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Abstract. We study a variation of facility location problems (FLPs)
that aims to improve the accessibility of agents to the facility within
the context of mechanism design without money. In such a variation,
agents have preferences on the ideal locations of the facility on a real
line, and the facility’s location is fixed in advance where (re)locating
the facility is not possible due to various constraints (e.g., limited
space and construction costs). To improve the accessibility of agents
to facilities, existing mechanism design literature in FLPs has pro-
posed to structurally modify the real line (e.g., by adding a new in-
terval) or provide shuttle services between two points when struc-
tural modifications are not possible. In this paper, we focus on the
latter approach and propose to construct an accessibility range to ex-
tend the accessibility of the facility. In the range, agents can receive
accommodations (e.g., school buses, campus shuttles, or pickup ser-
vices) to help reach the facility. Therefore, the cost of each agent
is the distance from their ideal location to the facility (possibility)
through the range. We focus on designing strategyproof mechanisms
that elicit true ideal locations from the agents and construct acces-
sibility ranges (intervals) to approximately minimize the social cost
or the maximum cost of agents. For both social and maximum costs,
we design group strategyproof mechanisms and strong group strat-
egyproof mechanisms with (asymptotically) tight bounds on the ap-
proximation ratios.

1 Introduction
In recent years, facility location problems (FLPs) and their variants
[4] have been extensively studied within the context of approximate
mechanism design without money [2, 8, 17, 20]. In the most typi-
cal setting of FLPs, a social planner is tasked with locating a facility
(e.g., a park, hospital, or school) in a metric place (e.g., a real line)
to serve a set of agents, who have preferences on the ideal locations
of the facility, and minimize the distance of the facility to agent ideal
locations. Because of the strategic behavior of the agents, the agents
may have the incentive to misreport their ideal locations to manipu-
late the facility location to be closer to their ideal locations. There-
fore, the main focus of the study of mechanism design for FLPs is in
designing strategyproof mechanisms to incentivize the agents to re-
port their locations truthfully while simultaneously determining the
locations of a facility that (approximately) minimizes a given cost
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objective (e.g., minimizing the total/social or maximum distance of
the agents to the facility).

Improving the Accessibility to Facilities. In many real-world sce-
narios, facilities (e.g., parks, hospitals, or schools) have already been
built for many years or decades. Because of the changes in local de-
mographics and social planner objectives, the locations of existing
facilities may no longer be ideal and could lead to accessibility con-
cerns for the agents. One straightforward approach to improve the
accessibility of the facility is to "ignore" the existing facility and
(re)locate a new facility tailored to the agents. However, such an
approach can be impractical because the facility cannot be easily
(re)located due to various constraints (e.g., construction costs, lim-
ited space, or legal regulations).

To improve the accessibility of agents to facilities, recent mech-
anism design studies in FLPs [3, 5, 18] have considered variations
of FLPs on real lines and proposed two complementary approaches.
These approaches are to either structurally modify the real lines
[5, 18] or provide free accommodation services between two points
when structural modifications are not possible [3, 5]. In the former
approach [5, 18], to structurally modify the real lines, the social plan-
ner can construct new edges (such as roadways or bridges) between
two points so that agents can use the new edges to access the facil-
ity more efficiently. In the latter approach [3, 5], the accommodation
services can refer to some form of free shuttle services between two
fixed pickup/drop-off points (via a cost-free short-cut edge) within
the real line to decrease the distance agents need to reach the facility.
Through both approaches to improving accessibility, the agents can
reduce their distances to reach the facility more efficiently.

Our Approach: Extending the Accessibility to Facilities. In this
paper, we focus on the latter case when structural modifications are
not possible due to various reasons (e.g., the time, costs, and legal
regulations of modifying the structure) and propose to construct an
accessibility range (e.g., zone or radius) to extend the accessibility of
the facility. Extending from the accommodation services considered
by [3, 5] where agents can only use the services at two pickup/drop-
off points, in the proposed accessibility range, the agents can re-
ceive accommodation services (e.g., school buses, campus shuttles,
or pickup services) within any points of the ranges to help reach the
facility without incurring any additional cost. For example, consider
providing a shuttle service along a range. The shuttle can make stops
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at every point along the range for the agents rather than only two
pickup or drop-off points in [3, 5] to transport the agents to the facil-
ity. Therefore, the cost of the agents between any points within the
accessibility range is zero.

The accessibility range of a facility is common in many real-world
situations where a social planner needs to determine a range in which
they can deploy transportation mediums (like buses or shuttles) to
pick up agents along that range and bring the agents into a common
drop-off point near or at the facility1. For instance, when planning the
school bus routes for students, the school district first needs to deter-
mine the range for picking up students from their homes to schools to
ensure comprehensive accessibility for all students. Similarly, when
designing (university or workplace) campus shuttle routes, the plan-
ners first need to determine the range that covers the campus. When
providing medical services to patients, different providers could de-
termine the coverage areas to transport patients to medical facilities.

