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Abstract— The field of quickest change detection (QCD)
concerns design and analysis of algorithms to estimate in real
time the time at which an important event takes place, and
identify properties of the post-change behavior.

It is shown in this paper that approaches based on reinforce-
ment learning (RL) can be adapted based on any “surrogate
information state” that is adapted to the observations. Hence
we are left to choose both the surrogate information state
process and the algorithm. For the former, it is argued that
there are many choices available, based on a rich theory of
asymptotic statistics for QCD. Two approaches to RL design
are considered:
(i) Stochastic gradient descent based on an actor-critic for-
mulation. Theory is largely complete for this approach: the
algorithm is unbiased, and will converge to a local minimum.
However, it is shown that variance of stochastic gradients can
be very large, necessitating the need for commensurately long
run times.
(ii) Q-learning algorithms based on a version of the projected
Bellman equation. It is shown that the algorithm is stable, in
the sense of bounded sample paths, and that a solution to the
projected Bellman equation exists under mild conditions.

Numerical experiments illustrate these findings, and provide
a roadmap for algorithm design in more general settings.

I. INTRODUCTION

The goal of the research surveyed in this paper is to
create algorithms for quickest change detection (QCD), for
applications in which statistics are only partially known,
particularly after the change has occurred. While the authors
were initially motivated by applications in power systems, the
setting here is entirely general. Examples of events that we
wish to detect include human or robotic intruders, computer
attack, faults in a power system, and onset of heart attack
for a patient [12], [13].

The standard QCD model includes a sequence of observa-
tions Y := {Yk : k ≥ 0}, assumed here to evolve as a real-
valued stochastic process. The statistics of these observations
change at a time denoted τa ≥ 0. The goal is to construct
an estimate of the change time, denoted τs, that is adapted
to the observations. The estimate must balance two costs: 1.
Delay, which is expressed (τs − τa)+ := max(0, τs − τa),
and 2. false alarm, meaning that τs − τa < 0.

There are two general models that lead to practical solu-
tions: Bayesian and minimax approaches. Typical measures
of performance for the former approach are based on mean
detection delay MDD and probability of false alarm pFA:

MDD = E[(τs − τa)+] and pFA = P{τs < τa}. (1)
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The focus of this paper is on the Bayesian approach, based
on a partially observed Markov Decision Process (POMDP).
See Section II-A for canonical examples.

Successful approaches to algorithm design are typically
based on the construction of a real-valued stochastic process
{Xn} that plays a role similar to the celebrated information
state of POMDP theory, and a threshold policy is adopted:
for a pre-assigned threshold H > 0, the stopping rule is

τs = min{n ≥ 0 : Xn ≥ H} . (2)

Two famous examples are defined recursively: with X0 = 0,

1. Shiryaev–Roberts: Xn+1 = exp
(
Ln+1

)
[Xn + 1] (3a)

2. CUSUM: Xn+1 = max{0,Xn + Ln+1} (3b)

in which Ln = L(Yn) is a log likelihood ratio for the
conditional i.i.d. settings in which these models are typically
posed (see Section II). In particular, the CUSUM statistic
evolves as a reflected random walk (RRW) with negative
drift for 0 ≤ n < τa.

Analysis of the threshold policy (2) is typically posed
in an asymptotic setting, considering a sequence of models
with threshold H tending to infinity. Approximate optimality
results for either statistic may be found in [16], [17]. See
[18], [24] for further history.
Contributions This paper develops theory for QCD in a
Bayesian setting, and demonstrates how the solution structure
lends itself to RL design. One theme is the application of
observation-driven statistics such as (3b) to form a “surro-
gate” information state for policy synthesis.
• Performance of the CUSUM test is approximated in the
asymptotic setting in which there is a strong penalty for false
alarm. Well-known analysis for the ideal case is extended
to settings for which Ln in (3b) is mismatched with the
observations (i.e., Ln is not a log likelihood ratio). This
general theory motivates the control architectures proposed
for RL design. In particular:
▷ An actor-critic approach is introduced and shown to be
consistent under mild conditions (see Prop. 3.2).
▷ A Q-learning algorithm is introduced and shown to be
stable provided the input used for training is sufficiently
optimistic [15].
• The theory is illustrated with many experiments, compar-
ing resulting policies with common heuristics as well as the
true optimal. Among the findings are
▷ Stability for the scalar gain algorithm requires extremely
high level of optimism, resulting in poor numerical perfor-
mance. A version of Zap Q-learning is far more reliable.
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▷ The resulting policies performed well using a basis
obtained via binning, and a linear function class inspired
by results obtained via binning.
Literature See [12], [13] for excellent recent surveys on
QCD theory. Much of this theory is cast in a minimax rather
than Bayesian setting. Numerical techniques to solve the
QCD problem in the Bayesian setting may be found in [27].

