
Journal of Econometrics 239 (2024) 105331

m
r
2

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

A generalized knockoff procedure for FDR control in structural
change detection
Jingyuan Liu a, Ao Sun a,∗, Yuan Ke b

a MOE Key Laboratory of Econometrics, Department of Statistics, School of Economics, Wang Yanan Institute for Studies in
Economics and Fujian Key Lab of Statistics, Xiamen University, PR China
b Department of Statistics, University of Georgia, Athens, GA 30602, USA

a r t i c l e i n f o

Article history:
Received 22 August 2021
Received in revised form 8 April 2022
Accepted 13 July 2022
Available online 21 September 2022

Keywords:
structural change detection
False discovery rate control
Knockoffs
High dimensional data
Screening

a b s t r a c t

Controlling false discovery rate (FDR) is crucial for variable selection, multiple testing,
among other signal detection problems. In literature, there is certainly no shortage of
FDR control strategies when selecting individual features, but the relevant works for
structural change detection, such as profile analysis for piecewise constant coefficients
and integration analysis with multiple data sources, are limited. In this paper, we pro-
pose a generalized knockoff procedure (GKnockoff) for FDR control under such problem
settings. We prove that the GKnockoff possesses pairwise exchangeability, and is capable
of controlling the exact FDR under finite sample sizes. We further explore GKnockoff
under high dimensionality, by first introducing a new screening method to filter the
high-dimensional potential structural changes. We adopt a data splitting technique
to first reduce the dimensionality via screening and then conduct GKnockoff on the
refined selection set. Furthermore, the powers of proposed methods are systematically
studied. Numerical comparisons with other methods show the superior performance of
GKnockoff, in terms of both FDR control and power. We also implement the proposed
methods to analyze a macroeconomic dataset for detecting changes of driven effects of
economic development on the secondary industry.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The era of information explosion has driven researchers from squeezing limited data to extracting useful messages from
assive amounts of data. Plentiful works have been developed for detecting important features, ranging from regularized

egression (Tibshirani, 1996; Fan and Li, 2001; Zhang, 2010; Fan et al., 2020a) to screening-related approaches (Fan and Lv,
008; Li et al., 2012; Liu et al., 2014; Mai and Zou, 2015; Ma et al., 2017; Liu et al., 2021). See Fan and Lv (2018), Liu et al.

(2015) and Fan et al. (2020b) for summaries of important works among those lines. Meanwhile, apart from identifying
individual features, structural change detection is also of great scientific interest, especially in the realm of finance,
genomics, health care, social science, and so forth. For instance, identifying the impact of economic structural changes is a
crucial task in the macroeconomic study since the structural changes might alter economic assumptions for determining
courses of action (Ramey, 2016). The structural changes non-exhaustively include effect changes in piecewise constant
coefficient models, and heterogeneous coefficients upon integrating multiple data sources. Ke et al. (2015) proposed a
CARDS method to first order the coefficients and then fuse the adjacent coefficients. Chen and Zhang (2015) studied a
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raph-based change point detection method. Wang et al. (2016) applied the CARDS idea to combine multiple studies
ith repeated measurements to reduce constraints on coefficients and to gain computational efficiency. Tang and Song
2016) utilized fused Lasso (Tibshirani et al., 2005) to identify the heterogeneous coefficients by merging inter-study
omogeneous parameter clusters. More recent developments include (Avanesov and Buzun, 2018; Wang et al., 2021;
iang et al., 2020; Dette et al., 2022; Xiao et al., 2021), among many others.

Admittedly, researchers have devoted much attention to detecting structural changes. Another crucial question to
onsider, however, is how ‘‘scientific’’ the discoveries are — if the extracted information consists of too many falsely
iscovered signals that are merely selected to fit the current random sample, we would be stuck in the ‘‘reproducible
risis’’ that deeply undermines the reliability of statistical findings. The false discoveries are attributed in part to the
lassical error accumulation issue raised by multiple testing, and the spurious correlations (Fan and Lv, 2008; Fan et al.,
2012). The spurious correlation between a certain feature and the response refers to the respective association that is
exhibited merely by the current specific sample, rather than the nature of the population relationship. For instance,
a spurious feature might seem to be predictive to the response because it is correlated with some true predictors.
Unfortunately, such spuriousness cannot be revealed by standard signal detection techniques. For feature selection
problem, Su et al. (2017) demonstrated that the true and null features often intersperse on the Lasso solution path
when all features are independently generated from an identical Gaussian distribution, and this phenomenon occurs
under whatsoever effect sizes. Then directly selecting nonzero coefficients along the solution path fails to control false
discoveries.

Accordingly, there is an eager appeal of controlling the degree of false discoveries, typically measured by the false
discovery rate (FDR), to enhance the reliability of structural change detection. The concept of FDR was first advocated
by Benjamini and Hochberg (1995), calculated as the expected proportion of false discoveries among all discoveries. To
be specific, let S be the index set of the true signals, and Ŝ be that of the discovered signals based on the sampled data.
The FDR is defined as

FDR = E
[
|Ŝ \ S|

|Ŝ|

]
. (1.1)

For independent multiple testing problems, Benjamini and Hochberg (1995) developed a sequential Bonferroni-type
method, called the B-H procedure, to control FDR based on the ordered individual p-values. Benjamini and Yekutieli
(2001) showed that the B-H procedure also works under the assumption of ‘‘positive regression dependence on a subset’’.
They further advocated a B-Y method by adding a divisor to the threshold of B-H, and proved that B-Y can control
FDR under arbitrary dependence structures. Refer to Benjamini (2010) for a comprehensive overview of the B-H-type
methods. A more recent milestone of FDR control is the proposal of knockoff filter (Barber and Candès, 2015). It constructs
‘‘knockoffs’’ for the original features that mimic the correlation structure among features yet are known to be independent
of the response. Then the knockoffs might serve as references for estimating and hence controlling FDR by regressing the
response on both original and knockoff features. Under mild conditions, the knockoff filter achieves exact FDR control
in finite sample settings. Dai and Barber (2016) extended the knockoff filter to grouped feature selection. Candès et al.
(2018) developed a model-X knockoff procedure that can be applied to the high-dimensional regime, provided the prior
knowledge about the joint distributions of the original features. Fan et al. (2018) constructed the model-X knockoffs
when the covariates follow a Gaussian graphical model. Lu et al. (2018) integrated the model-X knockoff framework
with the deep neural networks (DNN) architecture to enhance the interpretability and reproducibility of DNN. If the joint
distribution of features is unknown, Fan et al. (2020c) and Romano et al. (2020) constructed the knockoff variables by
imposing a latent factor model and a deep generative model, respectively.

As the other side of the coin, the power of knockoff filter has also been systematically studied. Weinstein et al. (2017)
proved that the knockoff filter from an independent and identically distributed Gaussian design asymptotically achieves
optimal power. Fan et al. (2018) proved that the model-X knockoff achieves optimal power asymptotically for the linear
model with independent sub-gaussian noises. Ke et al. (2020) systematically analyzed the power of knockoffs under the
rare and weak signal regimes and derived the FDR-TPR(True Positive Rate) trade-off diagram. In sum, the knockoff filter
has been shown to possess comparable selection power with many other FDR control methods when the samples are
independent.

