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Abstract— Many machine learning and optimization algo-
rithms can be cast as instances of stochastic approximation (SA).
The convergence rate of these algorithms is known to be slow,
with the optimal mean squared error (MSE) of order O(n™'). In
prior work it was shown that MSE bounds approaching O(n~*)
can be achieved through the framework of quasi-stochastic
approximation (QSA); essentially SA with careful choice of
deterministic exploration. These results are extended to two
time-scale algorithms, as found in policy gradient methods
of reinforcement learning and extremum seeking control. The
extensions are made possible in part by a new approach to
analysis, grounded in the theory of Lyapunov exponents, allowing
for the interpretation of two timescale algorithms as instances
of single timescale QSA. The general theory is illustrated with
applications to extremum seeking control.

Index Terms— Stochastic Approximation, Averaging Theory,
Extremum Seeking Control

I. INTRODUCTION

Stochastic approximation (SA) remains a significant topic
for research since its birth in the 1950s, particularly in
the machine learning and optimization communities. Early
application to reinforcement learning may be found in [15],
[36], [37]; see [30], [29], [31] for more recent advances for
applications to machine learning.

Any SA algorithm is designed to solve a root-finding
problem f(6*) = 0, in which f : R — R¢ may be expressed
f(0) = E[f (0, ®)] for € R? with & a random variable. The
basic recursion is

9n+1 - en + a7z+1f(97za (I)n-‘rl) 3 n Z 0 (1)

where {®,,} is a sequence of random vectors converging to
® (in distribution) and {«,,} is a step-size sequence.

The recursion is designed to mimic the mean flow, defined
as the ODE ¥, = f(®;). Analysis of (1) proceeds by
comparing parameter estimates with solutions to the mean
flow [7]. Common choices for {c,,} include (i) vanishing
step-size sequences of the form «, = n=",p € (1/2,1];
and (ii) constant step-sizes, in which «,, = a > 0. Under
general conditions on f and ®, the choice (i) leads to almost
sure convergence of {6,} to 6* for each initial condition
6y € RZ. For (ii), there is little hope for convergence, though
convergence typically holds for the averaged parameters [30],
(81, [211, [7].
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Bounds on mean squared error (MSE) are necessarily of
order E[||0,, — 6*]|?] = O(«,) in most cases. This can be
improved to O(n~!) for vanishing step-sizes with p < 1, and
even for constant step-size algorithms in special cases [30],
[29], [21] through the application of averaging.

Recent results have established much better MSE bounds
when @ is deterministic: of order O(«:t) with averaging, and
when @ is a mixture of sinusoids with carefully selected
frequencies [19]. Numerical experiments illustrating this
substantial acceleration can be found in [19, §3.2].

This deterministic analogue of SA, known as quasi-
stochastic approximation (QSA), is largely motivated by
applications such as reinforcement learning and gradient-free
optimization, in which the algorithm designer also designs
@ for the purpose of “exploration”.

The goal of this paper is to extend the theory of QSA
to algorithms in two timescales, for which the algorithm
objective is to solve a pair of root finding problems
g(0*,\*) = h(6*,\*) = 0. For notational convenience it
is assumed that the dimensions of # and )\ are the same, so
that g, h : R?% — R4,

It is assumed that g and h are defined as expectations,
expressed here in sample path form

_ 1T
906.3) = Jim / gONE) A Qa)
_ o1 T
R(0,\) = %LIEOT/O B0\, E,) dt (2b)

The probing signal {&;} C R™ is of the form &; = G(P;)
in which ® is the state process for a dynamical system,
interpreted as a deterministic Markov process. Justification
for the above limits may be found in [27], [23] under the
assumptions of the paper.

The QSA algorithms considered in this paper are expressed
in continuous time,

%@t = a;g(Oy, At, &) (3a)
4Ny = bh(O, Ay, &) (3b)

in which the gain processes {a:, b;} are non-negative.
Three gain choice settings might be considered:

1. Constant gain: a;, = o and b, = 3, with 0 < a < 5.
The pair of ODEs (3) is known as a singular perturbation
model [13]. The analytical approach of [23] based on the
perturbative mean flow extends easily to this setting.

2. Vanishing gain: Both tend to zero, and b;/a; — oo as
t — oo. This is favored in actor-critic methods and in some
applications to optimization [15], [16], [4], [3], [2].
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3. Mixed case: a; is vanishing, but b, = § > 0 is held
fixed. One example is extremum seeking control, in which
the fast ODE emerges as the state of a high pass filter [24].
Another example is policy gradient methods for reinforcement
learning, in which A; is the state process of a dynamical
system to be controlled [27].

For any choice of gain, the pair (3) has the two-time scale
property: a; is small compared to b;.

