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Abstract

Motivation: Protein language models based on the transformer architecture are increasingly improving performance on protein prediction 
tasks, including secondary structure, subcellular localization, and more. Despite being trained only on protein sequences, protein language mod-
els appear to implicitly learn protein structure. This paper investigates whether sequence representations learned by protein language models 
encode structural information and to what extent.

Results: We address this by evaluating protein language models on remote homology prediction, where identifying remote homologs from se-
quence information alone requires structural knowledge, especially in the “twilight zone” of very low sequence identity. Through rigorous test-
ing at progressively lower sequence identities, we profile the performance of protein language models ranging from millions to billions of param-
eters in a zero-shot setting. Our findings indicate that while transformer-based protein language models outperform traditional sequence 
alignment methods, they still struggle in the twilight zone. This suggests that current protein language models have not sufficiently learned pro-
tein structure to address remote homology prediction when sequence signals are weak.

Availability and implementation: We believe this opens the way for further research both on remote homology prediction and on the broader 
goal of learning sequence- and structure-rich representations of protein molecules. All code, data, and models are made publicly available.

1 Introduction

An explosion in the number of known protein sequences is allow-
ing researchers to harness recent breakthroughs in Natural 
Language Processing (NLP) due to language models (LMs) and 
propose Protein Language Models (PLMs) (Heinzinger et al. 
2019, Bepler and Berger 2021, Elnaggar et al. 2022). Like their 
counterparts in NLP, from BERT (Devlin et al. 2019) to GPT-4 
(OpenAI et al. 2024), PLMs are trained in a semi-supervised fash-
ion by randomly masking out amino-acid tokens or spans of 
tokens within protein sequences extracted from large protein se-
quence databases (Steinegger et al. 2019, The UniProt 
Consortium 2020). The model’s objective is to predict the missing 
amino acids based on the context provided by the surrounding 
unmasked tokens (Vaswani et al. 2017). Key to accomplishing 
this objective is the ability to weigh the importance of different 
portions of the input sequence. The introduction of the self- 
attention mechanism in the transformer architecture allows mod-
els to learn these weights and effectively capture the contextual in-
formation in input data. In this process, referred to as pre- 
training, the model builds complex, high-dimensional representa-
tions of input sequences (and even individual tokens) (Vaswani 
et al. 2017). The representations learned during pre-training are 
task-agnostic, which, in principle, through fine-tuning, enables 
their use in a variety of downstream prediction tasks.

Protein sequence representations learned via PLMs have been 
shown useful for various prediction tasks, including predicting 

secondary structure (Elnaggar et al. 2022), subcellular localiza-
tion (St€ark et al. 2021, Elnaggar et al. 2022), evolutionary rela-
tionships within protein families (Hie et al. 2022), and 
Superfamily (Kabir and Shehu 2022) and Family (Nambiar 
et al. 2020) membership. In particular, PLMs are reported to 
implicitly learn structural information even when trained solely 
on sequence data (Rao et al. 2019, Heinzinger et al. 2019, Rives 
et al. 2021, Elnaggar et al. 2022). For instance, work in Rao 
et al. (2019) shows that sequence-learned representations confer 
high performance on an array of downstream protein-structure 
related tasks, including secondary structure prediction, homol-
ogy detection, and protein engineering. Rives et al. (2021) also 
tout the utility of sequence representations learned from their 
Evolutionary Scale Modeling-1 (ESM-1) PLMs for predicting 
secondary structure, homology, long-range residue contacts, 
and mutational effects. In Lin et al. (2022) the authors introduce 
a Family of ESM2 models ranging in size from 8M to 15B 
parameters and utilize their representations for tertiary structure 
prediction through an equivariant neural network. Though the 
reported accuracy falls short of the state-of-the-art (SOTA) 
AlphaFold2 (Jumper et al. 2021), models beyond 150M param-
eters are shown to outperform smaller ones.

A growing argument in the scientific community is that 
PLMs implicitly learn structure due to their ability to ingest 
millions of protein sequences, something that was not possi-
ble before with methods based on sequence alignment. The 
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hypothesis is that this ability in turn enables PLMs to capture 
the selective pressures exerted on protein sequences through-
out billions of years of evolution (Marquet et al. 2021). Note, 
however, that these pressures come directly from function 
through structure down to sequence. Function evolves slower 
than structure, and structure evolves slower than sequence 
(Illergård et al. 2009). Structure and function are well pre-
served above 30% sequence identity (Rost 1999). Proteins 
with similar structure and function are indeed present below 
this level of identity (the “twilight zone”) but cannot be 
detected from sequence similarity alone (Rost 1999). We re-
fer to these proteins as remote homologs (Rost 1999, 
Strodthoff et al. 2020).

Do PLM-learned sequence representations additionally en-
code protein structure and to what extent? In this paper, we an-
swer this question by stress-testing PLM-learned representations 
on a hallmark problem in computational biology, remote ho-
mology prediction. The core task is to determine from sequence 
information alone that two given proteins are remote homologs. 
In the twilight zone of sequence homology, structure informa-
tion is essential to address this task, which becomes increasingly 
challenging as sequence identity decreases.

In this paper, we evaluate representative SOTA transformer- 
based PLMs in the zero-shot setting on the problem of remote 
homology prediction at increasing levels of difficulty. The zero- 
shot setting refers to the fact that we do not fine-tune models on 
a particular task but directly utilize representations learned by a 
PLM after pre-training. The evaluation is carried out over de-
creasing levels of sequence identity. In this manner, we system-
atically remove sequence-based determinants of homology and 
so are left with increasingly challenging instantiations of remote 
homology prediction, where structural knowledge is key to 
performance.

While advancing remote homology prediction is an active 
area of research with an increasing number of models and 
methodologies (Hamamsy et al. 2023, Kaminski et al. 2023, 
Kilinc et al. 2023, Johnson et al. 2024, Liu et al. 2024) we fo-
cus here on the following SOTA PLMs: TAPE-BERT (Rao 
et al. 2019), Protein-BERT (Brandes et al. 2022), ESM1b 
(Rives et al. 2021), ESM2 (Lin et al. 2022), Prottrans-BERT, 
Prottrans-Albert, and Prottrans-T5 (Elnaggar et al. 2022). 
TAPE-BERT is among the first pre-trained PLMs (containing 
38M parameters) that is rigorously evaluated and shown ef-
fective on a variety of protein prediction tasks. Protein-BERT 
is a smaller model of 16M parameters that utilizes both pro-
tein sequence data and Gene Ontology annotations of 
sequences during its pre-training. ESM1b is reported by the 
authors to be the most powerful in the ESM-1 suite of mod-
els. The ESM2 model (of 650M parameters) we select is a 
representative of the top three models (of size 650M, 3B, and 
15B parameters) in the ESM2 suite (Lin et al. 2022). The 
Prottrans models we select range in size from 224M to 3B 
parameters and represent transformer-based PLMs shown 
powerful in a variety of downstream protein prediction tasks.

