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ABSTRACT Estimation of the conditional independence graph (CIG) of high-dimensional multivariate
Gaussian time series from multi-attribute data is considered. Existing methods for graph estimation for
such data are based on single-attribute models where one associates a scalar time series with each node.
In multi-attribute graphical models, each node represents a random vector or vector time series. In this
paper we provide a unified theoretical analysis of multi-attribute graph learning for dependent time series
using a penalized log-likelihood objective function formulated in the frequency domain using the discrete
Fourier transform of the time-domain data. We consider both convex (sparse-group lasso) and non-convex
(log-sum and SCAD group penalties) penalty/regularization functions. We establish sufficient conditions in
a high-dimensional setting for consistency (convergence of the inverse power spectral density to true value
in the Frobenius norm), local convexity when using non-convex penalties, and graph recovery. We do not
impose any incoherence or irrepresentability condition for our convergence results. We also empirically
investigate selection of the tuning parameters based on the Bayesian information criterion, and illustrate our
approach using numerical examples utilizing both synthetic and real data.

INDEX TERMS Graph estimation, inverse spectral density estimation, multi-attribute data, sparse graph

learning, time series, undirected graph.

I. INTRODUCTION

Graphical models are a useful tool for analyzing multivari-
ate data where conditional independence plays an important
role [11, [2], [3], [4]. Let G = (V, &) denote a graph with
a set of p vertices (nodes) V. ={1,2,...,p}=1[pl, and a
corresponding set of (undirected) edges £ C [p] x [p]. Con-
sider a stationary, zero-mean, p—dimensional multivariate
Gaussian time series x(1), t = 0, &1, &2, ..., with ith com-
ponent x;(7), and correlation (covariance) matrix function
R (t) =Efx(t + t)x" (1)}, T = 0, £1, .... Given {x(r)}, in
the corresponding graph G, each component series {x;(7)} is
represented by a node (i in V'), and associations between com-
ponents {x;(¢)} and {x;(¢)} are represented by edges between
nodes i and j of G. In a conditional independence graph (CIG),
there is no edge between nodes i and j (i.e., {i, j} & &) if and
only if (iff) x;(¢ ) and x;(¢) are conditionally independent given
the remaining p-2 scalar series x¢(t), £ € [pl, £ # i, £ # j.

(This is a generalization of the CIG for random vectors where
i j} ¢ £ i [R1; = 0(2 = Exx"()))™") [4]. 5], [6])

Denote the power spectral density (PSD) matrix of {x(r)} by
S.(f), where Sy(f) = Z?oz—oo R (t)e 27 and 1 = /—1.
In [6] it was shown that conditional independence of two
time series components given all other components of the
time series, is encoded by zeros in the inverse PSD, that is,
{i, j} & & iff the (i, j)-th element of S;l(f), [S;I(f)]ij =0
for every f. Hence one can use estimated inverse PSD of
observed time series to infer the associated graph. In [6] the
low-dimensional case is addressed. Nonparametric frequency-
domain approaches for graph estimation in high-dimensional
settings (sample size n is less than or of the order of p) have
been considered in [7] using a group-lasso penalty, and in [8],
[9], [10] using a sparse-group lasso penalty. The focus of this
paper is on high-dimensional settings where the number of
graph nodes p (e.g., time series dimension) is smaller than or
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comparable to the data sample size n [11]. In particular, in
a high-dimensional setting, as n — 00, E — ¢ > 0 for some
constant ¢, instead of % — 0 as in classical low-dimensional
statistical analysis framework [11, Chapter 1]. Such models
for the ii.d. {x(r)} case have been extensively studied [4],
[5], [11]. If E <« 1, we use the term low-dimensional for
such cases in this paper. A sparse-group non-convex log-sum
penalty is investigated in [12] to regularize the problem con-
sidered in [10], motivated by [13]. Refs. [7], [9], [10] provide
performance analysis and guarantees.

Parametric modeling (autoregressive (AR) or autoregres-
sive moving average (ARMA) models) based approaches in
low-dimensional settings for CIG estimation for time se-
ries are discussed in [14], [15], [16], [17], among others.
These papers are focused on algorithm development and they
do not provide any performance guarantees (such as [10,
Theorem 1] or Theorem [ in this paper). Compared with
this paper or [10] where the high-dimensional case is con-
sidered, [14], [15], [16], [17] consider a low-dimensional
setting. For instance, in the simulation example 1 of [17],
one has a 10-dimensional ARMA model implying a 10-node
graph (p = 10 in our notation) while the data sample size
used to illustrate the performance of their algorithm is 1024
(n =1024 in our notation), leading to p/n = 0.0098 < 1.
In contrast, in the synthetic data example in [10, Sec. 6.1],
one has p =128 and n € {128, 256, 512, 1024, 2048}, lead-
ing to p/n € {1, 0.5,0.25, 0.125, 0.0625}. Statistical analysis
in the high-dimensional case requires a different set of an-
alytical tools [3], [11]. Estimation of ARMA models for
high-dimensional Gaussian time series without considering
graphical modeling aspects is discussed in [18] where in [18,
Example 1], one has p = 200 with varying values of sample
size n with some values of n < 50.

In many applications, there may be more than one ran-
dom variable (or scalar time series) associated with a node.
This class of graphical models has been called multi-attribute
graphical models in [19], [20] where a high-dimensional set-
ting is considered, and vector graphs or networks in [21],
[22], [23] where a low-dimensional setting is considered. In
a gene regulatory network, one may have different molecular
profiles available for a single gene, such as protein, DNA
and RNA. Since these molecular profiles are on the same
set of biological samples, they constitute multi-attribute data
for gene regulatory graphical models in [19]. The motivation
for vector graphical models considered in [21], [22], [23]
is network analysis for human fMRI data. In this paper in
Section VI-B, we model air-quality and meteorological data
acquired at different monitoring stations in Beijing [24], [25]
as multi-attribute data, with measurements of each variable
at m stations modeled as m attributes. Such graphical mod-
els have been considered in the literature only for random
vectors (i.e., observations originate from an i.i.d. random se-
quence), not for time series graphical models. The objective
of this paper is to fill this gap. Additionally, we consider
both convex (sparse-group lasso [26], [27]) and non-convex
(log-sum [13] and Smoothly Clipped Absolute Deviation
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(SCAD) [28], [29]) penalty functions. It is well-known that
use of non-convex penalties can yield more accurate results
compared to the lasso penalty, i.e., they can produce sparse set
of solution like lasso, and approximately unbiased coefficients
for large coefficients, unlike lasso [13], [28]. [29]. This moti-
vates consideration of the SCAD and log-sum penalties (in
addition to the lasso penalty) in this paper. As noted earlier,
a sparse-group non-convex log-sum penalty is investigated
in [12] to regularize the single-attribute problem considered
in [10] where it is shown empirically that the log-sum penalty
significantly outperforms the lasso penalty. Hence the interest
in non-convex penalties in this paper.

A. RELATED WORK

There appears to be no prior reported work on graphical
modeling for multi-attribute dependent time series in high-
dimensional settings. Prior work on graphical modeling for
single-attribute dependent time series in low-dimensional set-
tings is concerned with testing whether {i, j} € £ for all
possible edges in the graph, based on some nonparametric
frequency-domain test statistic such as partial coherence [6],
[30], [31], [32], [33] which requires estimates of S,(f).
These approaches do not scale to high dimensions where p
is comparable to or larger than the sample size n. As an
alternative to nonparametric modeling of time series, paramet-
ric graphical models utilizing (Gaussian) vector AR (VAR)
process models of x(r) have been proposed in [16], [34],
[35], [36] and ARMA process (and related) models may
be found in [14], [15], [17], but these approaches are suit-
able only for low-dimensional settings as discussed earlier.
These approaches do not address the multi-attribute case.
Graphical modeling for single-attribute dependent time se-
ries in high-dimensional settings has been considered using
nonparametric frequency-domain approaches in [7], [8], [9],
[10] with convex lasso-related regularization and in [12] with
non-convex log-sum regularization. A time-domain approach
with log-sum penalty may be found in [37].

Multi-attribute graphical modeling in high-dimensional set-
ting given i.i.d. data has been addressed in [19], [20] using
convex lasso-related regularization and in [38] using non-
convex SCAD penalty. When convex regularization is used,
the overall optimization problem is convex where a global
optimum solution is guaranteed, whereas with non-convex
penalties, one can obtain only a local optimum.

This paper builds on the work reported in [10]. A detailed
comparison between this paper and [10] (also [12]) is given
later in Remark 4 in Section V after we have introduced all
the technical details facilitating the comparison.

B. OUR CONTRIBUTIONS

In this paper we provide a unified theoretical analysis of
multi-attribute graph learning for dependent time series using
a penalized log-likelihood objective function in the frequency
domain. We consider the convex sparse-group lasso as well
as the non-convex log-sum and SCAD group penalties. The
non-convex optimization problem (when using non-convex
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penalties) is solved via iterative convex optimization, based
on a local-linear approximation (LLA) [29], [39] to the
non-convex penalty and an alternating direction method of
multipliers (ADMM) method. The ADMM method used in
this paper follows [10] and differences between [10] and
this paper are explained later in Section IV and in Re-
mark 4 in Section V. We establish sufficient conditions in a
high-dimensional setting for consistency (convergence of the
inverse power spectral density to true value in the Frobenius
norm) in Theorem 1, local convexity when using non-convex
penalties in Theorem 2, and graph recovery in Theorem 3. We
do not impose any incoherence or irrepresentability condition
for our Theorems 1-3 (see Remark 3 in Section V). We il-
lustrate our approach using numerical examples utilizing both
synthetic and real (Beijing air-quality [24], [25]) data.

