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I. INTRODUCTION

The field of quickest change detection (QCD) con-
cerns design and analysis of algorithms to estimate the
time at which an important event takes place and identify
properties of the post-change behavior.

The goal of the researched surveyed here is to devise a
stopping time adapted to the observations that minimizes
an L1 loss. Approximately optimal solutions are well
known under a variety of assumptions. In the work
surveyed here we consider the CUSUM statistic, which
evolves as a one-dimensional reflected random walk
driven by a functional of the observations. It is known
that the optimal functional is a log likelihood ratio
subject to special statistical assumptions.

Among the questions considered in current research
are, 1. What is the performance for a given functional
of the observations in Bayesian and minimax settings?
2. How do the conclusions change when there is depen-
dency between pre- and post-change behavior? 3. How
can techniques from statistics and machine learning be
adapted to approximate the best functional in a given
class?

This survey focuses on topics 1 and 3, whereas topic
2 is addressed in [2]. Analysis is cast entirely within the
Bayesian setting.
QCD model The general QCD model includes a se-
quence of observations Y := {Yk : k ≥ 0} evolving in
an abstract set Y (typically a subset of Euclidean space).
The onset of anomalous behavior (the “change time”) is
denoted τa; this is formalized through the representation

Yk = X0
k1k<τa +X1

k1k≥τa , k ≥ 0 . (1)

In general this is simply a notational convention: X0
k :=

Yk for k < τa, and X1
k := Yk otherwise. An estimate

of the change time, denoted τs, is assumed adapted to
the observations: Uk := 1{τs = k} = ϕk(Y0, . . . , Yk),
k ≥ 0, for a family of functions {ϕk}.

The vast majority of theory requires statistical in-
dependence of X0, X1 and τa. This is the case
in Shiryaev’s conditional i.i.d. model, for which the
stochastic processes X0, X1 are also assumed i.i.d.;
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an optimal policy is easily described if in addition the
distribution of the change is geometric [11].

We choose a criterion for optimality that reflects our
desire to trigger an alarm briefly before the change time:
for given κ > 0, and a policy ϕ, denote

J(ϕ) = E
[
(τs − τa)+ + κ(τs − τa)−

]
(2)

with x+ = max(x, 0), x− = max(−x, 0). Motivation
for inclusion of the cost of eagerness E[(τs − τa)−] is
clear when X0 and τa are statistically dependent [2].

Most successful approaches to QCD begin with the
construction of a real-valued stochastic process {Xn},
adapted to the observations, and the stopping rule is of
the threshold form,

τs = min{n ≥ 0 : Xn ≥ H} , (3)

with H > 0. Two famous examples are found in the test
of Shiryaev–Roberts, and Page’s CUSUM. The latter is
the focus of this paper, in which {Xn} is defined as a
reflected random walk,

Xn+1 = max{0,Xn + Fn+1} (4)

initialized with X0 = 0, where {Fn+1 : n ≥ 0} is a
stochastic process adapted to the observations.

Contributions Performance of the CUSUM test is ap-
proximated in the asymptotic setting in which κ ↑ ∞
(hence a strong penalty for false alarm). Analytical
techniques rooted in large deviations theory lead to
approximations of the optimal threshold and cost as a
function of κ, even in non-ideal settings. These approx-
imations lend themselves to optimization of the statistic
Fn over a finite-dimensional function class.

This general theory also motivates application of
reinforcement learning techniques to estimate a near-
optimal policy. One theme of [4], [3] is the application
of observation-driven statistics such as (4) to form a
“surrogate” information state for this purpose.

Literature See [9], [10] for excellent recent surveys
on QCD theory. Much of past research is restricted
to the conditionally i.i.d. model. Recent extensions to
conditionally Markov models or hidden Markov models
is found in [15], [14].
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II. ASSUMPTIONS AND MAIN RESULTS

In the main results surveyed here we adopt the obser-
vation model (1) in which X0, X1 are mutually inde-
pendent stationary stochastic processes, and independent
of the change time τa. The marginal distributions are
denoted π0, π1 respectively.

