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ABSTRACT

Network science has been successful at characterizing the
topology of brain networks, showing alterations to the net-
work structure due to disease and cognitive function. Func-
tional connectivity networks (FCNs) represent different brain
regions as the nodes and the dependency between them as
the edges of a graph. One of the main tools to characterize
the topology of FCNs is community detection. While dif-
ferent community detection methods have been applied to
uncover the modular structure of the human brain, they rely
only on the connectivity matrix. With the advances in graph
signal processing, it is now possible to model the neuroimag-
ing data as graph signals defined on the nodes of the FCN
and the functional connectivity network as the underlying
graph. In this paper, we present an optimal graph filter design
procedure for identifying the community structure in FCNs.
The resulting community detection algorithm employs both
the connectivity and signal dynamics yielding a more robust
community structure. The proposed method is applied to
electroencephalogram (EEG) data collected from a study of
error monitoring in the human brain.

Index Terms— EEG, functional connectivity, graph sig-
nal processing, community detection

1. INTRODUCTION

In the past two decades, the field of complex networks has
emerged as a powerful tool to characterize the structure and
function of the human brain using a variety of tools from
graph theory and network science [1]. These analyses have
uncovered the organizational principles of brain networks
such as the presence of communities where groups of regions
are more strongly connected between each other than with
other communities [2, 3]. Network analysis has also been
related to behavioral and clinical measures to study develop-
ment and behavior [4, 5].

While network neuroscience provides an explanation of
how connectomes and functional brain activity support be-
havior, it is also important to analyze and understand the dy-
namics of functional signals with respect to the network struc-
ture. Tools from the field of graph signal processing (GSP)
have been recently tailored for this purpose [6]. Concepts of
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graph Fourier transform (GFT) and the corresponding notions
of graph frequency components and graph filters have been
utilized to analyze brain signals. These GSP tools permit the
decomposition of a graph signal into pieces that represent dif-
ferent levels of variability and have been used for dimension-
ality reduction and classification purposes [6, 7, 8, 9].

Inspired by this recent work, in this paper we explore the
modularity of brain networks from the perspective of GSP.
Modularity is thought to reflect functional and anatomical
segregation. Assessment of the brain modular organization
may provide a key to understanding the relation between
aberrant connectivity and brain disease. Various methods
have been deployed to investigate the modular structure of
brain networks [10, 11]. Typically, these methods rely on the
optimization of a quality function that quantifies the goodness
of a network partition against that of an ensemble of random-
ized networks with similar statistical properties. However,
these methods rely only on the adjacency matrix constructed
from neuroimaging and do not exploit the time series data
associated with each node.

In recent years, several methods have been proposed to la-
bel nodes of a graph by combining the node attributes and link
information [12, 13]. The most common approach is graph
embedding, in particular graph autoencoders [14, 15, 12]. In
recent work, we proposed a graph signal processing based ap-
proach, GraFiCA [16], where optimal polynomial graph fil-
ters are learned for clustering. In the first step, optimal graph
partitioning is learned for the given node attributes while in
the second step, the best linear graph filter that separates the
node attributes from each other is learned for the given par-
tition. Unlike graph autoencoders, the proposed approach
learns graph filters that minimize the within-class dissimilar-
ity and maximize the between-class dissimilarity. In this pa-
per, we evaluate the use of GraFiCA in an unsupervised set-
ting for learning the community structure of functional con-
nectivity networks of the brain. In particular, we study the
community structure of FCNs following an error response in
a Flanker task.

2. BACKGROUND

2.1. Functional Connectivity Networks

In this paper, reduced interference Rihaczek (RID-Rihaczek)
time-frequency phase synchrony is used to quantify the func-
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tional connectivity between two brain regions [17]. For a sig-
nal z;(¢), the RID-Rihaczek distribution is defined as [17]:
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where e_@ is the Choi-Williams kernel [18], IF s
the kernel function for the Rihaczek distribution [19], and
A(B,7) is the ambiguity function defined as A(8,7)
fi’ooo zi(u+ 3)zf (u — ) e du.

From this complex distribution, one can obtain the in-
stantaneous phase, ¢;(t, f), and the phase difference between
two signals x; and z; as ¢; ;(t, f) = arg WM]
Phase Locking Value (PLV), which quantifies the phase syn-
chrony between z; and x;, is defined as the consistency of the
phase differences across trials and can be computed as:
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where R is the total number of trials and ¢; ;(Z, f) is the phase
difference for the rth trial. Once the pairwise PLV values are
computed between all pairs of electrodes, the weighted ad-
jacency matrix corresponding to the FCN can be constructed
as the average of PLV; ;(t, f) within the time interval and
frequency band of interest.