A preliminary version of this paper appears in a conference
paper [40] where proofs of Theorems 1 and 3 and Lemma
1 are not given, and only a sketch of proof of Theorem 2 ap-
pears. Theorem 1 in [40] has an error. Synthetic data examples
are different in this paper and [40].

C. OUTLINE AND NOTATION

The rest of the paper is organized as follows. The underlying
system model and the resulting log-likelihood formulation of
the problem are presented in Section II. The convex and non-
convex penalty functions and their properties (based on [41]),
and the resulting penalized negative log-likelihood function is
discussed in Section ITI. A solution to the non-convex opti-
mization problem is provided in Section I'V. Selection of the
tuning parameters based on BIC is presented in Section I'V-A.
In Section V we provide a theoretical analysis of the proposed
approach, resulting in Theorems 1-3. Numerical results are
presented in Section VI and proofs of Theorems 1, 2 and 3 are
given in the two appendices.

The superscripts #, T and H denote the complex conjugate,
transpose and Hermitian (conjugate transpose) operations, re-
spectively, and the sets of real, positive real and complex
numbers are denoted by R, R, and C, respectively. Given
A € CP*P_ we use ¢min(A), dmax(A), |A[, tr(A) and etr(A)
to denote the minimum eigenvalue, maximum eigenvalue, de-
terminant, trace, and exponential of trace of A, respectively.
We use A > 0 and A > 0 to denote that Hermitian A is posi-
tive semi-definite and positive definite, respectively, and I is
the p x p identity matrix. For B € CP*4, we define the op-
erator norm, the Frobenius norm and the vectorized £; norm,
respectively, as || B|| = \/¢)max(BHB), |B|lp = tr(BYB) and
1Bl = Zf-’j |Bijl. where B;; is the (i, j)-th element of B,
also denoted by [B];;. For vector # € CP, we define [|0]; =

i1 16i] and |0]> =
|8]]2. The Kronecker product of matrices A and B is denotes
by A ® B. Given A € CP*P, A* = diag(A) is a diagonal ma-
trix with the same diagonal as A, and A~ =A — AT is A
with all its diagonal elements set to zero. Given A € C"*P,
column vector vec(A) € C" denotes the vectorization of A
which stacks the columns of the matrix A. The notation

P, 16;|?, and we also use ||| for
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x ~ N.(m, ) denotes a complex random vector x that is
circularly symmetric (proper), complex Gaussian with mean
m and covariance X, and x ~ N,(m, X) denotes real-valued
Gaussian x with mean m and covariance X.

1. SYSTEM MODEL

Consider p jointly Gaussian, zero-mean stationary, vector se-
quences {zi(!)}ez, zi(f) € R™, i € [p]l. In a multi-attribute
time series graphical model, we associate {z;(f)};ez with
the ith node of an undirected graph G = (V, £) where V = [p]
is the set of p nodes (vertices) and £ C V x V is the set of
undirected edges that describe the conditional dependencies
among the p sequences {{z;(f)};cz, i € V}. Similar to the
scalar case (m = 1), edge {i, j} & £ iff the sequences {z;(t)}
and {z;(7)} are conditionally independent given the remaining
p — 2 vector sequences {z,(t)}, £ € V\{i, j}.

Define the mp-dimensional sequence

x(t)=[f 1), @), -+ zh®] €R™. (1)

Assomate {x(t)};ez with an enlarged graph G = (V, £) where

= [mp] and £ €V x V. The £th component of {zj(t)}
denoted by {lz;]¢(r)}, associated with the node j of G, is
the scalar sequence {x; (1)} x4 = [xlg.g=(—1)m+ ¢, j €
[p] and ¢ € [m]. The scalar sequence {x,(¢)} is associated
with node ¢ of enlarged graph G. Corresponding to the edge
{j.k} € V x V in G, there are m?> edges {¢,r} € V x V in G
where g=(j—1)m+u and r = (k — I)m +v with u, v €
[m].

As in Section I, denote the power spectral density (PSD)
matrix of {x(¢)} by S,(f). Here f is the normalized frequency,
in Hz. Given a matrix A € C™P)*P) e use AUK) to denote
the m x m submatrix of A whose (u, v)th element is given by

[AYy = [AlG- Dt k—tymr, HV €Ml (2)

By [6, Theorem 2.4], in the CIG G = (V, &) of the multi-
attribute time series {x(¢)};cz originating via (1), we have

Ukige o (57 =0 3)

provided S,(f) > 0 Vf. (Note that while most of the discus-
sion and all of the numerical results in [6] pertain to scalar
time series per node, the theory is shown to apply to vector
series per node also.)

A. PROBLEM FORMULATION

We observe a finite-duration segment {x(f)}z—() of a real-
ization of an mp—dimensional stationary Gaussian sequence
{x(t)}tez. Our objective is to first estimate the inverse PSD
S;[( f) at distinct frequencies, and then select the edge
{j, k} in the graphical model G based on whether or not
(S;1 (f))uk’ = 0 for every f. The single attribute case (m =
1) has been discussed in [10] with sparse-group lasso penalty
and in [12] with sparse-group log-sum penalty. Since for a
real-valued time series, Sx(f) = Sf(—f), and S,(f) is pe-
riodic in f with period one, knowledge of S,(f) in the
interval [0,0.5] completely specifies S,(f) for other values of
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J- Hence, it is enough to check if (S;l (f)HUR = 0 for every
Jelo; 0:5].
Given {x(z‘)};’;&,

x(t), ¢ = /=),

define the (normalized) DFT d,(fy) of

n—1

Y xwep(—2nfir), @
=0

dx(f() = \/ﬁ
1=

where

fﬂ ZE/n’

Since {x(t)} is Gaussian, soisd(f¢). As discussed in [10], the
set of complex-valued random vectors {d( fg)}’é/zz o> I even,
is a sufficient statistic for any statistical inference problem,
including our problem of estimation of inverse PSD.

We need the following assumption in order to invoke [42,
Theorem 4.4.1], used extensively later.

£=0,1,...,n—1. (5)

Al) The mp—dimensional time series {x(f)};cz is zero-mean
stationary and Gaussian, satisfying

(e¢]

Z [[Ryx(T)]ke| < 0o forevery k, £ € V.

T=—00

It follows from [42, Theorem 4.4.1] that under assumption
(A1), asymptotically (as n — 00), dy(f¢), £ € [(n/2) — 1],
(n even), are independent proper (i.e., circularly symmetric),
complex Gaussian AN_(0, S,(f;)) random vectors, respec-
tively. Also, asymptotically, dy(fo) and dx(fu/2), (n even), are
independent real Gaussian N,(0, Sx(fo)) and NV,(0, S,(f,/2))
random vectors, respectively, independent of d.(f;), £ €
[(1/2) — 1]. We will ignore these two frequency points fp and

Jua-
Define

D = [d:(f1) -+ dx(finya)-1)] € COP>*@/D=D - (6)

We assume that S, (f¢) is locally smooth (a standard assump-
tion in PSD estimation [42]), so that S, (f,) is (approximately)
constant over K = 2m; + 1 consecutive frequency points.
Pick

Fo= (k_I)Kn+m’+I, k=1,2,....M, (1)
o]

leading to M equally spaced frequencies f; in the interval
(0,0.5), at intervals of K/n. We state the local smoothness
assumption as assumption (A2).

A2) Assume that for £ = —my, —ny; + 1, ..., my,

Sc(fr.e) = S:(fi), 9)
where fr,=((k—DK+m+1+€)/n. (10)
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Under assumptions (A1)-(A2), the joint pdf of D is

M me 5
exp (—gu — gk1)
D)= Y 1
o ® ,E zZU w2 1S (Fi) 12 (S* (i) 12
(11)
Lot s ot =
8k = Sy (fr)Sy (fdx(fre) (12)

where A ~* stands for (A~ ")*. Parametrizing in terms of the in-
verse PSD matrix &; := S;l (fx), the negative log-likelihood,
up to some irrelevant constants, is given by

—In fp(D) x L(R) (13)

M
=3 L[~ miee) — 1)+« (S0 + 5707
k=1

(14)
where
Q=[®, &, - , Byl e CrP>mM (15
1 =
Se=2 2 a(nd! (i) (16)

b=—my

Note that S represents PSD estimator at frequency f; using
unweighted frequency-domain smoothing [42].
Our objective is to estimate £ given {x(¢ )};’:_(: , and to infer

the underlying CIG based on estimated 2.