It is assumed that there is a continuous function A*: R% —
R satisfying h(6, X (6)) = 0 for each . Analysis is then
based on a family of mean flow equations:

% =300 X (1)
A =00, 7))

The two ODEs do not interact: § € R? is held fixed in the
fast ODE (4b), and the slow ODE (4a) is autonomous, since
the second argument of g is A*(9;).

The present paper focuses on the mixed-gain setting
because the applications are most compelling in current
research, and because the analysis is most interesting.

As in most papers on two time-scale algorithms, we
introduce for the purposes of analysis the family of QSA
ODEs parameterized by 6 € R%:

4N = Bh(0,AY, &) )

Under the assumptions imposed, we establish the existence
and uniqueness of a steady-state distribution g for (A7, ®;).

Analysis of the full QSA ODE combines elements of two
classical approaches:

(4a)
(4b)

1. Singular perturbations. A family of models is considered,
parameterized by small 8 > 0. In this case the goal is to
establish A; ~ X*(©;) for large ¢, along with error bounds.

2. Parameter dependent noise. (3a) is regarded as a single
timescale algorithm, in which the driving noise (A, ®) is
parameter dependent. Its mean flow is defined by

9= 500, 00 = [96.0,GEm(drd) ©
The general single timescale algorithm then takes the form
40, = ay[go(©r) + E}) ™

in which 29 := g(©y, A, &) — 50(6,).
Contributions The main contributions of the paper are
summarized herein.

(i) Thm. 2.1 establishes the perturbative mean flow (p-mean
flow) representation for the “fast” QSA ODE (3b):

4Ny = B[R(O, Ay) — BYT(Or, Ay) + W
2

d ®)
Wy = 252 prRal
i=0

in which {W}, Y . i = 0,1,2} are smooth functions of
time identified in the theorem. Moreover, conditions are
identified under which Y is identically zero, which has
valuable implications to algorithm design.

The representation in (8) invites filtering techniques for
error attenuation: the terms {W} : i = 1,2} are zero-mean
and can be attenuated through a second order low-pass filter.

(i) Estimation error bounds are obtained in Thm. 2.2: for a
vector 6% € RY satisfying |07 — 0*|| = O(B),

l©¢ — 67| = O(ar)
lim sup [[A; — A°(67)] = O(B)
t—o00

(iii) The introduction of filtering in Thm. 2.3 yields
attenuation of estimation error. In particular, the limiting
parameter 07 € RY satisfies ||0° — 0*|| = O(3?).

(iv) Portions of the results given in Thm. 2.2 and Thm. 2.3 are
based on the justification of the ODE (7) as an approximation
to (3a). Theory is based on Lyapunov exponents to establish
the existence of unique invariant measures {1 : 6 € R%}, and
solutions to Poisson’s equation for ¥’ = (A9, ®). Criteria
and consequences of a negative Lyapunov exponent are
contained in Thm. 2.4,

(v) Examples in Section III illustrate application of the
general theory in (i)—(iv).

Extremum seeking control (ESC) is given as an example
of mixed-gain two timescale QSA, for which the mean vector
fields g and go are identified. The standard ESC algorithm
and the 1SPSA algorithm of Spall [34] are not globally stable
in general, even when gradient descent is stable, because gy
is not Lipschitz continuous. It is shown in [23] that ESC
will have a finite escape time from “large” initial conditions
even when the objective I is a strictly convex quadratic; this
paper also provides a remedy through the introduction of a
state dependent “exploration gain”, which is shown to result
in global stability. Extension to the two timescale setting is
presented in Section III-C.

Literature Survey Research in singular perturbation theory
was extremely active within the control systems community
in the 1970s, later serving as a foundation for adaptive control.
See [33] for its century long history and [14], [11], [13], [32]
for more comprehensive literature surveys on the topic.

Almost sure convergence of {6,,} to 8* for two timescale
SA was established in [6] under the assumption that the
sequence of estimates is uniformly bounded almost surely.
Bounds on the MSE appeared soon after for the special case
of linear SA [17]. Extensions to non-linear recursions were
presented in [28], while criteria for boundedness of estimates
appeared in [18]. To the best of our knowledge, the first
appearance of two timescale SA with ® deterministic is the
gradient free optimization algorithm in [3].

Gradient free optimization methods concern the estimation
of 0 € argminl(#) based solely on evaluations of
the function T: RY — R, without access to its gradient.
A solution based on stochastic approximation (SA) was
proposed in the early 1950s by Kiefer and Wolfowitz and
refinements followed over the years [12], [34]. ESC theory
followed a parallel development, and in fact was born far
before the introduction of SA [35], [24].