To provide a baseline for the observed performance, we 
use HHblits (Remmert et al. 2012), a classic, pre-PLM 
method for remote homology prediction. HHblits relies on 
sequence alignment within a hidden Markov model frame-
work. Its utilization as a baseline provides us with a better 
understanding of the performance gains obtained by the shift 
away from sequence alignment to PLM-learned sequence 
representations.

A key contribution of this paper is the rigorous evaluation 
of small-to-large scale SOTA PLMs on the remote homology 
prediction task over two datasets, the manually curated 
SCOP2 dataset (Andreeva et al. 2013, 2019) and its exten-
sion SCOPe dataset (Fox et al. 2014, Chandonia et al. 2022). 
These datasets provide structural and functional categoriza-
tions that permit rigorous evaluation of PLM-learned repre-
sentations along a variety of classic machine learning metrics, 
such as AUROC, AUPRC, Hit@1, and Hit@10 (detailed in 
Section 2). SCOPe additionally provides subsets filtered by 
sequence identity and so permits stress-testing the selected 
PLMs with increasingly low levels of sequence identity.

Among various important findings, this paper shows that 
remote homology prediction remains challenging, particu-
larly in the twilight zone, even for small-to-large scale SOTA 
PLMs. SOTA PLMs experience an average drop of 7.6% in 
AUROC score when the maximum sequence-identity thresh-
old is lowered from 95% to 10%. This suggests that current 
PLMs have not sufficiently learned protein structure to ad-
dress remote homology prediction when sequence signals are 
weak. We believe the findings in this paper strongly warrant 
further research both on the problem of remote homology 
prediction and on the broader goal of learning sequence- and 
structure-rich representations of protein molecules.

All our evaluation code, benchmark datasets, and models 
in this paper are made publicly available at https://github. 
com/amoldwin/plm-zero-shot-remote-homology-evaluation.

2 Methods

2.1 Problem formulation

We use the classic definition of remote homology and harden it 
to capture the evolutionary information learned via PLMs. The 
extended formulation is designed to rigorously test the consid-
ered models, enabling us to examine how well structural infor-
mation is incorporated in the learned sequence representations. 
We consider a zero-shot approach for identifying remote homo-
logs from learned sequence-representations.

Many recent computational studies for remote homology pre-
diction rely on the hierarchical protein classification system 
used to annotate proteins in the Structural Classification of 
Proteins (SCOP2) (Andreeva et al. 2013, 2019) and SCOPe 
(Fox et al. 2014, Chandonia et al. 2022) databases. In this sys-
tem, Family membership refers to proteins that share a high 
similarity in their raw sequence but can still exhibit distinct 
functions. Proteins sharing above 30% sequence identity are 
generally labeled as belonging to the same Family. On the other 
hand, two proteins are considered to belong to the same 
Superfamily, which bridges together protein Families, if they 
share common functional and structural features due to com-
mon evolutionary ancestry. The similarity among proteins in a 
Superfamily is frequently limited to common structural features 
that, along with a conserved architecture of active or binding 
sites or similar modes of oligomerization, suggest a probable 
common evolutionary ancestry. Levels above Superfamily in 
this protein classification system are identified based on the 
structural features and similarity. Proteins grouped into struc-
turally similar Superfamilies are labeled to be in the same Fold.

2.1.1 Classic definition of remote homologs

We define remote homologs at the Superfamily and Fold lev-
els as in (Chen et al. 2018, Strodthoff et al. 2020, Rives et al. 
2021). A pair of proteins pi and pj are remote homologs at 
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the Superfamily level if they belong to the same Superfamily 

but are in different Families [see Equation (1)]. Similarly, a 

pair of proteins are remote homologs at the Fold level if they 

belong to the same Fold but are in different Superfamilies. 

areRemoteHomologsðpi;pjÞ ¼

1; if SFi ¼ SFj and

Fi 6¼ Fj

0; otherwise

8

>

<

>

:

(1) 

where SFi and Fi determine the Superfamily and Family label 

annotation of the ith protein.

2.1.2 Hardened definition: remote homology

We harden the classic definitions (whether at the Superfamily 

or Fold level) to accommodate a sequence identity threshold 

through which we can gradate the problem and venture into 

the twilight zone of <30% of sequence identity. The hard-

ened formulation at the Superfamily level is related in 

Equation (2). 

areRemoteHomologsðpi; pj; thÞ ¼

1; if SFi ¼ SFj and

Fi 6¼ Fj and

seqidentðpi;pjÞ≤ th

0; otherwise
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:

(2) 

where th denotes the sequence identity threshold that can be 

decreased to restrict the definition to increasingly hard cases 

of remote homologs.

2.2 Zero-shot remote homology prediction 

with PLMs

We now describe how to utilize sequence representations of 

proteins learned from a PLM after pre-training, for remote 

homology prediction. We refer to this setting as the zero- 

shot setting.

2.2.1 PLM-learned sequence representations

For each protein, 1≤ i≤N, defined by its sequence of li amino 

acids, we obtain the sequence representation si 2 Rli ×D from 

the last layer of each model. Here, each amino acid is mapped 

into D-dimensional space (RD). Next, we compute the 

protein/sequence-level representation pi 2 R1×D by applying 

an average pooling layer on the amino-acid level features 

over the sequence length as in: 

pi ¼
1

li

X

li

j¼1

sij (3) 

2.2.2 Comparison of PLM-learned sequence representations

Similarities of high-dimensional vector representations of 

protein sequences can be compared using distance functions. 

We adopt the cosine similarity between vector representa-

tions from each pair of protein sequences as our similarity 

metric, following the methodology in (Rives et al. 2021). 

Specifically, for each pair of sequences, we compute the rep-

resentation similarity as in Equation (4). 

cosðpi;pjÞ ¼
pi ÿ pj

jjpijjjjpjjj
(4) 

2.2.3 Zero-shot remote homology prediction

We define a database D of N proteins, that is prefiltered such 
that no proteins share a sequence identity more than a prede-
fined threshold th. We use each protein sequence from D as 
an independent query, qi, against a smaller database Di where 
Di ÿ D. Di is computed by excluding proteins from D based 
on each qi. Specifically, we exclude all proteins belonging to 
either the same Family Fi as the query (when evaluating 
Superfamily level remote homology) or Superfamily SFi 

(when evaluating Fold level remote homology). This exclu-
sion of proteins from the same Family (or Superfamily) as the 
query enables us to formulate the problem as remote homol-
ogy versus nonhomology, contrary to remote homology ver-
sus “all others,” where “all others” might contain nonremote 
homologs. We adopt the former formulation in order to un-
derstand the models’ true capacity to identify remote homo-
logs rather than their ability to distinguish sequence 
homologs from remote ones.

