o t h e  c as e   w h er e  λ ’s  ar e  pi c k e d t o   m a xi  mi z e t h e
F 1 s c or e.   T his is  d u e t o  err ors i n t h e   BI  C  p ar a  m et er s el e cti o n
m et h o d.

I n   Ta bl e 3  w e s h o  w t h e r es ults f or t h e l o g-s u  m  p e n alt y f or
M  =  2 , 3 , 4  a n d  6  wit h  λ  s el e ct e d t o   m a xi  mi z e t h e  F 1 -s c or e.
We t a k e  n  =  1 2 8 , 2 5 6 , 1 0 2 4 a n d t h e c orr es p o n di n g  m t v al u es
l e a di n g t o  diff er e nt M  v al u es  ar e  m t =  1 5 , 3 1 , 1 2 7 ( M  =  2),
m t =  9 , 2 0 , 8 4  ( M  =  3),  m t =  7 , 1 5 , 6 3  ( M  =  4),  a n d  m t =
4 , 1 0 , 4 2 ( M  =  6).   T h e n u  m b er of u n k n o  w n p ar a  m et ers b ei n g
esti  m at e d  ar e  O  (M  (m p  )2 )  f or  M  (m p  ) ×  (m p  ) k ’s.    We  s e e
t h at f or a  fi x e d n , at  first t h e p erf or  m a n c e c h a n g es o nl y a littl e
wit h i n cr e asi n g  M  , t h e n it d e cli n es   m or e s h ar pl y (M  =  4 t o  6)
as   m or e p ar a  m et ers  n e e d t o b e esti  m at e d   wit h i n cr e asi n g  M  .

I n   Ta bl e  4  w e  dis pl a y  s o  m e  n u  m eri c al  a bl ati o n  r es ults  b y
v ar yi n g t h e   A  R   m o d el  or d er.    We  us e  a   V A  R( L )   m o d el   wit h
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FI  G  U  R E   2.  P oll uti o n  gr a p h s f or t h e   B eiji n g  air- q u alit y   d at a s et  [ 2 4] f or  y e ar  2 0 1 3- 1 4:  8   m o nit ori n g  sit e s  a n d  1 1 f e at ur e s ( m  =  8,  p  =  1 1,  M  =  4,  n  =  3 6 4).

N u  m b er   of   di sti n ct  e d g e s  =  2 9  a n d  7 i n  gr a p h s ( a)  a n d ( b), r e s p e cti v el y.  E sti  m at e d ˆ (i j  M)
F i s t h e  e d g e   w ei g ht ( n or  m ali z e d t o   h a v e   m a x i=  j

ˆ (i j  M)
F =  1),

s e e  ( 2 0).  T h e  e d g e   w ei g ht s  ar e  c ol or  c o d e d, i n  a d diti o n t o t h e  e d g e s   wit h   hi g h er   w ei g ht s   b ei n g   dr a  w n t hi c k er.

L  ∈ { 1 , 2 , 3 , 4 },  gi v e n  b y

x (t ) =

L

i=  1

A ix (t −  i) +  w  (t ) ,  x (t ) ∈  R m p ,  ( 6 1)

w h er e  A i’s  ar e  pi c k e d  as  f or  ( 6 0)  a n d    w e  us e d    M o d el  2  t o
s p e cif y  t h e  pr e cisi o n    m atri x  of  w  (t ).    We  us e d  t h e  l o g-s u  m
p e n alt y  a n d  M  =  4.  It is  s e e n t h at t h e  r es ults  ar e  c o nsist e nt
a cr oss   m o d el  or d ers,  b ot h i n t er  ms  of t h e  F 1 s c or es  a n d t h e
H a  m  mi n g  dist a n c es.

B.    R E A L   D A T A:   B EIJI  N  G   AI R-  Q  U A LI T Y   D A T A S E T  [ 2 4]

H er e   w e c o nsi d er   B eiji n g air- q u alit y d at as et  [ 2 4], [ 2 5],  d o  w n-
l o a d e d   fr o  m   htt ps:// ar c hi v e.i cs. u ci. e d u/ d at as et/ 5 0 1/ b eiji n g +
m ulti +sit e + air + q u alit y + d at a.   T his  d at a s et i n cl u d es  h o url y air
p oll ut a nts d at a fr o  m 1 2 n ati o n all y- c o ntr oll e d air- q u alit y   m o n-
it ori n g  sit es  i n  t h e    B eiji n g  ar e a.    T h e  ti  m e  p eri o d  is  fr o  m
M ar c h  1st,  2 0 1 3  t o  F e br u ar y  2 8t h,  2 0 1 7.    T h e  si x  air  p ol-
l ut a nts  ar e  P  M2 .5 ,  P  M1 0 ,  S  O2 ,  N  O2 ,    C  O,  a n d    O3 ,  a n d  t h e
m et e or ol o gi c al  d at a  is  c o  m pris e d  of  û v e  f e at ur es:  t e  m p er a-
t ur e,  at  m os p h eri c  pr ess ur e,  d e  w  p oi nt,   wi n d  s p e e d,  a n d r ai n;
w e  di d  n ot  us e   wi n d  dir e cti o n.   T h us   w e  h a v e  el e v e n  (  =  p )
f e at ur es  ( p oll ut a nts  a n d    w e at h er   v ari a bl es).    We   us e d   d at a
fr o  m  8  (=  m  )  sit es:   C h a n g pi n g,   Di n gli n g,   H u air o u,  S h u n yi,
A oti z h o n g xi n,   D o n gsi,   G u a n y u a n,   G u c h e n g.   T h e  d at a ar e a v-
er a g e d o v er 2 4 h p eri o d t o yi el d d ail y a v er a g es  x i(t ), i ∈  [ 8 8].
We  us e d  o n e  y e ar  2 0 1 3- 1 4  of  d ail y  d at a r es ulti n g i n  n  =  3 6 5
d a ys.    We  pr e- pr o c ess e d t h e  d at a  as  f oll o  ws.   Gi v e n  x i(t ),   w e
tr a nsf or  m it t o  x̄ i(t ) =  l n(x i(t )/ x i(t −  1)) f or  e a c h  i (l e a ds t o
n  =  3 6 4),  a n d t h e n  d etr e n d it (i. e., r e  m o v e t h e  b est  str ai g ht-
li n e  ût).  Fi n all y,    w e  s c al e  t h e  d etr e n d e d  s c al ar  s e q u e n c e  t o
h a v e a   m e a n-s q u ar e  v al u e  of  o n e.   All t e  m p er at ur es   w er e c o n-
v ert e d  fr o  m   C elsi us t o   K el vi n t o  a v oi d  n e g ati v e  n u  m b ers.  If
a  v al u e  of  a  f e at ur e  is  z er o  ( e. g.,   wi n d  s p e e d),    w e  a d d e d  a

s  m all  p ositi v e  n u  m b er t o it  s o t h at t h e l o g tr a nsf or  m ati o n is
w ell- d e û n e d.

Fi g.  2  s h o  ws t h e   CI  Gs f or l ass o  a n d l o g-s u  m  p e n alti es f or
M  =  4    w h er e    wit h  α  =  0 .0 5,  λ  w as  s el e ct e d  vi a    BI  C:  a n

e d g es e xists iff ˆ (i j  M)
F >  0,  i, j ∈  [ 1 1].  T h e c orr es p o n di n g

h e at  m a ps  s h o  wi n g  esti  m at e d l o g 1 0 ( M
k =  1 |[ ˆ

k ]i j|2 ),  i, j ∈

[ 8 8]  ar e i n  Fi g.  3 .  It is  s e e n t h at l ass o  yi el ds  a   m u c h  d e ns er
gr a p h ( 2 9  e d g es)   w hil e t h e  gr a p h r es ulti n g fr o  m t h e l o g-s u  m
p e n alt y  is    m u c h  s p ars er  ( 7  e d g es).    C ol d,  dr y  air  fr o  m  t h e
n ort h  of   B eiji n g  r e d u c es  b ot h  d e  w  p oi nt  a n d  P  M 2 .5 p arti cl e
c o n c e ntr ati o n i n  s u b ur b a n  ar e as   w hil e  s o ut h erl y   wi n d  bri n gs
w ar  m er a n d   m or e h u  mi d air fr o  m t h e   m or e p oll ut e d s o ut h t h at
el e v at es  b ot h  d e  w  p oi nt  a n d  P  M 2 .5 c o n c e ntr ati o n  [ 2 4].  T his
f a ct is  c a pt ur e d  b y t h e  e d g e  b et  w e e n  d e  w  p oi nt  a n d  P  M 2 .5 i n
Fi g.  2 .