The analysis in Section II-B is cast as the conditionally
i.i.d. model of [19], though we relax the classical assumption
that the change time has a geometric distribution.

The vast majority of theory requires statistical indepen-
dence of X0, X1 and τa. This is the case in Shiryaev’s
conditional i.i.d. model, for which the stochastic processes
X0, X1 are also assumed i.i.d.;

Extension to a conditionally Markov model or hidden
Markov model is possible by adapting techniques from the
recent work [26], [25]; while cast in an adversarial setting,
many approximations remain valuable in the Bayesian setting
adopted here.

Stability theory of Q-learning for optimal stopping was
resolved in [21]; conditions for consistency are similar to
those for the simpler TD-learning algorithm. However, the
specific algorithm considered required that the cost function
be fully observed. This is why Q-learning is re-considered
in the present article.

In this prior work it is recognized that the state is in-
herently partially observed. In [21] along with many pa-
pers in the RL literature, a truncated history of observa-
tions is adopted as a surrogate information state, Xk =
(Yk−B+1; · · · ;Yk), with B ≥ 1. An innovations process
obtained from the Kalman filter is used to define {Xk} in
applications to power systems [10]. General theory surround-
ing the approximation of the information state may be found
in [20] (along with substantial history).

There is a long history of application of techniques from
RL to approximate the solution to the optimal stopping
problem. The first stability analysis of Q-learning with linear
function approximation appeared in [21], which inspired sig-
nificant research such as [11], [2]. The algorithms conceived
in this prior work are not applicable in the applications
considered in this paper because the cost (or rewards) is as-
sumed to be fully observed. The RL algorithms introduced in
this paper are more complex, and have a weaker supporting
stability theory, precisely because this assumption is violated.
Organization Section II provides background on the stan-
dard Bayesian QCD problem as well as an alternate cost cri-
terion for which approximations are formulated. Section III
includes formulations of two RL approaches to optimal
stopping. The paper then turns to design and experimental
findings of Q-learning applied to our Bayesian QCD problem
in Section IV. Section V provides concluding thoughts and
directions for future work.

II. BAYESIAN QCD
This section contains background on approaches to mod-

eling and algorithm design for QCD. We begin with a
canonical Bayesian model, cast as a POMDP.

A. POMDP model

In this model both the change time and the observations
are deterministic functions of a time-homogeneous Markov
chain Φ, evolving on a state space X. It is assumed that
Yk = h(Φk), k ≥ 0, for a function h : X → Y (measurable
in an appropriate sense). Assume moreover that there is a
decomposition X = X0 ∪ X1, for which X1 is absorbing:
Φk ∈ X1 for all k ≥ 0 if Φ0 ∈ X1. The change time is
defined by τa = min{k ≥ 0 : Φk ∈ X1}.

We arrive at a POMDP with input Uk ∈ U = {0, 1}, and
τs defined as the first value of k such that Uk = 1. The
control problems of interest are optimal stopping problems:
For any cost functions c◦, c• : X → R, we wish to minimize
over all inputs adapted to the observations,

J(Φ0, U
∞
0 ) = E

[ τs−1∑
k=0

c◦(Φk) + c•(Φτs)
]

(4)

Consistent with the standard QCD framework is c◦(z) =
1{z ∈ X1} and c•(z) = κ1{z ∈ X0} with κ > 0, so that
J(Φ0, U

∞
0 ) = MDD+ κpFA (recall (1)).

The structure of an optimal solution can be expressed as
state feedback with suitable choice of state process. We use
the term information state, denoted {Xk : k ≥ 0}. This is
defined as a sufficient statistic for optimal control, in the
sense that an optimal solution is expressed as “information
state feedback”, U∗

k = ϕ∗(Xk). The canonical example is
{Xk} = {Πk}, the sequence of conditional distributions
(often called the belief state) [7], [9]. This structure leads
to a practical solution when X is finite, with K elements,
so that Πk evolves on the K-dimensional simplex SK , and
ϕ∗ : SK → U is measurable.

Shiryaev’s model The POMDP model is a generalization
of Shiryaev’s conditional i.i.d. model, in which observations
are expressed

Yk = X0
k1k<τa +X1

k1k≥τa , k ≥ 0 , (5)

with X0 and X1 i.i.d. and mutually independent stochastic
processes; the change time τa is independent of X0, X1, and
has a geometric distribution. Under these strong assumptions,
the real-valued process {pk = P{τa ≤ k | Y k

0 } : k ≥ 0}
serves as an information state, and an optimal test is of the
form U∗

k = 1{pk ≥ H} for some threshold H > 0 (see [19]
and the tutorial [23]).