I1l. PENALIZED NEGATIVE LOG-LIKELIHOOD

To enforce sparsity and to make the problem well-conditioned
(when K < p), as in [10], we propose to minimize a penalized
version £(R) of £L(R) where we penalize (regularize) at both
element-wise and group-wise. We have

L(R) = L(R) + aPe(R) 4 (1 — a)Py(R), (17)
M mp
P)= D" Y pa (1%i)) (18)
k=1 i#j
P
PU@) =mVM Y o (1290)15) (19)
q#t
where QM) ¢ Cm=mM) jq defined as
M) . (q€) (gt) (q€)
Q@ )._I:q,lq . ,...,qang], (20)

&9 e [M], is defined as in (2), » > 0, & € [0, 1], my/M
in (19) reflects the number of group variables [43], and for
u € R, py(u) is a penalty function that is function of |u|. In
(18), the penalty term is applied to each off-diagonal element
of ®; and in (19), the penalty term is applied to the off-block-
diagonal group of m®> M terms via ™) defined in (20). The
parameter « € [0, 1] “balances” element-wise and group-wise
penalties [10], [26]
The following penalty functions are considered:
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® [asso. For some A > 0,

pa(uw) = Alu|, uelR. (21)
e Log-sum.Forsome A > 0and 1 > € > 0,
|ul
pp(u)=reln{14+—|. (22)
€

e Smoothly Clipped Absolute Deviation (SCAD). For some
A>0anda > 2,

Ayl for |u| < A
2 2
3. (1) = % for A < |u| < ai (23)
2
)‘—(‘;'U for |u| > ai.

In the terminology of [41], all of the above three penalties
are “p-amenable” for some p > 0. As defined in [41, Sec.
2.2], pa(u) is w-amenable for some ¢ > 0 if

i) The function p;(u) is symmetric around zero, i.e.,
pa(u) = pa(—u) and p, (0) = 0.

i1) The function p, (#) is non-decreasing on R .

iii) The function py (¢)/u is non-increasing on R

iv) The function p, () is differentiable for u # 0.

v) The function p, (1) + £u? is convex, for some p > 0.

vi) lim,_g+ p'(u) = A Where o) = dp;(")

It is shown in [41, Appendix A], that all of the above
three penalties are p-amenable with ¢ = 0 for Lasso and
i =1/(a—1) for SCAD. In [41] the log-sum penalty is de-
fined as p; () = In(1 4+ X|u|) whereas in [13], it is defined as
oa(u) = A In(1 + Igﬂ). We follow [13] but modify it so that
property (vi) in the definition of j-amenable penalties holds.

In our case p = £ for the log-sum penalty since 2 5‘2(”)
—x€/(€ + |u])? for u # 0.

The above three penalty functions also have the following
properties:
vii) For some C; > 0 and §; > 0, the function p; (¢) has a

lower bound

pi(u) = Cylul for |u| < 8. (24)

Viii) % < Aforu # 0.

Property (viii) is straightforward to verify. For Lasso, C) =
A and 8, = o0. For SCAD, C;, = A and §;, = A. Since In(1 +
x) > x/(1+x) for x > —1, we have In(1 + x) > x/C; for
0<x<C —1,C) > 1.Take C; = 2. Then log-sum p; (1) >
%|u| for any |u| < €, leading to C), = % and 8, = €. We may
and will take C; = % for lasso and SCAD penalties as well.

IV. OPTIMIZATION
For non-convex p; (1), we will use a local linear approxima-
tion (LLA) as in [29], [39], to yield

luol) = pj (luo)lul
(25)
where ug is an initial guess, pi(|u0|) = Ae/(lug| + €) for
LSP, and for SCAD, p} (Jug|) = 4 for |u] <4, = aﬁ%ﬂ”' for
A < |ul <ak, and =0 for |u| > ai. Therefore, with ug

p.(u) ~ pa(luol) + p5 (ol )(|ul —
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fixed, we consider only the last term above for optimiza-
tion wr.t. u. By [39, Theorem 1], the LLA provides a
majorization of the non-convex penalty, thereby yielding a
majorization-minimization approach. In fact, by [39, Theo-
rem 2], the LLA is the best convex majorization of the LSP
and SCAD penalties. Thus in LSP, with some initial guess
&, we replace p; (|[®xlij) — Ae/(|[[®xlij| + €) =: Ag;j and
(129D ) — 2e /(189 1 + €) =: Agou, leading to
an adaptive sparse-group lasso convex problem. The initial
guess follows from the solution to lasso-penalized objective
function. For SCAD, we have Ag;; = A for [[®]ij| < A, =
(ar — |[®@lijl)/(a—1) for A < |[®4]ij| < ah, and = O oth-
erwise, and similarly for Ag4ep.
With LLA, the objective function is transformed to

L(R) = L)+ aP(R)+ (1 — a)Py(R), (26)
mp
B@y= Z D M| [®elij] (27)
k=1 i£j
P
Po(R) =mv/M Y dyou || @15 (28)
g+t

For lasso, we have hgij =X Vk, i, j and gt = A Vg, . We
follow an ADMM approach, as outlined in [10], for both
lasso and LLA to LSP/SCAD. Consider the scaled augmented
Lagrangian [50] for this problem after variable splitting, given

by
LR, (W} {U}) = L(R) + aPe(W)

M
. p
+ (1= a)PeW) + 5 >l — Wi+ Usl7
k=1

(29)

where {W} = {Wy, k € [M]} results from variable splitting
where in the penalties we use W ’s instead of @, ’s, adding the
equality constraint Wy = &, {U} = {Uy, k € [M]} are dual
variables, and p > 0 is the “penalty parameter” [50].

The main difference between [10] and this paper is that
in [10], Wy and &, are p x p whereas in this paper, we have
W and @y as (mp) x (mp) matrices. Therefore, the approach
of [10] is applicable after we account for the dimension dif-
ference, and additionally, for the fact that Po(W) and Py(S2)
are penalized slightly differently in the two papers (the factor
m+/M is missing from [10]). See [10] for further details.
For non-convex penalties (not considered in [10]), we have
an iterative solution: first solve with lasso penalty, then use
the LLA formulation and solve the resulting adaptive lasso
type convex problem. In practice, just two iterations seem to
be enough. A pseudocode for the ADMM algorithm used in
this paper is given in Algorithm 1 where we use the stopping
(convergence) criterion following [50, Sec. 3.3.1] and varying
penalty parameter p following [50, Sec. 3.4.1]. The variables
defined in (30)—(36) are needed in Algorithm 1 with (I>(r+l)

WD U+ as defined therein:

e =@, &l p (30)

709



TUGNAIT: ON CONDITIONAL INDEPENDENCE GRAPH LEARNING FROM MULTI-ATTRIBUTE GAUSSIAN DEPENDENT TIME SERIES

Algorithm 1: ADMM Algorithm for Solving (26)—(29)

Input: PSD estimator 8. k e [M] (computed using (4)
and (16)), regularization and penalty parameters Ay, ;
(i, j € lmpl,k € [M]), Aqem (g, £ € |p]), @ and p = p,
tolerances 7,5 and 7, variable penalty factor /i,
maximum number of iterations .. Initial guess @,
k e [M].

Output: Estimated ti)k, k € [M], and edge-set &

I: Initialize: U = W\ =0, & = &, p© = 5

2: converged = false, 7 =0

3: while converged = false and ¢ < f,,,,, do

4:  Let VkaVf denote the eigen-decomposition of
Hermitian §; — p(’)(Wj(f) — UI(:)), k € [M], with the
diagonal matrix J; consisting of its eigenvalues.
Define a diagonal matrix J; with £th diagonal

element]k“ = (—Jkee + Ul%ez + 4p(r)) /(2,0(’))

where Jrer = [Jxlee- Set @) = v J,vH,

5:  Define soft thresholding scalar operator
T (a, B) := (1 — B/lal)+a and elementwise matrix
soft thresholding operator T i (A, ), specified by
[T (A, @)l = Ty([Aluw, @), where
(a)4 := max(0, @) and u, v € [m]. For k € [M],
define Ay = @ + U and let (4;)4" € C>
be defined as in (2). Then the diagonal subblocks
(W49 e C™*m of W are updated as (k € [M])

(qq) .
(WD), — A U=
X L O Akii .
g ! EI([AI((qq)]uu, p_(’:)i) ifu :/ﬁ v

qgelpl, u,vemli=(@g—1)m+u,
Jj = (g — 1)m + v. The off-diagonal m x m
subblocks of W are updated as

(W£f+1))(qe) —B (1 = a)mmkng)

p®1IBllF

where m x m B ?as its (u, v)th element as
[Bl,, = sI([A,((q )]uv, a)“kij/p(”)’
i=@—1m+4u, j=0«—-1m+v.

6:  Dual update U,,(:"'l) = U,(J) + (<I>,(:+l) — W](:H)).

k e [M].

7:  Check convergence. With e, e, 3, Rg*'”, Rg“),
Tpri and 74,4 as defined in (30)—(36). respectively,
letdp = RSV p and dy = RSV TF
(dp < tpri) and (dy < Tgua1). set converged = true.

8:  Update penalty parameter p :

200 ifd, > fidy
oD =1 ,0/2 ifd, > pd,
p® otherwise .

We also need to set U+ = U(H'”/Z ford, > fidy
and U+D = 20+D for dy > jad,.
9: [ <«1+1
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10: end while
11: Denote the converged inverse PSD estimates as &; and
let @ = [d;, --- , dy]. With SAZ(QEM) as in (20), for
q# L, if ||Q(qEM)||F > 0, assign edge {q, £} € &, else
{g, £} ¢ £.
e =W, ., Wi I (31)
ey = [ F% « o U V]l (32)

(t+1) _ (t+1) (1+1) (r+1) (t+1)
RSV = [@f D —wi+h, . e —wih]

(33)
U+ _ ) (t+1) (1) (t+1) ()
R, =p |:Wl =W o Wy _WM]
(34)
Tpri = mP\/A_/I Tabs + Tre Max(ey, €p) (35)
Tdual = mP\/A_J Tabs + Trel 33/;0”) . (36)

Our ADMM-based optimization algorithm is as follows.

