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Quickest Change Detection Using Mismatched CUSUM

Extended Abstract

Austin Cooper and Sean Meyn*

I. INTRODUCTION

The field of quickest change detection (QCD) con-
cerns design and analysis of algorithms to estimate the
time at which an important event takes place and identify
properties of the post-change behavior.

The goal of the researched surveyed here is to devise a
stopping time adapted to the observations that minimizes
an L; loss. Approximately optimal solutions are well
known under a variety of assumptions. In the work
surveyed here we consider the CUSUM statistic, which
evolves as a one-dimensional reflected random walk
driven by a functional of the observations. It is known
that the optimal functional is a log likelihood ratio
subject to special statistical assumptions.

Among the questions considered in current research
are, 1. What is the performance for a given functional
of the observations in Bayesian and minimax settings?
2. How do the conclusions change when there is depen-
dency between pre- and post-change behavior? 3. How
can techniques from statistics and machine learning be
adapted to approximate the best functional in a given
class?

This survey focuses on topics 1 and 3, whereas topic
2 is addressed in [2]. Analysis is cast entirely within the
Bayesian setting.

QCD model The general QCD model includes a se-
quence of observations Y := {Y} : k > 0} evolving in
an abstract set Y (typically a subset of Euclidean space).
The onset of anomalous behavior (the “change time”) is
denoted T,; this is formalized through the representation

Vi = X licrg + Xilisqy, E>0. (1)

In general this is simply a notational convention: X} :=
Y, for £ < 15, and X ,1 := Y}, otherwise. An estimate
of the change time, denoted Tg, is assumed adapted to
the observations: Uy := 1{ts = k} = ¢r(Yo,...,Ys),
k > 0, for a family of functions {¢y}.

The vast majority of theory requires statistical in-
dependence of X 0, X' and T,. This is the case
in Shiryaev’s conditional i.i.d. model, for which the
stochastic processes X 0, X! are also assumed ii.d.;
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an optimal policy is easily described if in addition the
distribution of the change is geometric [11].

We choose a criterion for optimality that reflects our
desire to trigger an alarm briefly before the change time:
for given x > 0, and a policy ¢, denote

J() = E[(ts — Ta)4 + K(Ts — Ta) | (2)

with ;. = max(z,0), x_— = max(—z,0). Motivation
for inclusion of the cost of eagerness E[(Ts — Ta)_] is
clear when X and 7, are statistically dependent [2].

Most successful approaches to QCD begin with the
construction of a real-valued stochastic process {X,},
adapted to the observations, and the stopping rule is of
the threshold form,

Ts = min{n > 0: X,, > H}, 3)

with H > 0. Two famous examples are found in the test
of Shiryaev—Roberts, and Page’s CUSUM. The latter is
the focus of this paper, in which {X,,} is defined as a
reflected random walk,

Xn+1 = max{07 Xn + Fn+1} (4)

initialized with Xy = 0, where {F,41 : n > 0} is a
stochastic process adapted to the observations.

Contributions Performance of the CUSUM test is ap-
proximated in the asymptotic setting in which « 1 oo
(hence a strong penalty for false alarm). Analytical
techniques rooted in large deviations theory lead to
approximations of the optimal threshold and cost as a
function of k, even in non-ideal settings. These approx-
imations lend themselves to optimization of the statistic
F,, over a finite-dimensional function class.

This general theory also motivates application of
reinforcement learning techniques to estimate a near-
optimal policy. One theme of [4], [3] is the application
of observation-driven statistics such as (4) to form a
“surrogate” information state for this purpose.

Literature See [9], [10] for excellent recent surveys
on QCD theory. Much of past research is restricted
to the conditionally i.i.d. model. Recent extensions to
conditionally Markov models or hidden Markov models
is found in [15], [14].
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II. ASSUMPTIONS AND MAIN RESULTS

In the main results surveyed here we adopt the obser-
vation model (1) in which X°, X! are mutually inde-
pendent stationary stochastic processes, and independent
of the change time T,. The marginal distributions are
denoted 7t°, 7! respectively.

We assume that Y is equipped with a sigma-algebra
B(Y); typically B(Y) is the Borel sigma-algebra when Y
is a topological space. With R equipped with the Borel
sigma-algebra, if G: Y — R™ is a measurable vector-
valued function we denote 7'(G) = [ G(y)'(dy) for
1=0,1.