The observation model (5) is valuable in analysis of
common heuristics. Suppose that the marginal distributions
of {X0

k , X
1
k} have densities on R, denoted f0, f1, and denote

L(y) = log(f1(y)/f0(y))—the log likelihood ratio (LLR).
Crucial for analysis of either of the algorithms (3) is that L
has positive mean under f1 and negative mean under f0.

It is known that either of the algorithms (3) is approxi-
mately optimal for Shiryaev’s model, for large κ and large
mean change time E[τa] [24].

Alternative to the standard cost criterion The standard
cost criterion is MDD+κpFA is sensible in Shiryaev’s model
in which the change time is independent of {X0

k , X
1
k : k ≥
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0}. In the general POMDP model there may be evidence that
a change is imminent; in such cases, a (common sense) good
decision rule might make an early declaration of change.
These decision rules might be far from optimal under the
usual cost criterion since it is insensitive to the value of
eagerness, defined as (τs − τa)− := max(0,−[τs − τa]). In
this paper we consider the mean detection eagerness MDE =
E[(τs − τa)−] in the cost criterion MDD + κMDE, leading
to what we believe is a more reasonable objective,

J(Φ0, U
∞
0 ) = E

[
(τs − τa)+ + κ(τs − τa)−

]
(6)

This may be placed in the POMDP standard form (4), with

c◦(z) = 1{z ∈ X1} , c•(z) = κE[τa | Φ0 = z] (7)

B. Asymptotic statistics

The remainder of this section concerns the CUSUM test.
Analysis is restricted to the following conditional i.i.d. set-
ting: The stochastic processes {X0

k}, {X1
k} are each i.i.d.,

and independent of the change time τa. It is assumed that
the marginal densities f0 and f1 exist, and that the LLR
L = log(f1/f0) exists and is integrable with respect to either
f1 or f0

Our interest is approximating the performance of the
CUSUM test, and also approximating the optimal threshold
for a given value of κ. The analysis allows for two significant
relaxations:

1. We consider Ln = F (Yn) for a Borel measurable
function F : Y → R, not necessarily the LLR. Letting
mi =

∫
F (y) fi(y)dy for i = 0, 1, it is assumed that m0 < 0

and m1 > 0. Hence the RRW (3b) is a positive recurrent
Markov chain if τa = ∞.

Two log moment generating functions are denoted
Λi(υ) = log E[exp(υF (Xi

k)) for υ ∈ R and i = 0, 1.

2. The strong distributional assumption on the change time
is replaced by a regularity condition:

Regular geometric tail: for some ϱa <∞,

lim
n→∞

1

n
logP{τa ≥ n} = −ϱa (8)

The regularity assumption obviously holds in Shiryaev’s
model, in which τa has a geometric distribution. We obtain
ϱa > 0 in the POMDP model under mild assumptions. Full
proofs for results in this section may be found in [4], [5],
along with extensions beyond the conditionally i.i.d. model.

Lemma 2.1: Consider the POMDP model with X finite,
P{τa = ∞} = 0, yet P{τa > N} > 0 for each N > 0 and
Φ0 ∈ X1. Then (8) holds for some ϱa > 0.

The cost of delay is easily approximated for this model:
After a change has occurred, the most likely path is linear
with slope m1 > 0. For a threshold H ≫ 1, the delay (τs −
τa)+ is overwhelmingly likely to be close to H/m1.

Approximation of the mean of (τs − τa)− is based on
well-established large deviations theory for RRWs. The main
results of this theory require that the log moment generating
functions Λi(υ) := log

∫
exp(υx)fi(x) dx, i = 0, 1, be finite

over a suitable range of υ ∈ R.

Denote for any threshold test,

H∗(κ) = argmin
H≥0

{κMDE(H) +MDD(H)} (9a)

J∗(κ) = min
H≥0

{κMDE(H) +MDD(H)} (9b)

We write CUSUM* to denote the CUSUM algorithm using
the optimal threshold H∗(κ). In Prop. 2.2 we justify these
approximations,

H∗
∞(κ) =

1

υ+
log(κ) , J̄∗

∞(κ) =
1

m1

1

υ+
log(κ) (10)

where the constant υ+ is defined in the proposition.
Proposition 2.2: Suppose the following conditions hold:

1) the limit (8) holds with ϱa > 0, 2) Λ0 has two distinct
roots {0,υ0}, a unique solution υ+ > υ0 to Λ0(υ+) = ϱa,
and Λ0 is finite-valued in a neighborhood of [0,υ+], 3) Λ1

is finite-valued in a neighborhood of the origin. Then, for
the CUSUM* test,

H∗(κ) = H∗
∞(κ) + o(log(κ)) (11a)

J∗(κ) = J̄∗
∞(κ) + o(log(κ)) (11b)

■

Approximations for three choices of F are shown in Fig. 1.
Details can be found in Section IV.
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Fig. 1. Approximations of the optimal threshold and cost.