Notwithstanding the merit of knockoffs, few related literature, to our best knowledge, is amenable to the structural
change detection. Thus in this paper, we propose a unified approach, called generalized knockoff (GKnockoff), that
rigorously controls FDR for structural change problems under finite sample sizes. Consider the classical linear regression
model

y = Xβ + ϵ, (1.2)

where y ∈ Rn is a sample vector of response, X ∈ Rn×p is a design matrix, β = (β1, . . . , βp)⊤ ∈ Rp is an unknown vector
of coefficients, and ϵ is independent with X. Further, we assume the elements in ϵ are i.i.d. normal random errors with
mean 0 and variance σ 2.

While variable selection identifies nonzero βj’s, structural change detection typically concerns about the linear
combinations, d⊤

j β, j = 1, . . . ,m, for some properly defined dj ∈ Rp, where m is the number of linear combinations

under consideration. Take piecewise constant coefficients profile for instance, it is of interest to detect {j = 1, . . . , p− 1 :
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j+1 − βj ̸= 0}; namely, m = p − 1, and dj = (0, . . . , 0,−1, 1, 0, . . . , 0)⊤, whose (j + 1)th element is 1 and
th element is −1. In addition, variable selection could as well belong to this structural change category by defining
j = (0, . . . , 0, 1, 0, . . . , 0)⊤ with 1 appearing in the jth position. More examples of structural change are discussed in
ection 2. Therefore, the objective is indeed to identify the active set S = {j = 1, . . . ,m : d⊤

j β ̸= 0} while controlling
DR.
The main obstacle of constructing knockoffs for such problems is twofold. Firstly, we apply a full-row-rank transfor-

ation matrix to transform the original samples, and then recover the active set S by a partial regularization method.
owever, the transformed samples are no longer independent and hence violate the assumption for the theories in Barber
nd Candès (2015). To tackle this challenge, we propose a generalized knockoff procedure, named GKnockoff, for the
ransformed data. We show that the GKnockoff variables enjoy the exchangeability without the independence assumption,
nd prove that GKnockoff can rigorously control FDR. Secondly, The framework of Barber and Candès (2015) does not apply
o the high-dimensional regime, as the construction of knockoff features requires the sample size to be at least twice the
umber of features. As a primitive philosophy of quickly reducing dimensionality, screening has been extensively studied
ver the past decade since the pioneering work of Fan and Lv (2008). However, compared with ubiquitous techniques for
creening individual features based on various models, our understanding of how to screen structural changes seems
imited, so to speak. The challenge is in part attributed to that screening individual features is a matter of teasing
part signals from noise, thus it only requires effects of active features to be non-vanishingly estimated, typically large.
eanwhile, screening structural changes, e.g. coefficient changes, which aims to discover the ‘‘difference in coefficients’’,
alls for the ability to accurately quantify the amplitude of individual coefficients. Accordingly, we develop a new screening
rocedure for structural change detection and study its theoretical and empirical performances. Also, we adopt a data
plitting technique (e.g. Wasserman and Roeder, 2009; Barber and Candès, 2019; Liu et al., 2021) to alternatively filtering
tructural changes and constructing GKnockoffs on two halves of data. Furthermore, the aforementioned non-independent
ransformed data bring about significant challenges to the power analysis of GKnockoff. Therefore, the power of proposed
Knockoff method is carefully studied under such dependence structure. We also develop an efficient and user-friendly
package ‘GKnockoff’1 to implement the GKnockoff procedure.

.1. Notations

We introduce the following notations used throughout this paper. Denote R the set of real numbers. For a set A, |A|
enotes its cardinality. Given a vector x = [x1, . . . , xd]⊤ ∈ Rd, we write the vector lq-norm as ∥x∥q :=

(∑d
j=1 |xj|

q)1/q for
≤ q < ∞ and the vector l∞-norm as ∥x∥∞ := max1≤j≤d |xj|. Denote diag{x} a diagonal matrix whose diagonal elements
elong to x. For a matrix A =

[
A(k,l)

]
1≤k≤d1;1≤l≤d2

∈ Rd1×d2 , the ∞-norm of A is denoted as |||A|||∞ := maxk
∑d2

l=1 |A(k,l)|.
he jth column of A is denoted Aj, and AG refers to the columns of A with indexes in the set G. If A is a symmetric matrix,
max(A) and Λmin(A) are respectively its largest and smallest eigenvalues. We write A ≻ 0 if A is a positive definite matrix.
d, 0d×d and Id denote the d-dimensional vector of zeros, the d × d-dimensional matrix of zeros, and the d-dimensional
dentity matrix, respectively. For a, b ∈ R, we denote sign(a) the sign function of a, and a ∨ b the maximum between a
nd b. When necessary, we consider 0/0 = 0. For two matrices A and B of the same dimension, the operator [A,B]swap(G)
efers to swapping the jth column in A and the jth column in B for all j ∈ G. For two sequence {an} and {bn}, an ≫ bn
eans an/bn → ∞ as n → ∞.

.2. Organization of the paper

The rest of the paper is organized as follows. In Section 2, we propose a generalized knockoff (GKnockoff) framework to
etect structural changes and control FDR. We define a GKnockoff matrix and discuss the intuition and the implementation
f a GKnockoff filter. We also provide the theoretical guarantees of GKnockoff for controlling FDR under finite samples
nd analyze the power of proposed methods. Section 3 is devoted to the high-dimensional structural change detection
nd FDR control problem, where we introduce a screening technique named FuSIS and a high-dimensional GKnockoff
ilter. The superior performance of GKnockoff is empirically verified through several simulation studies in Section 4. In
ection 5, we apply the proposed Gknockoff filter to detect structural changes of the secondary industry among different
rovinces. Section 6 concludes the paper. The proofs of theoretical results, along with some remarks, are presented in the
nline supplementary material.

. A generalized knockoff framework

.1. Problem setup

As we discussed in the introduction, many structural change detection problems can be formulated by the linear model
1.2) and the m hypotheses as follows.

H0j : d⊤

j β = 0 v.s. H1j : d⊤

j β ̸= 0, j = 1, . . . ,m,

1 https://github.com/suntiansheng/Gknockoff.
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here dj ∈ Rp is a problem-driven transformation vector. Further, we denote S = {j = 1, . . . ,m : d⊤

j β ̸= 0} the active
et of the structural change detection problem, and Sc

= {1, . . . ,m} \ S the inactive set. Let D = [d1, . . . , dm]
⊤
∈ Rm×p.