Our Contributions. In this paper, we consider a variation of FLPs
to improve the accessibility of agents to the facility by constructing
an accessibility range within the context of approximate mechanism
design without money. In particular, we consider the most typical
mechanism design setting of FLPs and existing studies [3, 4, 5, 18]
where a facility is located at a predetermined location on a real line
R. A set of n agents is located on R, and the facility is fixed at 0
without loss of generality. The accessibility range is represented by
an interval (a, b), and the length of the range cannot exceed a con-
straint constant d, i.e., |a − b| ≤ d. Given the accessibility range
(a, b), if the range contains the facility, an agent’s cost is either the
distance of their ideal location to the range or zero (if the agent’s
ideal location is within the range) because accommodation services
between any two points within the range incur zero cost to the agent.
Otherwise, the agent’s cost is either the distance of the ideal location
to the range (which can be zero if the agent is in the range) and the
range’s endpoint to the facility or the distance of the ideal location to
the facility.

For example, consider three agents located at−2, 0.8 and 3. Given
a range (−1, 1) that contains the facility at 0, the cost of the three
agents is 1, 0, and 2, respectively. Given a range (1, 2) that does not
contain the facility, the cost of the three agents is 2, 0.8, and 2, re-
spectively. See Figure 1 for an illustration, where difference agents
are depicted in difference colors, and costs are indicated by arrows.

Figure 1. Illustration of agent costs with ranges (−1, 1) and (1, 2).

Our goal is to design strategyproof mechanisms that elicit ideal fa-
cility locations of agents and determine accessibility ranges (or inter-
vals) within the real line to (approximately) minimize the social cost
or the maximum cost of agents. Below, we elaborate on our mecha-
nism design results and summarize them in Table 1.

• For the social cost, we show that there is an optimal and (group)
strategyproof mechanism. Furthermore, we consider designing

1 If the range contains the facility, the agents can reach the facility location
directly. If the range does not contain the facility, the agents can reach an
endpoint of the range and then reach the facility from the endpoint.

strong group strategyproof (SGSP) mechanisms, a stronger no-
tion of group strategyproofness that only requires that some agents
within any group have incentives to misreport ideal locations. We
show that there is an (n − 1)-approximation SGSP mechanism,
and we complement these results by showing there is a lower
bound of n+2

4 for the social cost.
• For the maximum cost, we show that there is (group) strategyproof

mechanism with an approximation ratio of 2 and provide a match-
ing lower bound of 2. Furthermore, we consider strong group strat-
egyproof mechanisms. We show that there is a 2-approximation
SGSP mechanism. We complement these results by showing there
is a lower bound of 2.

• We further consider randomized strategyproof mechanisms. For
the social and maximum costs, no randomized SGSP mechanism
has better approximation ratios than n+2

4 and 1.5, respectively.

Table 1. A Summary of Our Results

Objective SP / GSP SGSP

Social cost UB: 1 UB: n− 1

LB: 1 LB:
n+ 2

4

Maximum cost UB: 2 UB: 2
LB: 2 LB: 2

SP = strategyproof, GSP = group SP, SGSP = strong GSP
UB = upper bound, LB = lower bound

While we do not have any randomized strategyproof mechanisms,
the randomized lower bound results show that our deterministic
GSP/SGSP mechanisms are reasonable even when considering ran-
domization.

Outline. In Section 2, we present the model of the considered vari-
ation of FLPs. In Section 3 and Section 4, we consider the social
cost and the maximum cost, respectively. In Section 5, we discuss
randomized strategyproof mechanisms.

Related Work. In the mechanism design studies of FLPs, Procac-
cia and Tennenholtz [17] are the first to use the FLPs as case stud-
ies to demonstrate the concept of approximate mechanism design
without money, investigating the design of approximately optimal
strategyproof mechanisms through the lens of approximation ratios.
They consider the settings of locating one or two facilities on the
real line and the social and maximum costs. For locating one facil-
ity, they provide tight bounds on the approximation ratios for strate-
gyproof mechanisms for both objectives. Building on this direction,
subsequent mechanism design studies have thoroughly investigated
a wide range of variations of FLPs, including preferences for facil-
ities [11, 13, 16], distance constraints [6, 7], various cost functions
[1, 9, 10, 12], and mechanism characterizations[14, 19]. We refer
readers to a recent survey in [4]. However, different from our work,
these mechanism design studies consider locating facilities.

Our work focuses on the situations in which facilities have been
located where relocating them is no longer possible. Previous mech-
anism design studies have proposed to improve the accessibility to
a facility by either modifying the real lines [5, 18] or providing free
accommodation services between two points when structural modifi-
cations are not possible [3, 5]. The work of [3] is the first to consider
providing free accommodation services between two points from the
perspective of mechanism design without money. More specifically,
[3] aim to design strategyproof mechanisms to elicit ideal locations
from agents and determine a zero-cost shortcut between two points
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to approximately minimize the social/total or maximum cost. Con-
sidering structural modification within the paradigm of mechanism
design without money, [5] further consider adding a short-cut edge
with a cost proportional to the distance of its two endpoints divided
by a discount factor, as well as adding two zero-cost shortcut edges
(extending the setting of [3]). The work of [18] proposes to consider
designing mechanisms to construct bridges to connect two regions
separated by a physical barrier. However, all these above-mentioned
studies focus either on the perspective of structural modification or
constructing zero-cost short-cut edges (i.e., accommodation services)
that can be accessed at only two points. In our setting, the agents
can receive (zero-cost) accommodation services at any point within
the accommodation range of the facility. Different from our work, in
[3, 5], the cost of an agent is either the distance of the ideal location
to the facility directly or the distances of the ideal location to an end-
point of the range and the range’s endpoint to the facility regardless
of whether the facility or the agent is within the range.