VII.    C  O  N C L  U SI  O  N

Esti  m ati o n of t h e   CI  G of hi g h- di  m e nsi o n al   m ulti v ari at e   G a us-
si a n  ti  m e  s eri es  fr o  m    m ulti- attri b ut e  d at a    w as  c o nsi d er e d.
We  pr o vi d e d  a  u ni û e d t h e or eti c al  a n al ysis  of   m ulti- attri b ut e
gr a p h  l e ar ni n g  f or  d e p e n d e nt  ti  m e  s eri es  usi n g  a  p e n ali z e d
l o g-li k eli h o o d  o bj e cti v e  f u n cti o n  i n  t h e  fr e q u e n c y- d o  m ai n.
B ot h  c o n v e x  a n d  n o n- c o n v e x  r e g ul ari z ati o n  f u n cti o ns    w er e
c o nsi d er e d.    We  est a blis h e d  s uf û ci e nt  c o n diti o ns  f or  c o nsis-
t e n c y, l o c al  c o n v e xit y   w h e n  usi n g  n o n- c o n v e x  p e n alti es,  a n d
gr a p h r e c o v er y.   O ur a p pr o a c h   w as ill ustr at e d usi n g n u  m eri c al
e x a  m pl es  utili zi n g b ot h s y nt h eti c a n d r e al (  B eiji n g air- q u alit y
d at as et)   d at a.    N o n- c o n v e x  l o g-s u  m   r e g ul ari z ati o n   yi el d e d
m or e a c c ur at e r es ults c o  m p ar e d t o c o n v e x s p ars e- gr o u p l ass o
or  n o n- c o n v e x  S  C  A  D  r e g ul ari z ati o n  f or  s y nt h eti c  d at a,  a n d
s p ars er gr a p h f or r e al d at a.

N o  w    w e  bri e ü y  o utli n e  s e v er al  a v e n u es  f or  f ut ur e    w or k
i n  t his  ar e a.    Alt h o u g h    w e  o bs er v e  e  m piri c all y  t h at  t h e  l o g-
s u  m  p e n alt y  si g ni û c a ntl y  o ut p erf or  ms  t h e  l ass o  p e n alt y,   w e
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FI  G  U  R E   3.  E sti  m at e d l o g 1 0 ( M
k =  1 |[ ˆ k ]i j |2 ), i,  j ∈  [ 8 8], f or t h e   B eiji n g  air- q u alit y   d at a s et (m  =  8,  p  =  1 1,  M  =  4,  n  =  3 6 4).  T h er e  ar e  p  =  1 1   n o d e s ( P  M 2 .5

l a b el e d  a s   n o d e  1,   P  M1 0 a s  2,  a n d  s o   o n,   m o vi n g  c o u nt er- cl o c k  wi s e i n  Fi g.  2 ),  e a c h  v ari a bl e s   m e a s ur e d  at  m  =  8  st ati o n s.

h a v e  n ot  pr o v e d it.   T his   w o ul d  b e  a t as k f or f ut ur e r es e ar c h.
T h e or e  m  1  s h o  ws  t h at  all  t hr e e  p e n alti es  c o nsi d er e d  yi el d
t h e s a  m e  as y  m pt oti c r at e  of  c o n v er g e n c e (s e e   R e  m ar k 1 )  a n d
h o  w  t his  r at e  is  i n ü u e n c e d  b y  v ari o us  c h os e n  p ar a  m et ers.
Ot h er    m o d el  s el e cti o n  a p pr o a c h es  als o  n e e d  t o  b e  i n v esti-
g at e d.  I n  [ 5 1]  a  st a bilit y  a p pr o a c h is  pr o p os e d  f or  gr a p hi c al
m o d eli n g   wit h i.i. d.  d at a  usi n g  a r a n d o  m  s a  m pli n g  a p pr o a c h
t o  pi c k t h e s  m all est r e g ul ari z ati o n  p ar a  m et er t h at <si  m ult a n e-
o usl y    m a k es  t h e  gr a p h  s p ars e  a n d  r e pli c a bl e  u n d er  r a n d o  m
s a  m pli n g.=  I n  o ur  c as e,  i n  t h e  fr e q u e n c y- d o  m ai n    w e  h a v e
M  m o d els,  e a c h   wit h  K  a p pr o xi  m at el y i.i. d.  c o  m pl e x- v al u e d
G a ussi a n   m e as ur e  m e nts  d x ( f̃k , ) (s e e  S e cti o n II– II-  A). I n  or-
d er  t o  a p pl y  t h e  a p pr o a c h  of  [ 5 1],   w e   w o ul d  s a  m pl e  i n  t h e
fr e q u e n c y- d o  m ai n.  Fi n all y,  s a  m pl e  c o  m pl e xit y  iss u es  b as e d
o n  i nf or  m ati o n-t h e or eti c   b o u n ds   n e e d  t o   b e  i n v esti g at e d.
B as e d  o n t h e r es ults  of  [ 5 2] f or i.i. d.  d at a,  [ 5 3] c o nsi d er  st a-
ti o n ar y   G a ussi a n  s e q u e n c es,  a n d  usi n g i nf or  m ati o n-t h e or eti c
m et h o ds,  [ 5 3]  d eri v e  a l o  w er  b o u n d  o n t h e  err or  pr o b a bilit y
of  a n y l e ar ni n g s c h e  m e f or t h e  u n d erl yi n g  pr o c ess   CI  G.   T his
b o u n d is t h e n us e d t o d eri v e a   mi ni  m u  m r e q uir e d s a  m pl e-si z e
w hi c h is  n e c ess ar y  f or  a n y  al g orit h  m  r e g ar dl ess  of its  c o  m-
p ut ati o n al  c o  m pl e xit y,  t o  r eli a bl y  s el e ct  t h e  tr u e  u n d erl yi n g
CI  G.   T h e   m o d el  r estri cti o ns i n  [ 5 3]  ar e   m or e  stri n g e nt t h a n
w e  c o nsi d er  h er e;  e. g., i nst e a d  of  o ur  ass u  m pti o n (  A 1),  [ 5 3]
n e e ds ∞

τ =  −  ∞ |τ | |[R x x (τ )]k | <  ∞  f or e v er y k ,  ∈ V̄  .

A P  P E  N  DI X

A.    P R  O  O F   O F  T  H E  O R E  M  1

O ur  pr o of r eli es  o n t h e   m et h o d  of  [ 4 8] w hi c h  d e als   wit h i.i. d.
ti  m e  s eri es    m o d els  a n d  l ass o  p e n alt y,  a n d  o ur  pri or  r es ults
i n  [ 1 0]  d e ali n g   wit h  s p ars e  gr o u p  l ass o  p e n alt y  a n d  si n gl e-
attri b ut e ti  m e s eri es.  Fr o  m n o  w o n   w e us e t h e t er  m <  wit h hi g h
pr o b a bilit y =  (  w. h. p.)  t o  d e n ot e   wit h  pr o b a bilit y  gr e at er  t h a n

1  −  1 / (m p n )τ −  2 .  First   w e r e c all   L e  m  m as 2  a n d  3  fr o  m [ 1 0],
r e pl a ci n g  p n t h er ei n   wit h m p n .

We d e n ot e  S 0 ( f̃k )  as S 0 k i n t his s e cti o n.
L e  m  m a  2:  [ 1 0,   L e  m  m a  3].   U n d er   Ass u  m pti o n (  A 1)-(  A 2),

Ŝ k s atis û es t h e t ail b o u n d

P  m a x
k ,q ,l

|[Ŝ k −  S 0 k ]ql | >  C 0
l n(m p n )

K n
≤

1

(m p n )τ −  2

f or  τ  >  2, if t h e  s a  m pl e  si z e  n  >  N 1 ,   w h er e C 0 is  d e û n e d i n
( 3 8) a n d  N 1 is d e û n e d i n ( 4 2).  •

L e  m  m a  3  d e als   wit h a   Ta yl or s eri es e x p a nsi o n   wit h i nt e gr al
r e  m ai n d er  usi n g   Wirti n g er c al c ul us [ 4 9].