We then estimate the regression coefficients and recover the active set S simultaneously by solving a generalized Lasso
problem (Tibshirani and Taylor, 2011)

min
b∈Rp

1
2n

∥y− Xb∥22 + λ∥Db∥1, (2.1)

here λ ≥ 0 is a regularization parameter. The model setup (2.1) is applicable to a wide range of structural change
etection problems. Next, we discuss the design of the transformation matrix D in two popular scenarios.

cenario 1: Piecewise constant coefficients profile
Piecewise constant coefficients profile (or homogeneity pursuit, see Ke et al., 2015) assumes the p coefficients

1, . . . , βp in model (1.2) can be segmented into J + 1 groups, such that β1 = · · · = βτ1 ̸= βτ1+1 = · · · = βτ2 ̸=

βτ2+1 = · · · = βτJ ̸= βτJ+1 = · · · = βp. Let S = {τ1, . . . , τJ} be the set of all change locations. To recover S by (2.1), we
can choose set m = p− 1 and design D in the format as (2.2).

D =

⎡⎢⎢⎢⎢⎣
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −1 1

⎤⎥⎥⎥⎥⎦
m×p

. (2.2)

Scenario 2: Integration analysis from multiple data sources
Due to the rapid development of data collecting techniques, it has been attractive yet challenging to integrate high-

throughput data from multiple sources into a unified regression framework. Suppose there are K available data sources.
For the kth data source, k = 1, . . . , K , we observe a random sample (y(k),X(k)) and fit a linear regression model
y(k) = X(k)β(k)

+ ϵ(k), where X(k)
∈ Rnk×p and ϵ(k) ∼ N(0, σ 2Ink ). It is natural to test weather there is a homogeneous

structure embedded among the coefficient vectors {β(1), . . . , β(K )
}. To that end, we can formulate (2.1) as

min
b∈RKp

1
2n



⎡⎢⎢⎢⎣
y(1)
y(2)
...

y(K )

⎤⎥⎥⎥⎦−

⎡⎢⎣ X(1) . . . 0
...

. . .
...

0 . . . X(K )

⎤⎥⎦
⎡⎢⎢⎢⎣
b(1)

b(2)

...

b(K )

⎤⎥⎥⎥⎦

2

2

+ λ

D
⎡⎢⎢⎢⎣
b(1)

b(2)

...

b(K )

⎤⎥⎥⎥⎦

1

, (2.3)

where the transformation matrix D can be designed as

D =

⎡⎢⎢⎢⎢⎣
Ip −Ip 0p×p . . . 0p×p 0p×p

0p×p Ip −Ip . . . 0p×p 0p×p

...
...

...
...

...
...

0p×p 0p×p 0p×p . . . Ip −Ip

⎤⎥⎥⎥⎥⎦
(K−1)p×Kp

. (2.4)

Beyond the above examples, the regularization regression (2.1) and the transformation matrix D can be tailored for
wide range of structural change detection problems. Further, our problem setup has the potential to be applied to
ther high-dimensional testing problems where the hypothesis can be characterized by a linear combination of regression
oefficients. See Li and Li (2021) as a recent study in this direction, among others.

.2. Structural change detection

In this subsection, we study the detection of structural changes by solving the generalized Lasso problem (2.1).
uppose D is of full row rank. We first define D̃ = [D⊤, E⊤]⊤ ∈ Rp×p such that D̃ has full rank, with E being any
atrix in the complementary space of the linear space spanned by D. We also define θ = (θ⊤1 , θ⊤2 )

⊤
= D̃β, where

1 = (θ11, . . . , θ1m)⊤ = Dβ and θ2 = Eβ. Then, the non-zero elements in θ1 reflect the structural changes of interest
nd the active set can be represented as S = {j = 1, . . . ,m : θ1j ̸= 0}. Further, denote the inverse matrix of D̃ as
˜−1

= [Zp×m, Fp×(p−m)], where Zp×m and Fp×(p−m) stand for the first m and the rest (p−m) columns of D̃−1 respectively.
herefore, we have β = D̃−1θ = Zθ1+Fθ2. With the above preparations, we can reformulate (2.1) as a partial regularization
roblem

min
θ=[θ⊤1 ,θ⊤2 ]⊤∈Rp

1
2n

∥y− XZθ1 − XFθ2∥
2
2 + λ∥θ1∥1, (2.5)

here λ ≥ 0 is a regularization parameter. Notice that, when D is designed as in (2.2), the formulation in (2.5) becomes
a fused Lasso problem (Tibshirani et al., 2005).
4
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We then adopt the partial residual technique (e.g. Hsiao et al., 2021; Zou and Li, 2008) and transfer (2.5) to a Lasso-type
roblem

min
θ1∈Rm

1
2n

∥y∗ − X∗θ1∥
2
2 + λ∥θ1∥1, (2.6)

here y∗ = My, X∗
= MXZ, and M := In − (XF)[(XF)⊤(XF)]−1(XF)⊤ is a projection matrix. The transformed design matrix

X∗ consists of m columns, each of which is associated with a potential structural change. A key observation from (2.6) is
hat the elements in y∗ are no longer independent since

y∗ = My ∼ N(X∗θ1, σ
2M). (2.7)

uch dependence violates the independence assumption imposed for the theoretical analysis of knockoff filter (Barber
nd Candès, 2015), and hence calls new methodological and theoretical investigations. In the rest of this subsection, we
erive the selection consistency and asymptotic power for the solution of (2.6). In the next subsection, we introduce a
eneralized knockoff filter to control FDR under the dependence structure.
We establish selection consistency using the Primal–Dual Witness technique (Wainwright, 2009). Without loss of

enerality, we assume that X∗

j is normalized such that ∥X∗

j ∥
2
2/n = 1, j = 1, . . . ,m, to simplify the presentation in the

heoretical analysis. In addition, we impose the following two conditions to pave the way for the selection consistency
esults presented in Theorem 2.1.

ondition 2.1. |||X∗⊤

Sc X∗
S(X∗⊤

S X∗
S )

−1
|||∞ ≤ 1− κ for some constant κ ∈ (0, 1].

ondition 2.2. Λmin(X∗⊤
S X∗

S/n) ≥ Cmin for some constant Cmin > 0,

Condition 2.1, which requires the active and inactive variables not to be too correlated, is a common technique con-
ition considered in previous work of Lasso, see, for example, Zhao and Yu (2006) and Wainwright (2009). Condition 2.2
tates the minimum eigenvalue of Gram matrix of the true set is bounded away from zero and thus the Gram matrix is
nvertible. We remark that although the conditions are imposed on the transformed design matrix X∗ instead of original
atrix X, X∗ is observable since X∗

= MXZ, where M and Z are explicitly obtained upon determination of matrix D.

heorem 2.1. Under Conditions 2.1 and 2.2, suppose λ > 2
κ

√
2σ2 log p

n in (2.6), then for some c1 > 0, the following statements
hold with probability greater than 1− 4 exp(−c1nλ2).

(a) The generalized Lasso has a unique solution θ̂1 with Ŝ ⊂ S , where Ŝ = {j = 1, . . . ,m : θ̂1j ̸= 0}. And the estimate θ̂1S
of the truly non-vanishing coefficient θ1S satisfies

∥θ̂1S − θ1S∥∞ ≤ g(λ), (2.8)

where g(λ) = λ

[
|||(X∗⊤

S X∗
S/n)−1

|||∞ +
4σ

√
Cmin

]
.

(b) If we further assume minj∈S(|θ1,j|) ≥ g(λ), then the generalized Lasso estimator has the correct sign, i.e. sign(θ̂1) =

sign(θ1).