Our interest is approximating the performance of
the CUSUM test, and also approximating the optimal
threshold for a given value of x. The following two
assumptions are in place throughout:

Al. We consider F,, = F(Y,,) for a measurable function
F:Y — R. Letting m; = m;(F) for i = 0,1, it is
assumed that mg < 0 and my > 0.

A2. Regular geometric tail: for some g, € (0, 00),
1
lim —logP{ta > n} = —pa 4)
n—,oo N,

Under (A1), it follows that {X,,} evolves as a reflected
random walk (RRW) with negative drift for n < T, and
thereafter a RRW with positive drift.

A. Examples

The numerical results obtained in our recent work are
restricted to three settings:

Conditional i.i.d. model This is the classical setting in
which X°, X! are ii.d.. Consequently, { X, } evolves as
the workload in a GI/G/1 queue, with a change in load
parameter at the change time T, (e.g. [1], [5]).

Suppose that the marginals are mutually absolutely
continuous with log likelihood ratio (LLR) denoted L =
log(dmt! /dnY). Tt is known that the use of F,, = L(Y},)
in (4) defines a test that is approximately optimal under
certain performance criteria [13]. This function satisfies
the desired sign conventions:

(L) = —D(n°||n') <0, w'(L) = D(n*||n°) >0

where D denotes relative entropy.

Markov model When there is memory in the observa-
tions it is necessary to perform some transformation to
justify the use of F,, = F(Y},). In the Markovian setting,
for each i = 0,1 we take X; = (®_,;P%) in which
®' isa stationary Markov chain; its transition kernel is
denoted P;, and invariant measure @;, so that <I>ff ~ ;
for all k. It follows that X} ~ 7' for each 4, k, with
7t (dw, dz) = @;(dx) P;(z,dz).

Suppose that there are transition densities {go, g1}
with respect to some reference measure L

Po(x,dz) = go(z, 2)u(dz) , Pi(z,dz) = g1(z, 2)u(dz)

Then, the LLR of the transition densities is denoted

91(x,2) ) (6)

Loo(z,2) = IOg(go(x )

Once again the function F'* = L, is approximately
optimal in certain settings [13]. Moreover, the sign
conventions in (A1) hold:

' (F*) = —K(PRy||Py) <0, 7 (F*) = K(P||Py) >0

where K denotes the Donsker-Varadhan rate function.
In particular,

K(P||Py) = /Loo(x,z)a)l(dx)Pl(x,dz) @)

Hidden Markov Model Suppose that the observations are
a function of a Markov chain prior to the change time,
Yy, = h(®Y) for k < Ta. To apply techniques from the
fully observed Markov setting, the observations might
be replaced by the conditional distributions as in treat-
ment of partially observed Markov Decision Processes
(MDP). This leads to a highly complex test that cannot
be approximated without a model of the observations.
Instead, in Section III we show how to obtain the best
function F™* within a finite dimensional function class.

B. Assumptions on CUSUM statistic

It is assumed throughout that (A1) and (A2) hold, so
in particular F,, = F(Y,,) for each n. In this subsec-
tion we summarize the remaining assumptions required
in analysis. In particular, many of the definitions and
assumptions that follow are required in application of
Large Deviations Theory for RRWs in approximating
the cost (2).

If X 0, X! are each i.1.d., then sufficient conditions
for the assumptions that follow are easily formulated.
If these stochastic processes are Markov chains, then
Lyapunov function criteria justifying the assumptions are
contained in [7], [8].

Let G denote a family of real-valued measurable
functions for which the cumulative generating function
(CGF) exists and is finite: for F € G and i = 0, 1,

Ay(F) = lim 1logE{exp(nZlF(X,§))] )

n—oo N
k=0

The additional assumptions summarized in the following
are largely restricted to X 0,
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For F' € G denote by ﬁ(()n) the probability measure on
B(Y"™t1) satisfying, for Z € B(Y"*1),

W2} = B E[exp(Sn)1z(X0, ..., XD)]

n—1 0 (9)
Sp =Y F(X}), Bn=E[exp(Sy)]
k=0

Its last marginal is denoted %?n):

T (A} = B, E[exp(Sn)1a(X})], A€ B(Y)

For the special case F' = 0 these probability measures
are denoted u(()n), 71(()”) respectively; stationarity implies
that 7'(‘()") = for each n.