1) Given M and K = 2m;, + 1, calculate 8. Initialize iter-
ation M = 1, Q@ — 0,2=1[®,,....0%y]= Q® and
use € to compute Ag;;’s and AgeM-

2) Execute Algorithm 1 with initial guess ®y, k € [M].

3) Quit if using lasso, else set QM =@ and @ = Q™
to re-compute Ag;;’s and Ageps’s via the LLA. Let /it <
m+ 1.

4) Repeat steps 2 and 3 until convergence. The converged
€ is the final estimate of the inverse PSD’s. (For the
numerical results shown in Section VI, we terminated
after two iterations of steps 2 and 3, similar to [29],
[391.)

For the numerical results in Section VI, we used g = 10,

p =2, € =0.0001 for log-sum penalty, @ = 3.7 (as in [28],
[29]) for the SCAD penalty, Tps = Tret = 104 and tiax =
200.

A. B.I.C. FOR TUNING PARAMETER SELECTION

Given n and choice of K and M, we follow the Bayesian
information criterion (BIC) as given in [10], to select A (with
a = 0.05 fixed), for all penalty functions. The Bayesian infor-
mation criterion (BIC) of [10] is given by

M
BIC(\, &) = 2KZ (—1In|®y| +tr (Spdy))
k=1
M
+ In(2KM) Z(# of nonzero elements in ®;). (37)
k=1

‘We use BIC to select A from over a grid of values. We search
over A in the range [A¢, A,] selected via the following heuristic
(similar to [10], [20]). We find the smallest A, labeled Agy,,
for which we get a no-edge model (i.e., I€] = 0). Then we
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set Ay = Agm/2 and A¢ = X, /10. The given choice of 4, pre-
cludes “extremely” sparse models while that of A, precludes
“very” dense models.

‘We note that there exist other general approaches for tuning
parameter selection such as cross-validation. Cross-validation
generally involves first partitioning the data into K-subsets
(K=5 or 10 folds), i.e., K non-overlapping subsets picked
randomly. Then K — 1 segments act as training data for model
fitting and the remaining segment is used as test (or validation)
set. Tuning parameter would be picked to minimize a test
set measure (e.g., negative log-likelihood or some other non-
penalized original objective function) after averaging over
several partitions. For instance, [27] uses such a method where
the data is assumed to be i.i.d. For dependent data with
frequency-domain approaches, there are several unresolved
issues. For instance, the DFT over training and test datasets
would have different resolution since sample size would be
different. Moreover, to preserve time dependency, one cannot
sample as for i.i.d. data; one must sample block-wise to keep
contiguous data-points together. These are unresolved issues
which precludes the use of cross-validation in our case.

V. THEORETICAL ANALYSIS

We now allow p, M, K (see (7), (8)), and A to be functions of
sample size n, denoted as p,, M,, K, and X,, respectively. We
take p, to be a non-decreasing function of #, as is typical in
high-dimensional settings. Note that K,M,, ~ n/2. Pick K, =
ain and M,, = agnl‘y forsome 0.5 <y <1,0<aj,a <
00, so that both M, /K, — 0 and K,/n — 0 as n — 00 (cf.
[10, Remark 1]).

Recall that we have the original multi-attribute graph G =
(V, &) with |V| = p, and the enlarged graph G = (V, £) with
[V| = mp,. We assume (A3) below regarding G.

(A3) Denote the true edge set of the graph by &, imply-
ing that& = {{j. k} : (S5 (FNVPO £0, j#k 0<
f < 0.5} where So(f) denotes the true PSD of x(¢).
(We also use ¥, for Sal (fk) where fk is as in (7),
and use g to denote the true value of ). Assume
that card(&y) = |€g| < s,0.

The minimum and maximum eigenvalues of mp, X
mp, PSD Sy(f) > 0 satisfy

(A4)

0 < Bmin < fe%i.gj] Gmin (So(f))

= ng)?éS] Gmax(S0(f)) < Bmax < 00.
Here fmin and Bryax are not functions of n (or py).
Let @, = argming; g, »0 L£(R). Theorem 1 establishes lo-
cal consistency of 2, for non-convex penalties and global
consistency for the convex penalty.
Theorem 1: (Local Consistency). For t > 2, let

Co =80 Helan([So(f)]ze)\/ No/ In(mpy,) (38)
where
No = 2In(16(mp,)"My) . (39

VOLUME 6, 2025

Define
R=28(1+m)Co/BL:, (40)
Tn = \/Mn(mpn + m2su0) In(mp,)/ Ky = o(1), (41)
Ny = argmin{n : K, > No} , (42)
Ny = argmin{n : r;, < 0.1/ (RPmin)} » (43)
N3 = argmin{n : r, <€/R}, (44)
Ny = argmin{n A < . aley e WY } )
a+1
(45)
Ang = 2CO\/ ln(mpn)/Kn s (46)
l4+m m In(m
Annt = Gy (m2 + ﬂ) M , (47)
m Sh0 Kn
Apy2 = max (er Anul) - (48)

Under assumptions (A1)-(A4), there exists a local mini-
mizer ; of L($2) satisfying

1. — Rollr < Rry (49)

with probability > 1 — 1/(mp,)" =2 if
1) for the lasso penalty p;(f) = A|f|, sample size n >
max{N;, N2} and A, satisfies Ayr < Ay < Apul »

ii) for the SCAD penalty p;(f), sample size n >

max{Ny, No, Ns} and A, = A2

iii) sample size n > max{N;, N>, N3} and A, satisfies

Ane < Ap < Ay for the log-sum penalty p; (1).

For the lasso penalty, Q; isa global minimizer whereas for
the other two penalties, it is a local minimizer. e

The proof of Theorem 1 is given in Appendix A.

Remark I1: Theorem 1 helps determine how to choose M,
and K, so that for given p,, lim,—qxo || SAZ;L — Qo|lr = 0 (see
also [10, Remark 2]). This behavior is governed by (49),
therefore we have to examine r,. As noted before, since
KM, ~ n/2, if one picks K, = an”, then M,, = arn'~v for
some 0 <y <1, 0 <a,ax < oc. Suppose that p, + ms,o
satisfies p, + msuo = azn? forsome 0 <0 < 1,0 < a3 < 0.
Then for fixed m, we have

(ln(n))l/Zn(l—y)/ZnE)/Z
n}’/z

O(F,,):O(

1/2

(%) "M 0if2y —1—6 > 0. (50)

Therefore, we must have 1 > y > % -+ %. If 6 =0 (fixed
graph size and fixed number of connected edges w.r.t. sample
size n), we need % <y < 1.1If 8 > 0, y has to be increased
beyond what is needed for # = 0, implying more smooth-
ing of periodogram d( fm)df (f,n) around f; to estimate
Sx(fx) (recall (16)), leading to fewer frequency test points M,,.
Clearly, we cannot have 6 > 1 because p, + ms,y = O(n?)
will require ¥ > | which is impossible. |
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We follow the proof technique of [41, Lemma 6] in estab-
lishing Lemma 1 whose proof is in Appendix B. []
Lemma 1. (Local Convexity): The optimization problem

Q) = argﬂzr‘rg,i(lgBk L(), (1)
B, = {cpk L d - 0, [ D] 50.99\/2/(mu«/1\7n)} :
(52)
o0 : Lasso
2/muTT;) = |\ i ¢ SCAD (53)
= iflnkn log-sum,

consists of a strictly convex objective function over a convex
constraint set, for all three penalties, where A, is as defined in
Theorem 1. e

Lemma 1 and Theorem 1 lead to Theorem 2 which is
proved in Appendix B.

Theorem 2: Assume the conditions of Theorem 1. Then S’\Z;\
as defined in Lemma 1 is unique, satisfying ||§Z,x — Qlr <
Rr, with probability > 1 —1/(mp,)" 2 if Rr, + 1/Bmin <
0.99 /2 /(mu+/M, ), as defined in Lemma 1. e

Remark 2: With lasso, (51) is obviously a globally con-
vex optimization problem since By = {®; : ®; > 0}, hence,
Theorems 1 and 2 yield a unique global optimum. For the

SCAD penalty, /i:“—J;l_i: = O(@a'? /n"~7)/*) with M,, as in
Remark 1. For fixed SCAD parameter a, with increasing n
the convexity region shrinks. To counter this, one could allow
a to increase, but this would make SCAD more like lasso.
To consider log-sum penalty, using (41) and (47), we express
Jnul 88 Aut = Co(1 + m)r,//m2s,0M,, which together with
An < Apy1 implies that

2e./
\/ = >‘/—€ L S,

ma/Mph, — Co(1 + m)ry

Now with increasing n, the convexity region expands, unlike
SCAD. O

We now turn to graph recovery. We follow the proof tech-
nique of [45, Theorem 10] in establishing Theorem 3 whose
proof is in Appendix B. For some y,, > 0, define

(54

(gtMy)

é:{{q,z}:Hs} F>y,,>0,q#£}, (55)

Ep = {{q, e Hszg‘f"M") = 0.g% z} , (56)
&n = Rry, (57)
_ . Sz(qEMn) , 58

V= s, 1% 9

N5 = argmin {n : 6, < 0.4v}, (39)

where R and r,, are as in (40) and (41), respectively.
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Theorem 3: For y, =0.5v and n > Ns, £ =& with
probability > 1—1/(mp,)*"2 under the conditions of
Theorem 1. O

Remark 3: In practice we do not know the value of v,
hence cannot calculate y,, needed in (55). For the numeri-
cal results presented in Section VI, we used y, = 0. Using
some incoherence or irrepresentability conditions and the
primal-dual witness method (as in [19], [46]), it may be
possible to establish a result similar to Theorem 3 but with
¥n = 0. We leave this for future research. We do not im-
pose any incoherence or irrepresentability conditions in this
paper. [T

Remark 4: We now provide a detailed comparison between
this paper and [10] (also [12]). The differences between this
paper and [10], [12] are as follows.