2 Preliminaries
There are n agents N = {1, 2, ..., n} on a real line. Each agent
i ∈ N has an ideal location xi ∈ R. Denote the agents’ location
profile by x = (x1, x2, . . . , xn) ∈ Rn. We want to determine the
accessibility range (a, b) ∈ R2 of the facility with fixed location at
0. This range can be regarded as an interval of R and has to satisfy
a distance constraint |a − b| ≤ d, where d is a constant. We always
assume w.l.o.g. that a ≤ b.

Given (a, b), the agents can travel within the interval with zero
cost. As mentioned earlier, the reason the cost is zero is that the ac-
commodation services are provided to the agents without any charge.
The agents also do not need to exert any direct efforts to travel within
the range explicitly (e.g., shuttle services). We can also view the
range to be equivalent to the case when we shrink the interval into
a single point. Moreover, each agent i ∈ N has a cost c(xi, a, b)
equal to the distance from their ideal location xi to the facility after
shrinking the interval (a, b).

A (deterministic) mechanism f : Rn → R2 maps a location pro-
file x to the accessibility range (a, b). A mechanism is strategyproof
(SP) if an agent can never benefit from reporting a false location,
regardless of the strategies of others. Formally, a mechanism f is
SP if for all x ∈ Rn, i ∈ N, x′

i ∈ R, we have c(xi, f(x)) ≤
c(xi, f(x

′
i,x−i)), where x−i is the location profile of all agents but

i. Further, a mechanism is group strategyproof (GSP) if no group of
agents can collude to misreport in a way that makes every member
better off. Formally, f is GSP if for all x ∈ Rn, S ⊆ N,x′

S ∈ R|S|,
there exists i ∈ S so that c(xi, f(x)) ≤ c(xi, f(x

′
S ,x−S)). Clearly,

a GSP mechanism must be SP.
Another well-studied notion in mechanism design and social

choice theory is the strong group strategyproofness (SGSP) [15], in-
dicating that no group of agents can collude to misreport so that no
member is worse off and at least one is better off. Formally, f is
SGSP if for all x ∈ Rn, there does not exist a group of agents S ⊆ N
who misreport their location to x′

S , so that c(xi, f(x
′
S ,x−S)) ≤

c(xi, f(x)) for ∀i ∈ S, and c(xj , f(x
′
S ,x−S)) < c(xj , f(x)) for

some j ∈ S. Clearly, an SGSP mechanism must be GSP.
We consider two objectives, minimizing the social cost

SC(x, a, b), and minimizing the maximum cost MC(x, a, b):





SC(x, a, b) =
∑

i∈N

c(xi, a, b)

MC(x, a, b) = max
i∈N

c(xi, a, b)

A mechanism f is r-approximation for objective T ∈ {SC,MC} if

sup
x

T (x, f(x))
min

a,b:|a−b|≤d
T (x, a, b)

≤ r.

We give two intuitive lemmas on the accessibility ranges. The first
one says that if the range does not cover the facility at 0, then we can
move it so that its endpoint reaches 0. The second one says that the
length of the range should be as large as possible.

Lemma 1. For any range (a, b) with a > 0 and agent i ∈ N ,
c(xi, a, b) ≥ c(xi, 0, b − a). For any range (a, b) with b < 0 and
agent i ∈ N , c(xi, a, b) ≥ c(xi, a− b, 0).

Proof. We only prove the case when a > 0. If xi ≤ 0, the cost
of i under intervals (a, b) and (0, b − a) are both equal to |xi|. If
0 < xi ≤ b − a, the cost of i under (0, b − a) is 0, indicating that
it cannot be larger than the cost under (a, b). If xi > b− a, the cost
of i under (0, b − a) is xi − (b − a), while the cost under (a, b) is
xi when xi ≤ a, and xi − (min (xi, b)− a) ≥ xi − (b − a) when
xi > a.

Lemma 2. For any range (a, b) with b−a < d and any agent i ∈ N ,
c(xi, a, b) ≥ c(xi, a, a+ d).

Proof. It is clear that by increasing the length of the interval with
one endpoint fixed, no agent would increase their cost.

Given location profile x, let N1 = {i ∈ N |xi ≤ 0} be the set
of agents on the left of the facility, and N2 = N \ N1 the set of
agents on the right. Let xl = min{xi|i ∈ N} be the leftmost agent
location, and xr = max{xi|i ∈ N} be the rightmost agent location.

3 The Social Cost

We study the social cost. In Section 3.1, we present an optimal GSP
mechanism. In Section 3.2, we provide (asymptotically) tight upper
and lower bounds on the approximation ratios of SGSP mechanisms.

3.1 GSP Mechanisms

When all agents are located on the left of the facility, it is clear that
(−d, 0) is an optimal solution since every agent achieves their best
possible cost. Similarly, when all agents are located on the right of
the facility, the solution (0, d) is optimal.

