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Abstract—The majority of iterative algorithms for CT recon-
struction rely on discrete-to-discrete modeling, where both the
sinogram measurements and image to be estimated are discrete
arrays. However, tomographic projections are ideally modeled
as line integrals of a continuous attenuation function, i.e., the
true inverse problem is discrete-to-continuous in nature. Recently,
coordinate-based neural networks (CBNNs), also known as im-
plicit neural representations, have gained traction as a flexible
type of continuous domain image representation in a variety of
inverse problems arising in computer vision and computational
imaging. Using standard neural network training techniques, a
CBNN can be fit to measurements to give a continuous domain
estimate of the image. In this study, we empirically investigate
the potential of CBNNs to solve the continuous domain inverse
problems in CT imaging. In particular, we experiment with
reconstructing an analytical phantom from its ideal sparse-
view sinogram measurements. Our results illustrate that recon-
struction with a CBNN are more accurate than filtered back
projection and algebraic reconstruction techniques at a variety
of resolutions, and competitive with total variation regularized
iterative reconstruction.

Index Terms—Coordinate based neural networks, implicit
neural representations, CT reconstruction, continuous domain
inverse problems.

I. INTRODUCTION

Discrete image representations, which encode images as
fixed-resolution arrays of pixels or voxels, form the back-
bone of modern computational imaging. However, estimating
discrete images with high spatial resolution from indirect
measurements is computationally demanding and often ill-
posed because the number of unknown parameters (i.e., pixels
or voxels) far exceeds the available measurements. This often
necessitates introducing complicated regularization functionals
to stabilize the recovery, which then require custom iterative
solvers to implement.

Recently, a non-linear method of representing images as
neural networks has gained traction in solving a variety of
inverse problems in computer vision and computational imag-
ing [1], [2]. These so-called coodinate-based neural networks
(CBNNs)—also known as implicit neural representations—
parameterize an image as a small-scale multi-layer perceptron
taking spatial coordinates as inputs. Compared to traditional
pixel/voxel representations, CBNNs are typically far more
parameter-efficient, and scale well to multi-dimensional imag-
ing problems. Furthermore, they can be fit to measurements
using standard neural network algorithms, bypassing the need
for custom iterative solvers.
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In the context of computed tomography (CT) reconstruction,
one advantage of CBNNSs is that they allow for more accurate
modelling of the ideal continuous-to-discrete measurement
process. In particular, since the CBNN is a continuous func-
tion, samples of its continuous domain Radon transform can
be approximated to an arbitrary degree of accuracy.

Several studies have proposed specialized CBNN ap-
proaches for CT reconstruction, e.g., [3], [4]. Yet, to the
best of our knowledge, no work has investigated whether
CBNNSs enable the solution of the ideal continuous domain CT
reconstruction problem. In this study, we explore this question
empirically. For simplicity, we focus on a 2D imaging scenario
and analytical phantoms where computing exact samples of
Radon transform is possible. We investigate the recovery of
sparse-view sinogram data with CBNNs using a close-to-exact
continuous domain forward model versus recovery in a pixel
basis with model-based iterative methods using a discretized
forward model.

II. PROBLEM FORMULATION

Recovery of a continuous-domain image f : R? — R from
discrete sinogram measurements y € R can be posed as an
optimization over a function space:
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where F is some class of functions, and the continuous-to-
discrete linear operator A4 : F — R™ returns a vector of
samples of the continuous Radon transform of f, i.e., if y =
Af then its ith entry is y; = R f(6;,t;) for some angle/offset
pair (0;,t;) € [0,27) x R where

Rf(0,t) = /jo f(ssin(0)+tcos(0), —ssin(0)+t cos(9))ds.

Here, for simplicity, we focus on the least-squares loss in
(1), though other loss functions may be more appropriate in
settings with a statistical noise model, e.g., the negative log
likelihood.