The following limits are assumed to exist for F' € G:

Twisted marginal:

{A} = lim 7, {4}, AeB(Y) (10)
n—oo

Twisted process: the stationary stochastic process whose

finite dimensional marginals are defined for Z €

B(Y7n+1) by

~0 T ~ n—m
A Z} = lim it {Y" x Z} (11)

Relative entropy rate: For F' € G it is assumed that the
following limit exists (though possibly infinite):
1
~0(,,0y _ 1 ~ 0

KEI) = Tim = D(fe k) (12)

where D denotes relative entropy. It is also assumed that
K(ut][n®) < oo where

.1

K(wHIu?) = Tim —D(ullicy)) (13)

For the Markov model with ' = L., we have

Ao(F) = 0 and K(u!||p°) = K(P1||P) (see (6) and

surrounding discussion). This follows from the more

general statement:
Lemma 2.1: K(R°[|u®) = 72°(F) — Ao(F). m

C. Performance approximations

The assumptions on F' € G are imposed since we
apply theory of rare events for RRWs to approximate
the behavior of {X,, : 0 <n < 1} (e.g., [5]).

We perform a temporal and spatial scaling that is
standard in this literature: for a given threshold H > 0
denote by {z}" : t > 0} the continuous function defined
by 2" = H™1X} for t = k/H, and by piecewise linear
interpolation for all other £ > 0. When Ts is defined
using threshold H, then ts < TH if and only if 2}’ > 1
for some t < 7T

We require a few additional assumptions beyond those
summarized in Section II-B. Let Yo: R — R U {o0}
denote the convex function defined by Yo (v) = Ag(VLF)
forv e R.

Slope g

to t1 < l/ﬁlo ’t

Fig. 1. Two paths: {:r:(tH) 1t > 0} approximating the path shown on
the left is far more likely than the one shown on the right.

A3. Assumptions imposed for approximations. F' € G
and the following hold:

e There are solutions v > vy > 0 to
Yo(vo) =0, Yo(v4)=0a

e The function Yy is finite valued and continuously
differentiable in a neighborhood of [0,v].

(14)

e LI € G for each v in a neighborhood of [0,v]. In
particular, the following limit exists for each A € B(Y)

E[exp (v5,)1{XY € A}]

O (A) = 1i 15
7o (4) n—s00 E[exp (vSn)] (15
with S, = S2720 F(XP) (recall (10)).
Denote
’I’\fLO = Y/(UO) s 'I>1/’L+ = Y/(U+) (16)

Under (A3) we have Y/(0) = mg < 0 and M4 > g >
0. The following result follows from sample path large
deviations theory from [5].

Lemma 2.2: Suppose that (A1) and (A3) hold, and
that T, = oo with probability one. Then, for 7" > 0,

. 1
Jim ﬁlog P{ sup zy’ > 1} = —eo(T)

0<t<T
ih (T) TI()(]./T) T < l/T\fLO
wi € =
0 Io(tho) /e T > 1/m0

where I is the convex dual of Y.

Fig. 1 illustrates two piecewise linear paths that might
approximate the RRW for a very large threshold. The
path on the left is more likely because the exponent
eo(T') is minimized when T > 1/my. This reflects the
well known approximation: the most likely path for a
random walk to hit a high level is linear with slope g

Denote by J(H, ) the value of the expectation (2)
using CUSUM with threshold H > 0, and

J*(k) = m&n J(H, k), H*(k) = argmin J(H, k) (17)
H

Approximations for each grow logarithmically in x:

_ 1

HY (k) = o log(k) (18a)
- 1 1

S (k) = . log(k) (18b)
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These approximations are justified in the following. An
outline of the proof of Prop. 2.3 may be found in the
Appendix.