2.2. Graphs

A graph G = (V,E,A) is defined by a node set V' with
V| = N, an edge set E and the adjacency matrix A €
RV*N_ The graph Laplacian is given by L = D — A,
where D is the diagonal degree matrix defined as D;; =
>_; Aij. The normalized Laplacian matrix L, is defined as
L, = D'/2(D-A)D'/2 = Iy — D-'/2AD"1/2 =
In — A, where Iy is the identity matrix of size N and
A, is the normalized adjacency matrix. The spectrum of
L, is composed of the diagonal matrix of the eigenval-
ues, A = dz'ag()\l, . --;/\N) with A; < Ay < . < AN,
and the eigenvector matrix U = [uq|ug|. .. |uy] such that
L, = UAUT [20].

2.3. Graph Filtering

Signals defined on the nodes of an attributed graph can be
represented as a matrix F € RV P, where p is the number of
attributes for each node. A linear graph filter is described as
the linear operator

T-—1 T—1
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where T is the filter order and h;’s are the coefficients.
A filtered graph signal F is obtained by filtering F with
H(L), F = H(L)F = UH(A)UTF, where H(A) =
diag(H(\1), ..., H(Ax)).

3. ATTRIBUTED GRAPH CLUSTERING (GraFiCA)

3.1. Problem Formulation

Given a network with K communities, V1,V5, ..., Vg, nor-
malized adjacency matrix corresponding to the FCN, A,, =
D~'/2AD~'/2, and the graph signal matrix F € R *P_ cor-
responding to the neurophysiological signals corresponding
to each node, we propose to learn the node labels and de-
sign polynomial graph filters such that the within-community
association is minimized while the between-community dis-
tance of the filtered attributes is maximized. The proposed
cost function is formulated as
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where the first and second terms quantify the similarity of
the filtered node attributes within clusters and between clus-
ters, respectively. vol(V,) is the total degree of the nodes in
cluster ¢ based on the dissimilarity matrix W with W;; =
||Fi. — F}j.||2. The goal is to minimize the cost function in (3)
in terms of both the graph partition, {V3,V3,..., Vk}, and
the graph filter coefficients h;’s. An alternating minimization
approach is proposed to solve this joint optimization problem.

3.1.1. Clustering

In the first step, given F, we minimize (3) with respect to the
graph partition, {V;,V5,...,Vg}. It can be shown that the
two terms in (3) correspond to the normalized association and
normalized cut, respectively. Using the relationship between
normalized association and normalized cut, these two terms
can be combined and written as tr(ZTD~1/2WD~1/2Z),
where Z = DY/2Z and Z'Z = 1, and Z is the cluster in-
dicator matrix defined in [16]. For the clustering task, we add
a regularization term that quantifies the similarity between the
normalized adjacency matrix and the cluster assignment ma-
trix, ZZ " . Thus, the problem formulation becomes

minimize tr(Z'D~/*WD™'?Z) + a| A - ZZ||}.
Z,ZTZ=1

)

Rewriting the last term in terms of the trace function, and
using ZTZ = I, we obtain

minimize tr(Z" (D~Y2WD~Y/2 —

2aA,)7Z),
Z,27 7=1 ahAn)Z), ()

which can be solved using the eigenvectors corresponding to
the K smallest eigenvalues of W,, — 2aA,,.

3.1.2. Optimal Filter Design

Once the cluster assignments are obtained, we want to deter-
mine the coefficients of the optimal polynomial filter H(A) =
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3:01 h;A! for the clustering task for a given filter order 7.
Using F = UE::OI hA*UTF, the cost function in (3) can
be rewritten in terms of the filter coefficients h;’s as follows:

T-1 T-1
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ninimiz ( ; t (B—-~C) g ¢ ),
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where B and C are K block diagonal matrices defined as
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The problem in (6) can be solved using the the eigenvec-
tors of matrix S € RT*7 defined as S;; = tr(FTUA'U T (B—
yC)UAJUF), as derived in [16]. Once we obtain h =
[ho hi hr_1] ", weupdate F = U7 ' b, A'UTF
and the cluster assignments based on the filtered attributes us-
ing W. Since there are T possible solutions to this system,
we choose the h that gives the cluster assignment with the
highest evaluation metric. Since we do not have ground truth
for the community structure in FCNs, we use modularity as an
evaluation metric. This process is repeated until convergence.

3.2. Determining the Number of Clusters

In the selection of the best filter among all eigenvectors of S,
GraFiCA presented above assumes that the number of clusters
and the ground truth community structure are known a priori.
In the case of FCNs, this is not true. For this reason, in the
proposed application we first set the number of communities
to K and then determine the optimal filter parameters, h, as
the one that maximizes the modularity of the learned partition,
where modularity, @, is defined as:

N N
Q= Z Z(Aij — 7P )Jg,;gj ) )]

i=1 j=1

where F;; is the expected edge weight between nodes ¢ and
j under the null model, g; is the community of node ¢, and
dg.9; = 1if g; = g; and 0 otherwise.