L e  m  m a  3:  [ 1 0,    L e  m  m a  5].    Wit h  c ( k ,
∗
k ) =  l n | k |  +

l n | ∗
k | a n d k = 0 k + k = H

k , t h e   Ta yl or  s eri es  e x p a n-
si o n  of  c ( k ,

∗
k ) i n t h e i nt e gr al r e  m ai n d er f or  m is  gi v e n  b y

c ( k ,
∗
k ) =  c ( 0 k ,

∗
0 k ) +  tr( −  1

0 k k + − ∗
0 k

∗
k )

−  g H ( k )
1

0
( 1 −  v )H  ( 0 k , k , v ) d v  g ( k )   ( 6 2)

w h er e  v  is r e al,

g ( k ) =
v e c( k )
v e c( ∗

k )
,  H  ( 0 k , k , v ) =

H 1 1 k 0
0  H 2 2 k

( 6 3)

H 1 1 k =  ( 0 k +  v k )− ∗ ⊗  ( 0 k +  v k )−  1 ,  ( 6 4)

a n d

H 2 2 k =  ( 0 k +  v k )−  1 ⊗  ( 0 k +  v k )− ∗ •  ( 6 5)

We n o  w t ur n t o t h e pr o of of   T h e or e  m  1 .
Pr o of  of  T h e or e  m  1 : L et  = 0 +  w h er e

= 1  2 · · · M n ∈  C (m p n )×  (m p n M n ) ,  ( 6 6)
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k = k − 0 k ∈  C (m p n )×  (m p n ),  k  ∈  [M n ],  ( 6 7)

a n d k , 0 k ar e  b ot h   H er  miti a n  p ositi v e- d e fi nit e,  i  m pl yi n g

k = H
k .  L et

Q  (  ) := ¯L  (  ) − ¯L  ( 0 ) . ( 6 8)

T h e  esti  m at e ˆ
λ ,  d e n ot e d  b y ˆ h er e aft er s u p pr essi n g  d e p e n-

d e n c e u p o n  λ ,   mi ni  mi z es Q  (  ), or e q ui v al e ntl y, ˆ = ˆ − 0

mi ni  mi z es  G  (  ) :=  Q  ( 0 +  ).    We    will  f oll o  w  t h e  pr o of
of  [ 1 0,   T h e or e  m  1],    w hi c h,  i n  t ur n,  f oll o  ws  t h e    m et h o d  of
pr o of  of  [ 4 8,   T h e or e  m  1] p ert ai ni n g t o r e al- v al u e d i.i. d. ti  m e
s eri es.   C o nsi d er t h e s et

n (R  ) :=  : k = H
k ,  k  ∈  [M n ], F =  R r n ( 6 9)

w h er e  R  a n d  r n ar e  as i n  ( 4 0) a n d  ( 4 1), r es p e cti v el y.   O bs er v e
t h at

G  ( ˆ ) =  Q  ( 0 + ˆ ) f  G  (0 ) =  0  .  ( 7 0)

T h er ef or e, if   w e c a n s h o  w t h at

i nf{G  (  )  :  ∈ n (R  )}  >  0  ,  ( 7 1)

a   mi ni  mi z er ˆ m ust  b e i nsi d e t h e  s p h er e  d e fi n e d  b y n (R  ),
a n d  h e n c e

ˆ
F f  R r n . ( 7 2)

W h e n  G  (  ) is  c o n v e x  ( as   wit h t h e l ass o  p e n alt y), t h e   mi ni-
mi z er is gl o b al, els e it is l o c al.

Usi n g   L e  m  m a  3  w e r e  writ e  G  (  )  as

G  (  ) =

M n

k =  1

1

2
A 1 k +

1

2
A 2 k +  A 3 k +  A 4 ,  ( 7 3)

w h er e,  n oti n g t h at −  1
0 k =  S 0  k ,

A 1 k =  g H ( k )
1

0
( 1 −  v )H  ( 0 k , k , v ) d v  g ( k ) ,

( 7 4)

A 2 k =  tr  (Ŝ k −  S 0 k ) k +  (Ŝ k −  S 0 k )∗  ∗
k ,  ( 7 5)

A 3 k =  ³

m p n

i=  j

ρ λ [ 0 k + k ]i j −  ρ λ [ 0 k ]i j ,  ( 7 6)

A 4 =  ( 1 −  ³ )m
√

M

p n

q =

ρ λ
(q  M n )
0 + (q  M n )

F

−  ρ λ
(q  M n )
0 F , ( 7 7)

(q  M n )
0 := (q  )

1 , (q  )
2 ,  · · · , (q  )

M n
∈  C m  ×  (m  M n ) ,  ( 7 8)

(q  M n ) := (q  )
1 , (q  )

2 ,  · · · , (q  )
M n

∈  C m  ×  (m  M n ) .  ( 7 9)

Als o d e fi n e

A =  0 .5

M n

k =  1

A k ,  =  1 , 2 ,  A 3 =

M n

k =  1

A 3 k ,  ( 8 0)

a n d

d 1 n :=
l n(m p n )

K n
,  d 2 n :=  d 1 n m p n +  m 2 s n 0 .  ( 8 1)

T h e  b o u n ds  o n  A 1 k ’s  a n d A 1 f oll o  ws  e x a ctl y  as i n [ 1 0,   T h e o-
r e  m 1],   wit h t h e fi n al r es ult (s e e e q u ati o ns [ 1 0, (  B. 3 9)-(  B. 4 4)])

A 1 g
2
F

2  ´ −  1
mi n +  R r n

2
. ( 8 2)

T ur ni n g  t o  A 2 k ’s  a n d  A 2 ,  as i n [ 1 0,   T h e or e  m  1]  ( aft er  a c-
c o u nti n g  f or  t h e  f a ct  t h at  h er e    w e  h a v e Ŝ k ∈  C (m p n )×  (m p n )

w h er e as i n  [ 1 0], Ŝ k ∈  C p n ×  p n , a n d h er e   w e h a v e gr o u p p e n alt y
o n  gr o u ps  of  si z e  m 2 M n el e  m e nts    w h er e as  i n  [ 1 0],  gr o u p
si z e is M n ),   wit h  pr o b a bilit y >  1  −  1 / (m p n )τ −  2 ,  w e  h a v e t h e
b o u n d  [ 1 0, (  B. 5 1)]

|A 2 |  f C 0

M n

k =  1

d 1 n
−
k 1 +  d 2 n

+
k F ( 8 3)

a   w ell as t h e b o u n d  [ 1 0, (  B. 5 5)]

|A 2 |  f  m 2 M n C 0 d 1 n
˜ −

1 + ˜ +
1 ( 8 4)

w h er e ˜ ∈  R p n ×  p n h as its ( i, j)t h el e  m e nt ˜ i j = (i j  Mn )
F .

F or  t h e  r est  of  t h e  pr o of    w e  h a v e  t  w o  sli g htl y  diff er e nt
a p pr o a c h es, o n e f or l ass o a n d l o g-s u  m a n d t h e ot h er f or S  C  A  D
p e n alt y.   T h e f oll o  wi n g a p pli es t o l ass o a n d l o g-s u  m p e n alti es.