In our evaluation, we define remote homologs in accor-
dance with Equation (2) (the hardened definition of remote 
homology): for a given query, all remote homologs are given 
a positive label, and all nonhomologs are given a negative la-
bel. If there exist no positively labeled target sequences for a 
query, we remove that query from the evaluation. In this 
manner, the number of negative labels per query is much 
higher than the number of positive labels. For instance, the 
average number of positive labels per query is ÿ21 compared 
with ÿ6,756 negative labels at the 10% sequence identity 
threshold when considering Superfamily-level remote homo-
logs. Similarly, at the Fold level, the average number of posi-
tive and negative labels per query are ÿ68 and ÿ6,692, 
respectively.

2.3 Evaluated models

As related in Section 1, we use seven publicly available, pre- 
trained SOTA PLMs to obtain representations for our analy-
sis. As a selection of baselines we choose two models, summa-
rized first below.

Random: We define random protein sequence representa-
tions as sequences of uniformly selected random numbers, 
each with a length of 150. Then we compute the evaluation 
metrics based on these randomly initialized protein sequence 
representations, keeping the ground-truth homology labels 
from the original sequences. Note that while we observe that 
these random representations produce slightly different 
results at each threshold (see Supplementary Material SA.2 
for details), we report the average across all thresholds. This 
baseline is intended to illustrate how much better all of the 
other models perform when compared with random guesses 
on each metric.

HHblits (Remmert et al. 2012): HHblits is a SOTA method 
for homology prediction based on sequence alignment. We 
compute match scores between pairs of proteins using the 
HHblits software package. This involves computing multiple- 
sequence alignments among sequences in our protein data-
base and training a hidden Markov model to generate profiles 
that can be compared to each other to obtain match scores 
between each pair of proteins. Further detail of the protocol 
is discussed in the Supplementary SA.2.
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2.3.1 Selected PLMs

Different types of PLMs have been developed and studied by 
researchers. Among these, two sets of PLMs, such as 
sequence-based and sequence-with-structure based (Bepler 
and Berger 2019, Kabir and Shehu 2022), are particularly 
popular. Since we delve into the question of how such struc-
tural information is learned implicitly by the PLMs, we ex-
clude those that use structural information in the model 
development. We also focus on transformer-based PLMs, as 
recent studies suggest their superiority above other models. 
We select seven SOTA PLMs, which are now summarized be-
low focusing on the pre-training dataset, the model size, and 
other important model-specific information.

TAPE-BERT (Rao et al. 2019): TAPE pre-trained three 
PLMs separately, such as LSTM, Transformer, and dilated 
residual network (ResNet), on two pre-training objectives: 
autoregressive and masked language modeling (MLM) tasks. 
The authors used the Pfam database (Mistry et al. 2021), 
containing ÿ31M protein domains. Sequences in Pfam are 
clustered into evolutionarily related groups called families. A 
held-out set of families was reserved for testing while the 
remaining sequences were used for training/validation. We 
only considered the transformer-based model learned from 
the MLM objective in our evaluation.

ProteinBERT (Brandes et al. 2022): The pre-training 
scheme in ProteinBert combines language modeling with a 
novel task of Gene Ontology (GO) annotation prediction. 
ProteinBert was pre-trained on ÿ106M proteins derived 
from UniProtKB/UniRef90 (The UniProt Consortium 2020), 
covering the entire tree of life. For each protein, the authors 
extracted its amino-acid sequence and associated GO annota-
tions (according to UniProtKB). The authors considered only 
the 8943 most frequent GO annotations that occurred at 
least 100 times in UniRef90. Of the ÿ106M UniRef90 pro-
teins, 46M had at least one of the 8,943 considered annota-
tions (with 2.3 annotations per protein, on average across the 
46M proteins). Note that the authors removed all input GO 
annotations altogether for 50% of the processed proteins 
during training and evaluation to force the model to predict 
GO annotations from sequence alone. When performing our 
evaluation, we follow a similar process and only input the 
unannotated sequence. ProteinBert is considerably smaller 
and faster than other comparing models, with only ÿ16M 
trainable parameters.

ESM1b (Rives et al. 2021): We use the ESM1b 
(esm1b_t33_650M_UR50S), a 33-layer transformer architec-
ture with ÿ650M parameters pre-trained with the masked- 
language-modeling objective on UR50/S. UR50/S represents the 
high diversity sparse dataset from the UniRef50 (The UniProt 
Consortium 2020) representative sequences. Note that there are 
two other pre-training datasets that are used to model the pro-
tein sequences with different levels of diversity to study the 
transformer’s capacity spanning evolutionary diversity: (i) the 
low-diversity dataset (UR100) uses the UniRef100 representa-
tive sequences; (ii) the high-diversity dense dataset (UR50/D) 
samples the UniRef100 sequences evenly across the UniRef50 
clusters. ESM1b is reported to be the most powerful in the 
ESM-1 suite of models (Rives et al. 2021).

ESM2 (Lin et al. 2022): ESM2 is a new-generation BERT 
style encoder-only transformer model, trained over millions 
of sequences on the UniRef protein sequence database. The 
ESM2 models are trained with the MLM objective. A family 
of ESM2 models are available at scale from 8 million 

parameters up to 15 billion parameters. The 33-layer ESM2 
model of 650M parameters we select 
(esm2_t33_650M_UR50D) is a representative of the top 
three reported models (of size 650M, 3B, and 15B parame-
ters) in the ESM2 suite (Lin et al. 2022). While ESM1b used 
learned positional encodings instead of static sinusoidal posi-
tional encodings, ESM2 models used Rotary Position 
Embeddings (RoPE) to allow the model to extrapolate be-
yond the context window it is trained on. Another distinction 
in the ESM2 pre-training is that the training sequences are 
sampled with even weighting across ÿ43 million UniRef50 
training clusters from ÿ138 million UniRef90 sequences so 
that over the course of training the model sees ÿ65 million 
unique sequences.