1) As discussed in Secs. II and IV, in this paper we have
(mp) x (mp) inverse PSD matrices &, k € [M], for
a p-node graph, compared to px p ®; ’s in [10],
[12]. This requires larger groups comprised of Mm?>
variables in the group penalty term Py(f2) given by
(19), compared to groups of M variables in [10], [12].
In [10], [12] the group penalty term is missing the
factor v/M (see [10, (41)]) corresponding to the fac-
tor m~/M in (19) of this paper. This factor equals the
square-root of the number of group variables, following
the work of [43]. A consequence of the extra factor
ma/M is that in Theorem 1 of this paper, the bounds
on A, for the lasso penalty do not depend on « (see
(46) and (47)), whereas the corresponding result (with
m = 1) in [10, (69)] depends upon «. In [10, Theorem
1] the lower bound on A, can be greater than the upper-
bound for certain choices of a constant C; whereas no
such anomaly arises in this paper.

ii) In [10] non-convex penalties are not considered. In [12]
non-convex log-sum regularization for CIG learning
for single-attribute Gaussian time series has been pro-
posed replacing the lasso penalty of [10]. It is shown
empirically in [12] that the log-sum penalty signifi-
cantly outperforms the lasso penalty with Fj score as
a performance measure. A theorem corresponding to
Theorem 1 of this paper and that of [10] is stated
in [12] without any proof. Moreover, as in [10], for
lack of the factor /M in the group penalty term in [12],
the upperbound on A, in [12, Theorem] depends on «
and it can be smaller than the lowerbound for certain
choices of a constant. No such anomaly arises in this
paper.

iii) In this paper we provide results for two non-convex
penalties (SCAD and log-sum) for CIG learning from
multi-attribute time series. The two penalties require
different analysis in proving Theorem 1 (compare (85)—
(95) for lasso and log-sum penalties with (97)—(102)
for the SCAD penalty in Appendix A). We provide a
complete proof of Theorem 1 whereas [12] has no proof
of its theorem.
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iv) There are no results corresponding to our Lemma 1 and
Theorems 2 and 3 in [10], [12] (not needed in [10] since
it does not consider non-convex penalties). O

V. NUMERICAL EXAMPLES

In this section we present numerical results using both syn-
thetic and real data to illustrate the proposed approach. We
know the ground truth in the synthetic data example which
permits assessment of the efficacy of our approaches. The
ground truth is unknown in the real data example and here
we wish to visualize and explore the conditional dependency
structure underlying the data.

A. SYNTHETIC DATA

Consider a graph with p = 64 nodes, each node with m = 4
attributes. The time series data {x(r)} is generated using a
vector autoregressive model of order 3 (VAR(3)):

3
x(l):ZA[x([—i)—{—w([), x(t) € R™

i=1

(60)

where w(r) is i.i.d. zero-mean Gaussian with precision matrix
either & = 2, (labeled Model 1) or @ = 2 + 2, (labeled
Model 2). For Model 1, we create 8 clusters (communities) of
8 nodes each, each node with m = 4 attributes, where nodes
within a community are not connected to any node in other
communities. To generate Q. we set [fl(lqg)]uv = 0.51=vl for
q=+te[8].u# v, u,ve[m](notationasin2), and it is zero
otherwise. For g # £, we have fl(lqz) = 0. We add y 1y to Q
and choose y to make the minimum eigenvalue of @ + yI mp
equal to 0.5 . The parameters of VAR(3) model are generated
similarly by having A’(_qfi) =0 for ¢ # ¢, and only 10% of
the entries of quq)’s are nonzero with the nonzero elements
independently and uniformly distributed over [—0.6, 0.6]. We
then check if the VAR(3) model is stable, a necessary and suf-
ficient condition for which is that the roots of a(z) = |I,,,, —
Z;Ll A;z7| = 0 should all have modulus < 1; this condition
is equivalent to having all eigenvalues of the corresponding
(3mp) x (3mp) companion matrix to have modulus < 1 [47,
Sec. 8.2.3]. Additionally, in order to avoid a “long” impulse
response, we require the roots of a(z) to have modulus <
0.95. Suppose this condition is violated with |zmax| > 0.95
where |Znax| = arg_maxzep,,,p]{lzﬂ : a(zy) = 0}. In this case,
we scale A;’s to A; = y'A;, ¥ = 0.95/|Zmax]. It is easy to
see that the roots of @(z) = [I;yp — Z?zlf_l,-z_ﬂ = glz/y)=
0 now all have modulus < 0.95.

For Model 2, we allow some interaction between the 8
clusters via @, which is generated via an Erdés-Reényi graph
structure where the p nodes are connected with probability
Per = 0.002. To generate 25, we set ngt’.) =0forg="tc¢€
[8], and for g # € but connected in the Erdés-Renyi graph, the
entries of fl(zqe) are independently and uniformly distributed
over [—0.4, —0.1]U [0.1, 0.4], and are zero if not connected.

First 100 samples are discarded to eliminate transients.
This set-up leads to approximately 11% and 13% connected
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TABLE 1. Model 1: F, Scores, Hamming Distances and Timings, Averaged
Over 100 Runs

n 128 256
M=4: F; score Lto: A’s picked to maximize F}

1024

Lasso 0.5788 + 0.1407  0.7647 £ 0.1308  0.9682 £ 0.0347
Log-sum  0.7065 £ 0.0517  0.8679 &+ 0.0261  0.9899 + 0.0077
SCAD 0.5820 + 0.1428  0.7651 £ 0.1312  0.9675 £ 0.0347

M=4: Hamming distance do: A’s picked to maximize F}

Lasso 168.53 + 040.255 097.36 + 044.03  013.93 £ 014.71
Log-sum 11332 £ 01237  057.70 &+ 011.05  004.46 + 003.34
SCAD 16541 + 037.59  097.14 £+ 044.15 014.19 £ 014.66
M=4: Timing (s) +o: A’s picked to maximize F;

Lasso 011.45 + 01.105  009.52 + 01.477 005.65 + 00.585
Log-sum  019.62 + 00497 016.88 + 01.309  010.94 + 00.808
SCAD 023.79 + 02.005 01929 £+ 02.774 011.92 + 01.206
M=4: F; score +o: X’s picked to minimize BIC
Log-sum 04394 £ 0.0106 0.6632 &+ 0.0496 0.9577 & 0.0534

M=4: Hamming distance +o: A’s picked to minimize BIC
499.97 £ 01593 21410 £ 050.73  017.22 £ 020.15

Log-sum

TABLE 2. Model 2: F, Scores, Hamming Distances and Timings, Averaged
Over 100 Runs

n 128 256 1024
M=4: F score +0¢: A\'s picked to maximize F
Lasso 0.4907 £ 0.0853 0.6098 £+ 0.1460 0.7847 £+ 0.0911
Log-sum 0.5692 + 0.0346 0.7241 4+ 0.0599  0.8236 + 0.0696
SCAD 0.4982 + 0.0862 0.6087 + 0.1456 0.7819 4+ 0.0911

M=4: Hamming distance +¢: A’s picked to maximize F}
Lasso 30737 £ 11532 219.54 £+ 147.61  126.68 + 103.50
Log-sum 24140 £ 038.08 14572 = 043.82 099.39 &+ 047.80

SCAD 387.51 £ 11559 21977 £ 147.05 127.69 & 102.12
M=4: Timing (s) +o: A\’s picked to maximize

Lasso 10.598 & 01.167 09.090 4 01.534  06.790 &+ 01.190

Log-sum 20.141 4+ 00.719 16.882 + 01.519 12.783 &4 01.526

SCAD 20.555 £ 02.474 17.446 £ 02.908  12.562 + 01.831
M=4: F} score o: A’s picked to minimize BIC

Log-sum 0.5136 4+ 0.0195 07224 + 0.0644 0.7623 &+ 0.1030

M=4: Hamming distance +o: \’s picked to minimize BIC
359.59 + 039.91 139.84 £+ 03946 115.90 &+ 050.71

Log-sum

edges in models 1 and 2, respectively. In each run, we cal-
culated the true PSD S(f) for f €[0,0.5] at intervals of

0.01, and then take {q, €} € & if \/Zf 1S~I(NUOL3 >

1072 (maxg cep) S, IS (NUONZ), else {g, 8} £E.
For a typical realization (run), Fig. 1 shows heatmaps of

tog10 (X r=00.015 15~ (Fijl ), i, j € [256], for models 1
and 2.

Simulation results based on 100 runs are shown in
Tables 1-4 where the performance measures are Fj-score
and Hamming distance for efficacy in edge detection. All
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(a) Model 1
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250 . . .
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{b) Model 2

FIGURE 1. True log,,(3 t_o.0.01:5 57" (F)li;1). i, j € [256), for extended graphs for a single Monte Carlo run: mp = 4 x 64 = 256 nodes.