Proposition 2.3: Suppose (A1)-(A3) hold. Then,

H'(r) = HZ (%) + o(log(r))
T (k) = J5 (k) + o(log(k))

III. OpTIMIZING CUSUM

We turn next to methods to obtain the best function
within a finite dimensional function class of the form
{Fp:0€©}Cg with © C R%

A. In search of stationary points

When the function Fjy is used in CUSUM, the corre-

sponding approximation of the cost is denoted
- 1 1

JX (k;0) = — —log k

oo (3 0) i o7 108

19)

Here we characterize stationary points of this approxi-
mation. In Section III-B we find that the conclusions are
far more elegant when the function class is linear.

Denote Y§(v) = Ag(vFy) for each § € © and v € R.
If Fy satisfies (A3) then we let vﬂ_ > 1)8 > 0 denote the
solutions to

Y55 =0, YY) = 0a (20)

Ad. Assumptions imposed on function class. The set © is
open, with Fy satisfying (A3) for each # € ©. Moreover,

@) vo(y) = VoFy(y) exists for each y,0 to define

a d-dimensional function whose elements satisfy the
assumptions of Section II-B.

(ii) The function Y(v) is continuously differentiable for
v, 6 in a neighborhood of {(v,6) : v € [0,v%], 0 € ©}.

(iii) There is a vector v € R? such that vTey = 1.

Under (A4) we let 7??,79 denote the probability measure
(15) obtained using v with function Fy. When using v‘i
we simplify the notation to 7*[&70, and write ﬁza“a =
7} o(Fo).

Proposition 3.1: Suppose that (A2) and (A4) hold,
and that 0°® € © is a stationary point: VgJ%, (k;0%) = 0
for some (and hence all) k > 0. Then,

g =m8" and 7, g (voe) = 0 (90)

Conversely, if (21) holds then °® is a stationary point.

ey

The proof is contained in [2]. The first step is this key
identity:
Lemma 3.2: Subject to (A2) and (A4),

Vo log J% (#;0) = —Vglogm{ — Vg log v

1 1 .
= —mjﬂl (vo) + W“&,e(%)

(22)

B. Linear family

If the function class is linear then Fy = 0T so that
g = 1, with 9; € G for each i.

In Prop. 3.3 we show that the minimization over 6

of J* may be cast as a convex program with objective
[(0) =To(0) + % (v70)2, where
Lo (6) = Ao(Fp) — 7' (Fp) (23)

This objective function I' is strictly convex when the
d x d autocorrelation matrix Ry is full rank, with entries,

Ry(i,5) =78 g (¢p'97)

Proposition 3.3: Suppose that (A2) and (A4) hold.
Let 0* = 6° 4+ r°v, where 6° minimizes I' and 7:0 =
0a — No(Fye). Then, 6* is a global minimizer of JZ% .

(24)

Outline of proof: The first step in the proof is to
recognize that I'jy is not strictly convex, because for any
6 € R% and r € R we have

To(0 4 1v) = Aog(Fy +7) — ' (Fy +7) = To(6)

In particular, vTVT( () = 0 for any 6, and v76° = 0.
It follows that 0 = VI'(6°) = VI (6°), which
is equivalently expressed 7t oo (1go) = 7' (¢go); the
identity nvl(l)’eo = m{" follows since the function class
is linear. These conclusions imply (21) only if vio =1.
The vector §* satisfies the same two identities, and

v% =1 by construction:

Ag(Fye) = Ao(Fpopron) = Ao(Fpo) +7° = pa

Consequently (21) holds, so that 6 is a stationary point
of J%, due to Prop. 3.1.
More work is required to establish optimality. [

Information theoretic representations For the linear
function class we have seen that we can take without
loss of generality vi = 1, and then (19) simplifies to
J% (k;0) = log(x)/m$. The definition m{:=m'(Fp) and
calculations similar to those used to establish Lemma 2.1
lead to the following:

Proposition 3.4: Under (A4),

mi = Ao(Fo) + (' [1) — K(u"[|55).

Consequently, maximizing m{ subject to Ag(Fp) =
0a is equivalent to minimizing K(u![|[1)) subject to the
same constraint.
Example: Optimization for the Markov model. Recall
the definition of L., in (6). We obtain Ag(Fy-) = 0a
and K(p||19.) = 0 using Fy» = Lo + 0a (provided
this is in the function class).
Example: scalar offset. Consider optimization of a scalar
offset, so that Fy = F + 0 for & € R. In this case
Yo(y) = 1 for all y, so that we can take v = 1 in
(A4). Applying Prop. 3.1 we conclude that the optimal
parameter is characterized by a single mean constraint:
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Proposition 3.5: Assume that the function F' + r
satisfies (Al) and (A3) for some r. Then an optimal
scalar offset is a solution to m¢ = g 0" (]

The proposition leaves out methods to compute 6*.
We have m¢ = my + 6, but dependency of m; % on
is far more complex. This is resolved by enlarging the
function class so that Prop. 3.3 is applicable.