Prottrans BERT, Albert, and T5 (Elnaggar et al. 2022): 
Prottrans-BERT-BFD is a ÿ420M parameters BERT-based 
transformer encoder model of 30-layers self-attention blocks 
with 16 attention heads. It limits sequence length context to 
ÿ40K amino acids. Prottrans-Albert-BFD follows Albert’s re-
duced complexity on BERT by hard parameter sharing be-
tween its attention layers which allows it to increase the 
number of attention heads to 64 compared to Prottrans 
BERT’s 16. Both models use the Big Fantastic Database 
(BFD) (Steinegger et al. 2019, Steinegger and S€oding 2018) 
merged with UniProt and proteins translated from multiple 
metagenomic sequencing projects, making it the largest col-
lection of protein sequences available at the time of writing 
even after removal of duplicates from the original BFD con-
taining ÿ393 billion tokens. T5 contains two variants at scal-
ing the number of parameters of ÿ3B (Prottrans-T5-XL) and 
ÿ11B (Prottrans-T5-XXL). We choose the smaller version 
for the model size constraint which is pre-trained on the BFD 
(Steinegger et al. 2019, Steinegger and S€oding 2018) dataset. 
T5 allows reconstructing spans of tokens instead of single 
tokens. However, contrary to the original T5 model which 
masks spans of multiple tokens, Prottrans-T5 adopted 
BERT’s denoising objective to corrupt and reconstruct single 
tokens using a masking probability of 15%.

2.4 Datasets

To provide a comprehensive description of the structural and 
evolutionary relationships between all proteins whose struc-
ture is known, the SCOP (Andreeva et al. 2013, 2019, Fox 
et al. 2014, Chandonia et al. 2022) provides a database of all 
known protein Folds, with detailed information about the 
close relatives of each protein in the database. In this study, 
we leverage both manually curated SCOP2 (Andreeva et al. 
2013, 2019) dataset and its extension SCOPe 2.08 (Fox et al. 
2014, Chandonia et al. 2022) that is created using automated 
tools to help with annotation and error removal.

We download Astral (Brenner et al. 2000, Chandonia et al. 
2002, 2004) domain subsets based on protein sequence per-
centage identity from SCOPe database (https://scop.berkeley. 
edu/astral/subsets/ver=2.08). Particularly, we utilize the se-
quence subsets at of 10%, 20%, 30%, 40%, 70%, and 95% 
sequence identity thresholds. This wide range of thresholds 
enables us to understand the variations and discrepancies 
among PLMs in their capacity for remote homology identifi-
cation in and outside the twilight zone.

Since pre-computed database subsets at different sequence 
identity levels are not readily available for SCOP2 (https:// 
scop2.mrc-lmb.cam.ac.uk/download), we apply the widely 
used CD-HIT (Fu et al. 2012) clustering program to filter the 
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SCOP2 database at each identity threshold. Running CD- 
HIT at 95% and 70% thresholds without changing any other 
default parameters, yields 27 572 and 23 006 clusters, respec-
tively, and returns representative sequences for each cluster. 
Next, following CD-HIT’s recommendations, we applied 
PSI-CD-HIT (Fu et al. 2012), which utilizes blast-based se-
quence identity computation, at the rest of the similar-
ity thresholds.

We carry out minimal data pre-processing, so that future 
developments in remote homology prediction can be easily 
validated by repeating our evaluation procedure. Firstly, we 
remove specific types of proteins such as Rossman-like Folds 
and four- to eight-bladed β-propellers. One other filtering 
step that we applied was to only include sequences that repre-
sent a single continuous span of the underlying protein struc-
ture. For SCOP2 derived datasets, this same span must 
denote the Superfamily and Family, otherwise we exclude the 
sequence from our evaluations. Finally, if a SCOPe sequence 
has a concise classification string (sccs) representation that 
also considers subdomains, that are not Class, Fold, 
Superfamily or Family, we exclude that sequence. More 
details of the data preprocessing steps and CD-HIT usage can 
be found in the Supplementary Section SA.1.

Supplementary Table S3 summarizes the dataset statistics 
at different sequence percentage identity thresholds for 
SCOPe and SCOP2 with counts of the datapoints, Folds, 
Superfamilies and Families. The number of datapoints for 
SCOPe derived datasets decreases from 33,771 to 6,784 for 
increasingly difficult thresholds of 95% to 10% sequence 
identity, respectively. The statistics also demonstrates that we 
lose relatively few classes, i.e. Folds, Superfamilies, and 
Families, due to the minimal data-processing steps.

2.5 Performance metrics

We compute several metrics per query: the area under the re-
ceiver operating characteristic curve (AUROC), area under 
the precision-recall curve (AUPRC), Hit@1, and Hit@10. All 
of these metrics operate over the cosine similarity between 
two (PLM-learned) sequence-level representations, the repre-
sentation of a query sequence and that of another sequence.

Consider a query sequence QS. We compute the cosine 
similarity between the representation of QS and the represen-
tation of all other sequences in the database. Hit@1 and 
Hit@10 rely on sorting all the cosine similarity scores in a 
descending order. In Hit@1, the attention is on the top score. 
If the sequence corresponding to the top score is labeled posi-
tive (i.e. remote homologous, as described in Zero-shot 
Remote Homology prediction), the Hit@1 score for the given 
query is 1; 0 otherwise. Averaging over different query 
sequences (obtained over the database) provides us with a 
Hit@1 score over the entire distribution. The calculation of 
Hit@10 follows a similar process, but the attention is on the 
top ten hits (the top ten similarity scores); if any of the hits 
corresponds to a positively labeled sequence, the Hit@10 
score is 1; 0 otherwise.

The AUROC and AUPRC rely on a classification threshold 
which is varied between 0 and 1. In our case, the threshold is 
based on the cosine similarity. All sequences with cosine simi-
larity score no higher than a given threshold are considered 
positives with the others considered negatives. Comparison 
with the actual labels of the sequences (again assigned as de-
scribed in Zero-shot Remote Homology prediction) provides 
us with true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN). Based on these, one 
can then calculate the True Positive Rate (TPR) as in TPR ¼

TP
TPþFN and False Positive Rate (FPR) as FPR ¼ FP

FPþTN. 
Different values of TPR in response to the moving threshold 
provides us with the receiver operating characteristic curve 
(ROC) and the corresponding area under the ROC, the 
AUROC. The precision versus recall curve (PRC) relates the 
precision (calculated as Precision ¼ TP

TPþFP) versus the recall 
(this is the same as TPR) as one varies the threshold. AUPRC 
measures the area under the PRC.