The introduction of tools from the Markov processes liter-
ature to QSA began in [27, Ch. 4], and matured significantly
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in [19], [23] following the discovery of conditions to ensure
existence of well behaved solutions to Poisson’s equation.
This led to the p-mean flow in [23], which is a refinement of
the noise decomposition of [25], [26] based upon Poisson’s
equation for Markov chains.

A function analogous to Y also appears in the p-mean flow
for single timescale QSA. It is shown in [23], [21] that this
term is not only a major source of estimation error in constant
gain algorithms, but also may slow down convergence rates
when the gain is vanishing.

Organization This paper is organized into three additional
sections. Section II provides formal statements of contribu-
tions (i)—(iv), along with details on assumptions. Section III
contains examples based upon the mixed gain algorithms
that are the focus of this paper. Conclusions and directions
for future research are contained in Section I'V. Most of the
technical analysis is postponed to the Appendix.

II. TWO TIMESCALE QUASI-STOCHASTIC
APPROXIMATION

A. Assumptions

The m-dimensional probing signal is assumed to be of the
form &, = GO(E,?) in which Go: RX — R™ is continuous,
and for fixed frequencies and phases {wy, ¢ : 1 <k < K},

E,? = [cos(2m[wit + ¢P1]); .. .5 cos(2m[wrt + dK])] (9)

Theory requires an alternative representation, and stronger
assumptions: throughout the paper we take &, = G(®;), in
which @ is the K-dimensional clock process that evolves in
a compact set of the Euclidean space denoted Q C CX. It
has entries ®! = exp(27j[w;t + ¢;]) for each i and ¢ and
is the state process for a dynamical system %@t = W,
where W := 2mjdiag(w;).
The following compact notation is adopted for (3):

%Xt = gtf(Xt7 Evt) ) gy = |:a61 BOI:| (10)
T
f(z):= Tl;r{l)o 7/ f(z, &) dt (11)

We assume that f(z*) = 0 with 2* = (6*; X (6%)).
Assumptions are summarized in the following:

(A0i) &, = Go(E&Y) for all ¢, with &) defined in (9), and the
function Gp: RX — R™ is analytic.

(A0ii) The frequencies {wy,...,wk} are distinct, of the
form w; = log(a;/b;) > 0 and with {a;, b;} distinct positive
integers.

(A1) a; = (1+1t)"" with  <p<1land b =p>0.

(A2) The functions f and f are Lipschitz continuous: for a
constant L; < oo and all 2/, 2 € R?? & &' € R™,

1, 8) = Fla )| < Lylle! — a
17, &) — Fla E)] < LyIE ~ &]
17 = Fl@)ll < Lylla’ = o]

(A3) For each § € RY the ODE 4)\) = h(0,\!) has
a unique globally asymptotically stable equilibrium X*(6),
where A* : R? — R9 satisfies, for a constant L < 0o,

IA°(6)
Moreover, the ODE 49, = g(9;,X (%)) has a unique
globally asymptotically stable equilibrium 6*.

(A4) lim sup,_, [|X] <b* < 0.

(A5) The vector fields f and f are each twice continuously
differentiable. Moreover, the matrices A% := Jpg(6*, X (6*))
and {Af(0) := 0\h(0,X"(0)) : 0 € R} are assumed Hurwitz.

(A6) There exist functions V°: R — R, and V*: R? —
R, with bounded gradients satisfying the following bounds
for each 6, A € R%:

AVE(O,)) - h(0,)) < —||A =X (0)|?

BeV°(6) - g(0,X(0)) < —[|6 — 6" ||

—N@)<LAlo -0, 6,6 eR?

Assumptions (A1)—(A6) are variations on standard assump-
tions in the stochastic approximation literature [7], [21], [5].
It is conjectured that the ultimate boundedness assumption
(A4) will follow from the other assumptions.

Assumption (AQ) is far from standard. It is required to
obtain error bounds in the main results of the paper.

Markovian foundations The theory in this paper rests on
recognition that ® is a Markov process. Some key tools
from the theory of Markov processes are firstly ergodicity: ®
admits a unique invariant measure 71, the uniform distribution
on Q). These observations justify the law of large numbers
(LLN) (2)—see [27], [23].

Many of the results of this paper rest on solutions to
Poisson’s equation, whose definition depends upon context.
Here we recall the formulation from [23]: Let Y :=R?? x Q
denote the state space for (0, A, ®). We denote u(x) :=
Jo u(z,z)m(dz) and a(z,z) := u(x,z) — a(z) for any
(x,z) € Y and continuous vector-valued function « on Y.
We say that u is the solution to Poisson’s equation with
forcing function u if

T
/0 w(x, @) dt = 4(x, o) — a(z, Dr) (12)
for each T'> 0 and z € R?.

When there is no risk of confusion, we write u; instead of
u(Xy, @¢) for functions of the larger state process (X, @).