TABLE 3. Model 2: / Scores and Hamming Distances Using Log-Sum
Penalty, Averaged Over 100 Runs

n 128 256 1024

Fy score o: X’s picked to maximize Fj

M=2 05967 & 0.0440 0.7324 + 0.0692 0.8283 X 0.0695
M=3 0.5826 £ 0.03%6 0.7294 £ 0.0664 0.8269 + 0.0691
M=4 05692 + 0.0346 0.7241 + 0.0599  0.8236 X 0.0696
M=6 05156 &+ 0.0358 0.7046 £ 0.0611 0.8158 X 0.0716

Hamming distance +o: A’s picked to maximize Fj

M=2 21513 £ 03942 13440 + 035.84 096.64 + 047.14
M=3 22472+ 03749 136.61 & 04049 097.85 & 047.42
M=4 24140 £ 038.08 145.72 & 043.82 (99.39 & 047.80
M=6 26121 £ 03699 149.50 4+ 038.84 104.11 & 051.47

TABLE 4. Model 2, Varying AR Model Order: VAR(L) as in (61),
L e{1,2,3,4). f Scores and Hamming Distances Using Log-Sum Penalty,
Averaged Over 100 Runs

n 128 256 1024

M=4: F score +o: X's picked to maximize F

L=1 05045 £ 0.0273 0.6584 + 0.0522 0.8067 X 0.0500
L=2 05834 400726 0.7050 £+ 0.0622 0.8212 + 0.0703
L=3 05692 + 0.0346 0.7241 + 0.0599 0.8236 X 0.0696
L=4 05609 + 0.0476 07191 + 0.0625 0.8361 + 0.0632

M=4: Hamming distance +o: A’s picked to maximize F

L=1 25880+ 028.79 161.73 + 04636 097.67 & 032.57
L=2 202.80 + 046.89 156.61 + 052.88 098.76 + 046.74
L=3 24140 + 038.08 145.72 + 043.82  099.39 £ 047.80
L=4 24840 + 04651 149.73 + 046.00 090.37 + 041.32

algorithms were run on a Window 10 Pro operating system
with processor Intel(R) Core(TM) i7-10700 CPU @2.90GHz
with 32GB RAM, using MATLAB R2023a. The Fj-score
is defined as F| = 2 x precision x recall/(precision 4 recall)
where precision = 1€ N &I/IE], recall = |€ N &/ |& |, and
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&y and £ denote the true and estimated edge sets, respectively.
The Hamming distance is between £ and &, scaled by 0.5
to count only distinct edges. For our proposed approach, we
consider M = 4 for three samples sizes n € {128, 256, 1024}
in Table 1 for Model 1 and Table 2 for Model 2. For M = 4,
we used K = 2m; + 1 = 15, 31, 127 for n = 128, 256, 1024,
respectively. We fixed @ = 0.05 and A was selected by search-
ing over a grid of values to maximize the Fj-score (over
100 runs), or via BIC as in Section IV-A. We used lasso
(convex), log-sum (non-convex, € = 0.0001) or SCAD (non-
convex, a=3.7) penalties. When A’s are picked to maximize
the F) score, it is seen that the log-sum penalty outperforms
the lasso and the SCAD penalties in both Table 1 (Model
1) and Table 2 (Model 2) in terms of the Fi-score as well
as the Hamming distance, whereas the SCAD penalty does
not offer much improvement over lasso. As discussed in
Remark 2, the “convexity” region for the log-sum penalty
is likely to be much larger than that for SCAD. With the
lasso penalty, computational time is close to half of that for
log-sum or SCAD, which is not surprising since the latter are
initialized using the lasso result (cf. Section IV). When A’s
are picked via BIC (only for the log-sum penalty), there is a
drop in the F] score and increase in the Hamming distance as
compared to the case where A’s are picked to maximize the
Fy score. This is due to errors in the BIC parameter selection
method.

In Table 3 we show the results for the log-sum penalty for
M =2,3,4 and 6 with A selected to maximize the Fj-score.
‘We take n = 128, 256, 1024 and the corresponding m; values
leading to different M values are m; = 15, 31, 127 (M = 2),
my =9,20,84 (M =3), ;; =7,15,63 (M =4), and m; =
4,10,42 (M = 6). The number of unknown parameters being
estimated are O(M(mp)z) for M (mp) x (mp) ®,’s. We see
that for a fixed n, at first the performance changes only a little
with increasing M, then it declines more sharply (M =4 to 6)
as more parameters need to be estimated with increasing M.

In Table 4 we display some numerical ablation results by
varying the AR model order. We use a VAR(L) model with
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FIGURE 2. Pollution graphs for the Beijing air-quality dataset [24] for year 2013-14: 8 monitoring sites and 11 features (m =8, p=11, M = 4, n = 364).

Number of distinct edges =29 and 7 in graphs (a) and (b), respectively. Estimated ||

Tl [l is the edge weight (normalized to have max;; ||fz(iiM) le=1),

see (20). The edge weights are color coded, in addition to the edges with higher weights being drawn thicker.

L € {1,2,3,4}, given by

L
x(t) = ZA,-x(I — D+ w), x@)eR",

i=1

(61)

where A;’s are picked as for (60) and we used Model 2 to
specify the precision matrix of w(f). We used the log-sum
penalty and M = 4. Tt is seen that the results are consistent
across model orders, both in terms of the F; scores and the
Hamming distances.

B. REAL DATA: BEIJING AIR-QUALITY DATASET [24]

Here we consider Beijing air-quality dataset [24], [25], down-
loaded from https://archive.ics.uci.edu/dataset/501/beijing+
multi+site+air+quality+data. This data set includes hourly air
pollutants data from 12 nationally-controlled air-quality mon-
itoring sites in the Beijing area. The time period is from
March 1st, 2013 to February 28th, 2017. The six air pol-
lutants are PM> 5, PMjg. SOs, NO>, CO, and O3, and the
meteorological data is comprised of five features: tempera-
ture, atmospheric pressure, dew point, wind speed, and rain;
we did not use wind direction. Thus we have eleven (= p)
features (pollutants and weather variables). We used data
from 8 (= m) sites: Changping, Dingling, Huairou, Shunyi,
Aotizhongxin, Dongsi, Guanyuan, Gucheng. The data are av-
eraged over 24 h period to yield daily averages x;(¢), i € [88].
We used one year 2013-14 of daily data resulting in n = 365
days. We pre-processed the data as follows. Given x;(r), we
transform it to X;(t) = In(x;(¢)/x;(t — 1)) for each i (leads to
n = 364), and then detrend it (i.e., remove the best straight-
line fit). Finally, we scale the detrended scalar sequence to
have a mean-square value of one. All temperatures were con-
verted from Celsius to Kelvin to avoid negative numbers. If
a value of a feature is zero (e.g., wind speed), we added a
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small positive number to it so that the log transformation is
well-defined.

Fig. 2 shows the CIGs for lasso and log-sum penalties for
M = 4 where with o = 0.05, A was selected via BIC: an
edges exists iff ||SA2(UM)]|F > 0,1, j € [11]. The corresponding

heatmaps showing estimated 10g10(\/224:1 |[<i)k],'j|2), i,je
[88] are in Fig. 3. It is seen that lasso yields a much denser
graph (29 edges) while the graph resulting from the log-sum
penalty is much sparser (7 edges). Cold, dry air from the
north of Beijing reduces both dew point and PM; 5 particle
concentration in suburban areas while southerly wind brings
warmer and more humid air from the more polluted south that
elevates both dew point and PMj 5 concentration [24]. This
fact is captured by the edge between dew point and PM3 5 in
Fig. 2.

VIl. CONCLUSION
Estimation of the CIG of high-dimensional multivariate Gaus-
sian time series from multi-attribute data was considered.
We provided a unified theoretical analysis of multi-attribute
graph learning for dependent time series using a penalized
log-likelihood objective function in the frequency-domain.
Both convex and non-convex regularization functions were
considered. We established sufficient conditions for consis-
tency, local convexity when using non-convex penalties, and
graph recovery. Our approach was illustrated using numerical
examples utilizing both synthetic and real (Beijing air-quality
dataset) data. Non-convex log-sum regularization yielded
more accurate results compared to convex sparse-group lasso
or non-convex SCAD regularization for synthetic data, and
sparser graph for real data.

