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ABSTRACT

We derive analytically for the first time the downstream
evolution of the boundary layer thickness and the friction ve-
locity of the zero-pressure-gradient turbulent boundary layer
(ZPGTBL). Lie groups were used to derive the downstream
evolution and to obtain the full set of the similarity variables
and the leading-order similarity equations. An approximate
leading-order solution was obtained using matched asymp-
totic expansions. The similarities and differences between
ZPGTBL and turbulent channel flows in terms of the similarity
equations are discussed to support the notion of leading-order
universality of the near-wall layer.

INTRODUCTION

The zero-pressure-gradient turbulent boundary layer
(ZPGTBL) is one of the most important flows to understand
the fundamental physics of turbulence, and has been studied
extensively (e.g., Prandtl (1925); von Karméan (1930); Kle-
banoff (1954); Schlichting (1956); Clauser (1956); Monin &
Yaglom (1971); Sreenivasan (1989); Pope (2000); McKeon &
Sreenivasan (2007); Nagib et al. (2007); Marusic et al. (2010);
Smits et al. (2011)). Essential to the understanding of a bound-
ary layer is its similarity solution. The zero-pressure-gradient
laminar boundary layer (the Blasius boundary layer, Blasius
(1908)) has the well-known similarity solution, a key part of
which is the downstream evolution of the boundary layer thick-
ness and the surface stress.

Over the past decades there have been many efforts de-
voted to finding a similarity solution of ZPGTBL. Tennekes
& Lumley (1972) obtained a leading-order mean momentum
similarity equation. Mellor (1972) obtained the log law. How-
ever, prediction of the boundary layer thickness and the wall
shear stress has proven to be much more challenging and has
not been made successfully. Tennekes & Lumley (1972) used
the boundary layer thickness A defined by Clauser (1956) us-
ing an integral quantity, not derived from the boundary layer
parameters, in contrast to that of the Blasius boundary layer.
Its downstream evolution and the friction velocity were not
predicted, preventing a proper definition of the similarity vari-
ables. A Lie group analysis was performed in Oberlack &
Khujadze (2006) to find a linear growth of the boundary layer
thickness, which is inconsistent with experimental evidence
(e.g., Marusic et al. (2015)). The same definition of A as Ten-
nekes & Lumley (1972) was used in Monkewitz et al. (2007),
but did not provide an expression for it. The analysis in George
& Castillo (1997) attempted to obtain a similarity solution us-

ing the Reynolds-averaged boundary layer equations without
the viscous terms. However, as we show in this work, their
velocity scale for the outer layer is incorrect. Without a pre-
diction of the boundary layer thickness (and the friction veloc-
ity), the similarity variables cannot be properly defined. The
existence of a similarity solution and boundary layer similarity
also cannot be shown.

In this work we perform a symmetry analysis of the
Reynolds-averaged boundary layer equations to derive analyt-
ically for the first time the evolution of the boundary layer
thickness, 6, whose definition is not predetermined and will
come from the analysis, the evolution of the friction veloc-
ity, the full set of similarity variables, and the (ordinary dif-
ferential) similarity equations. We then employ the method of
matched asymptotic expansions to obtain an approximate so-
lution.

Parallel to the research on ZPGTBL, there also have been
much effort to investigate turbulent channel and pipe flows,
which are amenable to more rigorous asymptotic analysis
(e.g., Millikan (1938); Afzal (1976)). The near-wall (or in-
ner) layers of these flows are widely believed to have much
in common, i.e., the near-wall layers are universal. There is
also evidence against universality (e.g., McKeon & Morrison
(2007); Nagib et al. (2007); Marusic et al. (2015)). However,
there have been essentially no theoretical analyses on the simi-
larities and differences between these flows. The present work
will also help shed some light on the important issue of the
universality of the near-wall layers.

SYMMETRIES

Symmetries of differential equations refer to form invari-
ance of the equations under group transformations, and can be
exploited to help obtain solutions of the equations. One of the
symmetries of the Naiver-Stokes equations is invariance under
a one-parameter Lie dilation group (e.g., Bluman & Kumei
(1989); Cantwell (2002)). A key requirement for this invari-
ance is a fixed Reynolds number. However, it has long been
recognized that statistics of the energy-containing eddies in
turbulent flows at high Reynolds numbers are approximately
Reynolds number invariant. This approximate invariance is
associated with spontaneous breaking of the symmetries of
the Navier-Stokes equations from laminar to turbulent flows.
Therefore, while the symmetries of laminar flows are exact,
the symmetries of turbulent flows are only approximate. The
concept of spontaneous symmetry breaking and approximate
symmetry first emerged in condensed matter physics and later
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were key to predicting certain non-zero mass particles in Yang-
Mills gauge fields (Higgs (1964, 2014); Castellani (2003)). In
the present work, we seek the leading-order symmetries and
similarity properties of ZPGTBL. Therefore, Reynolds num-
ber invariance of energy-containing statistics is invoked as the
(only) physical assumption.