F or  L ass o  a n d  L o g- S u  m    Pe n alti es:  We  n o  w  b o u n d  A 3 k .
L et  E c

0 d e n ot e t h e  c o  m pl e  m e nt  of  E 0 ,  gi v e n  b y E
c
0 = {{  i, j}  :

(S −  1
0 ( f ))(i j) ≡  0 ,  i =  j,  i, j ∈  [ p n ],  f  ∈  [ 0, 0 .5] }.  Si  mil arl y,

l et Ē c
0 d e n ot e t h e  c o  m pl e  m e nt  of Ē 0 ,  gi v e n  b y Ē c

0 = {{  i, j}  :

[S −  1
0 ( f )]i j ≡  0 ,  i =  j,  i, j ∈  [m p n ],  f  ∈  [ 0, 0 .5] }.  F or  a n i n-

d e x   s et  B  a n d   a    m atri x  C  ∈  C q ×  q ,    w e    writ e  C B t o   d e-
n ot e  a    m atri x  i n  C q ×  q s u c h  t h at  [C B ]i j =  C i j if  (i, j) ∈  B  ,
a n d  [ C B ]i j =  0  if  ( i, j) ∈  B  .    T h e n −

k = −
k E 0

+ −
k E c

0
,  a n d

−
k 1 = −

k E 0
1 + −

k E c
0

1 .  We  h a v e

A 3 k =  ³

(i, j)∈ Ē 0

ρ λ [ 0 k + k ]i j −  ρ λ [ 0 k ]i j

+  ³

(i, j)∈ Ē c
0

ρ λ [ k ]i j

=  ³

(i, j)∈ Ē 0

ρ λ [ ˜
k ]i j |[ 0 k + k ]i j|  − |[ 0 k ]i j|

+  ³

(i, j)∈ Ē c
0

ρ λ [ k ]i j ( 8 5)

w h er e   w e  us e d  t h e    m e a n  v al u e  t h e or e  m  t o  i nf er  ρ λ ([ 0 k +

k ]i j ) =  ρ λ ([ 0 k ]i j )+  ρ λ ([ ˜
k ]i j )(|[ 0  k + k ]i j|  −

|[ 0  k ]i j|)  f or  s o  m e  |[ ˜
k ]i j|  = |[ 0 k ]i j|  + µ  (|[ 0 k

+ k ]i j|  − |[ 0 k ]i j|)   a n d  µ  ∈  [ 0, 1].    Usi n g   t h e   tri a n gl e
i n e q u alit y,  pr o p erti es ( vii)  a n d ( viii)  of t h e  p e n alt y f u n cti o ns,
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a n d C λ =  λ / 2,   w e h a v e

A 3 k g  −  ³

(i, j)∈ Ē 0

ρ λ [ ˜
k ]i j |[ k ]i j|

+  ³

(i, j)∈ Ē c
0

C λ |[ k ]i j|  f or  |[ k ]i j|  f ¶ λ ( 8 6)

g  −  ³ λ n

(i, j)∈ Ē 0

|[ k ]i j|  +
³ λ n

2
(i, j)∈ Ē c

0

|[ k ]i j|

=  ³ λ n
1

2
−
k Ē c

0
1 − −

k Ē 0
1 , ( 8 7)

l e a di n g t o (A 3 = M n
k =  1 A 3  k )

A 3 g  ³ λ n

M n

k =  1

1

2
−
k Ē c

0
1 − −

k Ē 0
1 .  ( 8 8)

Si  mil arl y, b y  ( 7 7),  w e  h a v e

A 4 g  ( 1 −  ³ )m
√

M n λ n

⎛

¿ 1

2
(q ,  )∈ E c

0

(q  M n )
F

−
(q ,  )∈ E 0

(q  M n )
F

À

⎠ . ( 8 9)

N o  w −
k Ē 0

1 f  m 2 s n 0
−
k Ē 0

F f  m 2 s n 0 k F ,  b y t h e

C a u c h y- S c h  w ar z i n e q u alit y,  h e n c e

M n

k =  1

−
k Ē 0

1 f  M n m 2 s n 0 F .  ( 9 0)

S et −
k 1 = −

k Ē 0
1 + −

k Ē c
0

1 i n A 2 of  ( 8 3) t o  d e d u c e t h at

w. h. p.

³ A 2 +  A 3 g  −  ³ |A 2 |  + A 3

g  ³ ( 0.5 λ n −  C 0 d 1 n )

M n

k =  1

−
k Ē c

0
1

−  ³ (C 0 d 1 n +  λ n )

M n

k =  1

−
k Ē 0

1 −  ³ C 0 d 2 n

M n

k =  1

+
k F

g  −  ³  (C 0 d 1 n +  λ n )  m 2 s n 0 +  C 0 d 2 n

√
M n  F

g  −  ³  m
√

s n 0 λ n +  2 C 0 d 2 n

√
M n  F ( 9 1)

w h er e    w e   h a v e   us e d  t h e  f a ct  t h at   0  .5 λ n g  C 0 d 1 n =  λ n  / 2

(s e e ( 4 6)), ( 9 0), M n
k =  1

+
k F f

√
M n  F ( b y t h e   C a u c h y-

S c h  w ar z  i n e q u alit y),  a n d  t h e  b o u n d
√

s n 0 m d 1 n f  d 2 n .  N o  w
us e  A 2 of  ( 8 4) t o d e d u c e t h at   w. h. p.

( 1 −  ³ )A 2 +  A 4 g  −  ( 1 −  ³ )|A 2 |  + A 4

g  ( 1 −  ³ )m
√

M n ( 0.5 λ n −  C 0 d 1 n )
(q ,  )∈ E c

0

(q  M n )
F

−  ( 1 −  ³ )m
√

M n

⎛

¿ (C 0 d 1 n +  λ n )
(q ,  )∈ E 0

(q  M n )
F

+  C 0 d 1 n

p n

q =  =  1

(q  M n )

F

À

⎠

g  −  ( 1 −  ³ )
√

M n  F m 2 s n 0 λ n

+  C 0 d 1 n m
√

s n 0 +
√

p n

g  −  ( 1 −  ³ )  m
√

s n 0 λ n +  C 0 ( 1 +  m  )d 2 n

√
M n  F ( 9 2)

w h er e    w e  h a v e  us e d  t h e  f a cts  t h at  0  .5 λ n g  C 0 d 1 n =  λ n / 2,

(q ,  )∈ E 0

(q  M n )
F f

√
s n 0 F a n d p n

q =  =  1
(q  M n )

F

f
√

p n  F b y  t h e    C a u c h y- S c h  w ar z  i n e q u alit y,   a n d  t h e
b o u n ds

√
s n 0 m d 1 n f  d 2 n a n d

√
p n m d 1 n f  m d 2 n .

Fr o  m  ( 9 1) a n d  ( 9 2), aft er s o  m e si  m pli fi c ati o ns,   w e h a v e

A 2 +  A 3 +  A 4 g  −  m
√

s n 0 λ n +  C 0 ( 1 +  m  )d 2 n

×
√

M n  F ( 9 3)

w h er e   w e  us e d t h e  b o u n d  2  d 2 n f  ( 1 +  m  )d 2 n .  B y ( 4 1), ( 4 7)
a n d  ( 4 8), λ n is c h os e n t o s atisf y

λ n f  λ n u 1 =
C 0 ( 1 +  m  )

m
√

s n 0 M n
r n .  ( 9 4)

N oti n g t h at  r n =
√

M n d 2 n ,  w e  h a v e

A 2 +  A 3 +  A 4 g  −  2 C 0 ( 1 +  m  )r n  F .  ( 9 5)

Usi n g  ( 7 3), ( 8 2) a n d  ( 9 5), a n d F =  R r n ,   w e h a v e   w. h. p.

G  (  ) g 2
F

1

2( ´ −  1
mi n +  R r n )2

−
2 C 0 ( 1 +  m  )

R
.  ( 9 6)

F or t h e  gi v e n  c h oi c e  of  N 2 , R r n f  R r N 2 f  0 .1 / ´ mi n f or  n  g
N 2 .  Als o,  2C 0 ( 1 +  m  )/ R  =  ´ 2

mi n / 4  b y  ( 4 0).   T h e n f or n  g  N 2 ,

1

2( ´ −  1
mi n +  R r n )2

−
2 C 0 ( 1 +  m  )

R
g  ´ 2

mi n

1

2 .4 2
−

1

4
>  0  ,

i  m pl yi n g G  (  ) >  0.   T his  pr o v es  ( 4 9).   T h e  c h oi c e  of N 3 f or
l o g-s u  m p e n alt y e ns ur es t h at |[ k ]i j|  f ¶ λ =  n e e d e d i n  ( 8 6)
is s atis fi e d   w. h. p.: if R r n f  , t h e n |[ k ]i j|  f F f  R r n f
.
T h e f oll o  wi n g a p pli es t o t h e  S  C  A  D p e n alt y.
F or S  C A  D   Pe n alt y:  H er e   w e a d dr ess  ( 8 5) diff er e ntl y.   Usi n g

tri a n gl e i n e q u alit y,   w e h a v e

|[ ˜
k ]i j|  g |[ 0 k ]i j|  + µ  |[ 0 k ]i j|  − |[ k ]i j|  − |[ 0 k ]i j|

g |  [ 0 k ]i j|  − |[ k ]i j| . ( 9 7)