Now we briefly outline several avenues for future work
in this area. Although we observe empirically that the log-
sum penalty significantly outperforms the lasso penalty, we

715


https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data
https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data

TUGNAIT: ON CONDITIONAL INDEPENDENCE GRAPH LEARNING FROM MULTI-ATTRIBUTE GAUSSIAN DEPENDENT TIME SERIES

__extended graph

10+
20
30+
40"
11
50|

601 1-2

707

80

10 20 30 40 50 60 70 480

(a) Lasso

extended graph

201

=

30

40 -

60

70

80

10 20 30 40 50 80 70 80
(b) Log-sum

FIGURE 3. Estimated logm(‘/Z;:':, |[€>k];i|1), i, j € [88], for the Beijing air-quality dataset (m = 8, p = 11, M = 4, n = 364). There are p = 11 nodes (PM, s
labeled as node 1, PM;, as 2, and so on, moving counter-clockwise in Fig. 2), each variables measured at m = 8 stations.

have not proved it. This would be a task for future research.
Theorem 1 shows that all three penalties considered yield
the same asymptotic rate of convergence (see Remark 1) and
how this rate is influenced by various chosen parameters.
Other model selection approaches also need to be investi-
gated. In [51] a stability approach is proposed for graphical
modeling with i.i.d. data using a random sampling approach
to pick the smallest regularization parameter that “‘simultane-
ously makes the graph sparse and replicable under random
sampling” In our case, in the frequency-domain we have
M models, each with K approximately i.i.d. complex-valued
Gaussian measurements d , ( fk,g) (see Section II-1I-A). In or-
der to apply the approach of [51], we would sample in the
frequency-domain. Finally, sample complexity issues based
on information-theoretic bounds need to be investigated.
Based on the results of [52] for i.i.d. data, [53] consider sta-
tionary Gaussian sequences, and using information-theoretic
methods, [53] derive a lower bound on the error probability
of any learning scheme for the underlying process CIG. This
bound is then used to derive a minimum required sample-size
which is necessary for any algorithm regardless of its com-
putational complexity, to reliably select the true underlying
CIG. The model restrictions in [53] are more stringent than
we consider here; e.g., instead of our assumption (A1), [53]
needs 3 %% 7| |[Ryx(T)]ke| < 0o forevery k, £ € V.

T=—0

APPENDIX

A. PROOF OF THEOREM 1

Our proof relies on the method of [48] which deals with i.i.d.
time series models and lasso penalty, and our prior results
in [10] dealing with sparse group lasso penalty and single-
attribute time series. From now on we use the term “with high
probability” (w.h.p.) to denote with probability greater than
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1— 1/(mp,,)f_2. First we recall Lemmas 2 and 3 from [10],
replacing p, therein with mp,,.

We denote So(fk) as Soy in this section.

Lemma 2: [10, Lemma 3]. Under Assumption (A1)-(A2),
S; satisfies the tail bound

N In(mpy,) 1
P (an?f LSk — Soxlq| > Co - ) <

Ky - (mPn)r_2
for v > 2, if the sample size n > Nj, where Cj is defined in
(38) and N is defined in (42). e

Lemma 3 deals with a Taylor series expansion with integral
remainder using Wirtinger calculus [49].

Lemma 3: [10, Lemma 5]. With c(®;, ®;) =In|®;| +
In|®;| and & = &g + Ty = <I)f, the Taylor series expan-
sion of c(®y, ®}) in the integral remainder form is given by

(g, B}) = c(Bok, Bfy) + (D5 Ty + &5, TF)

|
—gH(Tk)([O (I—U)H(d’()k,l"k,v)dv)g(rk) (62)

where v is real,

_ VCC(rk) . H“k 0
g(rlx) - [Vec(rr)] 5 H(d’oks rka U) . [ 0 H22](j|

(63)
Hyjp = (@ +0T0)™* @ (dox +0T0)™' . (64)
and
Hoy = (o +0T0) ™' @ (o + 0Tx) ™ @ (65)
‘We now turn to the proof of Theorem 1.
Proof of Theorem 1: Let & = 2y + A where
A= [rl e I'Mﬂ] c C(mpn)x(mpnMn)_ (66)
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[ = & — By € CPxmpn) | c [M,],  (67)

and ®;, ®g; are both Hermitian positive-definite, implying
T = T Tet

Q(R) := L(R) — L().

The estimate §;, denoted by 2 hereafter suppressmg depen—
dence upon A, minimizes Q(), or equivalently, A = £ —
minimizes G(A) := Q(20 + A). We will follow the proof
of [10, Theorem 1], which, in turn, follows the method of
proof of [48, Theorem 1] pertaining to real-valued i.i.d. time
series. Consider the set

On(R):={A : Tx =

(68)

T4, ke Ma), I|AllF =Ry} (69)

where R and r,, are as in (40) and (41), respectively. Observe
that

G(A)=Q(R+A) = G0)=0 (70)
Therefore, if we can show that
il;f{G(A) :Ae©,R)} >0, (71)

a minimizer A must be inside the sphere defined by ©,(R),
and hence

IAllF <Rr,. (72)

When G(A) is convex (as with the lasso penalty), the mini-
mizer is global, else it is local.
Using Lemma 3 we rewrite G(A) as

My

1 1
CUNEDY (EAM + SAx% +A3k) +A44,  (73)
k=1

where, noting that d’gkl = S0k,

1
Ay =g" (T (/0 (1 —v)H(®q, Ty, U)dv) g(Ty),

(74)
Aok = tr (S — ST + (Sk — Sox)*T%) . (75)
mpy
Asc=a Y (o (1®ox + Telij) — pa ([Boclij)) . (76)
i#]
Pn am
Ar=(—a)mVM Y (px (||szf]q it A(‘IW")HF)
g#t
o, (125 11F) ) | amn
ngZMn) . I:d)(lqi)’ q,(zqi)’ i (I)jvﬂljf):l c me(mMn) . (78)

(geMy) . (g0)  gb) (ql) (mMp,
A — 10, TE9, ..., IO e cmxm) - (79)
Also define
My My
Ar =05 ZAzk, £=1,2, A3 = ZA3ks (80)
k=1 k=1
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and

|
H(Ii?(lpn)’ dry = dinv mpy + mzsn() .

(81)

The bounds on A;’s and A follows exactly as in [10, Theo-
rem 1], with the final result (see equations [10, (B.39)-(B.44)])

AN
w 2"
2 (B +Rry)

Turning to Ay’s and Ay, as in [10, Theorem 1] (after ac-
counting for the fact that here we have 8 e C"Pn)x(mpn)
whereas in [10], §; € CP»*Pn, and here we have group penalty
on groups of size m*M, elements whereas in [10], group
size is M), with probability > 1 — 1/(mp,,)f‘2, we have the
bound [10, (B.51)]

Ay

Y

(82)

My
2l < Co Y (dinll Ty Il + daallTF NIF) (83)
k=1
a well as the bound [10, (B.55)]
|A2| < /m2M, Cydi, (||fs‘||1 + ||71+||l) (84)

where A € RP»*Pr hasits (i, j)th element A;j = |AMa) |,
For the rest of the proof we have two slightly different
approaches, one for lasso and log-sum and the other for SCAD
penalty. The following applies to lasso and log-sum penalties.
For Lasso and Log-Sum Penalties: We now bound Aj;.

Let &G denote the complement of &, given by &§ = {{i, j} :
(f))“f’ =0,i+#j,i,j€lpal, f€10,0.5]}. Similarly,

let 50 denote the complement of &, given by 50 = i, JF =
Sy (lij=0,i# j. i, j € lmpal, f € l[0,0.5]}. For an in-
dex set B and a matrix C € C?*9, we write Cp to de-
note a matrix in €97 such that [Cgl;; = C;; if (i, j) € B,
and [Cplij =0 if (i, j) € B. Then I}, = F,:EO + I‘;SS, and

1T 1l = 10z NIt + [[Tggcll1. We have

Ay =« Z (px ([Pok + Tilij) — o ([Poklij))

(i,j)Ggo
+o Z o ([Txlij)
(i,j)eE§
=a Y p} (1%ij) (I1®ox + Tilijl — [[Poklijl)
(i,))€éo
+o Z o ((Tilij) (85)
(i.j)€ES

where we used the mean value theorem to infer p; ([®or +
I'ilij)= PA([¢0k]ij)+pi([‘i’k]ijZ(I[‘I’Ok + Lilijl —

[[®orlijl)  for  some  |[D4lij| = [[Poxlif| + v ([ Pox
+ Lelijl = [[®oklij|) and y €10,1]. Using the triangle
inequality, properties (vii) and (viii) of the penalty functions,
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and C, = A/2, we have

Az > —a Z 5, ([Dx1ij) 1Tkl
(i, Hreéo
+a Y Gl for I[Telijl <8 (86)
(i, ))eEs
ary
> —aky Y ITelijl+ > 1Tl
(i,j)ebo (i,))e&s
1
= ak, (Enr,;gg h — ||r,j£0||1) : (87)
leading to (A3 = ZkMz”l Asp)
M, |
A3 > ahy (Eur,;ggn. - ||r,;50||1) .88
k=1
Similarly, by (77), we have
1
Arz (=M | 5 3 A9
(q.0)€E§
— > 1A (89)

(q.0)e&

Now III';golll < /m?s,0 III';gOIIF < /m%s,0 | Tk ||, by the

Cauchy-Schwarz inequality, hence

M,
D T < vMum2sy | Ay - (90)
k=1
Set [T, [l = ||l";gol|1 + ||I‘;§C||1 in A of (83) to deduce that
0
w.h.p.
@Ay + Az > —alAz| + A3z
My
> — Ta
> (0.5kn = Codia) ) T3l
k=1
M, My
—a(Codin+1a) Y 1Tz 1t —aCodza Y IT |17
k=1 k=1
> —a ((Godun + a)V/m2sy0 + Cocon ) VWAl
> —o (m«/ $n0 An + 2C0d2n) v My |AllF 1)

where we have used the fact that 0.5%, > Codyy = Ape/2

(see (46)), (90), Y M T 1IF < v/, [ AllF (by the Cauchy-
Schwarz inequality), and the bound ,/s,0 mdy, < dz,. Now
use A of (84) to deduce that w.h.p.