We assume that Y is equipped with a sigma-algebra
B(Y); typically B(Y) is the Borel sigma-algebra when Y
is a topological space. With Rm equipped with the Borel
sigma-algebra, if G : Y → Rm is a measurable vector-
valued function we denote πi(G) =

∫
G(y)πi(dy) for

i = 0, 1.
Our interest is approximating the performance of

the CUSUM test, and also approximating the optimal
threshold for a given value of κ. The following two
assumptions are in place throughout:

A1. We consider Fn = F (Yn) for a measurable function
F : Y → R. Letting mi = πi(F ) for i = 0, 1, it is
assumed that m0 < 0 and m1 > 0.

A2. Regular geometric tail: for some ϱa ∈ (0,∞),

lim
n→∞

1

n
logP{τa ≥ n} = −ϱa (5)

Under (A1), it follows that {Xn} evolves as a reflected
random walk (RRW) with negative drift for n < τa and
thereafter a RRW with positive drift.

A. Examples

The numerical results obtained in our recent work are
restricted to three settings:

Conditional i.i.d. model This is the classical setting in
which X0, X1 are i.i.d.. Consequently, {Xn} evolves as
the workload in a GI/G/1 queue, with a change in load
parameter at the change time τa (e.g. [1], [5]).

Suppose that the marginals are mutually absolutely
continuous with log likelihood ratio (LLR) denoted L =
log(dπ1/dπ0). It is known that the use of Fn = L(Yn)
in (4) defines a test that is approximately optimal under
certain performance criteria [13]. This function satisfies
the desired sign conventions:

π0(L) = −D(π0∥π1) < 0 , π1(L) = D(π1∥π0) > 0

where D denotes relative entropy.

Markov model When there is memory in the observa-
tions it is necessary to perform some transformation to
justify the use of Fn = F (Yn). In the Markovian setting,
for each i = 0, 1 we take Xi

k = (Φi
k−1; Φ

i
k) in which

Φi is a stationary Markov chain; its transition kernel is
denoted Pi, and invariant measure ϖi, so that Φi

k ∼ ϖi

for all k. It follows that Xi
k ∼ πi for each i, k, with

πi(dx, dz) = ϖi(dx)Pi(x, dz).

Suppose that there are transition densities {g0, g1}
with respect to some reference measure µ:

P0(x, dz) = g0(x, z)µ(dz) , P1(x, dz) = g1(x, z)µ(dz)

Then, the LLR of the transition densities is denoted

L∞(x, z) = log
(g1(x, z)
g0(x, z)

)
(6)

Once again the function F ∗ = L∞ is approximately
optimal in certain settings [13]. Moreover, the sign
conventions in (A1) hold:

π0(F ∗) = −K(P0∥P1) < 0 , π1(F ∗) = K(P1∥P0) > 0

where K denotes the Donsker-Varadhan rate function.
In particular,

K(P1∥P0) =

∫
L∞(x, z)ϖ1(dx)P1(x, dz) (7)

Hidden Markov Model Suppose that the observations are
a function of a Markov chain prior to the change time,
Yk = h(Φ0

k) for k < τa. To apply techniques from the
fully observed Markov setting, the observations might
be replaced by the conditional distributions as in treat-
ment of partially observed Markov Decision Processes
(MDP). This leads to a highly complex test that cannot
be approximated without a model of the observations.
Instead, in Section III we show how to obtain the best
function F ∗ within a finite dimensional function class.

B. Assumptions on CUSUM statistic

It is assumed throughout that (A1) and (A2) hold, so
in particular Fn = F (Yn) for each n. In this subsec-
tion we summarize the remaining assumptions required
in analysis. In particular, many of the definitions and
assumptions that follow are required in application of
Large Deviations Theory for RRWs in approximating
the cost (2).

If X0, X1 are each i.i.d., then sufficient conditions
for the assumptions that follow are easily formulated.
If these stochastic processes are Markov chains, then
Lyapunov function criteria justifying the assumptions are
contained in [7], [8].