Theorem 2.1(a) guarantees that the generalized Lasso under the dependence structure has no false positives asymptot-
ically; and the estimation errors are uniformly bounded above. Theorem 2.1(b) further implies the selection consistency,
thus the asymptotic FDR is zero. Nevertheless, the finite sample FDR control, as to be discussed in the next section, is of
more interest for practitioners.

2.3. Generalized knockoff filter and FDR control

In this subsection, we introduce a generalized knockoff (GKnockoff) filter and an FDR control procedure. Denote
Σ∗

= X∗⊤X∗
= Z⊤X⊤MXZ the Gram matrix of X∗. The n×m matrix of GKnockoff features X̃ should satisfy

X̃⊤X̃ = Σ∗
≻ 0, and X̃⊤X∗

= Σ∗
− diag{s}. (2.9)

he matrix X̃ can be considered as a second-order knockoff copy of X∗ for the following reasons. First, given X∗, X̃ is
independent of y∗ since we do not use the information of y∗ in (2.9). Second, the Gram matrix remains after column-wise
swapping, i.e., [X∗, X̃]⊤swap (G)[X

∗, X̃]swap (G) = [X∗, X̃]⊤[X∗, X̃] for any G ⊂ {1, 2, . . . ,m}. When n ≥ 2m, one can compute
X̃ by

X̃ = X∗
(
Im −Σ∗−1 diag{s}

)
+ ŨC (2.10)

for some s = (s1, . . . , sm)⊤ ∈ Rm
+

satisfying 2Σ∗
− diag(s) ⪰ 0. Moreover, Ũ is in the null space of X∗, i.e. X∗⊤Ũ = 0 and

C is the Cholesky decomposition of 2 diag{s} − diag{s}Σ∗−1 diag{s}.
5
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emark 2.1. Note that the existence of GKnockoff features demands the invertibility of the transformed Gram matrix
∗. In the Supplementary Material S.2, we show that Σ∗ is invertible if X is of full column rank.

The following theorem presents one of our main findings, that X∗ and its GKnockoff copy X̃ possess the pairwise
exchangeability, which is crucial to the function of GKnockoff, yet not trivial since the elements in y∗ are no longer
independent.

Theorem 2.2 (Pairwise Exchangeability). Let G ⊂ Sc . Then, we have

[X∗, X̃]⊤swap (G)y
∗ d
= [X∗, X̃]⊤y∗,

where ‘‘ d=’’ means equivalent in the joint distribution.

Theorem 2.2 shows that the inactive features in X∗ are pairwise exchangeable with their GKnockoff counterparts in
terms of the inner product with the response variable. Under Gaussian assumption, the swapped distribution is

[X∗, X̃]⊤swap (G)y
∗
∼ N([X∗, X̃]⊤swap (G)X

∗θ1, σ
2
[X∗, X̃]⊤swap (G)M[X∗, X̃]swap (G)). (2.11)

Then the pairwise exchangeability would hold only if the expectation and covariance of swapped distribution are
invariant. The invariance of expectation results from the fact that θ1j = 0 for j ∈ Sc . The invariance of covariance, on
the other hand, is a bit tricky and relies on Lemma S.1, which states that a projection of X̃ is also a Gknockoff of X∗. We
refer to the Supplementary Material S.3 for a detailed proof of Theorem 2.2.

The pairwise exchangeability motives us to extend (2.6) to an augmented regularized regression problem

min
θ1∈Rm,θ̃1∈Rm

1
2n

∥y∗ − X∗θ1 − X̃θ̃1∥
2
2 + λ(∥θ1∥1 + ∥θ̃1∥1). (2.12)

he regularization parameter λ controls the sparsity level along the solution path of (2.12).
Denote [θ̂

⊤

1 (λ), θ̃
⊤

1 (λ)]
⊤

∈ R2m the minimizer of (2.12), where θ̂1(λ) = [θ̂11(λ), . . . , θ̂1m(λ)]⊤ ∈ Rm and θ̃1(λ) =

[θ̃11(λ), . . . , θ̃1m(λ)]⊤ ∈ Rm. Let

λj = sup{λ : θ̂1j(λ) ̸= 0}, λ̃j = sup{λ : θ̃1j(λ) ̸= 0},

and define a vector of GKnockoff statistics w = [W1, . . . , Wm]
⊤ with

Wj = (λj ∨ λ̃j) · sign(λj − λ̃j), j = 1, . . . , m. (2.13)

large positive value of Wj provides some evidence that y∗ depends on the jth column of X∗ and hence the jth feature
ay indicate a true structural change. On the other hand, when the jth feature is inactive, Wj should be close to 0 and is
qually likely to be positive or negative.
To control FDR at a pre-specified level q ∈ [0, 1], we follow the knockoff+ procedure (Barber and Candès, 2015) and

hoose a cutoff T (q) as

T (q) = min

{
t ∈ W :

1+ |
{
j : Wj ≤ −t

}
|

|
{
j : Wj ≥ t

}
| ∨ 1

≤ q

}
, (2.14)

here W = {|Wj| : j = 1, . . . , m}\{0} and the extra term 1 in the numerator makes the choice of T (q) slightly more
onservative. Naturally, we estimate the active set S by

Ŝ = {j = 1, . . . , m : Wj ≥ T (q)}. (2.15)

hroughout this paper, we use GKnockoff filter to name the entire procedure of constructing the GKnockoff features X̃,
omputing the GKnockoff statistics w, choosing the cutoff T (q), and estimating the active set by Ŝ . The following main
heorem proves the GKnockoff filter can control FDR at any pre-specified level.

heorem 2.3 (FDR Control of GKnockoff). For any q ∈ [0, 1], the active set estimated by the GKnockoff filter, i.e. Ŝ defined in
2.15), satisfies

FDR(q) = E
[
|Ŝ ∩ Sc

|

|Ŝ|

]
≤ q. (2.16)

Note that the construction of GKnockoff statistics is not unique and here we only exhibit one possibility as in (2.13).
ee Barber and Candès (2015) for more details. For instance, another appealing GKnockoff statistic is the Lasso coefficient
ifference (LCD) (Barber and Candès, 2015), that is, Wj = |θ̂1j| − |θ̃1j| for j = 1, . . . ,m, where θ̂1j and θ̃1j are the solutions
o (2.12). Next, we study the power of the GKnockoff procedure.
6
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heorem 2.4 (Power of GKnockoff). Under Condition S.1, S.2 and S.3 in the Supplementary Material, with probability
1− cℓ1m

−cℓ1 , the power of GKnockoff with LCD statistics

Power = E
[
|Ŝ ∩ S|
|S|

]
≥ 1−

2Cℓ

κn
,

here Cℓ and cℓ1 are two positive constants, and κn → ∞ as n → ∞.

Theorem 2.4 states the power of the GKnockoffs converges to 1 as n goes to infinity since κn goes to infinity. The
roof of Theorem 2.4, which is inspired by Fan et al. (2018), is presented in the Supplementary Material S.5. The technical
hallenges compared with Fan et al. (2018) mainly lie in that the transformed error term is correlated and the design
atrix is treated as fixed.