We report the weighted performance measurements as our 
primary findings, where we first compute the averaged met-
rics per Superfamily or per Fold, and then compute the aver-
aged performance following the practices defined in S€oding 
and Remmert (2011). This helps facilitate a more holistic 
evaluation that takes advantage of the diversity of proteins 
present in SCOPe and SCOP2 by ensuring that smaller super-
families and Folds affect the reported metrics as much as 
large ones. We also report the nonweighted averaged perfor-
mance across all queries in the Supplementary Section SA.3 
as in Rives et al. (2021).

This choice in metrics relates to the trade-off between recall 
and precision, which is influenced by whether the user will be 
more inconvenienced by false negatives (“Type 2” errors) or 
false positives (“Type 1” errors) in the model’s predictions. 
The AUROC and AUPRC scores are based on True/False 
positive rates, and precision/recall scores respectively, while 
the “hit” scores place high importance on not having a long 
list of false positives at the top of the ranking.

Both Type 1 and Type 2 errors are significant. FPs are im-
portant to avoid because researchers trying to identify previ-
ously unknown evolutionary relationships may be concerned 
with proteins where finding evidence to validate a model’s 
homology prediction will often be difficult. In such cases, 
sorting through a long list of FPs before arriving at the first 
TP may be impractical. FNs, on the other hand, will mean 
that important discoveries could be missed because the most 
difficult-to-identify homologs may have the most to reveal 
about nontrivial evolutionary and functional relationships 
between proteins.

In addition to the per-model metrics described above, we 
also use Spearman’s correlation coefficient to assess 
Superfamily-level agreement in performance between each 
pair of models that we test. Let Li and Lj denote the lists of 
AUROC scores achieved by models i and j on each 
Superfamily, respectively. We calculate Spearman’s rank cor-
relation coefficient between Li and Lj as 

ρLi;Lj
¼ 1 −

6
Pn

k¼1
ðrLi ;k

− rLj ;k
Þ2

nðn2 − 1Þ
, where rLi;k and rLj;k are the ranks 

of the kth scores in Li and Lj, respectively, and n is the num-
ber of Superfamilies. This coefficient quantifies the agreement 
between the two models regarding which Superfamilies were 
“easy” or “difficult” to detect homology in. We additionally 
compute this using lists of per-query AUROC performance 
and also for Fold-level remote homology, using Fold-level 
lists of AUROC scores.

3 Results and discussion

We present three sets of results. First, in Fig. 1 we relate the 
comparative dataset-wide performance of the various models 
on AUROC, AUPRC, Hit@1, and Hit@10 at both the 
Superfamily and Fold levels of remote homology at decreas-
ing sequence identity. The second set of results in Fig. 2 
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quantifies the relative agreement between the performance of 
the models, focusing on the AUROC metric. In the third set 
of results, related in Tables 1 and 2, we focus on specific 
Superfamilies that highlight aspects of remote homology pre-
diction that are trivial versus challenging.

Figure 1 shows the performance of each model on each of 
the performance metrics on the SCOPe database at the 
Superfamily level in Panel A and at the Fold level in Panel B. 

Color-coding tracks the different sequence identity thresh-
olds, with darker shades denoting increased difficulty (lower 
sequence identity from 95% to 10%). The Supplementary 
Material relate these results in a tabular format in 
Supplementary Tables S5 and S6.

Figure 2 visualizes the Spearman’s rank correlation coefficient 
when comparing pairs of models on AUROC scores obtained at 
30% sequence identity. The bottom left triangle (below the 

ModelsModels
A B

Figure 1. Models are evaluated on the SCOPe dataset at the Superfamily-level formulation according to the AUROC, AUPRC, Hit@1, and Hit@10 performance 

metrics. Shading indicates different thresholds of sequence identity, with darker shades indicating lowering identity. Panel (A) relates findings at the 

Superfamily level, and panel (B) does so at the Fold level. The performance of a random model, as described in Section 2 is shown through the dotted line.

6                                                                                                                                                                                                                                       Kabir et al. 

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae119#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae119#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae119#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae119#supplementary-data


dotted red line) in the top panel focuses on the per-Superfamily 
AUROC scores averaged over the Superfamilies. The upper 
right triangle (above the dotted red line) focuses on the per- 
query AUROC scores averaged over all the queries. The bottom 
panel does so at the Fold level.

As our discussion will later show, the model with consis-
tently top performance among the PLMs across the various 
settings that we investigate is Prottrans-T5. Using the perfor-
mance of this model as a guide, we narrow our attention in  
Table 1 to the Superfamilies where Prottrans-T5 achieves the 
highest (top panel) and the lowest (bottom panel) AUROC, 
respectively, at the 30% threshold. For these Superfamilies 
we show the average number of true labels per query and the 
number of available queries. In Table 2, we broaden our at-
tention to include the Superfamily level performance of 
HHblits, the non-PLM that represents sequence alignment- 
based methods, and show the Superfamilies that elicit the big-
gest difference in performance in terms of AUROC between 
Prottrans-T5 and HHblits. The top panel of Table 2 consid-
ers the setting of Prottrans-T5 AUROC minus HHblits 
AUROC, and the bottom panel considers the opposite, 
HHblits AUROC minus Prottrans-T5 AUROC.

As we will describe in greater detail below, the three sets of 
results related above support the following main observations:

ÿ As sequence identity decreases, the performance of all the 
models, including the PLMs, deteriorates. 

ÿ Where PLMs exhibit low performance, they do so for dif-
ferent reasons. We observe low agreement on which 
Superfamilies are difficult across the PLMs. 

ÿ PLMs achieve comparable performance to HHblits. 
ÿ The ESM suite of PLMs exhibits surprising behavior. In 

particular, ESM2 is outperformed by ESM1b across all 
metrics of performance. 

ÿ The manually curated dataset, SCOP2, is more challenging 
for all models than the computationally extended SCOPe. 

We now focus our discussion on each of these observa-
tions. The Supplementary Materials provide further evidence 
that support our main findings.

3.1 As difficulty increases, performance 

deteriorates

Let us first focus on our findings at the Superfamily level 
(Fig. 1A). While some models perform better than others re-
gardless of the threshold, each model exhibits a diminished 
performance as the threshold is lowered. For instance, the 

Figure 2. (A) Top panel compares the AUROC scores (via Spearman’s 

rank correlation coefficient) between pairs of models at 30% sequence 

identity at the per-Superfamily level below the dotted line and at the per- 

query level above the dotted line. (B) Bottom panel does so at the 

Fold level.