Let G denote a family of real-valued measurable
functions for which the cumulative generating function
(CGF) exists and is finite: for F ∈ G and i = 0, 1,

Λi(F ) = lim
n→∞

1

n
log E

[
exp

( n−1∑
k=0

F (Xi
k)
)]

(8)

The additional assumptions summarized in the following
are largely restricted to X0.
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For F ∈ G denote by qµ0
(n) the probability measure on

B(Yn+1) satisfying, for Z ∈ B(Yn+1),

qµ0
(n){Z} = β−1

n E
[
exp(Sn)1Z(X

0
0 , . . . , X

0
n)
]

Sn =
n−1∑
k=0

F (X0
k) , βn = E[exp(Sn)]

(9)

Its last marginal is denoted qπ0
(n):

qπ0
(n){A} = β−1

n E
[
exp(Sn)1A(X

0
n)
]
, A ∈ B(Y)

For the special case F ≡ 0 these probability measures
are denoted µ0

(n), π
0
(n) respectively; stationarity implies

that π0
(n) = π0 for each n.

The following limits are assumed to exist for F ∈ G:

Twisted marginal:

qπ0{A} = lim
n→∞

qπ0
(n){A} , A ∈ B(Y) (10)

Twisted process: the stationary stochastic process whose
finite dimensional marginals are defined for Z ∈
B(Ym+1) by

qµ0{Z} := lim
n→∞

qµ0
(n){Y

n−m × Z} (11)

Relative entropy rate: For F ∈ G it is assumed that the
following limit exists (though possibly infinite):

K(qµ0∥µ0) = lim
n→∞

1

n
D(qµ0

(n)∥µ
0
(n)) (12)

where D denotes relative entropy. It is also assumed that
K(µ1∥µ0) <∞ where

K(µ1∥µ0) = lim
n→∞

1

n
D(µ1

(n)∥µ
0
(n)) (13)

For the Markov model with F = L∞ we have
Λ0(F ) = 0 and K(µ1∥µ0) = K(P1∥P0) (see (6) and
surrounding discussion). This follows from the more
general statement:

Lemma 2.1: K(qµ0∥µ0) = qπ0(F )− Λ0(F ). ■

C. Performance approximations

The assumptions on F ∈ G are imposed since we
apply theory of rare events for RRWs to approximate
the behavior of {Xn : 0 ≤ n < τa} (e.g., [5]).

We perform a temporal and spatial scaling that is
standard in this literature: for a given threshold H > 0
denote by {x(H)

t : t ≥ 0} the continuous function defined
by x(H)

t = H−1Xk for t = k/H, and by piecewise linear
interpolation for all other t ≥ 0. When τs is defined
using threshold H, then τs ≤ TH if and only if x(H)

t ≥ 1
for some t ≤ T .

We require a few additional assumptions beyond those
summarized in Section II-B. Let Υ0 : R → R ∪ {∞}
denote the convex function defined by Υ0(υ) = Λ0(υF )
for υ ∈ R.

Fig. 1. Two paths: {x(H)
t : t ≥ 0} approximating the path shown on

the left is far more likely than the one shown on the right.

A3. Assumptions imposed for approximations. F ∈ G
and the following hold:
• There are solutions υ+ > υ0 > 0 to

Υ0(υ0) = 0 , Υ0(υ+) = ϱa (14)

• The function Υ0 is finite valued and continuously
differentiable in a neighborhood of [0,υ+].
• υF ∈ G for each υ in a neighborhood of [0,υ+]. In
particular, the following limit exists for each A ∈ B(Y)

qπ0
υ(A) = lim

n→∞

E
[
exp

(
υSn

)
1{X0

n ∈ A}
]

E
[
exp

(
υSn

)] (15)

with Sn =
∑n−1

k=0 F (X
0
k) (recall (10)).

Denote

qm0 = Υ′(υ0) , qm+ = Υ′(υ+) (16)

Under (A3) we have Υ′(0) = m0 < 0 and qm+ > qm0 >
0. The following result follows from sample path large
deviations theory from [5].