III. REINFORCEMENT LEARNING AND QCD

In the few examples we have considered we have found
that the approximations in Prop. 2.2 are highly accurate.
In non-ideal settings the proposition is valuable in the con-
struction of RL algorithms. We provide algorithms, and full
justification in some cases. Algorithm design and analysis is
set in the POMDP (Bayesian) setting, with cost criterion (6).

Assumed given is a surrogate belief state: a stochastic
process {Xk : k ≥ 0}, evolving on a closed subset of
Euclidean space S, and which is adapted to the observations
Yk = σ{Y0, . . . , Yk}. We do not require that Xk is in any
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Fig. 2. Statistics of the gradient estimate as a function of θ, based on the Actor Critic method: (a) Empirical variance of the gradient estimates. (b)
Gradient estimates using N = 104 episodes. (c) Objective and its approximation obtained from integrating the gradient estimate.

sense an approximation of an information state. In particular,
the numerical experiments largely focus on the CUSUM
statistic (3b).

We first consider a version of the actor-critic method,
followed by approaches to Q-learning.

Actor-critic method Assumed given is a collection of
randomized stationary policies {ϕ̃θ : θ ∈ Rd}. For each
θ the statistics of the decision rule are defined via

P{Uk = u | Y k
0 ;Xk = x} = ϕ̃θ(u | x) , u ∈ U , x ∈ S.

We fix an initial distribution ν for the Markov chain Ψ,
and denote µθ(z, u) = ν(z)ϕ̃θ(u | x) for z = (x; ς) ∈ X×S
and u ∈ U. Our goal is to minimize

Γ(θ) = Eθ
µθ

[ τs∑
k=0

c(Φk, Uk)
]

(12)

The subscript indicates that (Φ0,X0, U0) ∼ µθ, and the
superscript “θ” indicates that the policy ϕ̃θ determines the
input.

We consider stochastic gradient descent (SGD),

θn+1 = θn − αn+1Gn∇̆Γ (n) , (13)

in which the stepsize αn+1 and the matrix gain Gn are design
choices.

In the actor-critic algorithm the stochastic gradient ∇̆Γ (n)
is represented in terms of the score function,

Λθ(x, u) = ∇θ log[ϕ̃
θ(u | x)] (14)

defined to be zero for any values for which ϕ̃θ(u | x) = 0.
The following result follows from a long history surveyed

in the Notes section of [14, Ch. 10]:
Proposition 3.1: Suppose that Γ and ∇Γ are continuous.

Then ∇Γ (θ) = Eθ
µθ
[∇̆Γ ], for either of the two options:

∇̆
θ

Γ =

τs∑
k=0

c(Φk, Uk)S
θ
k (15a)

or ∇̆
θ

Γ =

τs∑
k=0

Qθ(Ψk, Uk)Λ
θ
k (15b)

in which Λθ
k :=Λθ(Φk, Uk), Sθ

k = Λθ
0 + · · ·+Λθ

k, and

Qθ(z, u) = Eθ
[ τs∑
k=0

c(Φk, Uk) | Ψ0 = z, U0 = u
]

(15c)

With either representation for the stochastic gradient (15a)
or (15b) we obtain an asymptotically unbiased SGD algo-
rithm using ∇̆Γ (n) = ∇̆

θn
Γ . Each of those described here are

episodic: data is collected over the period 0 ≤ k ≤ τs(n)
with θn fixed, and the input defined using ϕ̃θn .

The natural gradient descent algorithm updates the matrix
gain via Gn = R̂−1

n , where R̂0 > 0 with updates obtained
recursively,

R̂n = R̂n−1 + βn[−R̂n−1 +Rn] , n ≥ 1 ,

Rn =

τs(n)∑
k=0

Λθn
k [Λθn

k ]⊺ , Λθn
k = Λθn(Xk, Uk)

(16)

with βn ≫ αn (see [14, Ch. 10]).
The two representations for the gradients prompt two

choices for the stochastic gradient. We focus here on the
first,

∇̆Γ (n) =

τs(n)∑
k=0

c(Φk, Uk)S
θn
k

leaving out the extension of the standard algorithm based on
TD(1) learning to estimate the Q-function [14, Ch. 10].

The Polyak-Ruppert (PR) estimates are defined by

θPR
n =

1

n

n∑
i=1

θi , n ≥ 1 . (17)

Its asymptotic covariance is defined as

ΣPR
Θ = lim

n→∞
nE[θ̃PR

n {θ̃PR
n }⊺] (18)

When this exists and is finite, then the estimates achieve the
optimal mean-square convergence rate of O(1/n).

The following is a consequence of recent stochastic ap-
proximation theory in [1].