Solutions are not unique, since we may always add a
constant to obtain another solution. Throughout the pa-
per it is assumed that the solution is normalized so that
J a(x, z) m(dz) = 0 for each z.

If v is smooth in its first variable, then the directional
derivatives in the directions g and h are denoted

[Douf(z, 2) = Bpu (z, 2) - g(, G(2))

[DMu)(x, 2) = Osu (z, 2) - bz, G(2)), (13

(z,2) €Y

Assumption A0 and Poisson’s equation Assumption (AO) may
seem overly restrictive, but to-date this is the only known
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condition under which we can establish solutions to Poisson’s
equation, and bounds on these solutions [19], [23].

A second implication of (AO) concerns the nuisance term
Y appearing in (8). Results in [19], [23] may be extended
to the setting of this paper to conclude that Y (2) = 0 for
each x under (A0), with (AOii) of particular importance (as
counter-examples in this prior work show).

The function Y is constructed based on the solution to
Poisson’s equation with forcing function v = f. The solution
f shares the same smoothness properties as f; its Jacobian
with respect to 2, denoted A(x, z):=8, f (, ), is a uniformly
bounded function on Y. _

Denote Y (z,z) := —A(x, z) f(x, G(2)). This is a function
Y:Y —: R24 which admits the representation,

Y(x, 2) + Y (2, 2)

Ysf(2,2) + Y (z, 2)
where Y =—[D%], Y =_[D%]

Y= —[D"g), YT =—[D"}]

Denoting Y(z) = [ Y(x, 2) n(dz) for x € R??, which has

a similar decomposition, the term Y appearing in (8) is

precisely Y(z) = [ Y% (x, 2) m(d2).

B. Main Results

The p-mean flow representation for the fast QSA ODE
is described in Thm. 2.1; it is one of several steps required
in establishing convergence of ® and the estimation error
bounds in Thm. 2.2.

The terms in the representation are defined based on f and
Y. The functions Y and f are themselves treated as forcing

Y(z,z) =
(14

functions in Poisson’s equation, with solutions denoted f and
Y, respectively.

Theorem 2.1 (Perturbative Mean Flow): Suppose  that
(A0)-(A2) hold. Then, the p-mean flow representation (8)

holds with Y = 0, W2 := h,,

~ a 2 ~
WO .= D", + ﬁf; [rt [DIR], — Y5 — 5[@%”]4 (15a)
WL = —[D"h], + T - %[D%]t (15b)
where 7, := p/(1 + t).

The rate at which ® converges is the same as what would
be expected from single timescale QSA ODEs with vanishing
gain. Similarly, the estimation error bounds for A that follow
are identical to what is obtained for single timescale QSA
with constant gain, as well as in the averaging literature [23],
[11].

Theorem 2.2 (Convergence): Suppose (A0)—(A6) hold.
Then, there exist finite constants BO, b** such that for any
0 < B < BY there is 97 € RY satisfying [|6* — 6% < b33,
and
(i) [|©; — 0% < b*?a; for t > 0.

(i) lim sup ||As — X(0")] < 6.
t—o0

We next introduce a second order filter to reduce estimation
error,

2
LT+ 29CLAT +2Af = 7°A, (16)

which is used in the slow dynamics,
%@t = atg(@nA:; 5t)

We impose the constraint on the natural frequency, v = O(f).
Theorem 2.3 (Error Attenuation): Suppose  that  the
second-order filter is chosen subject to the following
constraints: the damping ratio ¢ € (0,1) is independent of
0, and a constant 17 > 0 is also fixed to define the natural
frequency, v = S for each 3. If in addition (AO)-(A6) hold,
then, there exists 3% such that for any 0 < 3 < 3° there is
07 € R? satisfying [|6* — 67| < b**/32, and
(i) [|©; — 0% < b*a; for t > 0.
(i) lim sup [|Af — N (0%)|| < b5
It ist?ooﬁjectured that averaging techniques similar to the
ones employed in [27], [19] can be applied to @, yielding
convergence rates of order O(a?), compared to O(a;) in
Thms. 2.2 and 2.3.

7)

C. Lyapunov exponents and Poisson’s equation

A key step in establishing convergence of ® consists of
justifying the interpretation of (3a) as an instance of single
timescale QSA with mean vector field (6). This requires a
different formulation of Poisson’s equation.

Consider for each § € R? the ODE (5). The joint process
{W9 = (A9, ®,) : t > 0} is the state process of a dynamical
system (hence a Markov process). Its Lyapunov exponent is
defined as follows,

1
La = Jim —log(IS,1) (18a)
in which the sensitivity process is defined by
0
S = ——NY 18b
t aAg t ( )

Thm. 2.4 establishes that the Lyapunov exponent is
negative, which bring two crucial consequences for the system
(5): existence and uniqueness of an invariant measure iy for
\I'g, and solutions to Poisson’s equation for functions of ol
Similar conclusions are obtained in [20] for single timescale
QSA with constant gain.