We use Lie dilation groups to analyze the leading-order
symmetries (group transformation properties) of the ZPGTBL
equations: the mean momentum equation, the Reynolds stress
budget, and the mean continuity equation. The groups will be
used to derive the evolution of the boundary layer thickness
and the Reynolds shear stress and to obtain the similarity vari-
ables.

To obtain the leading-order symmetries, we recognize that
the outer layer is approximately Reynolds number independent
and whereas the inner layer depends on the viscosity. There-
fore, we need to derive the leading-order equations for the two
layers and analyze their symmetries separately.

OUTER-LAYER SYMMETRY

For the outer layer, the leading-order symmetries (or the
symmetries of the leading-order equations) can be obtained by
dropping the Reynolds-number-dependent terms. These sym-
metries are similar in nature to the approximate symmetries
previously investigated (e.g., Grebenev & Oberlack (2007)).
It is easily shown that by dropping the viscous term in the
mean momentum equation, as done by George & Castillo
(1997), the group leads to a boundary layer thickness & o x
and uv = const., inconsistent with the behaviors of ZPGTBL.
The reason is that there are other higher-order terms in the
equations that do not contain the viscosity, but are implicitly
Reynolds-number dependent. They also need to be identified
and dropped.

To identify the higher-order terms, we perform an order
of magnitude analysis of the boundary layer equations. The
mean momentum equation is

UdU +VQU = —dyiw — o (u2 —2) +vaZU, (1)

where U, V, ww, u?, v2, v, and y are the streamwise and nor-
mal mean velocity components, the Reynolds shear stress, the
Reynolds normal stress components, the kinematic viscosity,
and the wall-normal coordinate, respectively (x and z are the
streamwise and spanwise coordinates respectively and u, v
and w are the corresponding velocity fluctuations respectively
hereafter). The Reynolds shear stress budget is

U Qi+ V i = —udyp — v p —v2AyU — dyuv? + VT —Euy,

@
where &, is the dissipation rate, which is generally negligible.
The TKE budget is

Udck+V dyk = —voyU — oy pv— dy (u? +v2 +w2)v/2+ v k—e,

3
where € is the TKE dissipation rate. We first consider the scal-
ing of the velocity defect U — U, ~ U, proposed in George &
Castillo (1997), where U and U, are the mean streamwise ve-
locity and the free-stream velocity respectively. With this scal-
ing, the Reynolds shear stress and the shear production of the
turbulent kinetic energy (TKE) would scale as —aw ~ U238 /L
and —avdyU ~ U2 /L respectively, where L ~ x is the stream-
wise length scale. Since shear production is the only pro-

duction mechanism, the TKE would scale as k ~ U2, Ac-
cording to Taylor’s scaling (Taylor 1935), which follows from
the Reynolds-number invariance assumption, the dissipation
would scale as k3/2 /8 ~ U3 /8 , asymptotically larger than the
production, indicating that the scaling U — U, ~ U, is incon-
sistent with the scaling of the dissipation, unless 8 /L = const.
However, a linear growth of § is inconsistent with experimen-
tal evidence. Here we will also show that 6 /L # const. We
consider the mean momentum integral

d [

2

—uL = — —U,)dy. 4
u; dx/o U(U -U,)dy ()]

As both U and U — U, scale with U,, the momentum integral
results u,zﬂ ~ U625 /L ~uv. With U, and u, as the outer and
inner velocity scales respectively, asymptotic matching of the
outer and inner expansions of the mean velocity profile (as-
suming existence of a similarity solution) gives

dut U, du, L duU,
+27  _Ze ° (=012, &Yo 5
dy* U Yo dyo (6) Yo dyo7 ©)

where y© = u,y/v, Ut = U /ux, yo = y/8, and U, = (U —
U,)/U,. Therefore,

L
5

L

+)a:( 5

(v )2y% = ()P (Rey 'y )% 6)

Reynolds number invariance requires

(%)l/zRe*‘x = const. 7

As the outer and inner velocity scales are different, the velocity
profile in the matching layer cannot be logarithmic, resulting in
o #0and Re% = (u,6/V)® +# const.. Therefore § /L # const.,
indicating that the scaling choice U — U, ~ U, is inconsistent
with the scaling of the dissipation rate. Furthermore, it can be
shown using the mean momentum integral that U — U, ~ us
and oU /dy ~ u. /6.