Proposition 3.2: Suppose that the assumptions of
Prop. 3.1 hold, and in addition (i) Γ is coercive with unique
minimum θ∗ and ∇Γ is globally Lipschitz continuous. (ii)
A∗ :=∇2Γ (θ∗) is Hurwitz, and the steady-state covariance
R∗ = Cov(Λθ∗

) is full rank. (iii) The stepsize sequence is
αn = α0n

−ρ with 1/2 < ρ < 1 and α0 > 0.
Then, the SGD algorithm (13) is convergent almost surely

and in mean square. The PR-estimates are also convergent
in both senses.

The Central Limit Theorem (CLT) holds, as well as the
limit (18), in which the asymptotic covariance is ΣPR

Θ =
[(R∗)−1A∗]⊺Σ∗

∇(R∗)−1A∗ with Σ∗
∇ is the steady-state co-

variance of (15b) using the policy ϕ̃θ∗
. ■
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Fig. 3. Λ0(υ) for ideal Gaussian alongside Laplace and Cauchy mismatched detectors

Example Consider the one-dimensional family of policies
in which θ approximates a threshold rule: for a fixed large
constant ξ > 0, define ϕ̃θ(u | w) = [1 + exp(ξ[w −
θ])]−1 exp(ξu[w − θ]), so that the score function is

Λθ(u | w) = −ξu+ ξϕ̃θ(1 | w)

In this scalar example we can adapt the natural gradient actor
critic method to estimate ∇Γ (θ) for any fixed θ.

Fig. 2 shows results from a typical experiment using ξ =
20. Details on the simulation environment designed to obtain
these approximations are postponed to the Appendix.

Rather than demonstrate results from an application of
SGD, the first two plots show estimates of the mean and
variance of the random variable in the expectation (15b) for
a range of values of θ; the precise means are Σ∇ (θ) and
∇Γ (θ).

Fig. 2 (b) shows gradient estimates, and Fig. 2 (c) com-
pares estimates of the objective function Γ(θ) obtained via
standard Monte-Carlo, and the estimate obtained from inte-
grating the gradient estimates in (b): Γ̂(θ):=κ+

∫ θ

0
∇̂Γ(r) dr.

The results indicates good news: in spite of the enormous
variance shown in (a), especially large for smaller values
of θ, the zero of the gradient estimate ∇̂Γ (θ) is very close
to the optimal threshold value for CUSUM. However, the
massive variance presents a challenge in running the actor-
critic algorithm to estimate θ∗.

Q-learning Recall the solution to the POMDP model in
which the optimal policy is a function of an information
state. Consider the canonical example in which this is the
belief state (the sequence of conditional distributions {Πk})
evolving on the unit simplex S , and assume that the under-
lying Markov chain Φ evolves on a finite set so that the
simplex is finite-dimensional.

The Q-function Q∗ : S×U → R is the optimal value func-
tion associated with the objective (4). To place the equations
in standard form denote c(x, u) = (1−u)c◦(x)+uc•(x) for
x ∈ X and u ∈ {0, 1} (recall (4)). For any u and β ∈ S
denote C(β, u) =

∑
x β(x)c(x, u).

The value Q∗(β, u) is defined to be the minimum of∑
ϕ β(ϕ)J(ϕ,U

∞
0 ) over all admissible U∞

1 , subject to
(Π0, U0) = (β, u). It satisfies the dynamic programming
(DP) equation,

Q∗(β, u) = C(β, u) + E[Q∗(Πk+1) | Πk = β, Uk = u]

with H(β) = min{H(β, 0), H(β, 1)} for any function
H : S × U → R.

Q-learning algorithms are based on the characterization:
E
[
D∗

k+1 | Yk

]
= 0 or each k and any adapted input, with

D∗
k+1 = −Q∗(Πk, Uk) + ck + Q∗(Πk+1). with ck = (1 −

Uk)1{τa < k}+ κUk(τa − k)+.
This motivates typical Q-learning algorithms.
Given a parameterized family of real-valued functions

{Qθ : θ ∈ Rd} on S × U, the goal is to solve the projected
Bellman equation: sf(θ∗) = 0 with

sf(θ) := E
[
{−Qθ(Xk, Uk) + ck +Qθ(Xk+1)}ζk

]
(19)

where {ζk} is a d-dimensional stochastic process adapted to
the observations.

It is typical to take ζk = ∇θQ
θ(Xk, Uk)

∣∣
θk

, with θk the
estimate at iteration k. Theory to-date is largely restricted to
a linear function class in which Qθ = θ⊺ψ with ψ : S×U →
Rd, and in this case ζk = ψ(Xk, Uk).