Proposition 3.6: Consider the basis ) = (F;1), so
that Fy = 6, F + 0>, and assume that F' satisfies the
assumptions of Prop. 3.5. Then, an optimizer of J7, is
of the form 6* = 0° + r°(0; 1), obtained as follows:

1. 03 = argmin,[Ag(VF) — vt} (F)] and 65 = 0.
2. r° = Oa — Ao(Fgo). ]

The optimizer is not unique: if the function F™ is
optimal within a linear function class, then so is kF™*
for any k£ > 0. Here are two explanations:

e We can scale the threshold by the same constant to
obtain an equivalent test.

o The approximation (19) is constant under scalings:
mf/*00 — mful for all k > 0.

In the setting of Prop. 3.6, on choosing k = 1/67 > 0
the function below is optimal for the problem considered

in Prop. 3.5:
F* =F + [0a — Mo (67 F)]/67 (25)

with v} = 607 rather than unity.

Gaussian
Laplace
Cauchy

Fig. 2. Three choices for F'

C. Numerical Experiments

See [4], [3] for results for the conditionally i.i.d.
model. One example is described briefly here, with the
following specifications:

e X' iid. Gaussian on R, with a change in mean at
time T,. Hence the LLR L(y) := log(fi(y)/fo(y)) is
linear as a function of y.

e The change time T, was a mixture of geometrics,
hence satisfying (5). Two choices of distribution were
used in this experiment, with g5 = 0.02 in each.

e Three choices for I’ were cAonsidered, each expressed
as a log-likelihood ratio F = L:=log(f,/ fo), for which
plots are shown in Fig. 2. The three plots in Fig. 3 show
the evolution of {X,,} for each of three choices of F.
It was found in both ideal and mismatched settings
that the error in the approximations given in Prop. 2.3
are nearly constant. That is, both H*(k) — HX (k) and

[ Xy1 = max{0, X, + L(Yy41)}

Ta

=)

- L=log(/'/]")
Ideal
Laplace

Fig. 3. Behavior of {X},} for each of three choices of F' in Fig. 2.

J*(k) — J% (k) were nearly constant over the range
considered, 2 < x < 100. This is evident in Fig. 4,
in which the approximations in (17) were each shifted
by a scalar constant to obtain an exact match at x = 100.

Ta Geometric 71 Ta Mixed
10 61
k] L
E 5
[7] 8 4 L
<
< 3+
F6 ol Cauchy Laplace Gaussian _
—— Ha(k)
4 I e e — MC estimate
80 501
70 40+
$60 L
8 30
O50r
L 207 Cauchy Laplace Gaussian _
40 — (k)
30 ‘ 10 e s MC estimate

100 K

Fig. 4. Comparison of optimizing CUSUM threshold and policy with
their approximations.

As discussed after Prop. 3.4, for this conditionally
i.i.d. model the function F* = L+ ga:=1log(f1/fo)+ 0a
is a minimizer of JZ, (k) over all F. We did not include
the additive term p, in the previous experiments because
we were not aware that F™* was a minimizer at the time
the experiments were conducted.

We turn next to results from more recent experiments
designed to test optimality of the additive constant. A
scalar linear Gaussian Markov model was considered

k1 = A'Qp + Wiy +my
in which |AY| < 1 for each 4, and {W} : k > 1}
is zero-mean, i.i.d. and Gaussian. For Markov models
the function minimizing J* (x) depends on pairs of
observations: F* = Lo, + pa with X} = (9} _|; ®%).
Based on the formula (6) we conclude that F*: R? — R
is quadratic.