The case when xl < 0 < xr is more complicated. For any point
y ∈ R, define Nl(y) = {i ∈ N |xi ≤ y} to be the set of agents
who are to the left of y, and Nr(y) = {i ∈ N |xi ≥ y} to be the
set of agents who are to the right of y. Let D = {y ∈ R|Nl(y) ≥
Nr(y + d)} be the set of points y on the real line so that the number
of agents to the left of y is at least the number of agents to the right
of y + d. We use infD to denote the infimum of D.

Mechanism 1. Given location profile x:
if infD ≥ 0, return (0, d);
if infD ≤ −d, return (−d, 0);
if −d < infD < 0, return (infD, infD + d).

Lemma 3. Mechanism 1 returns an optimal solution for the social
cost.
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Proof. We discuss the optimality in the three cases.
Case 1. infD ≥ 0. By Lemmas 1 and 2, it is clear that (0, d) is

the best one among all solutions (a, b) with a ≥ 0. We only need to
compare with any solution (a, a + d) with −d ≤ a < 0, because
the social cost of (a, a+ d) with a < −d cannot be less than that of
(−d, 0). We have

SC(x, a, a+ d)− SC(x, 0, d)

=
∑

i:xi<0

max(0,−xi + a) +
∑

i:xi≥0

max(0, xi − (a+ d))

−
∑

i:xi<0

|xi|−
∑

i:xi≥0

max(0, xi − d)

≥
∑

i:xi<0

a+
∑

i:0≤xi<d

(0− 0) +
∑

i:xi≥d

(−a)

= |i ∈ Nl(0) : xi < 0| · a− |Nr(d)| · a.

Since infD ≥ 0, we know |i ∈ Nl(0) : xi < 0| ≤ |Nr(d)|,
as otherwise we can find a small positive ε → 0 so that Nl(−ε) ≥
Nr(d−ε), as long as there is no agent at [ε, 0) or [d−ε, d). Therefore
we have

SC(x, a, a+ d)− SC(x, 0, d) ≥ 0,

indicating that (0, d) is optimal for the social cost.
Case 2. infD ≤ −d. By Lemmas 1 and 2, it is clear that (−d, 0)

is the best one among all solutions (a, b) with b ≤ 0. We only need
to compare with any solution (b− d, b) with 0 < b ≤ d, because the
social cost of (b− d, b) with b > d cannot be less than that of (0, d).
We have

SC(x, b− d, b)− SC(x,−d, 0)

=
∑

i:xi>0

max(0, xi − b) +
∑

i:xi≤0

max(0,−xi + b− d))

−
∑

i:xi>0

xi −
∑

i:xi≤0

max(0,−xi − d)

≥
∑

i:xi>0

−b+
∑

i:−d<xi≤0

(0− 0) +
∑

i:xi≤−d

b

= Nl(−d) · b− |i ∈ Nr(0) : xi > 0| · b.

Since infD ≤ −d, we know |i ∈ Nr(0) : xi > 0| ≤ |Nl(−d)|,
indicating that (−d, 0) is optimal for the social cost.

Case 3.−d < infD < 0. The mechanism returns (infD, infD+
d). By Lemmas 1 and 2, we only need to compare with (a, a+d) with
−d ≤ a < infD and infD < a ≤ 0, respectively. If a < infD,
we have

SC(x, a, a+ d)− SC(x, infD, infD + d)

=
∑

i:xi≥0

max(0, xi − a− d) +
∑

i:xi<0

max(0,−xi + a)

−
∑

i:xi≥0

max(0, xi − infD − d)−
∑

i:xi<0

max(0,−xi + infD)

≥
∑

i:xi≥inf D+d

(infD − a) +
∑

i:inf D≤xi<inf D+d

(0− 0)

+
∑

i:xi<inf D

(a− infD)

= (inf D − a) · (|Nr(infD + d)|− |{i ∈ Nl(0) : xi < infD}|)
≥ 0.

In the same way, if a > infD, we have

SC(x, a, a+ d)− SC(x, infD, infD + d)

≥ (a− infD) · (|Nl(infD)|− |{i ∈ Nr(0) : xi > infD + d}|)
≥ 0.

In both cases, it follows that

SC(x, a, a+ d)− SC(x, infD, infD + d) ≥ 0.

Therefore, the solution (infD, infD+d) returned by the mechanism
is optimal.

Next, we show the group strategyproofness of this mechanism.

Lemma 4. Mechanism 1 is group strategyproof.

Proof. We discuss the misreporting of agent group A ⊆ N in the
three cases.

Case 1. infD ≥ 0. The mechanism returns (0, d). It is easy to see
that any agent i with xi ≥ 0 has achieved their minimum possible
cost and thus has no incentive to misreport. Therefore, the group A
consists of some agents to the left of 0. However, no matter how this
group of agents misreports, it would always be the case infD ≥ 0,
and the outcome would not change. Thus, this group cannot benefit
from misreporting.

Case 2. infD ≤ −d. The mechanism returns (−d, 0). It is easy to
see that any agent i with xi ≤ 0 has achieved their minimum possible
cost and thus has no incentive to misreport. Therefore, the group A
consists of some agents to the right of 0. However, no matter how this
group of agents misreports, it would always be the case infD ≤ −d,
and the outcome would not change. Thus, this group cannot benefit
from misreporting.