Si n c e  |[ k ]i j|  f F f  R r n ,  t h e  c h oi c e λ n =  λ n u 2 i  m pli es
t h at λ n g  R r n , s atisf yi n g |[ k ]i j|  f λ n .   T h er ef or e, |[ ˜

k ]i j|  g
|[ 0 k ]i j|  − λ n .  F or  n  g  N 4 ,  ρ λ (|[ ˜

k ]i j|) =  0   (s e e  ( 4 5)  if
{i, j}  ∈ Ē 0 , i. e, [ 0 k ]i j =  0, si n c e i n t his c as e  |[ ˜

k ]i j|  g (a  +
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1) » n −  » n =  a » n .   T h er ef or e, f or n  g  N 4 ,

A 3 k =  ³

(i, j)( Ē c
0

ρ » [ k ]i j

g  ³

(i, j)( Ē c
0

C » |[ k ]i j|  f or  |[ k ]i j|  f δ »

=  ³ (» n / 2)
−
k Ē c

0
1 ( 9 8)

l e a di n g t o (A 3 = M n
k =  1 A 3  k )

A 3 g  ³  (» n / 2)

M n

k =  1

−
k Ē c

0
1 .  ( 9 9)

Mi  mi c ki n g  t h e  st e ps  f or  b o u n di n g  A 3 a b o v e  a n d  u n d er  t h e
s a  m e c o n diti o ns,   w e h a v e

A 4 g  ( 1 −  ³ )m
√

M n (» n / 2)
(q ,  )( E c

0

(q  M n )
F .  ( 1 0 0)

T h us   w. h. p.

³ A 2 +  A 3 g  −  ³ |A 2 |  + A 3

g  ³ ( 0.5 » n −  C 0 d 1 n )

M n

k =  1

−
k Ē c

0
1

−  ³ C 0 d 1 n

M n

k =  1

−
k Ē 0

1 −  ³ C 0 d 2 n

M n

k =  1

+
k F

g  −  ³  C 0 d 1 n m 2 s n 0 +  C 0 d 2 n

√
M n  F

g  −  ³ 2 C 0 d 2 n

√
M n  F ( 1 0 1)

w h er e  w e  h a v e  us e d  ( 9 0), M n
k =  1

+
k F f

√
M n  F ( b y

t h e   C a u c h y- S c h  w ar z i n e q u alit y), t h e b o u n d
√

s n 0 m d 1 n f  d 2 n ,
a n d t h e f a ct si n c e » n =  m a x(  R r n ,  »n u 1 ) i n  T h e or e  m 1 ,  0.5 » n −
C 0 d 1 n g  0  a n d  t h er ef or e,  t h e  t er  m  i n v ol vi n g  0 .5 » n −  C 0 d 1 n

a b o v e  c a n  b e  n e gl e ct e d.   B y  v er y  si  mil ar  ar g u  m e nts   w e  als o
h a v e

( 1 −  ³ )A 2 +  A 4 g  −  ( 1 −  ³ )|A 2 |  + A 4

g  ( 1 −  ³ )m
√

M n ( 0.5 » n −  C 0 d 1 n )
(q ,  )( E c

0

(q  M n )
F

−  ( 1 −  ³ )m
√

M n

⎛

¿ C 0 d 1 n

(q ,  )( E 0

(q  M n )
F

+  C 0 d 1 n

p n

q =  =  1

(q  M n )
F

À

⎠

g  −  ( 1 −  ³ )
√

M n  F C 0 d 1 n m  (
√

s n 0 +
√

p n )

g  −  ( 1 −  ³ )C 0 ( 1 +  m  )d 2 n

√
M n  F ( 1 0 2)

w h er e    w e   h a v e   us e d   t h e   f a cts   t h at   0  .5 » n g  C 0 d 1 n =
» n / 2, (q ,  )( E 0

(q  M n )
F f

√
s n 0 F a n d

p n
q =  =  1

(q  M n )
F f

√
p n  F b y  t h e    C a u c h y- S c h  w ar z

i n e q u alit y, a n d t h e b o u n ds
√

s n 0 m d 1 n f  d 2 n a n d
√

p n m d 1 n f
m d 2 n .  Fr o  m ( 1 0 1) a n d  ( 1 0 2) w e h a v e

A 2 +  A 3 +  A 4 g  −  C 0 ( 1 +  m  )d 2 n

√
M n  F

g  −  C 0 ( 1 +  m  )r n  F ( 1 0 3)

w h er e  w e  us e d  r n =
√

M n d 2 n a n d  t h e  b o u n d  2 d 2 n f  ( 1 +
m  )d 2 n .    Mi  mi c ki n g ( 9 6),  wit h  pr o b a bilit y >  1  −  1 / (m p n )τ −  2 ,
w e h a v e

G  (  ) g 2
F

1

2( ´ −  1
mi n +  R r n )2

−
C 0 ( 1 +  m  )

R

g  ´ 2
mi n

1

2 .4 2
−

1

8
>  0  , ( 1 0 4)

i  m pl yi n g G  (  ) >  0.   T his pr o v es  ( 4 9).  F or t h e  S  C  A  D p e n alt y,
w e  n e e d  |[ k ]i j|  f δ » =  » n i n ( 9 8).  Si n c e |[ k ]i j|  f F f
R r n ,  t h e  c h oi c e » n =  » n u 2 i  m pli es  t h at  » n g  R r n ,  s atisf yi n g
|[ k ]i j|  f » n .   T his c o  m pl et es t h e pr o of.

B.    P R  O  O F S   O F  L E  M  M A  1  A  N  D  T  H E  O R E  M S  1  A  N  D  3

Pr o of of L e  m  m a 1:  C o nsi d er  L  (  ) − ¼
2

2
F f or s o  m e ¼  g  0.

B y  [ 1 0,   L e  m  m a  4],  usi n g    Wirti n g er  c al c ul us, t h e   H essi a n  of
L  (  )   w.r.t.

y  =  ( v e c( 1 ))  ,  ( v e c( ∗
1 ))  ,  · · · ,

( v e c( M n ))  ,  ( v e c( ∗
M n

))  (  C 2 m 2 p 2
n M n

is gi v e n  b y

' 2 L  (  ) =  bl o c k- di a g − ∗
1 ⊗ −  1

1 , −  1
1 ⊗ − ∗

1 ,  · · · ,

− ∗
M n

⊗ −  1
M n

, −  1
M n

⊗ − ∗
M n

( 1 0 5)

wit h

φ mi n (' 2 L  (  )) =  mi n
k

φ 2
mi n ( −  1

k ) =
1

m a x k φ 2
m a x ( k )

=
1

m a x k  k
2

g  ´ 2
mi n .  ( 1 0 6)

Si n c e   w e  h a v e 2
F = 1

2 y H y , t h e   H essi a n  of 2
F w.r.t.  y  is

gi v e n  b y

' 2  2
F =  I 2 m 2 p 2

n M n
. ( 1 0 7)

It f oll o  ws fr o  m ( 1 0 6) a n d  ( 1 0 7) t h at L  (  ) − ¼
2

2
F is  p osi-

ti v e s e  mi- d e fi nit e, h e n c e c o n v e x, if

k f
2

¼
∀ k  (  [M n ] .  ( 1 0 8)

B y pr o p ert y ( v) of t h e p e n alt y f u n cti o ns,  g (u ) :=  ρ » (u ) + ¼
2 u 2

is  c o n v e x,  f or  s o  m e  ¼  g  0,  a n d  b y  pr o p ert y  (ii),  it  is  n o n-
d e cr e asi n g  o n  R + .   T h er ef or e,  b y t h e  c o  m p ositi o n  r ul es [ 5 0,
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S e c. 3. 2. 4] , g (|[ k ]i j|) a n d g (
(q  M n )

F ) ar e c o n v e x.   H e n c e,

P e (  ) +
¼ e

2
2
F =

M n

k =  1

m p

i=  j

ρ » (  [ k ]i j ) +
¼ e

2
[ k ]i j

2

( 1 0 9)

is c o n v e x f or ¼ e =  ¼  g  0, a n d si  mil arl y,

P g (  ) +
¼ g

2
2
F =  m

√
M n

M n

k =  1

p

q =

ρ » ( (q  M n )
F )