With U — U, ~ u,, we perform an order of magnitude
analysis to identify the leading-order terms in the equations,
which are Reynolds number invariant. The resulting leading-
order mean momentum equation is

U, U = — 0,1y (8)

Similarly we obtain the leading-order shear stress budget and
TKE budget,

Ueitv = —(udyp + vy p) — v2,U. ©9)

Updck = —voyU — dypv — oy (u? +v2 +w?)v/2 —€.  (10)

The velocity-pressure gradient term in the shear stress budget
scales the same as production. The pressure transport and tur-
bulent transport terms in the TKE budget scale the same as
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production. Therefore, they should dilate in the same way as
the production terms. The finite form of the dilation group is

F=ex, §=¢€ly, U =U, U-U,=e8(U-U,),

U = e80U, V = ¢V, v = 2w, u2 = eM12, 12 = M2,

an

where a, b etc., are the group parameters. For the equations to
be invariant the exponents must satisfy g—a=dy —b, dp —a =
di+g—b,and dy —a =d, +g—b=3d; /2 — b, respectively,
leading to dp = d| = 2b —2a and g = b — a, and hence a two-
parameter dilation group.

To obtain a one-parameter group an additional relation-
ship is needed. Since the outer and inner layers are linked,
this relationship must come from asymptotically matching the
outer layer with the inner layer. However, at this point we do
not have similarity equations, and cannot yet perform match-
ing. Nevertheless, assuming that a similarity solution exists,
matching the two layers with identical velocity scales (us)
would result in a logarithmic velocity profile and a logarithmic
friction law. Therefore, we use the logarithmic friction law as
an ansatz to provide this relation. We will show later that the
group and the subsequent analysis indeed lead to the logarith-
mic friction law and that the similarity solution in the matching
layer satisfies the mean momentum equation. This essentially
amounts to guessing the solution of an equation and verifies it
later using the equation. The friction law dilates as

U, 1. ubesth 1, ud
=—In——+D=—(1 b)+D. (12
u.es K n \% + K(n \% tetb)+ (12)

Note that § as a function of x is not yet known, and therefore
is not fully defined. Since (12) is invariant under the dilation
group, we have

1 ) 1 )
&zeg{f(lnu* +g+b)+D}:71nu* +D. (13)
U K 1% K 1%

Therefore
1. ud U, g+b
8—1{—1 * D}: g2t =80k (14
(ef =) gin—=+ (e )u* et (14

This equation provides an implicit relationship between g and
b. Rather than directly solving (14) we examine infinitesimal
form of the group with exponents dg, da, and db etc. Taylor
expanding the second and third terms in (14) and keeping the
leading-order terms we have

U, dg+db —db —d
dg—e:—g or dg=— = Ua .
U K Kpet+1l Kpe+2

15)

From the continuity equation, we have dg — da = dc —
db, dc = 2dg. We obtain a one-parameter group

F=e%x, 5=¢%y, U-U, = edg(U -U,), V= ¥y,
W= 2uy, 12 = 282 V2 = 28,2 i = %8y,

(16)

Note that J dilates in the same way as y. From (16) we obtain
the characteristic equations of the group

du, dy B dé B dx
we o yk% 1) Sk% 1) a2
_dU-U,) v

U-u, v

a7

From the first and fourth terms we obtain (without the di-

mensional integration constant) x ~ u;ze"Uf/ #« Its non-
dimensional form is
Uex/V = Rey ~ (U2 Ju2)e Vel (18)

Similarly we obtain & ~ u; 'e*Ue/* V ~ u2. The non-
dimensional form of & is

U.8/v = Reg ~ (U Ju )e<Ue/" (19)

Equations (18) and (19) are functions of U, /u, which can
be used as a parameter to obtain the dependence of & on x.
These are the central results of the present work and to our
best knowledge, are the first analytic derivation of the down-
stream evolution of the friction velocity and the boundary layer
thickness.

The first and last two terms in (17) result in U — U, ~ u,
and V ~ u2. Non-dimensionalizing the variables using x, i
and U,, we obtain for the first time the full set of the simi-
larity variables for the outer layer U, = (U — U,) /ux, V, =
VU2, yo = yUe/ (xt), o = /1, 13 = 12 i, V3 =
v2/u?. Here y, is defined using the boundary layer parame-
ters (x, Ue, and u), in a similar way to the Blasius boundary
layer.