Case 3. −d < infD < 0. The mechanism returns (a, b) =
(infD, infD + d). It is easy to see that any agent i with infD ≤
xi ≤ infD + d has achieved their minimum possible cost and
thus has no incentive to misreport. Therefore, all agents in the group
should have either xi > infD + d or xi < infD. We note that
if agent i with xi < infD decreases the cost, then it must be the
case that infD moves to the left after misreporting. If agent i with
xi > infD + d decreases the cost, then it must be the case that
infD moves to the right after misreporting. It indicates that the group
is either a subset of {i ∈ N |xi < infD} or a subset of {i ∈
N |xi > infD + d}. However, the agents in {i ∈ N |xi < infD}
cannot move infD to the left by misreporting, and the agents in
{i ∈ N |xi > infD + d} cannot move infD to the right. Hence, no
group of agents can misreport so that every group member gains.

The above two lemmas immediately give the following theorem.

Theorem 1. Mechanism 1 is group strategyproof and optimal for the
social cost.

3.2 SGSP Mechanisms

We note that Mechanism 1 is not strong group strategyproof. Sup-
pose that n ≥ 4 is an even number, and d = 1. The location profile
contains one agent at −d, n

2 − 1 agents at −ε where ε is a suffi-
ciently small positive number, and n

2 agents at d. The infimum of D
is −ε, and the mechanism returns (−ε, d− ε). The cost of the agent
at −d is c(−d,−ε, ε + d) = d − ε, and the cost of the agent at −ε
is c(−ε,−ε, ε + d) = 0.s If all agents at −ε misreport location to
−d, then the infimum of D becomes−d, and the mechanism returns
(−d, 0). Thus, the agent at−d will have a smaller cost, and all agents
at −ε still have 0 cost. Therefore, Mechanism 1 is not SGSP.
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Next, we introduce an SGSP mechanism. The explanation for
Mechanism 1 being not SGSP is that the value of infD is vulnerable
to the manipulation of a group of agents. Instead of using infD, in
the following mechanism, we use xl, the leftmost agent location, to
distinguish the different cases. We will show that the leftmost agent
location can strongly resist the manipulations from such groups, but
this approach is not able to achieve a good guarantee of the social
cost anymore.

Mechanism 2. Given location profile x,
if xl ≥ 0, return (0, d);
if xl ≤ −d, return (−d, 0);
if −d < xl < 0, return (xl, xl + d).

Lemma 5. Mechanism 2 is strong group strategyproof.

Proof. We discuss the three cases and show that no group of agents
can misreport simultaneously so that at least one member gains and
no member harms. If xl ≥ 0, every agent attains their minimum
possible cost and has no incentive to misreport together.

If xl ≤ −d, the outcome changes only if the leftmost agent loca-
tion xl moves to the right of −d, and the agent located xl must be
in the group. However, the new outcome would strictly increase the
cost of this agent.

If −d < xl < 0, the mechanism returns (xl, xl + d). Suppose a
group of agents misreport so that the output becomes (a, a + d). If
a < xl, then no agent can decrease their cost. If a > xl, then the
agent at xl must be in the group; however, the cost of this agent will
increase.

Theorem 2. Mechanism 2 is strong group strategyproof and (n−1)-
approximation for the social cost.

Proof. The strong group strategyproofness is proven in Lemma 5.
We consider the approximation ratio for the social cost. Obviously
when xl ≥ 0, or xr ≤ 0, or xr − xl ≤ d, the solution is always
optimal. We only consider the other two cases with xl < 0 and xr −
xl > d. Denote by OPT the optimal social cost. It is easy to see that
the optimal social cost is at least xr − xl − d.

Case 1. xl < −d. The mechanism returns (−d, 0). We have

SC(x,−d, 0) ≤ (n− 1)(−d− xl) + (n− 1)xr

= (n− 1)(xr − xl − d)

≤ (n− 1) · OPT.

Case 2. −d ≤ xl ≤ 0. The mechanism returns (xl, xl + d). The
cost of agents located in the interval [xl, xl + d] is 0, and the cost of
any agent is at most xr − (xl + d). Then we have

SC(x, xl, xl + d) ≤ (n− 1)(xr − xl − d)

≤ (n− 1) · OPT.

Therefore, in both cases, the social cost derived by Mechanism 2
is at most n− 1 times the optimal social cost.

The analysis of the approximation ratio of Mechanism 2 is tight.
Consider the location profile where one agent is located at −d and
the other n − 1 are located at d. Since xl = −d, the output of the
mechanism is (−d, 0), which induces a social cost equal to (n−1)d.
The optimal solution is (0, d), and the optimal social cost is d. Thus,
the social cost induced by the mechanism is n−1 times the optimum.

Although this linear approximation ratio n − 1 looks large, we
show that it is indeed the asymptotically best possible result we could

expect to achieve for all SGSP mechanisms. We give the following
inapproximability result, which excludes the possibility of designing
a mechanism with a sublinear approximation ratio.

Theorem 3. No deterministic strong group strategyproof mechanism
has an approximation ratio less than n+2

4 for the social cost.

Proof. Let f be a deterministic strong group strategyproof mecha-
nism with an approximation ratio less than n+2

4 . We consider three
location profiles x1,x2,x3 with even number n of agents. In x1, n

2
agents are located at −d and the other n

2 are located at d. In x2, one
agent is located at −d, n

2 − 1 agents are located at −ε with suffi-
ciently small ε > 0, and other n

2 are located at d. In x3, one agent is
located at d, n

2 − 1 agents are located at ε and other n
2 are at −d.