Consider the special case in which both A® and {W; :
k > 1} do not depend upon ; that is, only the mean
mb; changes at time T,. Simple calculations establish
that Lo (x, z) = a[z — Az] + b for constants a, b, so that
{Loo(®%_,,®%): k> 1} isiid. fori=0ori=1.
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Consider next a change in dynamics only, in which
mY, =m};, =0, and each W} is N(0,1). In this case,
eq. (6) is the quadratic

Loo(z,2) = aa?® — faz,

with a = ([A°? — [A1]?)/2 and B = A" — Al. The
numerics that follow used A° = 0.4 and A' = 0.1,
giving o = 0.075 and 5 = 0.3.

The distribution of the change time was taken to be
geometric with parameter g5 = 0.02.

—r=0

-
2 - =001
© 9 r=0.02= 0,
7 r = 0.03
80 : .
1 2 3 4 5 6 7 8 Kkx10°

Fig. 5. Cost estimates obtained using Monte-Carlo for CUSUM using
F = Lo + r for four values of 7, with Lo defined in (6).

Experiments were conducted to compare performance
of CUSUM using various choices of the scalar r in F' =
L, + 7, including r* = pz = 0.02 which is predicted
to be optimal for large «. This is confirmed in the plots
shown in Fig. 5. For the four values of r tested it was
found that » = 0.03 yielded the smallest cost for xr <
1.3 x 103, while r = p, was best for x > 1.3 x 103,

IV. CONCLUSIONS

This work is intended to be a starting point for con-
sideration of highly non-ideal settings faced in practice.
In applications of interest to us there may be well under-
stood behavior before a change (which might represent
a fault in a transmission line, or a computer attack), bug
little prior knowledge of post-change behavior.

Current research concerns relaxations of the indepen-
dence assumption on T and X"; preliminary theory is
contained in [2]. Design of decision rules that are robust
to post-change behavior might be inspired by the rich
literature on robust hypothesis testing (see [12], [6] and
the references therein).
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APPENDIX
A. Outline of proof of Prop. 2.3.
The first term in (2) is approximated by

El(ts — Ta)+] = H/m1 + O(1) (26)

in which the error O(1) is bounded as H — oo.

The hard work is approximating the cost of eagerness,
E[(Ts — Ta)—] What is missing in this outline is justifi-
cation for many of the approximations that follow.
Eagerness and large deviations asymptotics.
dence of T,, X0 imply, for k,n > 1,

Indepen-

Plts<n|ta=n+k}= P{ogﬁf P > 1}

where s,, = n/H. Hence,

E[(ts —Ta)_| = Z P{Ogﬁx zy" > 1}P{ta > n}
n=0 -

Sn

and applying Lemma 2.2 and (A2),

E[(ts — Ta) -] ® > _exp(-HG(sn))  (27)

n=0
in which G(s,) = eq(sn) + 0asn-

Properties of G. It is convex on R, with unique
minimizer s* = 1/m satisfying G(s*) = v;.
We have the Taylor series approximation,

G6) = G1s) - G(s%) = 3o~ P17+ Ols — )"
where v = 1/G” (s*) = A (v4)/V3.
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Integral approximation. Let n* = |H/m |.
Setting § = H™17¢ with € € (1/2,1), the following
approximations may be justified:

Zexp(—HCNT'(sn))% Z exp(—Hé(sn))

n=0 In—n*|<§

~ H/ exp(—H@(s)) ds
|s—s*|<é

zH/ exp(—%) ds

with 02 = ~2/H. Combining this approximation with

(27) gives E[(Ts — Ta)_] & VH/ 27192 exp(—HG(s")).

In view of (26) and the identity G(s*) = v,
J(H, k) ~ H/my + svVHy/2m72 exp(—Hv, )

Optimizing the approximation. An exact minimum of the
RHS of (28) is not available, but approximations can be

(28)

found based on the first order condition for optimality,
which admits the approximation

VH*\/21y2 exp(—H"v4) &~

Further calculations lead to (18a).

From (28) we have J*(k) = J(H*, k) + o(log(k)),
for which an approximation requires examination of two
terms,

T () = Jo(k) + J1 (k) + o(log(r))
with Jo(k) = H* /my
Ji(r) = kVH* /2172 exp(—H*v )
The term .J; (k) is bounded in x due to (29).
Also from (29), exactly as in the derivation of (18a),

we have Jy(k) = HX (k)/m1 + o(log(k)) as required.
"

L1 o

mivy K
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