Let u: Y — R be a Lipschitz continuous function.
Poisson’s equation addressed in following takes the follow-
ing form: on denoting @o(6) := [ (6, A, z) pe(dX, dz) and
to(x, 2) := u(x, z) — up(9) for any (x,z) €Y, the solution
to Poisson’s equation g satisfies the defining identity,

T
/ o (0, 0Y) dt = ao(0, 0)) —0(0, %), T >0.(19)
0

Once again the solution is assumed normalized, with
J0(0, X, z) g (dA, dz) = 0 for each 6.

Theorem 2.4: (i) If (A0)-(A6) hold then there is By >
0 and a continuous function B: Y — R, such that the
Lyapunov exponent is negative for 0 < 8 < fy. Moreover,
there is a constant § > 0 such that

IA] — A7°|l < B(6, A, 2) exp(—01) (20)

where (0, A, z) € Y is the initial condition, and Af’o is the
solution to (5) with initial condition (6,0, z).
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(i) Suppose that (A0)—(A3) hold, along with (20), and the

the dynamical system (5) is ultimately bounded for any 6.

Then there is a unique invariant measure for WY with compact
support. Moreover, there is a solution g to (19) that is zero
mean and locally Lipschitz continuous, whenever u is locally
Lipschitz continuous.
Proof: Part (i) follows from arguments in [20, §2].

Parts of (ii) are also based on analysis from [20]: subject
to (20), for each 6 € R? we can apply a technique known as
coupling from the past to construct a stationary realization
{(A?>°, @) : —00 < t < oo} Its common marginal is L.

Solutions to Poisson’s equation are obtained by examining
the construction of this stationary realization: Af o=
#%_ (®$°) for each t, for a smooth function ¢? . For any
initial condition ® = z the process AY* = ¢? (®,) is a
solution to (5), with initial condition AS* = ¢f_(z) € R%.

The construction of @y now proceeds in two steps: first
consider, for each W§ = (), 2),

al(w,z):/ WO, 00 dt, i =i — iy
0

with  Gip(®,) = 1o (0, 3%, (D,), By)

This satisfies Poisson’s equation with forcing function ;:

4 0,(0,09) = —ay (0, ) for all t > 0.

Next, let @s(f, z) denote the solution to Poisson’s equation
in the form (12) with forcing function u-. The desired solution
to (19) is then ug = 61 — Us. |

Upon obtaining existence of solutions g to (19), analysis
proceeds as follows:

(i) By construction we have for each 6 € R,
%90(97 Atev (I)t) = 790(07 Atev Evt) = 5? + E?

in which &% := Bdxgo(0, A9, ®;) - h(0,AY,&,) and &b :=
8¢g()(0aA?7q)t) : W(I)t

(i) On replacing 6 with ®; we arrive at a similar expression:

%QO(@tv A¢, @) = aDgo(Or, Ay, ) - gy + &f + £}
= —Go(©, Ay, &) — a, Yy
in which Y9 := 990 (O, Ay, ;) - g(Or, Ay, &y).
(iii) Step (ii) motivates the representation of (3a) as the
single timescale QSA ODE (7) with Z = —§o(0;, Ay, &) =
7%.@0((9& Atv (I)t) - ath~
III. EXAMPLES
A. Q learning

Consider the infinite horizon optimal control problem
J*(x) = min/ (X, Uyp)dt,  LX, =F(X,U)
0

in which the the state X; and state Uf; evolve on R™, R™
respectively, c¢: R™ x R™ — R, is continuous, and the
minimum is over all continuous inputs. Provided the minimum
exists to define a smooth function J*, we define Q*(z,u) =

c(x,u) + 0z J*(x) - F(x,u); one version of the Q-function.

The HJB equation tells us that the optimal policy is state
feedback, ¢*(z) = arg min,, Q*(x, u).

In Q-learning we have a parameterized family of approx-
imations {Q? : § € R?}, and an algorithm is devised to
obtain 6* so that Q%" is close to Q*. Each parameter defines
a policy ¢? € argmin, Q?(x,u), and one can expect that
¢?" will approximate ¢* if the Q-function approximation is
sufficiently tight.

There are many Q-learning algorithms available in the
deterministic, continuous time setting of this paper. In most
cases these may be cast as (3) in which A; = X} plays
the role of the fast variable, with S emerging via a time-
transformation. Provided that the assumptions of Thm. 2.4
are satisfied, we obtain convergence of the algorithm, along
with ergodicity of the state process X.