Lemma 2.2: Suppose that (A1) and (A3) hold, and
that τa = ∞ with probability one. Then, for T > 0,

lim
H→∞

1

H
logP

{
sup

0≤t≤T
x(H)
t ≥ 1

}
= −e0(T )

with e0(T ) =

{
TI0(1/T ) T < 1/qm0

I0(qm0)/qm0 T ≥ 1/qm0

where I0 is the convex dual of Υ0.
Fig. 1 illustrates two piecewise linear paths that might

approximate the RRW for a very large threshold. The
path on the left is more likely because the exponent
e0(T ) is minimized when T ≥ 1/qm0. This reflects the
well known approximation: the most likely path for a
random walk to hit a high level is linear with slope qm0

Denote by J̄(H, κ) the value of the expectation (2)
using CUSUM with threshold H > 0, and

J̄∗(κ) = min
H
J̄(H, κ) , H∗(κ) = argmin

H
J̄(H, κ) (17)

Approximations for each grow logarithmically in κ:

H∗
∞(κ) =

1

υ+
log(κ) (18a)

J̄∗
∞(κ) =

1

m1

1

υ+
log(κ) (18b)
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These approximations are justified in the following. An
outline of the proof of Prop. 2.3 may be found in the
Appendix.

Proposition 2.3: Suppose (A1)–(A3) hold. Then,

H∗(κ) = H∗
∞(κ) + o(log(κ))

J̄∗(κ) = J̄∗
∞(κ) + o(log(κ))

III. OPTIMIZING CUSUM

We turn next to methods to obtain the best function
within a finite dimensional function class of the form
{Fθ : θ ∈ Θ} ⊂ G with Θ ⊂ Rd.

A. In search of stationary points

When the function Fθ is used in CUSUM, the corre-
sponding approximation of the cost is denoted

J̄∗
∞(κ; θ) =

1

mθ
1

1

υθ
+

log κ (19)

Here we characterize stationary points of this approxi-
mation. In Section III-B we find that the conclusions are
far more elegant when the function class is linear.

Denote Υθ
0(υ) = Λ0(υFθ) for each θ ∈ Θ and υ ∈ R.

If Fθ satisfies (A3) then we let υθ
+ > υθ

0 > 0 denote the
solutions to

Υθ
0(υ

θ
0) = 0 , Υθ

0(υ
θ
+) = ϱa (20)

A4. Assumptions imposed on function class. The set Θ is
open, with Fθ satisfying (A3) for each θ ∈ Θ. Moreover,

(i) ψθ(y) = ∇θFθ (y) exists for each y, θ to define
a d-dimensional function whose elements satisfy the
assumptions of Section II-B.

(ii) The function Υθ
0(υ) is continuously differentiable for

υ, θ in a neighborhood of {(υ, θ) : υ ∈ [0,υθ
+] , θ ∈ Θ}.

(iii) There is a vector v ∈ Rd such that v⊺ψθ ≡ 1.

Under (A4) we let qπ0
υ,θ denote the probability measure

(15) obtained using υ with function Fθ. When using υθ
+

we simplify the notation to qπ0
+,θ, and write qm+,θ

0 =
qπ0
+,θ(Fθ).
Proposition 3.1: Suppose that (A2) and (A4) hold,

and that θ• ∈ Θ is a stationary point: ∇θJ̄
∗
∞ (κ; θ•) = 0

for some (and hence all) κ > 0. Then,

qm+,θ•

0 = mθ•

1 and qπ0
+,θ•

(
ψθ•

)
= π1

(
ψθ•

)
(21)

Conversely, if (21) holds then θ• is a stationary point.

The proof is contained in [2]. The first step is this key
identity:

Lemma 3.2: Subject to (A2) and (A4),

∇θ log J̄
∗
∞(κ; θ) = −∇θ logm

θ
1 −∇θ log υ

θ
+

= − 1

m1
π1

(
ψθ

)
+

1

qm+,θ
0

qπ0
+,θ

(
ψθ

) (22)

B. Linear family

If the function class is linear then Fθ = θ⊺ψ so that
ψθ = ψ, with ψi ∈ G for each i.