Table 1. Top panel: Superfamilies where Prottrans-T5 achieves perfect 

AUROC when the maximum-identity threshold is set to 30%; Bottom 

panel: The five Superfamilies with the lowest AUROC at the 30% 

threshold using Prottrans-T5.a

SF Description AUC #-True #-QSs

Top
a.38.1 HLH, helix-loop-helix 

DNA-binding domain
1.00 1.71 7

a.39.2 Insect pheromone/odorant- 
binding proteins

1.00 4.44 9

a.64.1 Saposin 1.00 4.67 6
a.87.1 DBL homology domain 

(DH-domain)
1.00 1.71 7

b.22.1 TNF-like 1.00 1.80 10
b.74.1 Carbonic anhydrase 1.00 1.67 6
c.44.1 Phosphotyrosine protein 

phosphatases I
1.00 2.67 6

c.54.1 PTS system fructose IIA 
component-like

1.00 4.00 7

d.189.1 PX domain 1.00 5.45 11
d.95.2 Homing endonucleases 1.00 5.33 12
e.1.1 Serpins 1.00 6.15 13
Bottom
d.145.1 FAD-binding/transporter- 

associated domain-like
0.56 13.44 18

b.52.1 Barwin-like 
endoglucanases

0.59 5.14 7

a.6.1 Putative DNA-bind-
ing domain

0.61 11.08 13

d.224.1 SufE/NifU 0.63 3.14 7
a.60.8 HRDC-like 0.64 7.40 10

a Top panel: This list is filtered to only show Superfamilies with more 
than five queries available at this threshold setting. The “SF” column shows 
the “scc” identifier for the Superfamily in the SCOPe database. The 
“#-True” column shows the average number of true labels per query, and 
the “#-QSs” column shows the number of available queries for each 
Superfamily at the 30% threshold. Note that the number of negative labels 
for each of these is 10 360±30. Bottom panel: As in the top panel, the list 
is filtered to only show Superfamilies where more than five query sequences 
are available.
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largest difference in AUROC, when dropping from 95% to 10% 
sequence identity, occurs for ProteinBERT, where the score drops 
from 90% to 79% as the threshold is lowered. Prottrans-T5 is im-
pacted least of the others; its AUROC score drops from 96% to 
92% as the threshold drops from 95% to 10% sequence identity. 
The average drop in AUROC across all eight models is 7.6%.

The extent of the divergence in performance varies among 
metrics and models. Specifically, for Hit@1, where the first 
nearest neighbor of the query sequence in the representa-
tional space is considered as the positive sample, the changes 
in performance are substantial. For example, ESM1b, which 
achieves 76% Hit@1 at the 95% threshold on the SCOPe 
dataset at the Superfamily level, drops to 49% and 52% at 
the 10% and 20% thresholds, respectively.

Hit@10 scores offer a slightly easier setting, as it allows ex-
ploring the vicinity of a given query sequence in the represen-
tational space. Most PLM models perform significantly 
better under this relaxed metric. For instance, ESM1b’s 
scores at the 10% and 20% sequence identity thresholds rise 
to 62% and 65%, respectively. Interestingly, the HHblits 
baseline performs almost identically under Hit@10 and 
Hit@1 (i.e. only a 1% difference in scores at many thresh-
olds), indicating that when hits are achieved by HHblits, they 
are likely to be ranked first to begin with.

In contrast to the Hit metrics, AUROC scores consider the 
quality of the entire ranking of target sequences in relation to 
the query and show a slightly less pronounced change due to 
the reduced threshold. Due to the extreme infrequency of the 
positive class in our dataset, AUROC scores can remain de-
ceptively close to 1 and fail to appropriately differentiate 

between good and bad performance. This can be remedied by 
considering AUPRC. As the AUPRC scores are predictably 
much lower than AUROC (Supplementary Table S5 for 
quantitative values) and show a much more dramatic de-
crease in performance as the threshold is lowered. While the 
best performance in AUROC is achieved by Prottrans-T5, 
this model drops to second place in AUPRC, with AUPRC 
scores dropping from 56% to 35% as the threshold drops 
from 95% to 10% sequence identity.

This consistent loss in performance at lower thresholds, partic-
ularly below 40% sequence identity, for all models and across all 
metrics, is an indication that homology prediction remains diffi-
cult even for the SOTA models. We note that at the Fold level 
(Panel B), we observe consistent poor performance of all models 
at identifying remote homologs. While three out of seven PLMs 
marginally surpass the 20% threshold in Hit@10, none of the 
models achieve such performance in Hit@1.

3.2 PLMs exhibit low agreement on which 

superfamilies are difficult

We now turn our attention to the models’ comparative perfor-
mance on individual Superfamilies (Fig. 2, top panel). This 
reveals that not all domains of proteins are similarly difficult 
or easy for each PLM, even when considering PLMs with com-
parable average AUROC performance. For example, while  
Fig. 1A shows ProteinBERT and ESM2 achieving similar 
AUROC scores across all thresholds, ESM2 shares a relatively 
low 37% per-Superfamily correlation with ProteinBERT, and 
a higher 68% correlation with ESM1b in the top panel of  
Fig. 2, below the dotted line. These differences seem to indicate 
that the model type and pre-training data play a key role in de-
termining which cases of remote homology will be difficult to 
identify. This may also indicate that ensemble methods may be 
useful to exploit the strengths of multiple model types.

The region below the dotted line in Panel B of Fig. 2 similarly 
shows Spearman’s rank correlation coefficient for per-Fold 
AUROC scores between each pair of models. In this, the pairs of 
models that exhibit high agreement tend to be similar to those in 
Panel A, and again do not fully correspond with models having 
similar average AUROC performance in Fig. 1. The three models 
with highest AUROC at the Fold level in Panel B of Fig. 1 were 
TAPE-BERT, ProteinBERT, and Prottrans-T5, but the highest 
correlations at the Fold level were instead observed between 
ESM1b and ESM2 (73%), and between Prottrans-T5 and 
Prottrans-BERT (72%), indicating that the choice of pre-training 
datasets and model-type is an important factor in determining 
which Folds are easier or harder to identify.

3.3 PLMs achieve comparable performance 

to HHblits

It is worth expanding more on the findings related in Fig. 1A 
(on SCOPe at the Superfamily level) regarding the perfor-
mance of HHblits in comparison to the PLMs.

We observe that HHblits achieves the highest score across 
all thresholds when considering AUPRC, with an average im-
provement of 11.6% over the next-best model, Prottrans-T5, 
and shows even greater advantages when compared with 
ESM1b; Supplementary Table S5 provides tabular data. 
However, HHblits shows poorer performance according to 
AUROC and Hit@10 when compared with the same PLMs. 
(Note that in contrast to our results, HHblits achieves supe-
rior performance to PLMs in (Rives et al. 2021) when consid-
ering both of these metrics; this is likely due to a higher 

Table 2. Top panel: Superfamilies with the highest difference in average 

AUROC between Prottrans-T5 and HHblits at the 30% threshold, 

showing the Superfamilies where Prottrans-T5 achieved significantly 

higher AUROC than HHblits; Bottom panel: Superfamilies with the 

highest difference in average AUROC between HHblits and Prottrans-T5 

at the 30% threshold, showing the Superfamilies where HHblits 

performed better than Prottrans-T5.