.4. Extended GKnockoff filter when m < n < 2m

When m < n < 2m, we can no longer compute the GKnockoff features X̃ from (2.10) since it is beyond hope to find a
subspace of dimension m that is orthogonal to X∗, and hence neither Ũ. To address this issue, we create 2m− n dummy
observations and extend (2.7) to the following augmented probability model[

y∗
y∗a

]
∼ N

([
X∗

0(2m−n)×m

]
θ1, σ

2
[
M, 0
0, I(2m−n)

])
.

To distinguish with the GKnockoff filter introduced above, we name the GKnockoff filter based on this row-augmented
data as the Extended Generalized Knockoff (EGKnockoff) filter. Theorem 2.5 proves that the EGKnockoff filter can also
control FDR at any pre-specified level.

Theorem 2.5 (FDR Control of EGKnockoff). Denote ŜE := ŜE(q) the active set estimated by the EGKnockoff filter with any
pre-specified level q ∈ [0, 1]. Then we have

FDRE(q) = E
[
|ŜE ∩ Sc

|

|ŜE |

]
≤ q. (2.17)

The proof of Theorem 2.5 is presented in the Supplementary Material S.6. The EGKnockoff filter requires the sample size
to be larger than the number of features m since we need to estimate the unknown parameter σ from the sample. In the
ext section, we propose a two-step procedure to address the high-dimensional (i.e. m ≥ n) structural change detection
nd FDR control problem. We remark that in order to preserve exchangeability of EGKnockoff, the pseudo data ought to
e generated from the normal distribution with mean zero and variance σ 2. See the proof of Theorem 2.5 for more details.
s a result, the EGKnockoff can be applied as long as σ 2 is known or can be well-estimated from the data (Barber and
andès, 2015; Barber et al., 2020). To avoid the estimated variance to depend on y∗, one could adopt the data splitting
trategy — one half of data to estimate the noise variance and the other to construct GKnockoff. In addition, we study the
ower of the EGKnockoff in Theorem 2.6.

heorem 2.6 (Power of EGKnockoff). Under Condition S.1, S.2 and S.3 in the Supplementary Material, with probability
− cℓ2m

−cℓ2 , the power of EGKnockoff with LCD statistics

Power = E
[
|Ŝ ∩ S|
|S|

]
≥ 1−

2C ′

ℓ

κn
,

here C ′

ℓ and cℓ2 are two positive constants, and κn → ∞ as n → ∞.

Theorem 2.6 indicates that adding pseudo data does not affect the power of EGKnockoff asymptotically. The proof of
heorem 2.6 is provided in the Supplementary Material S.7.

. High-dimensional structural change detection

The GKnockoff and EGKnockoff filters require n > m and hence are not applicable to high-dimensional scenarios where
≤ m. In this section, we study high-dimensional structural change detection with FDR control and propose a two-stage
rocedure. We first implement a screening method to filter out a substantial number of locations where the structural
hanges are unlikely to exist. Then, we apply GKnockoff to the low-dimensional screened data.
7
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.1. Fused sure independence screening

In this subsection, we use the piecewise constant coefficients profile model (Scenario 1 in Section 2) as a showcase
xample to introduce a screening strategy for high-dimensional structural change detection problems. Recall that in this
cenario, we assume the p coefficients β1, . . . , βp can be segmented into J + 1 groups and S = {τ1, . . . , τJ} is the active
et of all structural change locations. Denote Xj as the standardized jth column of X and γ̂j = X⊤

j y. Then, we define a
used screening statistic to quantify the structural change before and after a location by incorporating the information in
small neighborhood, i.e.

D̂(j, h) =
1
h

h∑
i=1

⏐⏐γ̂j−i+1 − γ̂j+i
⏐⏐ , j = h, . . . , p− h, (3.1)

where h > 0 is a bandwidth parameter. We would expect D̂(j, h) to be large if j ∈ S and D̂(j, h) to be small if there is no
structural change within {j− h+ 1, . . . , j+ h}.

We propose to screen out the locations whose fused screening statistics are small. For a pre-specified threshold ϑ > 0,
we can select a screened set as

Â(ϑ) = {j = 1, . . . , p− 1 : D̂(j, h) ≥ ϑ}.

The screening procedure is thereby named Fused Sure Independence Screening (FuSIS). Next, we show FuSIS enjoys a sure
screening property under mild conditions, which means Â contains all structural changes with a probability approaching
1. To start with, we define the population fused screening statistic D(j, h) =

1
h

∑h
i=1

⏐⏐γj−i+1 − γj+i
⏐⏐, and introduce two

onditions.

ondition 3.1. minj∈S D(j, h) ≥ 2c3n−κ for some constants c3 > 0 and 0 ≤ κ ≤ 1/2.

ondition 3.2. All structural change locations lie in {h, . . . , p− h}.

Condition 3.1 is a widely used minimum signal strength condition in screening literature (e.g. Liu et al., 2021). This
ondition is mild since it allows the minimum signal strength slowly decays to 0 as the sample size diverges. In the
upplementary Material S.9, we provide its sufficient conditions. Condition 3.2 assumes the change points should not
ie too close to the boundaries, which is common for change point detection (e.g. Niu and Zhang, 2012). In practice,
ondition 3.2 can be satisfied by considering the observations near the boundaries as ‘‘burn-in’’ and ‘‘burn-out’’ samples
here we do not detect structural changes.

heorem 3.1 (Sure Screening Property). Under Conditions 3.1 and 3.2, let ϑ ≤ minj∈S D(j, h)/2, we have

Pr(S ⊂ Â(ϑ)) ≥ 1− O
(
hJ exp

{
−c4n1−2κ}) , (3.2)

here c4 > 0 is a positive constant and J = |S|.

The proof of Theorem 3.1 is given in the Supplementary Material S.8.

.2. Bandwidth selection

The bandwidth parameter h plays an essential role in FuSIS. Next, we introduce a data-driven bandwidth selection
rocedure. Let h1, . . . , hB be a sequence of grid points. For a given grid point hk, k = 1, . . . , B, denote Âk(ϑ) =

τ̂k1, . . . , τ̂kĴk
} the set screened by FuSIS with the bandwidth hk, where Ĵk = |Âk(ϑ)|. The set Âk(ϑ) naturally divide the

eatures in X into Ĵk + 1 homogeneous groups, say Ĝ1, . . . , ĜĴk+1, such that the coefficients share the same value within
ach group. For each Âk(ϑ), we can solve a constrained ordinary least squares problem

min
b∈Rp

∥y− Xb∥22 subject to b1 = · · · = bτ̂k1; . . . ; bτ̂kĴk
+1 = · · · = bp.

his optimization problem is equivalent to

min
ν∈RĴk+1

∥y− XQkν∥
2
2, (3.3)

here Qk is a p× (Ĵk + 1) matrix, whose (i, j)th entry is equal to 1 if the ith feature in X belongs to Ĝj and 0 otherwise.
he solution of (3.3) admits a closed form

ν̂k =
{
(XQk)

⊤(XQk)
}−1

(XQk)
⊤y.

urther, we can define the R2 associated with ν̂k, and hence hk, as R2
k . The empirical optimal bandwidth is defined as

hopt (ϑ) = arg max R2
k, (3.4)
hk∈{h1,...,hB}

8
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nd the resulting screened set is denoted as Âopt (ϑ). We summarize the entire FuSIS procedure with bandwidth selection
in Algorithm 1.