In Prop. 3.3 we show that the minimization over θ
of J̄∗

∞ may be cast as a convex program with objective
Γ(θ) = Γ0(θ) +

1
2 (v

⊺θ)2, where

Γ0(θ) = Λ0(Fθ)− π1(Fθ) (23)

This objective function Γ is strictly convex when the
d×d autocorrelation matrix Rθ is full rank, with entries,

Rθ(i, j) := qπ0
1,θ(ψ

iψj) (24)

Proposition 3.3: Suppose that (A2) and (A4) hold.
Let θ∗ = θ◦ + r◦v, where θ◦ minimizes Γ and r◦ =
ϱa − Λ0(Fθ◦). Then, θ∗ is a global minimizer of J̄∗

∞.
Outline of proof: The first step in the proof is to
recognize that Γ0 is not strictly convex, because for any
θ ∈ Rd and r ∈ R we have

Γ0(θ + rv) = Λ0(Fθ + r)− π1(Fθ + r) = Γ0(θ)

In particular, v⊺∇Γ0 (θ) = 0 for any θ, and v⊺θ◦ = 0.
It follows that 0 = ∇Γ (θ◦) = ∇Γ0 (θ

◦), which
is equivalently expressed qπ0

1,θ◦(ψθ◦) = π1(ψθ◦); the
identity qm1,θ◦

0 = mθ◦

1 follows since the function class
is linear. These conclusions imply (21) only if υθ◦

+ = 1.
The vector θ∗ satisfies the same two identities, and

υθ∗

+ = 1 by construction:

Λ0(Fθ∗) = Λ0(Fθ◦+r◦v) = Λ0(Fθ◦) + r◦ = ϱa

Consequently (21) holds, so that θ∗ is a stationary point
of J̄∗

∞ due to Prop. 3.1.
More work is required to establish optimality. ■

Information theoretic representations For the linear
function class we have seen that we can take without
loss of generality υθ

+ = 1, and then (19) simplifies to
J̄∗
∞(κ; θ) = log(κ)/mθ

1. The definition mθ
1:=π1(Fθ) and

calculations similar to those used to establish Lemma 2.1
lead to the following:

Proposition 3.4: Under (A4),
mθ

1 = Λ0(Fθ) +K(µ1∥µ0)−K(µ1∥qµ0
θ).

Consequently, maximizing mθ
1 subject to Λ0(Fθ) =

ϱa is equivalent to minimizing K(µ1∥qµ0
θ) subject to the

same constraint.
Example: Optimization for the Markov model. Recall
the definition of L∞ in (6). We obtain Λ0(Fθ∗) = ϱa
and K(µ1∥qµ0

θ∗) = 0 using Fθ∗ = L∞ + ϱa (provided
this is in the function class).
Example: scalar offset. Consider optimization of a scalar
offset, so that Fθ = F + θ for θ ∈ R. In this case
ψθ(y) = 1 for all y, so that we can take v = 1 in
(A4). Applying Prop. 3.1 we conclude that the optimal
parameter is characterized by a single mean constraint:
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Proposition 3.5: Assume that the function F + r
satisfies (A1) and (A3) for some r. Then an optimal
scalar offset is a solution to mθ∗

1 = qm+,θ∗

0 . ■

The proposition leaves out methods to compute θ∗.
We have mθ

1 = m1 + θ, but dependency of qm+,θ
0 on θ

is far more complex. This is resolved by enlarging the
function class so that Prop. 3.3 is applicable.

Proposition 3.6: Consider the basis ψ = (F ; 1), so
that Fθ = θ1F + θ2, and assume that F satisfies the
assumptions of Prop. 3.5. Then, an optimizer of J̄∗

∞ is
of the form θ∗ = θ◦ + r◦(0; 1), obtained as follows:
1. θ◦1 = argminυ[Λ0(υF )− υπ1(F )] and θ◦2 = 0.
2. r◦ = ϱa − Λ0(Fθ◦). ■

The optimizer is not unique: if the function F ∗ is
optimal within a linear function class, then so is kF ∗

for any k > 0. Here are two explanations:
• We can scale the threshold by the same constant to
obtain an equivalent test.
• The approximation (19) is constant under scalings:
m

θ/k
1 υ

θ/k
+ = mθ

1υ
θ
+ for all k > 0.