SF Description HHblits  

AUC

T5  

AUC

Top
d.58.17 HMA, heavy metal-associated domain 0.50 1.00
d.58.3 Protease propeptides/inhibitors 0.50 1.00
d.58.36 Nitrite/Sulfite reductase N-terminal 

domain-like
0.50 1.00

d.58.32 FAD-linked oxidases,  
C-terminal domain

0.50 1.00

d.21.1 Diaminopimelate epimerase-like 0.50 1.00
d.42.1 POZ domain 0.50 1.00
d.15.4 2Fe-2S ferredoxin-like 0.50 1.00
d.37.1 CBS-domain pair 0.50 1.00
d.15.2 CAD & PB1 domains 0.50 1.00
a.61.1 Retroviral matrix proteins 0.42 0.96
Bottom
c.114.1 DsrEFH-like 0.99 0.83
a.130.1 Chorismate mutase II 0.99 0.79
c.97.3 JAB1/MPN domain 0.98 0.66
b.52.2 ADC-like 0.97 0.73
d.79.3 L30e-like 0.94 0.69
a.60.8 HRDC-like 0.87 0.64
c.26.2 Adenine nucleotide alpha 

hydrolases-like
0.87 0.67

d.224.1 SufE/NifU 0.83 0.63
a.6.1 Putative DNA-binding domain 0.79 0.61
d.145.1 FAD-binding/transporter-associated 

domain-like
0.77 0.56
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number of iterations when performing the multiple sequence 
alignments for HHblits in their study.)

HHblits additionally differed from PLMs when considering 
its performance on individual Superfamilies. The bottom tri-
angle of Fig. 2A shows that HHblits AUROC scores have low 
correlation with those of any of the other PLMs (the highest 
being 46% correlation with Prottrans-T5); most of the high- 
performing PLMs show higher correlations with each other 
(e.g. ESM1b and Prottrans-T5 share a 69% correlation). 
When examining the per-Fold correlation analysis depicted in 
the lower triangle of Fig. 2B, we observe that despite HHblits 
having a moderately high correlation of 47% with Prottrans- 
T5, Prottrans-T5 is more strongly correlated with ESM1b 
and Prottrans-ALBERT, with correlation coefficients of 61% 
and 72%, respectively. At the per-query level, the upper tri-
angles in Fig. 2A and B show darker shades across the top 
row, indicating low correlation between PLMs and HHblits.

Because HHblits is a drastically different method for identify-
ing remote homology when compared with PLMs, the strengths 
and weaknesses of each method are of particular interest. The 
top panel of Table 2 indicates that several Superfamilies exhibit 
perfect performance when using Prottrans-T5, while HHblits is 
no better than a random predictor (50% AUC) for the same 
Superfamilies. This implies that at least in some cases PLMs are 
learning aspects of remote homology that are not accounted for 
at all in HHblits. Taking “retroviral matrix proteins” as an ex-
ample, we note that biologists have observed this to be a 
Superfamily where the association between its proteins is often 
evidenced by physical features that cannot be predicted by any 
specific sequence motif (Murray et al. 2005).

To a somewhat lesser degree, the bottom panel of Table 2 
shows that there are similarly Superfamilies where HHblits iden-
tifies remote homology nearly perfectly, while Prottrans-T5’s per-
formance is significantly worse. Looking at the entry “JAB1/ 
MPN domain,” we see an example of a Superfamily that is asso-
ciated with a specific motif (Ambroggio et al. 2004), helping ex-
plain why HHblits is effective for this Superfamily. We speculate 
that PLMs struggle with this Superfamily due to other unknown 
structural factors that cause the representations for the sequences 
in this Superfamily to be far apart from each other. This high-
lights a possible pitfall of using PLM representations for remote 
homology prediction: they can fail even in cases when sequence 
information alone should provide evidence of homology. This 
also may relate to observations in (Kilinc et al. 2022) that PLM 
representations are more suited to global homology detection 
and may fall short when the sequence similarity is localized to a 
small fragment of the sequences.

3.4 Prottrans-T5 demonstrates superior 

performance on AUROC

Prottrans-T5 exhibits superior performance at the 
Superfamily level, particularly when considering low se-
quence identity. Across all sequence identity thresholds, 
Prottrans-T5 achieves AUROC scores above 90%, with the 
lowest score of 92% at 10% identity and a maximum score 
of 96% at 95% identity. In comparison, its nearest competi-
tor, ESM1b, achieves scores of 85% and 93% at the same 
thresholds, respectively, with a standard deviation of 0.032 
compared to Prottrans-T5’s 0.018. Notably, TAPE-BERT 
exhibits less variation (standard deviation of 0.025) than 
ESM1b but performs worse at higher thresholds.

Several factors may contribute to Prottrans-T5’s superior per-
formance. First, larger neural network models with millions to 

billions of parameters tend to perform better on downstream 
tasks when pre-trained on extensive datasets. This is especially 
true in zero-shot settings like ours, where remote homologs are 
predicted based on their proximity in the models’ representa-
tional space without any task-specific fine-tuning. In such cases, 
the size of the model and breadth of the pre-training datasets can 
play a more significant role in performance than small variations 
in neural network architecture. This also explains why many 
PLMs adopt architectures and training objectives originally 
designed for natural language processing without suffering from 
decreased performance. The large models and extensive training 
data provide the necessary capacity and information to effectively 
learn and predict protein relationships, even without specialized 
architectural adjustments.

When considering the effect of model size on the performance 
of each model, we note that the smallest models, ProteinBert 
(ÿ16M parameters) and TAPE-BERT (ÿ38M parameters), per-
formed relatively poorly. This is despite Protein Bert’s inclusion of 
the Gene Ontology (GO) prediction task in its pre-training, indi-
cating that additional training tasks may not be sufficient to com-
pensate for a lower number of parameters. The next-smallest 
models, from lowest to highest number of parameters, were 
Prottrans-ALBERT (ÿ240M), Prottrans-BERT (ÿ420M), 
ESM1b (ÿ650M), ESM2 (ÿ650M), and finally Prottrans-T5 
(ÿ11B). While the gain in performance exhibited by these models 
does not directly correlate with model size, larger models do tend 
to outperform the smaller ones when considering AUPRC and 
Hit scores (e.g. TAPE-BERT marginally exceeds Prottrans 
BERT’s scores at certain thresholds). This parameter-to- 
performance scaling is particularly important in practice because 
while most of the medium-size models shown here can fit on a 
consumer GPU, the larger models such as T5 and even the ESM 
models are not always usable without heavy-duty, production 
GPUs. This may preclude some researchers from using the larger 
models, limiting the performance that will be practically available 
for PLM-based remote homology detection in ordinary re-
search settings.