A. Reconstruction in a pixel basis

When reconstructing in a pixel basis, the function class
F in (1) is chosen to be the space of images f(x,y) =
> figxp. ;(x,y), where xp, ; is the indicator function for
a square region F; ; representing the 7, jth pixel. In this case,
(1) reduces to the least squares problem
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where f € RY is the vector of all pixel intensities f; j, and
the columns of A € RM*N are given by Axp, ; for all 4, j.

One drawback to this approach is that when discretizing at
a high resolution the number of pixels N can easily exceed
the number of sinogram measurements ). In this case, since
A is a M x N matrix, there are infinitely many solutions to
(2), i.e., reconstruction is ill-posed. To overcome this issue,
a common strategy is to solve the regularized least squares
problem instead:

min ||Af —y||> + AR(f), 3)
FERN

where R(f) is a regularizer designed to promote desirable
image properties and A > 0 is a tunable regularization strength
parameter. One common choice is total variation regularization

Rev(f) =) \/|fi+1,j = figl? + | figer = fig?
(2]

which promotes reconstructing images that are piecewise
constant.

B. Reconstruction with CBNNs

The philosophy behind the CBNN approach is to choose
F in (1) to be a parametric class of functions fg : R? — R
described by a fixed neural network architecture with param-
eters @ € RP. Image recovery in this class is then posed as an
optimization problem over the network parameters:
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Typically, the number of trainable parameters P can be chosen
to be far less than the number of sinogram measurements M .
In this case, problem (4) is not necessarily ill-posed, in the
sense that it may have a unique global minimizer.

However, finding a global minimizer of (4) is challenging
in general. This is because, in contrast to the pixel-basis
approach, the mapping from parameters 6 to an image fy is no
longer linear, which means that (4) is a non-linear least squares
problem whose objective function is typically non-convex.
Nevertheless, standard neural network training methods, such
as stochastic gradient descent, can be used to find a local
minimizer that fits the data well [5]. Following this fitting
procedure, a rasterized image can be generating by evaluating
the CBNN fg on a pixel grid of any desired resolution.

III. SIMULATION DETAILS

Our goal is to compare the performance of pixel-basis
formulations (2), (3) based on a discrete-to-discrete model, and
the CBNN formulation (4) based on a discrete-to-continuous
model, for the recovery of ideal CT data. In particular, we
focus on recovery of an analytical phantom for which exact
Radon transform samples can be computed. The phantom we
use, shown in Figure 1, is a modified version of the Shepp-
Logan phantom that includes a detail insert consisting of an
8x8 grid of discs of varying radii and contrasts. In addition,
we include two high contrast ovals near the center of the
phantom. These ovals induce streaking artifacts that intersect
with the detail insert when reconstructing with filtered back

Fig. 1. Modified Shepp-Logan phantom used in our experiments.

projection, which generally makes the faithful recovery of the
detail insert features more challenging.

For sinogram measurements, we simulate a circular fan-
beam acquisition of the phantom. We assume the object lies
in a circular region-of-interest (ROI) with radius 9 cm, and
the x-ray source follows a circular trajectory with a radius
of 50 cm centered in the middle of the ROI. The source-to-
detector-center distance is 100 cm, and the detector is modeled
as a linear array. We simulate 128 equally distributed views
over a 360 degree scan and the projections are sampled on a
1024-pixel detector, resulting in a total of M = 128 x 1024 =
131,072 sinogram measurements. Analytic line integrals are
calculated for the phantom using exact formulas for the Radon
transform of the indicator function of an ellipse.

As baselines, we compare against analytic reconstruction
using filtered back projection (FBP) and two model-based
iterative methods: least squares (LS), and regularized least
squares with total variation regularization (TV-RLS). FBP is
implemented using a weighted pixel-driven back-projection
and a ramp filter [6]. For LS and TV-RLS, we use a standard
line-intersection model for the x-ray transform of a discrete
image to define the discrete ray transform matrix A. The
images are pixelated on a square n x n pixel grid, where we
vary n € {128,256,512}. For LS we find an approximate
solution of (2) by applying the conjugate gradients algorithm
to the normal equations with zero initialization and early
stopping at 100 iterations, which approximates a pseudoinverse
solution. For PLS-TV, we solve (3) using the Chambolle-Pock
primal-dual algorithm [7]. To set the regularization strengths
A, we performed a grid search over A € {1,0.1,0.01,0.001}
and chose the value that gave the lowest root mean-squared
error in an ROI containing the detail insert.