Algorithm 1 FuSIS with bandwidth selection

1: Input: Observed data (X, y), bandwidth grid points h1, . . . , hB, and a threshold ϑ .
2: FuSIS: For k = 1, . . . , B, apply FuSIS to (X, y) with bandwidth hk. Obtain the kth screened set Âk(ϑ) and the associated

R2
k .

3: Bandwidth selection: Define the optimal bandwidth as (3.4).
4: Output: Âopt (ϑ).

3.3. High-dimensional generalized knockoff

In this subsection, we propose a two-stage procedure named High-dimensional Generalized Knockoff filter (HGKnock-
ff filter) to detect structural changes in high-dimensional scenarios and control FDR at a pre-specified level. To avoid
he mathematical and empirical challenges cased by reusing the data, we adopt a data splitting strategy for the two
teps. To be specific, We randomly partition (X, y) into two subsamples (X(1), y(1)) and (X(2), y(2)) with sample sizes n1
nd n2 = n− n1, respectively.
The two stages of the HGKnockoff filter are introduced as follows:

(1) FuSIS stage: Apply Algorithm 1 to (X(1), y(1)) with a threshold ϑ such that the screened set Âopt (ϑ) contains less
than n2/2 elements, i.e. |Âopt (ϑ)| < n2/2.

(2) GKnockoff stage: Denote X(2)
FuSIS the sub-matrix of X(2) whose column corresponding to Âopt (ϑ). Then, we apply the

GKnockoff filter to (X(2)
FuSIS, y

(2)) to detect structural changes while controlling FDR at a pre-specified level q. The final
estimator of the active set is denoted as ŜH := ŜH (ϑ, q).

In Theorem 3.2, under mild conditions, we prove the HGKnockoff filter can control FDR at any pre-specified q ∈ [0, 1].

Theorem 3.2. (a) Conditional on the sure screening event E = {S ⊂ Âopt (ϑ)}, we obtain the finite-sample guarantee of FDR
control

FDRH|E (q) = E
[
|Sc

∩ ŜH |

|ŜH |

⏐⏐⏐E] ≤ q. (3.5)

(b) Furthermore, under Conditions 3.1, 3.2 and assuming log(hJ) = o(n1−2κ ), for any q ∈ [0, 1], the HGKnockoff filter
ontrols FDR asymptotically, i.e.,

lim
n→∞

FDRH (q) = lim
n→∞

E
[
|Sc

∩ ŜH |

|ŜH |

]
≤ q. (3.6)

. Simulation studies

In this section, we simulate various structural change detection experiments to evaluate the empirical performance
f GKnockoff, FuSIS, and HGKnockoff. We also compare the proposed methods with some popular competitors in the
iterature.

.1. Simulations for the GKnockoff filter

We apply the GKnockoff filter to study the two structural change detection scenarios discussed in Section 2.1. For the
-Y procedure, we first estimate the regression coefficients β̂ and noise variance σ̂ 2, then for testing the hypothesis
0j : d⊤

j β = 0, j = 1, . . . ,m, compute the corresponding p-value pj through the t-statistic tj = d⊤β̂/σ̂ ∗

j where

ˆ
∗

j =

√
σ̂ 2d⊤

j (X⊤X)−1dj. Then the standard B-Y procedure is applied to obtain the selected set. For the permutation
procedure, we randomly permute rows of design matrix so that the permuted predictors no longer possess predictive
effect on the response — thus can be treated as ‘‘knockoffs’’ to some extent. We also apply the B-Y method (Benjamini and
Yekutieli, 2001) and the classical permutation-based method to these scenarios for comparison purpose. We will discuss
the permutation-based method at the end of this subsection, and show that it fails to control FDR in our simulations
settings. Therefore, we focus on comparing the GKnockoff filter and the B-Y method in terms of the estimated FDR and
the empirical power. Throughout this subsection, we set the error variance σ 2

= 1, X = (x1, . . . , xn)⊤, and draw xi’s
ndependently from N(0,Σp×p) where Σ(i,j) = ρ|i−j| for some ρ ∈ [0, 1). The nominal FDR level is fixed to be q = 0.2. Each
true change position τ ∈ S = {τ , . . . , τ } is sampled from {h+1, h+2, . . . , p−h−1, p−h} with the minimum distance
j 1 J

9
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Fig. 1. FDR and power with respect to J for GKnockoff and B-Y in Experiment 4.1.

between two change positions minj=1,...,J−1 |τj+1 − τj| ≥ 3, and set h = 5. For each case, we simulate 200 replications. To
e specific, the estimated FDR and the empirical Power are defined by

F̂DR =
1

200

200∑
i=1

|Ŝi ∩ Sc
|

|Ŝ|
and P̂ower =

1
200

200∑
i=1

|Ŝi ∩ S|
|S|

,

where Ŝi is the estimated active set in the ith replication.

Experiment (1): Piecewise constant coefficients profile
Consider the piecewise constant coefficients profile model in Scenario 1. We set n = 350 and p = 100. The true

coefficients are set to be

βτk−1+1 = · · · = βτk = (−1)kA, for k = 1, . . . , J,

where A is a positive parameter that controls the signal amplitude and we denote τ0 = 0. We choose J , A and the ρ as
follows.

(1) Fix A = 0.12, ρ = 0, and let J vary in {9, 10, 11, 12, 13, 14}.
(2) Fix J = 13, ρ = 0, and let A vary in {0.09, 0.10, 0.11, 0.12, 0.13, 0.14}.
(3) Fix J = 13, A = 0.12. and let ρ vary in {0, 0.06, 0.12, 0.18, 0.24, 0.30}.

The simulation results are summarized in Figs. 1–3. Fig. 1 summarizes the estimated FDR and the empirical power
ith a fixed A and an increasing J . We observe that both methods can control FDR under the pre-specified level. The
Knockoff filter has higher empirical powers than the B-Y method in all cases. Fig. 2 summarizes the estimated FDR and

the empirical power with a fixed J and an increasing A. Again, both methods can control FDR under the pre-specified level
and the GKnockoff filter outperforms the B-Y method in terms of empirical powers. 3 shows similar phenomenon as the
previous experiment, in which both methods can control FDR at the pre-specified level q = 0.2; regarding the empirical
power, the GKnockoff filter uniformly outperforms the B-Y method.

Experiment (2): Integration analysis from multiple data sources
Consider the integration analysis from K data sources as discussed in Scenario 2. We set p = 40. The sample size of the

kth source, i.e. n(k), is independently drawn from Poisson(ζ ), where ζ = 100, for k = 1, . . . , K . The number of structural
changes J now stands for the total number of distinct coefficients from adjacent data sources. If (k, τj) is a change position,
we set β (k)

τj
= −β (k+1)

τj
. The amplitude A is accordingly defined as A = |β

(k)
j | for all k = 1, . . . , K and j = 1, . . . , p. The

ith sample from the kth source x(k)i is independently generated from N(0, Ip), i = 1, . . . , nk and k = 1, . . . , K . Further,
we choose K , A and J as follows.