3.5 ESM2 is outperformed by ESM1b across all metrics

We observe that, despite ESM2 being a more “updated” 
model that performs better than ESM1b on other down-
stream tasks, its Superfamily-level remote homology perfor-
mance shown in Fig. 1A was consistently worse than that of 
ESM1b, across all four metrics. Averaging across all identity 
thresholds, ESM2 achieved AUROC scores 6% lower and 
AUPRC scores that were 16% lower than those of ESM1.

Because we consider comparably sized ESM-1 and ESM-2 
models, the variance in the learned representational space’s 
capacity may stem from disparities in the pre-training data-
sets. Specifically, ESM1b is pre-trained on the high-diversity 
sparse dataset (UR50/S), consisting of UniRef50 (Suzek et al. 
2015) representative sequences clustered at 50% sequence 
identity, whereas ESM2 utilizes the high-diversity dense data-
set (UR50/D), sampled evenly from the UniRef100 sequences 
across the UniRef50 clusters. It is conceivable that the protein 
sequences within the sparse dataset serve as better representa-
tives across protein Families and Superfamilies, thereby en-
abling the model to acquire more effective representation 
space, respective to this particular task.

3.6 Manually curated datasets are more challenging

Our evaluation of PLMs on SCOP2, with results shown in 
Supplementary Fig. S4, demonstrates that datasets derived 
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from SCOP2 present significant challenges for PLMs com-
pared to SCOPe (whose results we relate above in Fig. 1). For 
example, Prottrans-T5 achieves an AUROC score of 96% in 
SCOPe-based Superfamily-level remote homology detection, 
whereas its performance drops to 92% for datasets derived 
from SCOP2 at the same threshold. Similarly, ESM1b’s per-
formance significantly decreases from 93% to 84% at high 
sequence identity levels. Overall, the performance of all mod-
els is more severely impacted at high sequence identity levels 
than it is at low sequence similarity. The phenomenon that 
we observed with SCOPe, where remote homology detection 
problem became increasingly challenging as sequence similar-
ity decreased, is not as pronounced in SCOP2 datasets. 
Nevertheless, the SCOP2 dataset consistently presents signifi-
cant difficulty across all sequence similarity thresholds for all 
models. Similar to the SCOPe Fold-level remote homology 
detection, SCOP2 poses significant challenges for PLMs. 
None of the models achieve a Hit@1 score above 13% at any 
sequence identity threshold. Similarly, no model exceeds a 
Hit@10 score of 24%. In contrast, for SCOPe-based Fold- 
level remote homology detection, the corresponding scores 
were 17% and 28%, respectively.

4 Conclusion

In this study, we have explored the capacity of transformer- 
based PLMs trained over protein sequence data to implicitly 
learn structural information. We have selected a hallmark 
problem in computational biology, remote homology predic-
tion tasks, to do so. The problem becomes increasingly diffi-
cult as one enters the twilight zone of sequence homology, 
where remote homologs can be found that have <30% se-
quence identity. In the twilight zone, as one cannot rely on se-
quence identity, correctly identifying shared structural 
features is key for identifying remote homologs.

To stress test sequence-trained PLMs, we harden the prob-
lem formulation of remote homology prediction to include 
sequence identity and gradate it over decreasing sequence 
identity, so we can build performance profiles of PLMs as 
they enter the twilight zone. Through rigorous evaluation 
across a range of identity thresholds, we elucidate the abilities 
of current PLMs to detect remote homologs at both the 
Superfamily and Fold levels in the zero-shot setting; i.e. using 
representations obtained right after pre-training with no fine- 
tuning on any particular downstream prediction tasks.

Our experiments show that when assessing Superfamily level 
homology prediction, the performance of PLMs consistently 
deteriorates when the maximum-allowed sequence identity 
shared by a pair of proteins is decreased from 90% to 10%. We 
observe a noticeable decline in standard metrics of performance, 
such as AUROC, AUPRC, Hit@1, and Hit@10 scores as se-
quence identity thresholds are lowered. These decreases in per-
formance are consistent with biological theory and reflect the 
challenges of identifying structural and functional similarities 
between proteins when sequence identity is low. While PLMs 
have proven effective for certain kinds of remote homology pre-
diction, the limitations revealed here are important to be aware 
of in order to effectively utilize these tools.

Our comparison of different PLMs yields many insights, 
including several unexpected results. Prottrans-T5 demon-
strates overall superior performance among the considered 
PLMs on both the SCOPe and SCOP2 derived remote homol-
ogy datasets, and even exceeds the performance of the 

alignment-based HHblits model on certain metrics. 
Additionally, ESM1b overall outperforms its updated sister- 
model ESM2 in this setting. The sequence alignment-based 
model HHblits is consistently a better performer at the 
Superfamily level remote homology identification when com-
pared to the other PLMs, such as TAPE-BERT, ProteinBERT, 
Prottrans-BERT and Prottrans-ALBERT. Fold level remote 
homology prediction remains highly challenging in and out-
side of the twilight zone. We also observe that models with 
similar design and pre-training objectives are most likely to 
show high agreement regarding the least and most challeng-
ing Superfamilies or Folds for remote homology prediction. 
This remains true even for models whose overall performance 
differs markedly when averaging across Superfamilies or 
Folds, highlighting the diversity in the types of structural in-
formation needed to fully model all Superfamilies.

Our results additionally show that PLMs can sometimes 
fail even in cases when sequence information alone ought to 
provide sufficient evidence of homology. This suggests that 
PLM-learned representations are currently better able to le-
verage global rather than local sequence similarity, poten-
tially opening a new avenue for future research on better 
PLMs for remote homology prediction. In this way, the 
strengths exhibited by future PLMs may complement those of 
alignment-based methods and be useful in applications such 
as antibody engineering where alignment-based methods 
have often been insufficient.

Taken altogether, our findings support the conclusion that 
current PLMs have not sufficiently learned protein structure 
to address remote homology prediction but do exhibit certain 
strengths when compared with alignment-based methods.

These findings strongly warrant further research both on the 
specific problem of remote homology prediction and on the 
broader computational biology objective of learning sequence- 
and structure-rich representations of protein molecules.
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