Data required in an algorithm is based on successive runs
up to time τs(n) for n ≥ 1, and with τs(0) := 0, which
results in the observations {Xn

k ,Xn
k+1, U

n
k , c(Φ

n
k , U

n
k )} for

0 ≤ k < τs(n). We suppress dependency on n by stringing
data together, so that for example

Uk := Un
k−τs(n−1) for τs(n− 1) ≤ k < τs(n) and n ≥ 1

A version of Q-learning is expressed as the recursion

θk+1 = θk + αk+1GkζkDk+1 , k ≥ 0 (20a)

Dk+1 = −Qθk(Xk, Uk) + ck +Qθk(Xk+1) (20b)

where the matrix gain sequence {Gk} is a design choice;
Zap Q-learning is in some sense optimal [14]; This matrix
gain was used in [2] for applications to optimal stopping.

We cannot apply [2], based on the elegant algorithm of
[21], since the resulting policy will depend on the cost
{c(Φk, Uk)} (assumed observed in this prior work).

While there is great empirical success in the history of
Q-learning, to-date we only have general conditions for
stability of the algorithm, and existence of a solution to
the projected Bellman equation [15]. Most crucial is the
requirement that the input used for training is an ε-greedy
policy (or a smoothed variant). It is shown that, subject to
a mild full rank condition for ψ, that for sufficiently small
ε > 0 the algorithm (20a) is stable in the sense of ultimate
boundedness, and there exists at least one solution θ∗ ∈ Rd

to the projected Bellman equation sf(θ∗) = 0. Convergence
remains a topic of research.

Stability of Zap Q-learning with an oblivious policy (in-
dependent of parameter) is virtually universal [3], but this
paper makes no claims of existence of θ∗ in this setting. It
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is very likely that the main result of [3] can be extended to
ε-greedy policies.

IV. NUMERICAL RESULTS WITH Q-LEARNING

This section contains two subsections: the first illustrates
the large-κ approximations of Prop. 2.2, and the second sum-
marizes results obtained using the Q-learning formulations
described in Section III. Extended details for this section are
provided in the preprint version of this paper in [6].

QCD model The conditional i.i.d. model (5) was used to
generate observations, in which X0

k ∼ N(0, σ2) = f0 and
X1

k ∼ N(µ1, σ
2) = f1 with µ1 = 0.5 and σ = 1.

-2

-1

1 

0 

2 

-4

Gaussian 
Laplace 
Cauchy 

-2   0 2 4 

Fig. 4. Three LLRs

Three choices of F were tested,
each of the form F = log(f̆1/f̆0):
Case 1: The ideal Gaussian case,
in which f̆1 = f1 and f̆0 = f0.
Case 2: f̆0 is Laplace(0, b) and
f̆1 Laplace(µ1, b) with µ1 = 0.5
and b =

√
σ2/2 (matching second

order statistics).
Case 3: f̆0 is Cauchy(0, γ) and f̆1
Cauchy(x1, γ) with x1 = 0.5 and γ chosen so that the
Gaussian and Cauchy cdfs evaluated at σ = 1 are equal.

Plots of the three functions are shown in Fig. 4, and the
corresponding log moment generating functions are shown
in Fig. 3.

A. Cost approximation

For the ideal case F is the true LLR for the marginals of
X0, X1, giving F (x) = L(x) = µ1x − µ2

1/2 and Λ0(υ) =
m1υ(υ − 1). Hence the equation ϱa = Λ0(υ+) is easily
inverted to obtain υ+ > 0 (recall this is required in (10)).
For the mismatched case, υ+ was approximated based on
numerical computation of Λ0.

For each choice of F we obtained estimates via Monte-
Carlo of the optimal threshold and corresponding total cost
defined in (9), denoted {Ĥ

∗
(κ), Ĵ∗(κ)}. In the plots de-

scribed next the shifted values are displayed:

Hs(κ) = H∗
∞(κ)− H∗

∞(100) + Ĥ
∗
(100) (21a)

J̄s(κ) = J̄∗
∞(κ)− J̄∗

∞(100) + Ĵ∗(100) (21b)

This ensures that the approximations (10) coincide with the
Monte-Carlo estimates of (9) at κ = 100.

Fig. 1 shows the Monte Carlo estimates with 1σ confi-
dence intervals compared to results from experiments in all
three cases, and two different choices for the change time,
each satisfying ϱa = 0.02. In the first column the change
time has geometric distribution with parameter ϱa, expressed
τa ∼ geo(ϱa). In the second column the distribution is a
mixture of geometrics: τa ∼ geo(ϱa) with probability 0.05;
else τa ∼ geo(0.2).

The approximations are remarkably accurate in all cases,
which means that the error H∗

∞(κ)−H∗(κ) is nearly constant
over the entire range. Unfortunately, the constant value is
large, which motivates learning techniques to obtain a near-
optimal threshold.

B. Q-learning

The remainder of this section presents the design and
evaluation of Q-learning for this Bayesian QCD problem.
In each experiments the observations come from Shiryaev’s
model in which the change time is geometrically distributed,
and hence the true optimal test is available.