(1—-a)A2 +A4 = —(1 — a)lAz2| + A4

> (1 —a)my/My(0.54, — Codry) Y 1AM
(q.0)&f
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— (L= aym/My | (Codin+2n) D [ACH) g
(q,.0)e&

Pn
+Codin Y | A0
1

q=t=

> —(1 —a)vM, |AllF (V mzsno An

+Codinm (/5n0 + /Pn))
> —(1 — a) (ma/50 kn + Co(1 + m)dan) VM, |AlF (92)

where we have used the facts that 0.5, > Codin = Ane/2,
Yo 1AMNE < /5ol Allpand 3P, A
< ./PnllAllr by the Cauchy-Schwarz inequality, and the

bounds /5,0 mdy, < da, and /P, mdy, < mdy,.
From (91) and (92), after some simplifications, we have

Ar 4+ A3+ Ay > — (M50 An + Co(1 + m)day )
X /My ||A|F

where we used the bound 2d>, < (1 + m)da,. By (41), (47)
and (48), A, is chosen to satisfy

(93)

By 20 Co(1 +m) 94)
n = "N = I'n.
1 il mm n
Noting that r, = /M, d>,, we have
Ay +A3 +Ag = =2Co(1 +m)ryl|AllF . (95)

Using (73), (82) and (95), and ||A||p = Rry,, we have w.h.p.

1 2CH(1
G(A) > ||A||%[ _ 24l +’”)] (96)

2Brin + Ra)? R

For the given choice of Ny, Rry < Rry, < 0.1/Bmin for n >
N>. Also, 2Cy(1 + m)/R = B2. /4 by (40). Then for n > N,

min

1 2Co(1 + m) ) 1 |
28] 3 R = Prin 242 4 >0,
(ﬁmin_i_Rr") :

implying G(A) > 0. This proves (49). The choice of N3 for
log-sum penalty ensures that [[T'x];j| < 8, = € needed in (86)
is satisfied w.h.p.: if Rr, < e, then |[I't]ij| < [|AllF < Rry <
E.

The following applies to the SCAD penalty.

For SCAD Penalty: Here we address (85) differently. Using
triangle inequality, we have

I[lij| = [[Dorlij| + ¥ (I1Porlij] — IIT:1ij] — I[Poxlijl)
> [[®orlij| — Tklijl - 97

Since [[T4];j| < |AllF < Rr,, the choice A, = A,,» implies
that A, > Rry, satisfying |[T'y];j| < A,. Therefore, |[&’k]ij| >

[[@oxlijl — 2. For n >Ny, pf(I[®4;j]) = 0 (see (45) if
{i, j} € &o. Le, [Poxlij # O, since in this case [[®];j| > (a +
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Xy — Ay = aky. Therefore, for n > Ny,

A=a Y p(ITelij)

(i.))eE§

>a Y GuTdijl for I[Telijl <8

(i,j)eﬁ_g
= /DIl (98)
leading to (A3 = Z‘;ﬁl Asp)
Mn
A3 > @ (n/2) ) ITpsclh - (99)
k=1

Mimicking the steps for bounding A3 above and under the
same conditions, we have

A= (1 —aymd/My (haf2) Y A

(g.0)e&§

(100)

Thus w.h.p.
oAy + Az > —a|Ay| + Az

My

> 0.5k = Codin) ) Tzl
k=1

M, My
—aCodin ) T It —aCodan ) ITF IF
k=1 k=1

> —a (Codinv/m2s,0 + Codon ) VI Allp
= —a2Codz /My | Al (101)

where we have used (90), ZkMz”l ITfIIF < My lIAlF (by
the Cauchy-Schwarz inequality), the bound /5,0 md1, < da,.,
and the fact since A, = max(Rry, Ayy1)in Theorem 1,0.54,, —
Cod1n, = 0 and therefore, the term involving 0.54, — Cod\,

above can be neglected. By very similar arguments we also
have

(I—a)Ar+As> —(1 —a)|Az| + Ay

> (1 — a)my/Mp(0.50, — Codia) Y A4
(g.0)e&g

— (1 —a)md/M, [ Codi D (A5

(g,.0)e&y
Pn
M,
+Codin Y AU
q:@:]

> —(1 — a)vM, 1Al (Codinm(s/5n0 + /Pr )
> —(1 — a)Co(1 + m)dyy /M, || Al

where we have used the facts that 0.51, > Cydi, =
Ant/2, Y q.0reg 1AYMp < /5ollAllF and

(102)
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Zlf:l |AYMD| < /BrllAllF by the Cauchy-Schwarz
inequality, and the bounds . /5,0 md, < do, and . /p, mdy, <

md»,. From (101) and (102) we have

A2+ A3 +Ay > —Co(1 +m)don/My | AllF

> —Co(1 +m)r,||Allp (103)

where we used r, = /M, d», and the bound 2d>, < (1 +
m)da,. Mimicking (96),with probability > 1 — 1/(mp,)* 2,
we have

Gl +m)
2(5'—[ +Ri’);)2 R

min

g o T 1
Zhun\ 55" 5) >0

implying G(A) > 0. This proves (49). For the SCAD penalty,
we need [[Tglij| < 8, = A, in (98). Since [[T¢lij| < [AllF <
Rr,, the choice A, = A,,» implies that A, > Rr,, satisfying
[[Tlij| < Ayn. This completes the proof.H

G(A) > ||A||%[

(104)

B. PROOFS OF LEMMA 1 AND THEOREMS 1 AND 3

Proof of Lemma 1: Consider £(2) — % ||€2 II% for some p > 0.
By [10, Lemma 4], using Wirtinger calculus, the Hessian of
L(RQ) w.r.t.

y = [(vec(®1))", (vec(®})'. -,
(vec(®p, )", (vec('ilﬁ,,n))-r]T e C2mPan
is given by
V2£(R) = block-diag {«b;* o7, o7 @ @7, -,

o @0y, oy @ 0] (105)
with
1

Pmin(V-L(R)) = mkm ¢mm(q)k ) maxy ¢12mx(<bk)

1
52 - (106)

~ maxy | @]
Since we have ||SZ||% = %yHy. the Hessian of ||ﬂ||% w.rt. yis
given by

ViRl = Loz pou, - (107)

It follows from (106) and (107) that £(£2) — %l]ﬂllfE is posi-
tive semi-definite, hence convex, if

2
1@l < J; Vk € [My].

By property (v) of the penalty functions, g(u) := px(u) + %uz
is convex, for some p > 0, and by property (ii), it is non-
decreasing on R. Therefore, by the composition rules [50,

(108)
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Sec. 3.2.4], g(|[®];j]) and g(llSZ(qu”) |l7) are convex. Hence,

M, mp

P+ EE12E =2 D (pad(191i ) + S5 |10 )
k=1 i#j
(109)

is convex for u, = . > 0, and similarly,

M, P
2
(@) + QA =md/M, Y ) (m(nsz(qwﬂ’np)
k=1 g#¢t
Heg (geMy) 12
Q9 110
tomir] ||F) (110)

is convex for ptg = m+/M, 1, where p is the value that renders
P (u) + “u convex. Now express £(R) as

L(R) =al (R)+ (1 —a)Ly(R), (111)
L(®) = L) — SIRAF + P + SI90F,  (112)
L) = L) - SIQ1F + P + L1215 (113)

By (108), (109) and (112). £.(R) is convex function of & if

2
Pl <,[— Vk € [M,], (114)
"
and by (108), (110) and (113), Eg(Sl) is convex in  if
Pyl < : 2 Yk € [M,] (115)
— = _f—— € ;
ek Mg mu/ M, i

Thus, for £(R) to be strictiy convex using the (minimum)
values of y to make py (u) + 5 Ly? convex, we require

@l < Vk € [M,]

2
mp/Mpy

[o/e] : Lasso

2a—1)
= 44 paty;  © SGAD (116)
= log-sum,
ma/Mpiy

The choice ||| < W makes L(2) — 7||SZ||F pos-
itive definite, hence strictly convex. We take |[®| =

0.99 /m, completing the proof.ll

Proof of Theorem 2: If 1/Pmin < 0.99 /ﬁ, then
d( € By since || Pok|l = 1/Pmin(Sok) < 1/Bmin by assump-

tion (A4). To establish that &, € By, consider (A is as in the
proof of Theorem 1)

Dkl < 1Dk — Boxll + | Boxll
< Al + 1/Bumin < | AllF + 1/ Bunin

< Rry + 1/Bmin - (117)
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Therefore, ®; € By. Thus, both & and @, hence 2, and
g, respectively, are feasible. The desired result then follows
from Theorem 1 and (local) strict convexity of £() over
M2, By implied by Lemma 1.1
Proof of Theorem 3: We have |2
12 — ollr < 64 w.h.p. For the edge {g, £} € &, we have

o,
OtMn) ﬂf)qEM")IIFE

& (qEMy) C[EM A (qeMy) qZM
EM

>v—4,>06v for n> N;s

(118)

> VYn-

Thus, & C €. Now consider the set complements £§ and £e.

For the edge {g, £} € &5, ||SZ(()QEM")||F = 0. Forn > N5, w.h.p.
we have

(qEM,) (qeMy) (geMy) (qeMy)
12" e < 1U™M)p + 1@ — @MY

| A

<0+4+86,<04v <y, (119)

implying that {gq, £} € 5'6. Thus, £§ € £°, hence & C &, es-
tablishing £ = £,.1
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