+
¼ g

2 m
√

M n

(q  M n )  2
F ( 1 1 0)

is c o n v e x f or ¼ g =  m
√

M n ¼  ,   w h er e ¼  is t h e v al u e t h at r e n d ers
ρ » (u ) + ¼

2 u 2 c o n v e x.   N o  w e x pr ess ¯L  (  )  as

¯L  (  ) =  ³ ¯L e (  ) +  ( 1 −  ³ ) ¯L g (  ) , ( 1 1 1)

¯L e (  ) =  L  (  ) −
¼

2
2
F +  P e (  ) +

¼

2
2
F ,  ( 1 1 2)

¯L g (  ) =  L  (  ) −
¼

2
2
F +  P g (  ) +

¼

2
2
F .  ( 1 1 3)

B y  ( 1 0 8), ( 1 0 9) a n d  ( 1 1 2), ¯L e (  ) is c o n v e x f u n cti o n  of  if

k f
2

¼
∀ k  ∈  [M n ] ,  ( 1 1 4)

a n d b y  ( 1 0 8), ( 1 1 0) a n d  ( 1 1 3), ¯L g (  ) is  c o n v e x i n  if

k f
2

¼ g
=

2

m  ¼
√

M n
∀ k  ∈  [M n ] .  ( 1 1 5)

T h us,  f or ¯L  (  )  t o  b e  stri ctl y  c o n v e x,  usi n g  t h e  (  mi ni  m u  m)
v al u es  of  ¼  t o   m a k e ρ » (u ) + ¼

2 u 2 c o n v e x,   w e r e q uir e

k <
2

m  ¼
√

M n
∀ k  ∈  [M n ]

=

§
ªª̈

ªª©

∞  :    L ass o
2( a −  1)
m

√
M n

:  S  C  A  D

2
m

√
M n » n

:   l o g-s u  m,

( 1 1 6)

T h e  c h oi c e k < 2
m  ¼

√
M n

m a k es  L  (  ) − ¼
2

2
F p os-

iti v e   d e fi nit e,   h e n c e   stri ctl y   c o n v e x.    We   t a k e k =

0 .9 9 2
m  ¼

√
M n

, c o  m pl eti n g t h e pr o of.

Pr o of   of   T h e or e  m  2 :  If   1/ ´ mi n f  0 .9 9 2
m  ¼

√
M n

,   t h e n

0 k ∈  B k si n c e 0 k =  1 / φ mi n (S 0 k ) f  1 / ´ mi n b y  ass u  m p-
ti o n (  A 4).   T o  est a blis h t h at ˆ

k ∈  B k ,  c o nsi d er (  is  as i n t h e
pr o of of   T h e or e  m  1 )

ˆ
k f ˆ

k − 0 k + 0 k

f  +  1 / ´ mi n f F +  1 / ´ mi n

f  R r n +  1 / ´ mi n . ( 1 1 7)

T h er ef or e, ˆ
k ∈  B k .   T h us,  b ot h ˆ

k a n d 0 k ,  h e n c e ˆ
» a n d

0 , r es p e cti v el y,  ar e f e asi bl e.   T h e  d esir e d r es ult t h e n f oll o  ws
fr o  m   T h e or e  m  1  a n d  (l o c al)  stri ct  c o n v e xit y  of ¯L  (  )  o v er
∩ M n

k =  1 B k i  m pli e d b y   L e  m  m a 1 .

Pr o of   of   T h e or e  m  3 :  We   h a v e ˆ (q  M n )
− (q  M n )

0 F f
ˆ − 0 F f  σ̄ n w. h. p.  F or t h e e d g e  {q ,  }  ∈ E 0 ,  w e  h a v e

ˆ (q  M n )
F = (q  M n )

0 + ˆ (q  M n )
− (q  M n )

0 F

g (q  M n )
0 F − ˆ (q  M n )

− (q  M n )
0 F

g  ½  −  σ̄ n g  0 .6  ½  f or  n  g  N 5

>  µ n . ( 1 1 8)

T h us,  E 0 ⊆ Ê .   N o  w c o nsi d er t h e s et c o  m pl e  m e nts E c
0 a n d Ê c .

F or t h e e d g e  {q ,  }  ∈ E c
0 , (q  M n )

0 F =  0.  F or  n  g  N 5 ,   w. h. p.
w e h a v e

ˆ (q  M n )
F f (q  M n )

0 F + ˆ (q  M n )
− (q  M n )

0 F

f  0  +  σ̄ n f  0 .4  ½  <  µ n , ( 1 1 9)

i  m pl yi n g t h at {q ,  }  ∈ Ê c
0 .   T h us, E c

0 ⊆ Ê c ,  h e n c e Ê  ⊆  E 0 ,  es-

t a blis hi n g Ê  =  E 0 .
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of  gr a p hi c al    m o d els,=  I E E E   Tr a ns.    A ut o  m.    C o ntr ol,  v ol.  5 8,  n o.  5,
p p. 1 1 6 7 – 1 1 7 8,   M a y 2 0 1 3.

[ 1 5]    D.    Al p a g o,    M.    Z or zi,  a n d    A.  F err a nt e,  <I d e nti fi c ati o n  of  s p ars e  r e-
ci pr o c al  gr a p hi c al    m o d els,=  I E E E   C o ntr ol  S yst.  L ett.,  v ol.  2 2,  n o.  4,
p p. 6 5 9 – 6 6 4,   O ct. 2 0 1 8.
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[ 1 6]   J.   S o n gsiri  a n d    L.    Va n d e n b er g h e,  < T o p ol o g y  s el e cti o n  i n  gr a p hi c al
m o d els  of  a ut or e gr essi v e  pr o c ess es,=  J.    M a c h.  L e ar n.    R es. ,  v ol.  1 1,
p p. 2 6 7 1 – 2 7 0 5,   O ct. 2 0 1 0.

[ 1 7]   J.    Yo u,   C.    Yu,  J.  S u n,  a n d  J.   C h e n,  <  G e n er ali z e d    m a xi  m u  m  e ntr o p y
b as e d i d e nti û c ati o n of gr a p hi c al   A  R  M  A   m o d els,=  A ut o  m ati c a , v ol. 1 4 1,
2 0 2 2,   Art. n o. 1 1 0 3 1 9.

[ 1 8]   S.   B as u  a n d    G.    Mi c h aili dis,  <  R e g ul ari z e d  esti  m ati o n  i n  s p ars e  hi g h-
di  m e nsi o n al   ti  m e   s eri es    m o d els,=  A n n.   St atist. ,   v ol.   4 3,   n o.   4,
p p. 1 5 3 5 – 1 5 6 7, 2 0 1 5.

[ 1 9]    M.   K ol ar,   H.   Li u, a n d  E. P.   Xi n g, <  Gr a p h esti  m ati o n fr o  m   m ulti- attri b ut e
d at a,=  J.   M a c h.  L e ar n.   R es. , v ol. 1 5, p p. 1 7 1 3 – 1 7 5 0, 2 0 1 4.

[ 2 0]   J.    K.    T u g n ait,  < S p ars e- gr o u p  l ass o  f or   gr a p h  l e ar ni n g  fr o  m    m ulti-
attri b ut e  d at a,=  I E E E  Tr a ns.  Si g n al   Pr o c ess.,  v ol.  6 9,  p p. 1 7 7 1 – 1 7 8 6,
2 0 2 1.

[ 2 1]    G.   M arj a n o vi c a n d   V.  S ol o, <  Ve ct or l0 s p ars e c o n diti o n al i n d e p e n d e n c e
gr a p hs,= i n  Pr o c. I E E E I nt.   C o nf.   A c o ust., S p e e c h Si g n al   Pr o c ess. , 2 0 1 8,
p p. 2 7 3 1 – 2 7 3 5.

[ 2 2]    Z.   Yu e, P. S u n d ar a  m, a n d   V. S ol o, < F ast bl o c k-s p ars e esti  m ati o n f or v e c-
t or n et  w or ks,= i n Pr o c. I E E E I nt.   C o nf.   A c o ust., S p e e c h Si g n al   Pr o c ess.  ,
2 0 2 0, p p. 5 5 1 0 – 5 5 1 4.