Basis selection The basis for the function class {Qθ = θ⊺ψ}
took the form ψ(x, u) = (1 − u)ψ0(x) + uψ1(x) (recall
Section III). A four dimensional basis gave good results:

ψ0(x) = [x; q(x); 0; 0; 0]

ψ1(x) = [0; 0; 1; x; q(x))] (22)

with q(x) = x exp(−x/bq) for a choice of constant bq .
This basis was chosen based on preliminary experiments

with a particular choice of binning: ψi(x, u) = 1{x ∈
Ski

, u = ui} for a collection of intervals {Sj} and input
values {uj}. Further details are provided below; see in
particular Fig. 5 and surrounding discussion.

Stability of Q-learning Recent theory recalled in Section III
shows that exploration implies stability of Q-learning under
mild assumptions on the basis and the oblivious policy.
Crucial for stability is that the exploration gain be sufficiently
small. In the experiments surveyed here this was taken to be
time varying: εn = max{εf , ε0 + (1 − n/n0)(εf − ε0)},
defined so that εn = εf < ε0 for n ≥ n0. Consistent with
theory from [15], it was found in experiments that both the
scalar gain algorithm and Zap Q-learning were convergent
for sufficiently small εf .

In the case of Zap Q-learning, convergence held for a wide
range of εf ; the value εf = 0.1 was used in the experiments
described in the following. The scalar gain algorithm was
far less reliable: εf ≤ 10−4 was required for stability.

One can then ask, is the parameter estimate θ∗ obtained
using Zap Q-learning consistent with the output of the scalar
gain algorithm? Let sf denote the vector field for the mean
flow associated with the scalar gain Q-learning algorithm—
see (19). We computed the Jacobian Ā(θ∗) = ∂θ sf(θ∗) for the
parameter θ∗ obtained using Zap Q-learning, and discovered
that in most cases it had at least one eigenvalue in the strict
right half plane in C. In such cases, θ∗ is not asymptotically
stable for the mean flow. Standard stochastic approximation
theory implies that the parameter θ∗ would not be found
using the Q-learning algorithm (20a) with Gk = I .

Oblivious policy Exploration was designed to depend on
κ: at the start of episode i, a threshold Hε,i(κ) was drawn
uniformly at random from an interval [aκ, bκ]. Then, Un =
1{Xn ≥ Hκ,i} for each n in this episode.

The threshold approximations of eq. (10) motivated the
design of the interval:

[aκ, bκ] = [H∗
∞(κ) + η − δ,H∗

∞(κ) + η + δ] (23)

with δ > η > 0 constant. This ensured significant exploration
in all cases considered.

Numerical experiments Each parameter θ ∈ Rd defines
a policy, ϕθ(x) = argminuQ

θ(x, u) for x ∈ R+. In the
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Fig. 5. Insights from binning led to the basis in (22)

applications considered here this becomes

ϕθ(x) = 1{Qθ(x, 0) ≥ Qθ(x, 1)} , x ∈ R+ . (24)

In every successful application of Q-learning it was found
that this policy had a threshold form

ϕθ(x) = 1{x ≥ Hθ} , Hθ > 0 (25)

0 20 40 60 80 100
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40 
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60 

Q-learning 
CUSUM* 
Optimal

Average Cost

Fig. 6. Average cost comparisons.

Algorithm performance
is investigated in the re-
mainder of this section.
For each algorithm, PR-
averaging was used to de-
fine the final estimate θ̂,
and from this a final pol-
icy ϕ̂ :=ϕθ̂ whose perfor-
mance is compared to the
optimal.

Initial experiments in-
volved a choice of binning,
resulting in d = 2(d0 − 1), with d0 the number of bins.
However, binning proved insufficient for obtaining thresholds
close to optimal over all κ, due in part to a dependence on
the choice of bin spacing. This shortcoming is illustrated
in Fig. 5, where bin spacing influences the intersection
Qθ(x, 0) = Qθ(x, 1) for the policy (24). This inspired
the “smooth” basis in (22) for which we observed two
advantages compared to binning: 1/ better performance of
ϕ̂ for all κ, and 2/ reduced training time.

Histograms were generated to evaluate the variance of the
parameter estimates. Let ξ = ξ(N) ≥ N denote the total
number of samples (Xk, Uk) collected over N episodes, so
that θ̂ = θPR

ξ is the final estimate.
The asymptotic covariance of θ̃PR

ξ := θPR
ξ − θ∗ is denoted

ΣPR
Θ = lim

N→∞
ξE[ θ̃PR

ξ {θ̃PR
ξ }⊺]

This was estimated using the batch means method: M inde-
pendent runs resulted in the estimates {θPR

ξi , ξi : 1 ≤ i ≤M}.
The empirical covariance of {Zi =

√
ξi[θPR

ξi − θ̄PR] : 1 ≤
i ≤M} provides an estimate of ΣPR

Θ with vanishing error as
M → ∞ and then N → ∞.