In the setting of Prop. 3.6, on choosing k = 1/θ◦1 > 0
the function below is optimal for the problem considered
in Prop. 3.5:

F ∗ = F + [ϱa − Λ0(θ
◦
1F )]/θ

◦
1 (25)

with υ+ = θ◦1 rather than unity.

-4 -3 -2 -1 0 1 2 3 4
-2

-1

0

1

2 Gaussian
Laplace
Cauchy

Fig. 2. Three choices for F

C. Numerical Experiments

See [4], [3] for results for the conditionally i.i.d.
model. One example is described briefly here, with the
following specifications:
• Xi i.i.d. Gaussian on R, with a change in mean at
time τa. Hence the LLR L(y) := log(f1(y)/f0(y)) is
linear as a function of y.
• The change time τa was a mixture of geometrics,
hence satisfying (5). Two choices of distribution were
used in this experiment, with ϱa = 0.02 in each.
• Three choices for F were considered, each expressed
as a log-likelihood ratio F = L̂ :=log(f̆1/f̆0), for which
plots are shown in Fig. 2. The three plots in Fig. 3 show
the evolution of {Xn} for each of three choices of F .

It was found in both ideal and mismatched settings
that the error in the approximations given in Prop. 2.3
are nearly constant. That is, both H∗(κ) − H∗

∞(κ) and

0 100 200 300
0

2

4

6

8

Ideal
Laplace
Cauchy

Fig. 3. Behavior of {Xn} for each of three choices of F in Fig. 2.

J̄∗(κ) − J̄∗
∞(κ) were nearly constant over the range

considered, 2 ≤ κ ≤ 100. This is evident in Fig. 4,
in which the approximations in (17) were each shifted
by a scalar constant to obtain an exact match at κ = 100.
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Fig. 4. Comparison of optimizing CUSUM threshold and policy with
their approximations.

As discussed after Prop. 3.4, for this conditionally
i.i.d. model the function F ∗ = L+ϱa :=log(f1/f0)+ϱa
is a minimizer of J̄∗

∞(κ) over all F . We did not include
the additive term ϱa in the previous experiments because
we were not aware that F ∗ was a minimizer at the time
the experiments were conducted.

We turn next to results from more recent experiments
designed to test optimality of the additive constant. A
scalar linear Gaussian Markov model was considered

Φi
k+1 = AiΦi

k +W i
k+1 +mi

W

in which |Ai| < 1 for each i, and {W i
k : k ≥ 1}

is zero-mean, i.i.d. and Gaussian. For Markov models
the function minimizing J̄∗

∞(κ) depends on pairs of
observations: F ∗ = L∞ + ϱa with Xi

k = (Φi
k−1; Φ

i
k).

Based on the formula (6) we conclude that F ∗ : R2 → R
is quadratic.

Consider the special case in which both Ai and {W i
k :

k ≥ 1} do not depend upon i; that is, only the mean
mi

W changes at time τa. Simple calculations establish
that L∞(x, z) = a[z−Ax]+ b for constants a, b, so that
{L∞(Φi

k−1,Φ
i
k) : k ≥ 1} is i.i.d. for i = 0 or i = 1.
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Consider next a change in dynamics only, in which
m0

W = m1
W = 0, and each W i

k is N(0, 1). In this case,
eq. (6) is the quadratic

L∞(x, z) = αx2 − βxz ,

with α = ([A0]2 − [A1]2)/2 and β = A0 − A1. The
numerics that follow used A0 = 0.4 and A1 = 0.1,
giving α = 0.075 and β = 0.3.

The distribution of the change time was taken to be
geometric with parameter ϱa = 0.02.

1 2 3 4 5 6 7 8

C
os

t

80

90

100

110

Fig. 5. Cost estimates obtained using Monte-Carlo for CUSUM using
F = L∞ + r for four values of r, with L∞ defined in (6).