(1) Fix K = 5, A = 0.25, and let J vary in {15, 17, 19, 21, 23, 25}.
(2) Fix J = 20, A = 0.25, and let K vary in {3, 4, 5, 6, 7, 8}.

The simulation results are summarized in Figs. 4 and 5. Again, both methods can successfully control FDR at the
pre-specified level q = 0.2, and the GKnockoff filter gains significantly more empirical power than the B-Y method.
10
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Fig. 2. FDR and power with respect to A for GKnockoff and B-Y in Experiment 4.1.

Fig. 3. FDR and power with respect to ρ for GKnockoff and B-Y in Experiment 4.1.

Fig. 4. FDR and power with respect to J for GKnockoff and B-Y in Experiment 4.2.
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Fig. 5. FDR and power with respect to K for GKnockoff and B-Y in Experiment 4.2.

Table 1
FDR and power of GKnockoffs when sample size increases.
Piecewise constant coefficients Integration analysis

n FDR Power ζ FDR Power

400 0.063 0.516 100 0.127 0.585
500 0.106 0.700 120 0.116 0.633
600 0.110 0.811 140 0.106 0.793
700 0.134 0.827 160 0.148 0.808
800 0.112 0.872 180 0.158 0.940
900 0.099 0.922 200 0.147 0.945

Table 2
Estimated FDR by permutation and GKnockoff.

Piecewise constant coefficients Integration analysis

Permutation 0.611 0.595
GKnockoff 0.096 0.122

It is also worthwhile to point out that the empirical FDR of the B-Y procedure is lower than GKnockoff, due to the
fact that B-Y indeed works under a more restricted threshold q/{

∑m
i=1(1/i)} under the nominal FDR level q, for the sake

f more general applications. This makes B-Y more conservative, and only fairly strong signals will be selected. On the
ther hand, GKnockoff is much less conservative, thus gains more power, while its empirical FDR is also strictly controlled
nder nominal level q.

xperiment (3): Asymptotic power analysis
In Theorem 2.4, we stated asymptotically overwhelming power for GKnockoff. In this experiment, we empirically

how that such power is achievable as sample size n increases. For the piecewise constant coefficients profile model,
ix A = 0.12, ρ = 0, J = 9, and let sample size n vary in {400, 500, 600, 700, 800, 900}. And for the integration model, fix
p = 40, K = 5, A = 0.25, J = 20 and let ζ vary in {100, 120, 140, 160, 180, 200}. Other simulation setups are consistent
with Experiment (1) and (2). The FDR and power are summarized in Table 1. It can be seen that the power of Gknockoff
is enhanced as the sample size increases and approaches to 1 for both models.

Experiment (4): GKnockoff versus permutation Next, we compare the FDR control performance of the Gknockoff filter
with a permutation-based method in the two scenarios in Experiment (1) and (2). The permutation-method constructs
‘‘knockoff’’ of X∗ by randomly permuting its rows. For Experiment 4.1, we set n = 350, p = 100, A = 0.1, J = 10 and
ρ = 0. For Experiment 4.2, we set ζ = 100, p = 40, A = 0.25, K = 5, J = 20 and ρ = 0. Table 2 reports the estimated FDR
of the two methods, which shows the permutation-based method fails to control FDR at q = 0.2 for all two structural
change problems. We argue that the permutation-based method, though straightforward, cannot address the dependence
in the noise Mϵ and hence does not enjoy the pairwise exchangeability.
12
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Table 3
Coverage proportion of FuSIS.

ρ p = 1000, n = 300 p = 10 000, n = 1500

Fixed h Optimal h Fixed h Optimal h

0.3 0.886 0.918 0.918 0.942
AR structure 0.6 0.958 0.964 0.964 0.983

0.9 0.966 0.983 0.971 1

0.3 0.876 0.927 0.917 0.974
Group structure 0.6 0.933 0.966 0.966 1

0.9 0.972 0.982 0.982 1

4.2. Simulations for FuSIS

In this subsection, we use simulated experiments to assess the finite sample performance of FuSIS for screening
oefficient changes in Experiment 4.2. Within each replication, we compute and rank D̂(h, j) in a descending order and
choose the first n− 1 locations as the selection set Â. We set sample size and dimensionality to be (n, p) = (300, 1000)
and (n, p) = (1500, 10000). The active set of structural change locations is set to be S =

{ p
10 ,

2p
10 , . . . ,

9p
10

}
with J = 9,

nd the signal amplitude A = 0.1. The covariates, i.e. xi’s, are independently drawn from N(0,Σ), where Σ admits one of
the following two forms.

(1) (AR structure) Σ(i,j) = ρ|i−j|, i, j = 1, . . . , p.
(2) (Group structure) Σ is a block diagonal matrix, with ten p

10 ×
p
10 dimensional matrices on the diagonal, each of which

is defined as Σ(0), where Σ
(0)
(i,j) = ρ|i−j|, i, j = 1, . . . ,

p
10 .

We take ρ = 0.3, 0.6 and 0.9, respectively. Based on 1000 simulation replications, we assess the sure screening property
of FuSIS via the coverage proportion of all true coefficient change locations. For bandwidth selection, we demonstrate
two methods: (a) a fixed bandwidth that is chosen such that at most one change occurs within each h-neighborhood;
specifically, h = 25 when p = 1000, and h = 100 when p = 10000; (b) an optimal bandwidth selected by the data-driven
bandwidth method introduced in Section 3.2. The results are reported in Table 3, from which one can see that the coverage
roportions are all close to 1. In addition, the optimal bandwidth generally yields a larger coverage rate than the fixed
andwidth.

.3. Simulations for the HGKnockoff filter

In this subsection, we access the performance of the HGKnockoff filter for a high-dimensional piecewise constant
oefficients profile model. Note that the B-Y method is not applicable when p > n, and hence we adopt the same data
plitting technique to first screen the potential structural changes and then apply the B-Y method to the screened features.
e name this method the screened B-Y method. In addition, we also consider the sequential B-H method (G’Sell et al.,
016) as a competitor.
We follow a similar simulation setup as in Section 4.2 except for the following aspects. We set n = 900, p = 1000,
= 0.15, and J = 8. We vary ρ from 0.1 to 0.3 for the AR structure, and from 0.4 to 0.6 for the group structure. The sample

s randomly partitioned into two halves, one for FuSIS and the other one for structural change detection with FDR control.
he simulation results, measured by the estimated FDR and the empirical power, are summarized in Figs. 6 and 7. We
bserve that the sequential B-H method fails to control FDR at the pre-specified level q = 0.2, partly due to the simulation
etup violates the independence assumption. The screened B-Y method also does not control FDR well, especially for the
R structure setting. In contrast, the HGknockoff filter controls FDR at q = 0.2. Moreover, the HGknockoff filter has the
ighest empirical power among the three competitors. Notably, the power trends of HGknockoff behave like inverted-U
urves, which reflect the trade-off between controlling FDR and satisfying the sure screening property.