An example is shown in Fig. 7 for the case κ = 27,
using M = 400 and three different values of N . Only
the fourth component of the five dimensional histogram is
shown, giving an estimate of ΣPR

Θ (4, 4). What is crucial here
is that the estimate of this value is nearly identical for the
three values of N chosen. Similar results were observed for
estimates the other diagonal entries of ΣPR

Θ .

-1 0 1 -1 0 1 104-1 0 1

Fig. 7. Histograms of {Zi
1 : 1 ≤ i ≤ M} for three values of N .

This is an example of how the CLT can be used to estimate
required run lengths by first conducting a large number of
independent experiments with a relatively short run length—
in this example, N = 104 provides a reasonable estimate of
the variance of Zi =

√
ξi[θPR

ξi−θ̄PR] for each i and N ≫ 104.
Thresholds Hθ,i

N yielded smaller empirical variance than
θiN for all κ. Example histograms showing the fourth param-
eter θiN (4) are included in Fig. 8 for M = 30 and N = 106.

-58 -56 -54 -52

-26 -25-25.56.5 6.6 6.7

7.6 7.7 7.8

Fig. 8. Histograms of {Hθ,i
N , θiN (4) : 1 ≤ i ≤ M} for N = 106

Fig. 6 shows the average cost of the policy ϕ̂ for the
ideal Gaussian case. Also included are estimates Ĵ∗(κ) using
CUSUM* and the optimal test—Shiryaev test defined below
(5). The confidence intervals for each are of 1σ standard
deviation. One metric for success is that the shape of the
average cost curve obtained through Q-learning resembles
the optimal, which we observed for κ ≥ 20.
Mismatched cases. Experiments were repeated for Cases 2
and 3: the surrogate information state {Xn} differs in each
case based on the respective LLRs, plotted in Fig. 4.

Recall the discussion surrounding (24): the policy ϕθ

obtained from Q-learning resulted in a threshold policy in
almost all cases. Therefore, the best performance from Q-
learning can be no better than CUSUM*, which uses the
optimal threshold (9a). Moreover, the performance in Cases
2 and 3 is poor when compared with Case 1—recall the
comparisons in Fig. 1.

However, in all three cases, the policy obtained from Q-
learning using κ ≥ 27 yielded average cost within 5% of its
respective CUSUM* cost estimate Ĵ∗(κ).

V. CONCLUSIONS

The theory and numerical results in this paper motivate
many directions for future research:
• The preliminary research surveyed in Section III moti-
vates research on variance reduction for stochastic gradient
descent.
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• The independence assumptions in Prop. 2.2 are unfortu-
nate. Relaxation of the i.i.d. assumption is the main topic of
[4], [5], along with conditions under which the independence
of τa and X0 may be relaxed; the assumptions of Lemma 2.1
are sufficient to obtain an extension of Prop. 2.2.

• In applications of interest to us there may be well
understood behavior before a change (which might represent
a fault in a transmission line, or a computer attack). We
cannot expect to have a full understanding of post-change
behavior. The choice of surrogate information state must be
reconsidered in these settings, perhaps based on techniques
for universal hypothesis testing (see [22], [8] and the refer-
ences therein).

VI. APPENDIX

Below we include simulation details for the QCD esti-
mates and RL experiments.

Actor-critic method Estimates of Σ∇ were obtained by
averaging N = 107 independent episodes.

Estimates of the gradient ∇̆Γ (θ) were obtained using a
much shorter run, with N = 104. Two estimates of the
objective were produced with N = 104: Γ(θ) using Monte-
Carlo to estimate the expectation in (12) directly and Γ̂(θ)
through numerical integration.

Q-learning for QCD For the ideal and mismatched cases,
Monte Carlo simulations were used to estimate MDE and
MDD for CUSUM*. Estimates were also obtained for the
optimal Shiryaev test Xn = pn = P{τa ≤ n | Y n

0 }.
Parameters for the stochastic processes {X0

k , X
1
k} and τa

matched those used for Q-learning. For both simulations,
N = 2e4 sample paths were run. A range of T = 103

thresholds 0 ≤ H ≤ 20 was used for CUSUM*, and 0 ≤ H ≤
1 for Shiryaev. For each H, a pair MDE(H) and MDD(H) was
obtained by averaging the eagerness and delay over N runs.
This repeated for M = 200 independent runs, averaging
again to obtain for each test a T × 2 matrix [MDE,MDD],
where each row corresponds to a different threshold H.
Estimates of these quantities are random variables, whose
variances were found to be very small. Estimates Ĥ

∗
(κ) and

Ĵ∗(κ) as described before eq. (21) were then obtained for a
range 2 ≤ κ ≤ 100 to generate the average curves in Fig. 6.
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