3.3. Consensus Community Structure

Once the community structure of the FCNs for a group of
subjects are detected, it is often desirable to find a group com-
munity structure, which summarizes the shared communities
across subjects. In this paper, we propose a group community
structure detection method based on multiview graphs. Given
L subijects, for each subject we obtain the optimal filter based

on maximizing modularity. The resulting community labels
are used to construct the binary community structure matrix,
Z € RV*N where Z;; = 1 if nodes i and j are in the same
community. This process results in L community structure
matrices, which can be modeled as the layers of a multiview
graph, where each layer is an undirected, binary graph corre-
sponding to each subject. The consensus community structure
can be found from this multiview graph using Spectral Clus-
tering on Multi-Layer graphs (SC-ML) [21] where spectral
clustering is applied to a modified Laplacian defined as:

L L
Linoa =Y L' —a) U'U', @®)
=1 =1

where L! is the the normalized graph Laplacian and U is the
low-rank subspace embedding of layer . In this work, we set
a = 0.5, following the guidelines in [21].

4. RESULTS

4.1. EEG Data

EEG data is collected from a cognitive control-related error
processing study where participants were performing a let-
ter version of the speeded reaction Flanker task [22]. Each
participant was presented with a string of five letters at each
trial. Letters could be congruent (e.g., SSSSS) or incongru-
ent stimuli (e.g., SSTSS) and the participants were instructed
to respond to the center letter with a standard mouse. Each
trial began with 35ms of flanking stimuli (e.g. SS SS), and
followed by the target stimuli (e.g., SSSSS/SSTSS), which
were presented for 100 ms (total presentation time is 135ms).
Trials were followed by an inter-trial random interval ranging
from 1200 to 1700 ms. The trials were conducted to study
the Error-Related Negativity (ERN) after an error response,
where each trial was one second long. Total number of trials
was 480 in which the total number of error trials in different
participants varied from 20 to 61.

The EEG was recorded using The ActiveTwo system
(BioSemi, Amsterdam, The Netherlands). The international
10/20 system is followed for placement of 64 Ag—AgCl elec-
trodes. The sampling frequency of the data was 512 Hz.
After removal of the trials with artifacts, the Current Source
Density (CSD) Toolbox [23] was employed to minimize the
volume conduction.

As previous studies indicate increased synchronization as-
sociated with the ERN in the theta frequency band (4-7 Hz)
and 25-75 ms time window [22, 24, 25, 26], all analysis was
performed for this time and frequency range. The average
phase synchrony corresponding to theta band and 25-75 ms
time window were recorded into separate 64 x 64 connectiv-
ity matrices, one for each subject. In this paper, we consider
data from 20 participants.
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4.2. Community Detection

Using the FCNs corresponding to the theta frequency band
and ERN time window, we define the graph signals F &
R64%512 where for each node we take a 1 second record-
ing including the ERN time window obtained by averaging
across trials. For each subject, we learn the optimal filter for
T = 3 and the corresponding community structure with dif-
ferent values of K ranging from 4 to 10.

In Fig. 1, the average variation of the community struc-
ture across 20 subjects is shown with respect to the number of
communities for our method and for spectral clustering. From
this figure, it can be seen that for GraFiCA K = 8 yields the
most stable and consistent community structure across sub-
jects. Furthermore, it can be seen that the community struc-
ture is more consistent across subjects for GraFiCA compared
to regular spectral clustering implying that using both connec-
tivity and signal dynamics for community detection results in
more robust communities.

For this reason, we evaluate the community structure
for K = 8. From Fig. 2, a community corresponding to
the lateral prefrontal cortex (IPFC) regions including the
right-frontal electrodes F2, F4, F6 can be seen. In addi-
tion to this community, there is a community comprised of
the central-parietal regions corresponding to medial PFC
(mPFC). Another community centers on medial-frontal sites
including FCz, consistent with the time-domain ERN compo-
nent topography. Activity in parietal-occipital regions were
characterized with three different clusters. These results are
in line with prior work demonstrating increased connectiv-
ity between electrodes over mPFC and electrodes over IPFC
following the commission of an error [26].

02

[—e—speciral Chustering|
=== GraFiCA

Murmber of Communities

Fig. 1: Comparison of group variance for spectral clustering
and GraFiCA.

5. CONCLUSIONS

In this paper, we introduced a GSP based approach to study-
ing the modular structure of FCNs of the brain. In partic-
ular, we employed a recently introduced graph filter learn-
ing method, GraFiCA, for simultaneous graph filtering and
node labeling. The proposed method learns the optimal poly-

Fig. 2: Consensus community structure for K = 8.

nomial filter for discriminating between communities and is
evaluated on FCNs constructed from EEG data. The appli-
cation of the framework to a study of error-related negativity
revealed communities aligned with lateral and medial PFC
regions known to play a key role in cognitive control. Future
work will consider the extension of this framework by consid-
ering different filter orders, T, and learning multiple filters to
obtain the representation of the graph signals across multiple
frequency scales.

6. COMPLIANCE WITH ETHICAL STANDARDS

The study was designed following the experimental protocol
and guidelines approved by the Institutional Review Board
(IRB) of the Michigan State University (IRB: LEGACY13-
144). The data acquisition was performed following the
guidelines and regulations established by this protocol. Writ-
ten and informed consent was collected from each participant
before data collection.
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