INNER-LAYER SYMMETRY

We now perform a Lie group analysis of the leading-order
inner equations. The leading-order mean momentum equation
is Tennekes & Lumley (1972)

0= —dyuv+vaiU. (20)

The dilation group is § = ?y, U = e8U, v = ¢?¢uv. The trans-
formation for uv is identical to the outer layer because it scales
with 12 in both layers. For (20) to be invariant, the exponents
must satisfy 2g —b = g—2b, b = —g. From the continuity
equation, we have g —a = ¢ —b, ¢ = —a. These group pa-
rameters are also consistent with the dilation properties of the
Reynolds shear stress and TKE budgets. The group now is

F=e% j=e 8y, U=e8U,V=¢1V, w =X, (21)

where a and g are related by (14). The characteristic equations
for the group are

du, d d d
4y _ Ux - UV . (22)
x(rcf+2) V(Kf+2)

Uy y
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The first two terms result in us ~ y~ 1. The last two terms

lead to V ~ x~!. We obtain the similarity variables for the
inner layer U; = U Ju., V; = Vx/v, y; = yu. /v =yT, uv; =

w/u2. u? = utu?, v} =v2u?, where V; has not been properly

defined previously in the literature.

APPROXIMATE SOLUTION USING MATCHED
ASYMPTOTIC EXPANSIONS

In a typical Lie group analysis, after the symmetries are
identified and the similarity variables are obtained, the simi-
larity equations are derived and their solution is sought. In the
case of turbulent flows, the similarity equations are unclosed
and generally cannot be solved without a turbulence model.
However, matching the outer and inner asymptotic expansions
provides additional relations, allowing us to obtain an approx-
imate solution without a turbulence model.

We write the outer layer similarity variables as asymptotic
expansions

U, (yo,Rex) = Uy (yo) + higher-order terms,
. (23)
Wo(yo,Resx) = uvy (yo) + higher-order terms,

where the similarity variables U, etc. are of order one. Substi-
tuting (23) into the mean momentum equation, we obtain the
leading-order similarity equation for U,

_)’Ody(, Uyl = _dy(,Wol ) 24)

which is identical to that obtained by Tennekes & Lumley
(1972). However, their definition of y, is different. Similarly,
the leading-order shear-stress budget is

~Yody, Wo1 = —(udyp +vorp), —v3dy,Upt.  (25)

Since the outer expansions are not valid in the viscous region
(the inner layer), inner expansions are also needed.

The inner similarity variables depend on y™ and Re,. We
write them as asymptotic expansions,

U;i(y*,Rex) = Uy (y") + higher-order terms,

(26)
w;(y",Re,) = uv;; (y*) +higher-order terms.
We obtain the leading-order inner similarity equations
0= 07+ d2 U
= —dy+uv; +dy+Ul
(2))

0= —(u8yp+ Vaxp)i _Ed)# il +d)27+W[1

We now asymptotically match the outer and inner expan-
sions

U=U,+uUy =Up+uUp (y0) + ...,

(28)
U=uU=uUn(yN)+....,

fory, < 1 and y™ > 1, resulting the log law (see e.g., Tong &
Ding (2020) for details)

| 1
Upti = Iny, +C, U = ;lnwa, (29)

where U,; and Uj; are the leading-order expansions of U,
and Uj;, respectively. Inserting (29) into (28) we obtain the
dimensional outer and inner expansion as

1 1
U= Ue+u*{Elnyo+C+...},U :u*{Elny++B+...}.

(30)
From (30) we obtain the logarithmic friction law
1 y* 1, u?
Ye 1Y g c=tn™ 5 ¢ @an
U K Yo K A

Using (18) and (19) we have 8 ~ xu. /U,. The friction law can
then be written as (5), confirming the ansatz. Similarly we ob-
tain the matching results for the leading-order Reynolds shear
stress as @ = u2(—1+yp/K). One can also write down the ex-
pansions for the velocity-pressure—gradient terms and obtain
matching results (not done here). With (18) and (19) and the
fully defined similarity variables, (30) and v = u2(— 1+ /K)
satisfy (1) to the leading order, verifying them (and 12) as part
of a similarity solution of the ZPGTBL equations. Further-
more, from a mathematical point of view, the boundary layer
equations and their boundary conditions are a well-posed prob-
lem, therefore have a unique solution. Physically, the evo-
lution of ZPGTBL is also unique. Hence the ansatz has led
to the unique similarity solution, fully justifying its use. The
solution also provide the downstream variations of the mean
velocity and shear stress profiles, which previously were not
available.