[ 2 3]   P. S u n d ar a  m,   M.   L u essi,   M.   Bi a n ci ar di, S. St uf ü e b e a  m,   M.   H ä  m äl äi n e n,
a n d   V.  S ol o,  <I n di vi d u al r esti n g-st at e  br ai n  n et  w or ks  e n a bl e d  b y   m as-
si v e    m ulti v ari at e  c o n diti o n al    m ut u al  i nf or  m ati o n,=  I E E E  Tr a ns.    M e d.
I  m a g., v ol. 3 9, n o. 6, p p. 1 9 5 7 – 1 9 6 6, J u n. 2 0 2 0.

[ 2 4]   S.   Z h a n g,   B.   G u o,   A.   D o n g, J.   H e,   Z.   X u, a n d  S.   X.   C h e n, <  C a uti o n ar y
t al es o n air- q u alit y i  m pr o v e  m e nt i n   B eiji n g,= Pr o c.  R o y. S o c.  A , v ol. 4 7 3,
2 0 1 7,   Art. n o. 2 0 1 7 0 4 5 7.

[ 2 5]    W.   C h e n, F.   Wa n g,   G.   Xi a o, J.   W u, a n d S.   Z h a n g, <  Air q u alit y of   B eiji n g
a n d  i  m p a cts  of  t h e  n e  w  a  m bi e nt  air  q u alit y  st a n d ar d,=  At  m os p h er e ,
v ol. 6, p p. 1 2 4 3 – 1 2 5 8, 2 0 1 5.

[ 2 6]   J.  Fri e d  m a n,   T.   H asti e,  a n d   R.   Ti bs hir a ni,  <  A  n ot e  o n t h e  gr o u p l ass o
a n d a s p ars e gr o u p l ass o,= J a n. 2 0 1 0,  ar Xi v: 1 0 0 1. 0 7 3 6 v 1 .

[ 2 7]    N.  Si  m o n,  J.  Fri e d  m a n,   T.   H asti e,  a n d   R.   Ti bs hir a ni,  <  A  s p ars e- gr o u p
l ass o,= J.   C o  m p ut.   Gr a p hi c al St atist. , v ol. 2 2, p p. 2 3 1 – 2 4 5, 2 0 1 3.

[ 2 8]   J.  F a n  a n d   R.   Li,  <  Vari a bl e  s el e cti o n  vi a  n o n c o n c a v e  p e n ali z e d  li k e-
li h o o d   a n d  its   or a cl e   pr o p erti es,=  J.    A  m er.   St at.    Ass o c. ,   v ol.   9 6,
p p. 1 3 4 8 – 1 3 6 0,   D e c. 2 0 0 1.

[ 2 9]    C.    L a  m   a n d   J.   F a n,   < S p arsist e n c y   a n d   r at es   of   c o n v er g e n c e   i n
l ar g e  c o v ari a n c e    m atri x  esti  m ati o n,=  A n n.  St atist. ,  v ol.  3 7,  n o.  6  B,
p p. 4 2 5 4 – 4 2 7 8, 2 0 0 9.

[ 3 0]    R. J.   W olst e n h ol  m e a n d   A.   T.   Wal d e n, <  A n ef û ci e nt a p pr o a c h t o gr a p h-
i c al    m o d eli n g  of  ti  m e  s eri es,=  I E E E  Tr a ns.  Si g n al   Pr o c ess.,  v ol.  6 3,
n o. 1 2, p p. 3 2 6 6 – 3 2 7 6, J u n. 2 0 1 5.

[ 3 1]    D.  S c h n ei d er- L uft  m a n,  <p - v al u e  c o  m bi n ers f or  gr a p hi c al   m o d elli n g  of
E E  G  d at a  i n  t h e  fr e q u e n c y  d o  m ai n,=  J.   N e ur os ci.    M et h o ds ,  v ol.  2 7 1,
p p. 9 2 – 1 0 6, 2 0 1 6.

[ 3 2]    Y.   M ats u d a, <  A t est st atisti c f or gr a p hi c al   m o d elli n g of   m ulti v ari at e ti  m e
s eri es,= Bi o  m etri k a , v ol. 9 3, n o. 2, p p. 3 9 9 – 4 0 9, 2 0 0 6.

[ 3 3]   J.   K.  T u g n ait, < E d g e e x cl usi o n t ests f or gr a p hi c al   m o d el s el e cti o n:   C o  m-
pl e x   G a ussi a n  v e ct ors  a n d ti  m e  s eri es,=  I E E E  Tr a ns.  Si g n al   Pr o c ess.,
v ol. 6 7, n o. 1 9, p p. 5 0 6 2 – 5 0 7 7,   O ct. 2 0 1 9.

[ 3 4]   J.  S o n gsiri,  J.   D a hl,  a n d   L.   Va n d e n b er g h e,  <  Gr a p hi c al    m o d els  of  a u-
t or e gr essi v e  pr o c ess es,=  i n  C o n v e x   O pti  miz ati o n  i n  Si g n al   Pr o c essi n g
a n d   C o  m  m u ni c ati o ns ,   Y.   El d ar a n d   D.  P al o  m ar   E ds.,   C a  m bri d g e,   U.  K.:
C a  m bri d g e   U ni v.  Pr ess, 2 0 0 9, p p. 8 9 – 1 1 6.

[ 3 5]    M.    Ei c hl er,  <  Gr a p hi c al    m o d elli n g  of  d y n a  mi c  r el ati o ns hi ps  i n    m ul-
ti v ari at e  ti  m e  s eri es,=  i n  H a n d b o o k  of  Ti  m e  S eri es   A n al ysis:   R e c e nt
T h e or eti c al    D e v el o p  m e nts  a n d   A p pli c ati o ns ,   B.  S c h elt er,    M.    Wi nt er-
h al d er,  a n d J.   Ti  m  m er,   E ds.,   N e  w   Yor k,   N  Y,   U S  A:    Wil e y-  V  C  H,  2 0 0 6,
p p. 3 3 5 – 3 7 2.

[ 3 6]    M.   Ei c hl er,  <  Gr a p hi c al   m o d elli n g  of   m ulti v ari at e ti  m e  s eri es,=  Pr o b a-
bilit y  T h e or y   R el at e d   Fi el ds , v ol. 1 5 3, n o. 1/ 2, p p. 2 3 3 – 2 6 8, J u n. 2 0 1 2.

[ 3 7]   J.   K.   T u g n ait, <  Gr a p h l e ar ni n g fr o  m   m ulti v ari at e  d e p e n d e nt ti  m e s eri es
vi a  a    m ulti- attri b ut e  f or  m ul ati o n,=  i n  Pr o c.  I E E E  I nt.    C o nf.   A c o ust.,
S p e e c h Si g n al   Pr o c ess. ,  2 0 2 2, p p. 4 5 0 8 – 4 5 1 2.

[ 3 8]   J.    K.    T u g n ait,   < S p ars e- gr o u p   n o n- c o n v e x   p e n ali z e d    m ulti- attri b ut e
gr a p hi c al    m o d el  s el e cti o n,=  i n  Pr o c.  2 9t h   E ur.  Si g n al   Pr o c ess.   C o nf. ,
2 0 2 1, p p. 1 8 5 0 – 1 8 5 4.

[ 3 9]    H.   Z o u a n d   R.   Li, <  O n e-st e p s p ars e esti  m at es i n  n o n c o n c a v e  p e n ali z e d
li k eli h o o d   m o d els,= A n n. St atist. , v ol. 3 6, n o. 4, p p. 1 5 0 9 – 1 5 3 3, 2 0 0 8.

[ 4 0]   J.   K.   T u g n ait, <  C o n diti o n al i n d e p e n d e n c e  gr a p h esti  m ati o n fr o  m   m ulti-
attri b ut e  d e p e n d e nt  ti  m e  s eri es,=  i n  Pr o c.  I E E E  3 4t h  I nt.    W or ks h o p
M a c h.  L e ar n. Si g n al   Pr o c ess.  ,  2 0 2 4, p p. 1 – 6.

[ 4 1]   P.- L.    L o h  a n d    M.  J.    Wai n  wri g ht,  < S u p p ort  r e c o v er y    wit h o ut  i n c o-
h er e n c e:   A  c as e  f or  n o n c o n v e x  r e g ul ari z ati o n,=  A n n.  St atist. ,  v ol.  4 5,
p p. 2 4 5 5 – 2 4 8 2, 2 0 1 7.