The theory in this paper does not require restrictive
assumptions on the input used for training. Indeed, the bulk
of the theory of Q-learning is based on policies for training
that are oblivious, which in this deterministic setting means
that U, = &, for all ¢, in which the exploration signal does
not depend upon ©; (the estimate of 6* at time ¢). The theory
in this paper allows for far more efficient inputs for training,
such as the epsilon-greedy input U; = $pO (X;) + €&,.

B. Linear model

A general model takes the form

f(Xy) = [A+ A7) X, + By (e2))
in which the (2d) x (2d) matrix valued process {A$} has
zero mean. Letting b € R?? denote the mean of {B,}, and
assuming A is invertible, we have (6*;\*) = —A~'b. We
take b = 0 without loss of generality throughout the remainder
of this section.

A single time-scale QSA algorithm is appropriate if A is
Hurwitz. If not, consider the decomposition into four d x
d blocks: in Matlab notation, A = [As, A5f; A Af]. We
then have X(f) = —[Af|71A™0, and (4a) becomes the d-
dimensional ODE, 49 = A®9, with A® = As— A [Af|~1 A",
Success of the two timescale algorithm requires that each of
the two matrices A®, Af be Hurwitz.

The vector field (21) differs from the linear model of
[17] because there is multiplicative noise, which significantly
complicates analysis: see discussion in [23].

Consider for example the mixed-gain QSA ODE (10) with
A = [a,a;—2,—1], By = [sin(wt),sin(wqt)]T and A; =
1B;.

Hence, f(z) = Az and z* = 0. The matrix A is Hurwitz
only for 0 < a < 1. When a > 1, the benefits of a two
timescale algorithm for stabilization become clear: A*(0) =
—26, giving stable dynamics for the mean flow:

%'St = §(8t7)\* (1915)) = —Olﬁt

C. Extremum-seeking control

This approach to gradient-free optimization begins with the
construction of approximate gradients {V;I" : ¢ > 0} based
on perturbed observations of the form ) := Y(04, &) =
I'(©; + €:&;), in which e¢; = €(0©;) is known as the probing
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gain. Two possibilities result in a Lischitz QSA algorithm
provided VT is Lipschitz continuous:

e(0) =e\/1+T(0)

e(0) =e\/1+ 10 — 6|2/
where in the first choice it is assumed without loss of
generality that I takes on non-negative values, 8 is an
a-priori estimate of §°* and o), plays the role of the standard

deviation around this prior.
The observations are normalized

1
Vi =0, &) = ar(Gt +€1&y)

(22)

(23)

To obtain {©;}, the probing signal and {)}} are fed as input
to a sequence of filters [1].
The first is a high-pass filter with state process A:

%At = FAt + G’I,Lt

(24
ye = HT Ay + Juy

with (F,G,H,J) of compatible dimension. In this equation,
u, is the scalar input and y; the scalar output.

The output of (24) is expressed y; = [Mu]; with transfer
function M(s):=HT(Is—F)"'G+J. We define )y = [M)"];
and éz = [ME&']; for 1 < i < m, where &, denotes the i
component of the probing signal.

The m + 1 outputs of (24) are then fed into a low pass
filter with state process ©:

40, = —a[0(0; — 60°) + ar &, V)

with 6 as defined in (22).
We arrive at a two timescale QSA ODE of the form (10):

F(X0, E9) = [‘“ ‘QHT} X, + [‘gﬂ VA

(25)

0 F
o [g1 Yo [2EmmE]

in which &7 := (&,,&,) is a 2m-dimensional probing signal
and A, is state process in (24) with input u; = )j. The
expectations in (26) are taken over (), upon recalling that
& = G(Dy).

From (24) and (26), we conclude that 5 = 1 always.
Moreover, the vector field gy associated with (6) can be
identified:

Go(0) = —(cI0 + E[E HTA? + JEY" (6, 8)])

in which & = G(®;) and the expectation is taken in steady
state and with respect to the measure py for W9 = (A%, ®).
Once we establish the conditions of Thm. 2.2, we conclude
convergence: ||©; — 0| = O(a;), in which go(6*) = 0 and
ot — 6% = O(1).

It is not difficult to establish that the Lyapunov exponent
is negative: for each § € R?, the ODE (5) is linear with
additive disturbance:

h(0,AY, &) = FAY + GY"(0, &)

27

(28)

The sensitivity process (18b) solves %St =FS; with §y =
1. The Lyapunov exponent (18a) can be identified L5 =
Re (A1), where \; is an eigenvalue of F with maximal real
part. Provided F is Hurwitz, Re (A1) < 0 and Thm. 2.4 can be
used to conclude that ¥¥ admits an unique invariant measure
for each 6 as well as existence of solutions to (19).