. Real data analysis

In this section, we apply the proposed GKnockoff filter to analyze a Chinese macroeconomic dataset, aiming to explore
he relationship between Gross Domestic Product (GDP) and industry structure for different provinces in China. The past
ecades have witnessed an extraordinary growth of the Chinese economy, with its GDP ranked second in the world.
owever, rapid economic growth also brings about uneven development across different Chinese provinces as a price.
ecently, the government has turned down the voice of high-speed growth but emphasized ‘‘high-quality growth’’, which
mphasized the driving effect of GDP on the industrial structure, especially the secondary industry. Therefore, we are
otivated to study the effect of GDP on the proportion of the secondary industry, which may differ among provinces;
eanwhile, some provinces might perform similarly. We target to discover heterogeneous effects among provinces. Zhong
t al. (2021) studied a similar problem, but on city level, by conducting multi-kink quantile regression. We view it from
13
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Fig. 6. FDR and power trend of HGKnockoff, screened B-Y and sequential B-H with respect to ρ for high-dimensional piecewise constant coefficients
rofile model under AR structure.

Fig. 7. FDR and power trend of HGKnockoff, screened B-Y and sequential B-H with respect to ρ for high-dimensional piecewise constant coefficients
rofile model under group structure.

different perspective of integration analysis in this paper, and aim to detect the coefficient changes across provinces in
he multiple-source model.

The dataset was collected from Organization for Economic Cooperation and Development database (OECD).2 After
emoving missing values and provinces with less than 3 cities, the dataset contains various economic measurements
n 245 cities across 23 provinces of China in year 2016. We first sort the provinces in an descending order according to
he GDP per capita, following the assumption that provinces with similar economic development should possess similar
riven effects of GDP on industrial structure (Zhong et al., 2021). The ordered provinces by GDP per capita are Jiangsu,
nner Mongolia, Zhejiang, Shandong, Fujian, Guangdong, Hubei, Jiangxi, Jilin, Hunan, Guizhou, Ningxia, Hebei, Liaoning,
enan, Anhui, Guangxi, Sichuan, Heilongjiang, Shanxi, Shaanxi, Gansu and Yunnan.
The response y(k)i and exposure variable x(k)i are respectively taken to be the proportion of secondary industry and GDP

er capita of the ith city in the kth ordered province. Furthermore, as illustrated by Zhong et al. (2021), fiscal expenditure
FE) and fixed assets investment (FAI) are also associated with industry structure. Therefore, we establish the following
odel for the ith city in the kth province as

y(k)i = β (k)x(k)i + α1z
(k)
1i + α2z

(k)
2i + ϵ

(k)
i , (5.1)

2 https://insights.ceicdata.com/.
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p
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Table 4
Prediction errors of four methods.

GKnockoff B-Y Fused Lasso OLS

MPSE 1.093 1.345 1.142 1.227

where β (k) is the driven effect of economic growth on the secondary industry for the kth ordered province, α1 and α2
are homogeneous effects of FE (denoted as z(k)1i ) and FAI (z(k)2i ), and ϵ

(k)
i follows N(0, σ 2) independently. To detect the

heterogeneous effects, we assume

β (1)
= · · · = β (τ1) ̸= β (τ1+1)

= · · · = β (τ2) ̸= β (τ2+1)
= · · · = β (τJ ) ̸= β (τJ+1)

= · · · = β (23),

with S = {τ1, . . . , τJ} denoted as the index set of true coefficient changes.
We apply the GKnockoff filter to fit model (5.1), under a pre-specified FDR level q = 0.2. We also conduct the B-Y

rocedure and the regular fused Lasso without FDR control for comparison purpose. The mean prediction errors of the
hree methods, as well as the obviously overfitting ordinary least squares (OLS) method, are reported in Table 4, from
hich we observe the superior performance of GKnockoff over other methods in terms of prediction error.
The change positions of effects estimated are {1, 5, 15, 22}, {15, 22} and {1, 4, 5, 6, 15, 17, 22} by GKnockoff, B-Y and

fused Lasso without FDR control, respectively, as shown in Fig. 8. Compared with the regular fused Lasso that clearly
contains many falsely discovered changes, both GKnockoff and B-Y are able to control FDR. The GKnockoff procedure
implies that the effect of GDP per capita on the proportion of secondary industry follows a reversed U shape. The GDP has
more driven effects for provinces with moderate economic sizes, while this effect will be diminished when the province’s
GDP per capita becomes larger or smaller. Meanwhile, the B-Y procedure indicates more driven effects for larger economic
sizes (thus smaller rankings). Therefore, GKnockoff achieves higher detection power than B-Y in this analysis, since the
phenomenon discovered from GKnockoff is more consistent with existing literature. For instance, Zhu (2012) stated that
manufacturing benefits from more production externalities than does agriculture, which means the secondary industry
will grow faster than other sectors as economic size grows. However, the regional inequality may lead to different driven
effects (Cheong and Wu, 2014). For more developed regions, the economy may enter the ‘‘New Normal’’ status, so that
the growth of manufacturing sector might in turn slow down (Chen and Groenewold, 2019).

6. Conclusion

Inspired by a structural change detection problem for the driven effects of economic development on the secondary
industry, we developed a generalized knockoff procedure (GKnockoff) for selecting structural changes while controlling
the false discovery rate (FDR). Upon identifying potential structural changes rather than individual features, we adopted
the generalized Lasso approach via introducing some full-row-rank transformation matrix for the original coefficient
vector. We carefully studied its selection consistency and asymptotic power. The transformed data used in generalized
Lasso violates the independence assumption which is crucial to the theoretical guarantees of the classical knockoff. Seeing
this, we proposed to construct knockoffs based on the projected design matrix, that accommodates the dependence
structure of transformed data. We established the pairwise exchangeability of the GKnockoff design and proved its
capability to rigorously control FDR under finite samples. For high-dimensional features, we proposed a new screening
technique, called FuSIS, which is of its own significance, that reduces dimensionality by filtering out redundant structural
changes. Further, we adopted a data splitting technique, named high-dimensional GKnockoff (HGKnockoff), to first reduce
dimensionality and then apply GKnockoff respectively on two halves of data. The sure screening property of FuSIS and
the capability of HGKnockoff to control FDR were also proved. We showed the powers of GKnockoff and EGKnockoff
approach to one under mild conditions. Simulation studies empirically verified the outstanding performance of GKnockoff
and HGKnockoff in terms of FDR control and power, as well as the sure screening property of FuSIS. We applied the
proposed method to analyze a macroeconomic dataset that describes the structural changes of driven effects of GDP on
the secondary industry. It turns out that the GKnockoff filter yields a higher power compared with the B-Y procedure.
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Fig. 8. Effects of GDP on proportion of secondary industry estimated by GKnockoff, B-Y and Fused Lasso without FDR control, respectively. Blue
diamonds represent β̂ (k) ’s for the kth provinces estimated by the three methods. The change positions are represented by blue dashed lines. Gray
circles are estimated coefficients fitted by ordinary least squares for each province separately.
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