[ 4 2]    D.   R.   Brilli n g er, Ti  m e  S eri es:   D at a   A n al ysis  a n d  T h e or y ,   E x p a n d e d e d.
N e  w   Yor k,   N  Y,   U S  A:   M c  Gr a  w   Hill, 1 9 8 1.

[ 4 3]    M.   Yu a n a n d   Y.   Li n, <  M o d el s el e cti o n a n d esti  m ati o n i n r e gr essi o n   wit h
gr o u p e d  v ari a bl es,=  J.   R o y.  St at.  S o c.  S er.   B,  St at.    M et h o d ol. ,  v ol.  6 8,
n o. 1, p p. 4 9 – 6 7, 2 0 0 6.

[ 4 4]   S.   B o y d,   N. P ari k h,   E.   C h u,   B. P el e at o, a n d J.   E c kst ei n, <  Distri b ut e d o p-
ti  mi z ati o n a n d st atisti c al l e ar ni n g vi a t h e alt er n ati n g dir e cti o n   m et h o d of
m ulti pli ers,=  F o u n d ati o ns Tr e n ds   M a c h. L e ar n. , v ol. 3, n o. 1, p p. 1 – 1 2 2,
2 0 1 0.

[ 4 5]    B.   Z h a o,   Y.  S.    Wa n g,  a n d    M.   K ol ar,  < F u  D  G E:   A   m et h o d t o  esti  m at e
a f u n cti o n al  diff er e nti al  gr a p h i n  a  hi g h- di  m e nsi o n al s etti n g,=  J.   M a c h.
L e ar n.   R es. , v ol. 2 3, p p. 1 – 8 2, 2 0 2 2.

[ 4 6]   P.    R a vi k u  m ar,    M.  J.    Wai n  wri g ht,    G.    R as k utti,   a n d    B.    Yu,   <  Hi g h-
di  m e nsi o n al  c o v ari a n c e  esti  m ati o n  b y    mi ni  mi zi n g 1 - p e n ali z e d  l o g-
d et er  mi n a nt di v er g e n c e,=  El e ctr o n. J. St atist. , v ol. 5, p p. 9 3 5 – 9 8 0, 2 0 1 1.

[ 4 7]    R.  S.   Ts a y,  A n al ysis  of   Fi n a n ci al  Ti  m e  S eri es ,  3r d  e d.   H o b o k e n,   NJ,
U S  A:   Wil e y, 2 0 1 0.

[ 4 8]    A.  J.   R ot h  m a n,  P.  J.   Bi c k el,   E.   L e vi n a,  a n d  J.   Z h u,  < S p ars e  p er  m u-
t ati o n  i n v ari a nt  c o v ari a n c e  esti  m ati o n,=  El e ctr o n.  J.   St atist. ,  v ol.  2,
p p. 4 9 4 – 5 1 5, 2 0 0 8.

[ 4 9]   P. J. S c hr ei er a n d   L.   L. S c h arf, St atisti c al Si g n al   Pr o c essi n g of   C o  m pl e x-
Val u e d   D at a .   C a  m bri d g e,   U.  K.:   C a  m bri d g e   U ni v.  Pr ess, 2 0 1 0.

[ 5 0]   S.   B o y d a n d   L.   Va n d e n b er g h e, C o n v e x   O pti  miz ati o n  .   C a  m bri d g e,   U.  K.:
C a  m bri d g e   U ni v.  Pr ess, 2 0 0 4.

[ 5 1]    H.   Li u,   K.   R o e d er,  a n d   L.    Wass er  m a n,  < St a bilit y  a p pr o a c h t o r e g ul ar-
i z ati o n  s el e cti o n  ( St  A  R S)  f or  hi g h  di  m e nsi o n al  gr a p hi c al   m o d els,= i n
Pr o c.   A d v.   N e ur al I nf.   Pr o c ess.  S yst. , 2 0 1 0, p p. 1 4 3 2 – 1 4 4 0.

[ 5 2]    W.    Wa n g,    M.  J.    Wai n  wri g ht,   a n d    K.    R a  m c h a n dr a n,   <I nf or  m ati o n-
t h e or eti c  b o u n ds  o n    m o d el  s el e cti o n  f or    G a ussi a n    M ar k o v  r a n d o  m
û el ds,= i n  Pr o c. I E E E I nt.  S y  m p. I nf.  T h e or y ,   A usti n,   T  X,   U S  A,  2 0 1 0,
p p. 1 3 7 3 – 1 3 7 7.

[ 5 3]    G.   H a n n a k,   A. J u n g, a n d   N.   G ört z, <  O n t h e i nf or  m ati o n-t h e or eti c li  mits
of  gr a p hi c al   m o d el  s el e cti o n  f or   G a ussi a n ti  m e  s eri es,= i n  Pr o c.  2 2 n d
E ur. Si g n al   Pr o c ess.   C o nf. ,   Lis b o n,  P ort u g al, 2 0 1 4, p p. 5 1 6 – 5 2 0.

JI T E  N  D R  A   K.  T  U  G  N  AI T  ( Lif e  F ell o  w,  I E E E)  r e-
c ei v e d t h e   B. S c. (  H o ns.)  d e gr e e i n  el e ctr o ni cs  a n d
el e ctri c al  c o  m  m u ni c ati o n  e n gi n e eri n g  fr o  m  P u n-
j a b    E n gi n e eri n g    C oll e g e,    C h a n di g ar h,  I n di a,  i n
1 9 7 1,  t h e    M. S.  a n d  t h e   E. E.  d e gr e es  i n  el e ctri c al
e n gi n e eri n g  fr o  m  S yr a c us e    U ni v ersit y,  S yr a c us e,
N  Y,   U S  A,  a n d  t h e  P h.  D.  d e gr e e  i n  el e ctri c al  e n-
gi n e eri n g  fr o  m  t h e   U ni v ersit y  of  Illi n ois   Ur b a n a-
C h a  m p ai g n,   C h a  m p ai g n, I L,   U S  A, i n  1 9 7 3,  1 9 7 4,
a n d 1 9 7 8, r es p e cti v el y.  Fr o  m 1 9 7 8 t o 1 9 8 2, h e   w as
a n   Assist a nt  Pr of ess or  of  el e ctri c al  a n d  c o  m p ut er

e n gi n e eri n g   wit h  t h e   U ni v ersit y  of  I o  w a,  I o  w a   Cit y,  I  A,   U S  A.  Fr o  m  1 9 8 2
t o  1 9 8 9,  h e    w as    wit h  t h e    L o n g    R a n g e    R es e ar c h    Di visi o n  of  t h e    E x x o n
Pr o d u cti o n   R es e ar c h   C o  m p a n y,   H o ust o n,   T  X,   U S  A.  I n  1 9 8 9,  h e j oi n e d t h e
D e p art  m e nt  of    El e ctri c al  a n d    C o  m p ut er    E n gi n e eri n g,    A u b ur n    U ni v ersit y,
A u b ur n,    A L,    U S  A,  as  a  Pr of ess or,    w h er e  h e  is  c urr e ntl y  J a  m es    B.    D a vis
Pr of ess or.   His r es e ar c h i nt er ests i n cl u d e st atisti c al si g n al  pr o c essi n g a n d   m a-
c hi n e l e ar ni n g f or si g n al  pr o c essi n g.   Dr.   T u g n ait   w as a n   Ass o ci at e   E dit or f or
t h e  I E E E   TR  A  N S  A C TI  O  N S    O  N A U T  O  M  A TI  C C O  N T  R  O L ,  I E E E   TR  A  N S  A C TI  O  N S
O  N S I  G  N  A L P R  O  C E S SI  N  G ,  I E E E   SI  G  N  A L P R  O  C E S SI  N  G L E T T E  R S ,  a n d  I E E E
T R  A  N S  A C TI  O  N S   O  N W I  R E L E S S C O  M  M  U  NI  C  A TI  O  N S , a n d t h e  S e ni or   Ar e a   E dit or
of t h e I E E E   T R  A  N S  A C TI  O  N S    O  N S I  G  N  A L P R  O  C E S SI  N  G ,  a n d t h e  S e ni or   E dit or
of I E E E   W I  R E L E S S C O  M  M  U  NI  C  A TI  O  N S L E T T E  R S .
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