It remains to show that the mean flow with vector field
go is globally asymptotically stable. This requires additional
assumptions on the objective. Here we assume that VT is
Lipschitz continuous and that its norm is coercive, so that
the ODE 4z = VI(z) is ultimately bounded. The same
conclusion holds for 49 = go(9) for sufficiently small & > 0,
and conditions on the filter. However, this is only possible
when using a state-dependent probing gain.

Analysis of the mean flow begins with a Taylor series
approximation of Y"(6, &) around 6:

Y(60,8,) = %rw) LEVTO) £ 0(e)  (29)

which applied to (27) gives, with My = JE[EE],
Go(0) = —(0I0 + E[E HTA?) + MoVT(0) + O(e)) (30)

It remains to obtain a representation for E[§ HTA?]. In
view of (24), we have that for each 0,

t
N{Z :
Al = [ TG0, E ) dr ’Yoegai +ETvro)
where the last inequality follows from substitution of (29) and
Yo =—HTF ~1@ denotes the DC gain of (24). This implies
E[E HTA? = X, VI'(6) with X; := E[EE]).

Together with (30), we obtain

go(0) = —(cI0+MVT(9)+0(e)),

Under passivity of (24) we have M + MT > 0. Consequently,
the mean flow with vector field (27) is ultimately bounded
for sufficiently small ¢ > 0 in either of the choices of
exploration gain (22). Heuristic arguments in [23] lead to
the same approximation as in (31) and the same stability
conclusion provided the high-pass filter (24) is passive.

M =3%;+M, 31)

IV. CONCLUSIONS

This paper extends QSA theory to algorithms with two
timescales in the mixed gain setting. Estimation error bounds
for the general algorithm were obtained along with justifica-
tion for its interpretation as a single timescale algorithm.

There are several open paths for research:

A This paper concerns static root finding problems of the
form f(x*) = 0. It would be exciting to investigate extensions
of the p-mean flow to tracking problems, that is, when f is

a function of time so that the root is time-varying {z} }.

A Establishing rates of convergence for two timescale QSA
with vanishing gain is still an open problem. We conjecture
that it is simple to extend Thm. 2.2 to this case, but can we
achieve the O(b}) MSE rates in [19] for two timescales?

A The implications of this work to online optimization and

control will be considered in future research, following [9],
[10].
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APPENDIX

P-mean flow The ODE (10) can be expressed in terms of
its mean vector field:

40, = g,[f(X:) + Z

I, o= (X &) — f(X0)
(32)
20| _ [9(X0.8) - g(x)
h(Xe, &) = h(Xy) |
The p-mean flow representation (2.1) follows from the next
four lemmas.

Lemma 1.1: Suppose that for each (z,®o) € Y and t > 0,

where =; =

=\
=t

~

4P (2, ®,) = —F(x,&) = —F(x,&) + F(x)

where F: Y — R? is Ct. L
Then, on writing F; = F(Xy, ®,) , Fy = F(X3, &),

4F, = —F, + a;[DIF)(Xy, ®¢) + B[D"F|( Xy, Dy)
Proof:  This follows from the chain rule and the
definition of directional derivatives in (13): %FgXt, ;) =
—F(Xy, &) + ai0g F (X, P1r) - g( Xy, &) + BONE (X, D) -
h Xy, &). N [ ]
Lemma 1.2: Under (A0)-(A2), Z; admits the representa-

tion - e
= o _dp _ |G T+ t 33

=t dtft |:at‘Y‘§f+ﬂ‘Y~1;f:| (33)

in which f: Y — R2¢ denotes the solution to Poisson’s

equation (12) with forcing function f.

Proof:  Differentiating f; with respect to time,
we obtain from Lemma 1.1, Z; = f%f(Xt,@t) +
A(Xy, Dy)g, f (X, E). The conclusion (33) then follows
from the definitions in (10) and (14). |
Lemma 1.3: If (A0)-(A2) hold, then with r = p/(t + 1),

|

hy = —Ttat[Dgil]t+&t%[Dgil]ﬁﬁ%[phh]t_%ﬁt (34

<8

t
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Proof:  Another application of Lemma 1.1 with F=h
gives %fzt = a; [Dgﬁ]t + ﬁ%[DhlAz]t — hy. Differentiating
both sides with respect to ¢t once more yields (34):

L hy = S {a,[DIN);} + BL[D"R], — Lhy
= —rya[D], + a, L[DIB], + BL[D"h), — Lh,

The final lemma is immediate from Lemma 1.1:

Lemma 1.4: Suppose that (A0)-(A2) hold. Then, Y{ =
Y(Xe) + a:[DIYT), + BDMYT], — LY o=

Proof of Thm. 2.1. From (33) we obtain =} = —%ht —
a; Y5 — BYf. The p-mean flow representation follows from
substitution of the results in Lemmas 1.3 and 1.4. [
Estimation error bounds Fix 5y > 0 and let 0 < 5 < 3
also be fixed. Upon defining a sequence of finite time intervals
{T,} of length T > 0 in which T, — T,, := T/ for each
n, we let ng > 0 denote the integer satisfying ar, < >

Proof of Thm. 2.2 (Outline) The complete proof is contained
in the extended version of this article [22]. The outline that
follows consists of ten steps. In the i step, we denote by b
a positive constant, independent of 3 € (0, Y].