We now make preliminary comparisons of the theoreti-
cal prediction (18) and (19) of the non-dimensional velocity
U, /us (equivalent to the surface shear stress) and the non-
dimensional outer layer thickness Res = U,099/V (both as
functions of the non-dimensional downstream distance Re, =
U,x/v) with the experimental data of Marusic et al. (2015)
(the SP40 configuration). The measured values of U, /u, are
used as the parameter to obtain the theoretical values of Re,
and Reg. The theoretical prediction contains several non-
dimensional coefficients that need to be obtained using experi-
mental data: The von Karmén constant k¥ = 0.420 and the non-
dimensional coefficient for dgg are obtained by fitting (19) to
the experimental data; The virtual origin of x = —1.744 m and
the non-dimensional coefficient for Re, are then obtained by
fitting (18) to the data. In particular, the values of U, /u, and
899 at x = 1.6 m are used to determine the non-dimensional
coefficients. The kinematic viscosity is taken as the value in
Marusic et al. (2015), v = 15.1 x 10~® m/s?. The results are

2
Rey = 0.06024U—ge’<Ue/ U Reg = 0.02204 ¢ oxUe/1. (32)
Uu

* Us

We then have 899 = 0.3659xu, /U,, yo = 0.3659y/8g9.
Figures 1 and 2 show that with these coefficients, the an-
alytic prediction, especially the functional form, has an excel-
lent agreement with the experiments. However, kK = 0.420
obtained here based on the boundary layer thickness and the
friction velocity, which are global behaviors, is quite differ-
ent from 0.384 obtained in the same experiment and by Nagib
et al. (2007) using the mean velocity profile, a local behavior,
but is much closer to that of Vallikivi et al. (2015) (0.40) and
the typical value of 0.421 in pipe flows (McKeon et al. (2004);
McKeon & Morrison (2007)). We emphasize that these are
preliminary comparisons with a single experiment. It is there-
fore unclear whether the different values are a coincidence or
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U /u,
KR

Figure 1. U,/u, vs. the non-dimensional downstream dis-
tance Rey = U,x/Vv. Circles: experimental data from Marusic
(2015) (the SP40 configuration); Solid line: Theoretical pre-
diction given by equation (32).

35
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Figure 2. Non-dimensional boundary layer thickness Reg =
U,8/Vv vs. Rey. Legend same as in figure 1.

an indication of the differences in the two ways of estimating
the von Kdrmdn. This issue requires further attention in future
studies.

UNIVERSALITY OF NEAR-WALL LAYER

The leading-order equations allow us to compare
ZPGTBL with channel flows to examine the key question of
near-wall universality. In the inner layer the mean momen-
tum equation is dominated by the Reynolds stress and viscous
stress terms (Afzal (1976) and equation 27) in both flows. The
Reynolds shear stress budgets also have similar properties in
both flows, being dominated by the production, pressure, and
viscous terms (Hoyas & Jimenes (2008) and equation 27). The
similarity variables are also defined in the same way, indicat-
ing that the two flows have the same leading-order structure.

This issue can be further examined using the outer equa-
tions. In channel flows, the Reynolds shear stress budget
is a balance between shear production and velocity-gradient—
pressure interaction (Hoyas & Jimenes (2008)). The mean
velocity gradient is “adjusted” to balance the Reynolds stress
budget. The leading-order mean momentum equation is a bal-
ance between the shear stress derivative and the mean pres-
sure gradient (Afzal (1976)), with the latter imposing the linear
variation of the leading-order (linear) variation of the Reynolds
shear stress.

In ZPGTBL the Reynolds shear stress balance (equa-

tion 25) is among the mean advection, production and veloc-
ity gradient-pressure interaction. However, in the log layer
(o < 1), the advection term is of higher-order. Therefore
the balance in the log layer is asymptotically identical to that
in channel flows. While the mean momentum balance (24)
is between the mean advection and the shear stress deriva-
tive, the log law ensures the leading-order (linear) variation
of the Reynolds shear stress. Therefore, from the perspective
of both the inner and outer equations, the leading-order near-
wall structure of channel flows and ZPGTBL are the same,
supporting the notion of universality of the leading-order near-
wall turbulence. The differences observed in experiments are
potentially due to higher-order effects, which deserve further
attention.

CONCLUSIONS

We performed a symmetry analysis of the equations
for ZPGTBL using Lie dilation groups, and obtained local,
leading-order symmetries of the equations. We derived for the
first time the evolution of the boundary layer thickness and the
shear stress, and the full set of similarity variables. Using the
asymptotic expansions the leading-order similarity equations
for the outer and inner layers were obtained. Matching the ex-
pansions resulted in an approximate similarity solution in the
overlapping layer, the log law. The leading-order equations for
both the channel flows and ZPGTBL show similar properties
in the near wall layer, supporting the notion of its universality.
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