We consider f(x1) = (a, b) and discuss three cases.
Case 1. a ≤ 0 ≤ b. Consider profile x3 and the solution returned

by f is f(x3) = (a′, b′). By the approximation ratio, it is known that
a′ < 0 and b′ ≤ d. If |[0, b]| < |[0, b′]|, then the n

2 agents located
at d in x1 can collude to misreport so that the profile becomes x3

and the solution becomes (a′, b′). Then, the agents at d in x1 strictly
decrease their cost, giving a contradiction. If |[0, b]| > |[0, b′]|, then
the n

2 agents located at the positive half axis in x3 can collude to
misreport so that the profile becomes x1 and the solution becomes
(a, b). Then the agent at d in x3 strictly decreases their cost, giving
a contradiction. Hence, it must be |[0, b]| = |[0, b′]|, i.e., b = b′.

Furthermore, it is easy to see that a = a′, as otherwise all of the
agents may collude together. It indicates that f(x3) = f(x1). Let
us suppose what may happen if a (= a′. If a′ > a, then agents in
x3 will misreport locations to x1 so that all agents at −d can reduce
their costs and others will not increase costs. If a′ < a, then agents in
x1 will misreport locations to x3 so that all agents at −d can reduce
their costs and others will not increase costs.

By a symmetric analysis on profile x2 instead of x3, we can con-
clude that f(x2) = f(x1). For profile x2, the optimal solution is
(0, d), and for profile x3, the optimal solution is (−d, 0). The opti-
mal social cost are both equal to

(
n
2 − 1

)
· ε+ d. The approximation

ratio of f is at least the maximum of the two ratios for profile x3 and
profile x2, which is

max (SC(x3, f(x3)), SC(x2, f(x2)))(
n
2 − 1

)
· ε+ d

=
max

(
d− b+ n

2 · (d+ a), d+ a+ n
2 · (d− b)

)
(
n
2 − 1

)
· ε+ d

=
d+ n

2 d+max
(
n
2 a− b, a− n

2 b
)

(
n
2 − 1

)
· ε+ d

≥
d+ n

2 d+ (n2 + 1)(a− b)/2(
n
2 − 1

)
· ε+ d

≥
d+ n

2 d− (n2 + 1)d/2(
n
2 − 1

)
· ε+ d

→ n+ 2
4

.

Case 2. a > 0. Obviously, the cost of the agent at d in x1 is larger
than 0. Suppose all of the n agents in x1 collude to form a location
profile where all agents are located at d. Since the optimal social
cost for this new profile is 0, by the approximation ratio, the solution
returned by f must be (0, d). Therefore, this manipulation decreases
the cost of the agents at d in x1, and the cost of the agents at−d does
not change, which contradicts the strong group strategyproofness.

Case 3. b < 0. This case is symmetric with Case 2.
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4 The Maximum Cost
In this section, we consider the maximum cost. In Section 4.1, we
characterize the optimal maximum cost and show that the mechanism
that returns an optimal solution is not strategyproof. In Section 4.2,
we present a group strategyproof mechanism that is 2-approximation
for the maximum cost. We also show that no deterministic mecha-
nism can beat this ratio by proving a matching lower bound.

4.1 The Optimal Maximum Cost
We first characterize the optimal maximum cost. When all agents
are located on one side of the facility, an optimal solution is easy to
find by setting one endpoint of the solution on the facility location
0. When there are agents on both sides, i.e., xl < 0 and xr > 0, an
optimal solution balances the cost of the “extreme” agents at xl and
xr so that they have equal costs.

Proposition 1. The optimal maximum cost is max(0, xr−d) if xl ≥
0, and max(0,−xl − d) if xr ≤ 0. When xl < 0 < xr , the optimal
maximum cost is






xr − d, if xl + xr > d;

−xl − d, if xl + xr < −d;
max

(
0, xr−xl−d

2

)
, if − d ≤ xl + xr ≤ d.

Proof. When xl ≥ 0, an optimal solution is (0, d), and the max-
imum cost is attained by the agent at xr , that is, MC(x, 0, d) =
max(0, xr − d). When xr ≤ 0, an optimal solution is (−d, 0),
and the maximum cost is attained by the agent at xl, that is,
MC(x,−d, 0) = max(0,−xl − d).

Then we consider the case when xl < 0 < xr . When xl+xr > d,
the distance between the agent at xr and the facility is so large that
even under the solution (0, d), the cost of the agent at xr is still larger
than the cost of the agent at xl. Hence, the maximum cost is always
achieved by the agent at xr , and the optimal maximum cost is xr−d.
When xl + xr < −d, by symmetry, the maximum cost is always
achieved by the agent at xl, and the optimal maximum cost is |xl|−d.

When −d ≤ xl + xr ≤ d, if xr − xl ≤ d, then (xl, xr) is a
feasible solution in which all agents have zero cost because everyone
as well as the facility lies between the two extreme locations xl and
xr , indicating that the optimal maximum cost is 0. If xr−xl > d, to
minimize the maximum cost, an optimal solution should guarantee
that the agents at xl and xr have equal cost, as otherwise the larger
cost of them is the maximum cost and we can move the range toward
that agent to decrease it. This situation is attained by the solution
(xl + c0, xr − c0) with c0 = xr−xl−d

2 , where both extreme agents
have a cost equal to c0.