Experiments were conducted to compare performance
of CUSUM using various choices of the scalar r in F =
L∞ + r, including r∗ = ϱa = 0.02 which is predicted
to be optimal for large κ. This is confirmed in the plots
shown in Fig. 5. For the four values of r tested it was
found that r = 0.03 yielded the smallest cost for κ ≤
1.3× 103, while r = ϱa was best for κ > 1.3× 103,

IV. CONCLUSIONS

This work is intended to be a starting point for con-
sideration of highly non-ideal settings faced in practice.
In applications of interest to us there may be well under-
stood behavior before a change (which might represent
a fault in a transmission line, or a computer attack), bug
little prior knowledge of post-change behavior.

Current research concerns relaxations of the indepen-
dence assumption on τa and X0; preliminary theory is
contained in [2]. Design of decision rules that are robust
to post-change behavior might be inspired by the rich
literature on robust hypothesis testing (see [12], [6] and
the references therein).
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APPENDIX

A. Outline of proof of Prop. 2.3.

The first term in (2) is approximated by

E[(τs − τa)+] = H/m1 +O(1) (26)

in which the error O(1) is bounded as H → ∞.
The hard work is approximating the cost of eagerness,

E[(τs − τa)−] What is missing in this outline is justifi-
cation for many of the approximations that follow.

Eagerness and large deviations asymptotics. Indepen-
dence of τa, X0 imply, for k, n ≥ 1,

P{τs ≤ n | τa = n+ k} = P{ max
0≤t≤sn

x(H)
t ≥ 1}

where sn = n/H. Hence,

E[(τs − τa)−] =
∞∑

n=0

P{ max
0≤t≤sn

x(H)
t ≥ 1}P{τa > n}

and applying Lemma 2.2 and (A2),

E[(τs − τa)−] ≈
∞∑

n=0

exp
(
−HG(sn)

)
(27)

in which G(sn) = e0(sn) + ϱasn.

Properties of G. It is convex on R+, with unique
minimizer s∗ = 1/qm+ satisfying G(s∗) = υ+.

We have the Taylor series approximation,

G̃(s) :=G(s)−G(s∗) = 1
2 (s− s∗)2/γ2 +O(s− s∗)3

where γ2 = 1/G′′ (s∗) = Λ′′
0 (υ+)/υ

3
+.
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Integral approximation. Let n∗ = ⌊H/qm+⌋.
Setting δ = H−1+ε with ε ∈ (1/2, 1), the following

approximations may be justified:
∞∑

n=0

exp
(
−HG̃(sn)

)
≈

∑
|n−n∗|≤δ

exp
(
−HG̃(sn)

)
≈ H

∫
|s−s∗|≤δ

exp
(
−HG̃(s)

)
ds

≈ H

∫ ∞

−∞
exp

(
− (s−s∗)2

2σ2

)
ds

with σ2 = γ2/H. Combining this approximation with
(27) gives E[(τs − τa)−] ≈

√
H
√
2πγ2 exp(−HG(s∗)).

In view of (26) and the identity G(s∗) = υ+,

J̄(H, κ) ≈ H/m1 + κ
√

H
√

2πγ2 exp(−Hυ+) (28)

Optimizing the approximation. An exact minimum of the
RHS of (28) is not available, but approximations can be

found based on the first order condition for optimality,
which admits the approximation

√
H∗

√
2πγ2 exp(−H∗υ+) ≈

1

m1υ+

1

κ
(29)

Further calculations lead to (18a).
From (28) we have J̄∗(κ) = J̄(H∗, κ) + o(log(κ)),

for which an approximation requires examination of two
terms,

J̄∗(κ) = J̄0(κ) + J̄1(κ) + o(log(κ))

with J̄0(κ) = H∗/m1

J̄1(κ) = κ
√

H∗
√
2πγ2 exp(−H∗υ+)

The term J̄1(κ) is bounded in κ due to (29).
Also from (29), exactly as in the derivation of (18a),

we have J̄0(κ) = H∗
∞(κ)/m1 + o(log(κ)) as required.

■
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