For the CBNN approach, we approximate the continuous
domain Radon transform using a Riemann approximation
by densely sampling each ray uniformly along a trajectory
through the circular ROI with 100 evaluation points per linear
cm, such that the longest ray is approximated with 1800
evaluations. As our CBNN architecture, we use a multi-layer
perceptron (MLP) with a Fourier features layers as proposed
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Fig. 2. Reconstruction of analytical phantom from a simulated sparse-view acquisition at different pixel resolutions. Sinogram data is simulated under a
circular fan-beam geometry with 128 equi-spaced views and 1024 detector bins using an exact line integral model. Key: FBP=Filtered Back Projection,
LS=Least Squares, TV-RLS=Total Variation Regularized Least Squares, CBNN=Coordinate-based neural network. Note that the CBNN reconstructions are
rasterizations of the same continuous domain function onto different grid sizes.
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Fig. 3. Blow-up an ROI containing the contrast detail insert.

o

in [5]. We use an MLP with three hidden-layers with a ReLU
activation and width 50 in each layer, resulting in 30801
trainable parameters. For the random Fourier features layer,
we sample 256 random frequencies from a standard Gaussian
with bandwidth parameter ¢ = 1.0 cm~!. To train the CBNN,
we use a stochastic gradient descent approach where 8 random
views are sampled at each iteration and used to approximate
the least squares loss (4). The network is trained for a total of
30000 SGD iterations using the Adam optimizer with an initial
learning rate of 0.001, which is decreased by a power of 10
every 10000 iterations. Finally, to compare with the discrete
reconstruction methods, we rasterize the CBNN on a variety
of pixel grid sizes.

IV. RESULTS

Figure 2 shows the reconstructions obtained by all methods
at three pixel resolutions. Additionally, Figure 3 shows a blow-
up of an ROI containing the detail insert comparing TV-
RLS and CBNN reconstructions at 256 x 256 and 512 x 512
pixel resolutions. First, we observe that the FBP and LS
reconstructions contain significant streaking artifacts at all
pixel resolutions, as expected from the sparse-view sampling.
Additionally, visible aliasing-like artifacts occur in the FBP
and LS reconstructions at the 128x 128 resolution. Relative
to FBP and LS, both TV-RLS and CBNN reconstructions
show essentially no visible streaking or aliasing artifacts. At
the two lowest resolutions, there is some loss of fine detail
in the TV-RLS reconstructions. In particular, at a 256x256
resolution, some detail insert features are wiped out in the TV-
RLS reconstruction due to over-regularization (see Figure 3).
However, compared to TV-RLS at a 512x512 resolution, the

CBNN reconstruction has less sharp boundaries and preserves
fewer of the discs in the detail insert. Also, the CBNN
reconstruction has a uniform noise-like texture that is absent
from the TV-RLS reconstruction.

V. DISCUSSION AND CONCLUSION

We investigate the possibility of recovering a continuous
domain solution to a sparse-view CT inverse problem using
CBNNs and an analytical phantom. Our experiments illustrate
that reconstruction with a CBNN can be more accurate than
filtered back projection and standard iterative reconstruction
techniques, especially when performed on a low resolution
pixel grid. However, we observe the CBNN recovery is less
accurate than a total variation regularized reconstruction on a
sufficiently high resolution grid. This may be in part because
the phantom under consideration is a piecewise constant
image, which is well-aligned with the total variation prior.
An open question is whether CBNNs are better suited to
alternative object models, e.g., piecewise smooth images.

Additionally, in our experiments we focused on only one
type of CBNN architecture based on [5]. Several alternative ar-
chitectures have been proposed (e.g., [8], [9]), which primarily
differ in their activation functions. Exploring the full impact
of changes to the CBNN width, depth, activation function,
and training protocol on image estimation is an interesting
direction for further study.
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