The mechanism that returns an optimal solution is not strate-
gyproof. Consider the location profile where one agent is at −d, and
the other agent is at d. Such a mechanism returns the optimal solu-
tion (− d

2 ,
d
2 ), and both agents have a cost equal to d

2 . Suppose that
the agent at d misreports the location as 1.4d. Then, the outcome of
this mechanism becomes (−0.3d, 0.7d), i.e., the unique optimal so-
lution for the new instance. The cost of the agent at d decreases to
0.3d after misreporting, giving a contradiction.

4.2 GSP Mechanisms
We give a simple GSP mechanism that achieves 2-approximation for
the maximum cost.

Mechanism 3. Given location profile x, return an interval
(min(xl, 0),min(xl, 0) + d).

Lemma 6. Mechanism 3 is group strategyproof.

Proof. First, note that the agent located at xl has no incentive to
misreport because this agent achieves the best possible cost under the
solution (min(xl, 0),min(xl, 0) + d). When other agents misreport
their locations simultaneously, the solution would be either the same
or to the left of the original solution, which cannot benefit any of
these agents.

Theorem 4. Mechanism 3 is group strategyproof and 2-
approximation for the maximum cost.

Proof. We only need to prove the approximation ratio. If xl ≥ 0,
the mechanism returns (0, d), and every agent attains their minimum
possible cost, implying that the solution is optimal. If xr ≤ 0, then
the maximum cost is always attained by the agent at xl, and the so-
lution (xl, xl + d) returned by the mechanism is also optimal. We
discuss different cases when xl < 0 < xr , and the mechanism re-
turns (xl, xl + d). Denote by OPT the optimal maximum cost.

Case 1. xl + xr > d. The optimal solution is (0, d), and the op-
timal maximum cost is OPT = MC(x, 0, d) = xr − d. Under the
solution (xl, xl + d) returned by the mechanism, the maximum cost
must be attained by either the agent at xl or the agent at xr . We have

c(xr, xl, xl + d) = xr −max(0, xl + d) > xr − d > −xl

≥ max(0,−xl − d) = c(xl, xl, xl + d).

Therefore, the maximum cost is

MC(x, xl, xl + d) = c(xr, xl, xl + d) = xr −max(0, xl + d)

≤ xr − (xl + d) ≤ xr − xl − d+ (xr − d)

= 2xr − xl − 2d ≤ 2(xr − d) = 2 · OPT.

It follows the 2-approximation of the mechanism in this case.
Case 2. xl + xr < −d. The optimal solution is (−d, 0), and the

optimal maximum cost is OPT = MC(x,−d, 0) = −xl − d. Under
the solution (xl, xl + d) returned by the mechanism, the cost of the
agent at xl is no less than the cost of the agent at xr , that is,

c(xl, xl, xl + d) = −xl − d ≥ max(0, xr − d)

= c(xr, xl, xl + d).

Therefore, the maximum cost is

MC(x, xl, xl + d) = c(xl, xl, xl + d)

= −xl − d = OPT.

Thus, the mechanism is optimal for the maximum cost in this case.
Case 3. −d ≤ xl + xr ≤ d. By Proposition 1, the optimal max-

imum cost is max
(
0, xr−xl−d

2

)
. Precisely, if xr − xl ≤ d, then

every agent has zero cost under the solution (xl, xl + d) returned by
the mechanism. The maximum cost induced by the mechanism is 0,
and thus it is optimal in this case.

If xr − xl > d, an optimal solution that minimizes the maximum
cost guarantees that the agents at xl and xr have equal cost, which
is equal to xr−xl−d

2 . Under the solution (xl, xl + d) returned by the
mechanism, the maximum cost is achieved by either the agent at xr

or the agent at xl. We note that

c(xr, xl, xl + d) = xr −max(0, xl + d)
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≥ d− xl −max(0, xl + d) ≥ max(0,−xl − d),

where the last inequality comes from the discussion over two sub-
cases: if xl + d ≥ 0, then

d− xl −max(0, xl + d) = −2xl > 0 = max(0,−xl − d),

and if xl + d < 0, then

d− xl −max(0, xl + d) = d− xl > −d− xl

= max(0,−xl − d).

Combining with c(xl, xl, xl + d) = max(0,−xl − d), we have

MC(x, xl, xl + d) = c(xr, xl, xl + d) = xr −max(0, xl + d)

≤ xr − xl − d = 2 · xr − xl − d
2

= 2 · OPT.

Therefore the mechanism is 2-approximation in this case.

The analysis on the approximation ratio of Mechanism 3 is tight.
Consider the location profile x = (−d, d). It is clear that the op-
timal solution is ( d2 ,

d
2 ), and the optimal maximum cost is d

2 , at-
tained by both extreme agents. The solution returned by the mech-
anism is (−d, 0), inducing a maximum cost equal to c(xr,−d, 0) =
c(d,−d, 0) = d, which is 2 times of the optimal maximum cost.

Next, we complete the results by proving a tight lower bound for
all (group) strategyproof mechanisms.