1

1. Under (A4), there exists n, depending upon X such that
I X¢|| < b* for all ¢ > T,,,. Denote 7o :=max{Ty,,Tn,}

2. Globally exponentially asymptotically stable (GEAS)
ODEs are robust to bounded disturbances. Suppose that

° = f(z°) is GEAS. Consider the ODE with disturbance,
Lay =B () +we],  Nwel 0¥+ Bzl (35)

with b% a positive constant. Then, the bound ||z[| < 1||zo||+
b* holds for all ¢ > 0 sufficiently large. This follows from
Lyapunov stability arguments in [11, Ch. 5].

3. Integrating (3a) from 7, to t, we have

10, — 07, || < b3T%, To<Th<t<Thm (36)

implying that ® is “quasi-static” over finite time intervals
for large n.

4. The scaled error is defined by Z* := %(Y} —X(Or,)),
T, <t<T,i1,in which Y; := A, — ﬂﬁt. On differentiating
Z[* with respect to t, performing a first order Taylor series
approximation to the function h in (3b), using (36) and (33)
we obtain whenever T, > 7o,

£77 = plAY(Or,) 2] + w]
with [|w? || < b* + O(8° min{|| 27|, [ Z[1*})
5. The following bounds hold for all ¢ > T;, > 75, upon
choosing T large enough: || Z7 || < 3[|Z% || + b,

41

(37

ar,
H < bSTQ 52 ,
128 =2z, < (122, 1 + 1),

HZn+1

Thni1

n
- ZTn+1

(38)

The first bound is an application of 2 with f°(z) = Af(©r, )z
and w; = w¥. The second bound follows similarly to 3 and
the last bound is an application of the Bellman-Gronwall
inequality [27, Prop. 4.2].

6. The collection of bounds in step 5 imply that there exists
Tx > To depending upon X, such that ||A; —A*(©,)| < %3
for all t > T,.

7. In view of (32), step 6 and the assumed Lipschitz continuity
of g, the slow QSA ODE is re-written for large ¢: for a process
{A}} satisfying [|A}]| <V,

40, = a[g(O, X (0y), &) + AN,

8. Arguments in the proof of [27, Thm. 4.15] can be used to
conclude that (39) implies, lim sup,_, . ||@; — 0*|| < b83.

9. Following steps (i)—(iii) outlined after Thm. 2.4, (3a) can
be approximated by the single timescale algorithm (7). Then,
the proofs of [27, Thms. 4.15 & 4.24] can be extended to (7)
to obtain ||©; — 87| < b%ay, in which go(87) = 0. Together
with step 8, this gives || — 6%|| < b’ and establishes part
(i) of Thm. 2.2.

10. Part (i) of Thm. 2.2 implies part (ii) through Lipschitz
continuity of A", the bound in step 6 and the triangle inequality.

]
Filtering Proof of Thm. 2.3 The proof extends argu-

ments in [23], beginning with the the linearization h(z) =
AN\ — X (0)] + E(x) for any = = (0, ), with ||E(z)]| <
L s min(||z]|, ||z||?) for some L4 < co. Applying (8),
LAy = B[AN(O)[Ar — X' (©))] + & + W]
where & = £(X;) and we have used YT = 0 under (A0).
Consequently,
AT = B[AT(@)A] + & + &7 + W]

in which Af = A® — X(©,), and letting {m,} denote the
impulse response for the low pass filter (16),

t>Tx. (39

(40)

t t
gtF = / mt—TgT dT ) W; = / mt_TWT dT ?
0 0

The error term €, depends on Xj: it involves the transient
response of the filter, and the vanishing term

/ "y [A1(©)) — A'(@ )" dr
0

Consequently ¢; is vanishing as ¢ — oo.
We also have

lim sup [|€7]| <lim sup [|&]| = O(8%)  (41a)
t—o00 t—o0
lim sup [[Wi[| = O(8%)  (41b)
t—00

The upper bound for ||&|| in (41a) follows from Thm. 2.2
and the bound || & < La||X.|*.
The bandwidth constraint on the low pass filter implies the
bound for |WJ|| in (41b), exactly as in [23].
The bounds (41) combined with (40) and 2 establish
Thm. 2.3 (ii), and (i) easily follows as in the proof of Thm. 2.2.
]
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