Theorem 5. For the maximum cost, no deterministic strategyproof
mechanism has an approximation ratio of less than 2.

Proof. Let f be any deterministic strategyproof mechanism. Con-
sider a location profile x = (− d

2 − ε, d
2 + ε), where ε > 0 is a suf-

ficiently small value. Under any solution, there is at least one agent
whose cost is at least ε. Assume w.l.o.g. that under the solution f(x),
the cost of agent 2 is at least ε.

Next, suppose that agent 2 misreports the location as x′
2 = d,

and the location profile becomes x′ = (− d
2 − ε, d). Let f(x′) =

(a, b) be the outcome of the mechanism. By the strategyproofness
of mechanism f , the cost of agent 2 cannot decrease, and we have
c( d2 + ε, a, b) ≥ ε. It immediately implies that

∣∣∣∣[a, b] ∩ [0,
d
2
+ ε]

∣∣∣∣ =
d
2
+ ε− c

(
d
2
+ ε, a, b

)
≤ d

2
.

Then, since b− a ≤ d, we have either b ≤ d
2 , or a ≥ ε.

For the location profile x′ = (− d
2 − ε, d), if b ≤ d

2 , the maximum
cost of x′ induced by the mechanism is at least c(d, a, b) ≥ d

2 . If a ≥
ε, the maximum cost induced by the mechanism is at least c(− d

2 −
ε, a, b) ≥ d

2 + 2ε. Hence, in both cases, the induced maximum cost
induced by mechanism f on location profile x′ is at least d

2 . On the
the hand, the optimal solution for x′ is (− d

4 −
ε
2 ,

3d
4 −

ε
2 ), and the

optimal maximum cost is d
4 + ε

2 . Therefore, the approximation ratio
approaches 2 when ε→ 0.

Combining Theorem 4 and Theorem 5, we can conclude that
Mechanism 3 is the best possible (group) strategyproof mechanism
we could expect for the maximum cost.

4.3 SGSP Mechanisms
We notice that Mechanism 3 is not strong group strategyproof. Con-
sider the location profile x = (−2d, . . . ,−2d, −d

2 , . . . , −d
2 ) where

n
2 agents are located at −2d, and the other n

2 agents are located at
−d
2 . Since xl = −2d, the mechanism returns a range (−2d,−d).

The cost of agent at −2d is d, and the cost of the agent at −d
2

is d
2 . Suppose that all of the n agents misreport their location as

−d simultaneously so that the reported location profile becomes
x = (−d,−d, . . . ,−d). Then x′

l = −d, and the mechanism returns
the solution (−d, 0). The cost of the agent at −2d remains to be d,
but the cost of the agent at −d

2 decreases to 0, giving a contradiction
to the strong group strategyproofness.

Let us recall Mechanism 2, which is proven to be SGSP in Lemma
5. Note that the property of strategyproofness does not rely on the
objective but only on the agent cost functions. Thus, Mechanism 2 is
SGSP here. In the following, we show that the two mechanisms have
indeed the same approximation ratio for the maximum cost.

Theorem 6. Mechanism 2 is 2-approximation for the maximum cost.

Proof. Since Mechanism 3 is 2-approximation and the only differ-
ence between Mechanism 3 and Mechanism 2 lies in the case when
xl ≤ −d, we only need to discuss this case. When xl < −d, Mech-
anism 3 returns (xl, xl + d), and Mechanism 2 returns (−d, 0). By
Lemma 1, the cost of any agent under solution (−d, 0) is at most that
under (xl, xl + d). Therefore, Mechanism 2 is also 2-approximation
for the maximum cost.

5 Inapproximability Results for Randomized
Mechanisms

In this section, we consider the extent to which randomization can be
used to design strategyproof mechanisms with better approximation
ratios. To this end, we consider randomized strategyproof mecha-
nisms. A randomized mechanism f : Rn → ∆

(
R2

)
maps a loca-

tion profile x to a probability distribution, where ∆
(
R2

)
is the set of

all possible probability distributions of outcomes in R2. Given a dis-
tribution f(x) ∈ ∆(R2), the cost of each agent i is the expectation
E(a,b)∼f(x)[c(xi, a, b)].

Below, we show that any randomized strategyproof mechanisms
cannot be much better than our deterministic mechanisms in terms
of approximation ratios.

Theorem 7. No randomized SGSP mechanism has an approximation
ratio less than n+2

4 for the social cost.

Theorem 8. For the maximum cost, no randomized strategyproof
mechanism has an approximation ratio of less than 1.5.

6 Conclusion
We investigate a variation of facility location problems (FLPs) on real
lines to improve the accessibility of agents to a prelocated facility by
constructing accessibility ranges (or intervals) to extend the acces-
sibility of the facility within the context of mechanism design with-
out money. We proposed several (asymptotically) tight group strat-
egyproof and strong group strategyproof deterministic mechanisms
that minimize the social cost and the maximum cost of the agents.
We also provide randomized lower bounds of any randomized strat-
egyproof mechanisms, showing that our deterministic GSP/SGSP
mechanisms are reasonable even when considering randomization.

There are several future directions. Notably, extending our settings
to multiple facilities or more than one range is interesting. Further-
more, there is potential to design strategyproof mechanisms for other
spatial structures, such as discrete networks or trees, and higher di-
mensional space.
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