
Multiview Graph Learning Based on Node
Perturbation Model
Mohammad Al-Wardat and Selin Aviyente

Department of Electrical and Computer Engineering
Michigan State University

East Lansing, USA
e-mail: alwardat@msu.edu, aviyente@msu.edu

Abstract—Graph topology inference, i.e., learning graphs from
a given set of nodal observations, is a significant task in many
application domains. Existing approaches are mostly limited to
learning a single graph assuming that the observed data is
homogeneous. This is problematic because many modern datasets
are heterogeneous or mixed and involve multiple related graphs,
i.e., multiview graphs. Recent work proposing to learn multiview
graphs ensures the similarity of learned view graphs through
either pairwise regularization or consensus-based regularization.
In most of the existing approaches, the similarities and differences
between networks are assumed to be driven by individual edges.
However, a node-based approach provides a more intuitive inter-
pretation of the network differences. In this paper, we introduce
a node perturbation model to learn multiview graph Laplacians
with the assumption that the differences between the K networks
are due to individual nodes that are perturbed across views. An
optimization framework is formulated to simultaneously learn
the graph Laplacians of K views with the assumption that the
observed signals are smooth with respect to the underlying graph
Laplacians. The proposed method is compared to existing edge-
based multiview Laplacian learning methods as well as joint
graphical Lasso based structure inference methods.

Index Terms—Graph learning, perturbation model, smooth-
ness, multiview graphs.

I. INTRODUCTION

Graphs and graph-structured data are encountered in a
variety of machine learning and signal processing applications.
Some examples include social networks, gene regulatory net-
works and brain networks. While some of these applications
such as social and traffic networks come with the graphical
structure, in other cases such as in biological networks the
graphical structure needs to be inferred from the observed
signals. A variety of graph learning/inference methods have
been proposed in both the signal processing and statistics
literature [1]–[3].

Existing graph inference approaches are mostly limited to
homogeneous datasets, where the observed graph signals are
assumed to be identically distributed and defined on a single
graph. In many applications, the data may be heterogeneous or
mixed and come from multiple related graphs, i.e., multiview
graphs. In these situations, learning the topology of each view
by incorporating the relationships among views can improve
the performance [4]–[6].

Existing methods for joint graphical structure inference are
mostly based on Gaussian graphical models. These methods

extend graphical lasso [3] to the multiview case by employing
various penalty terms to exploit the common characteristics
shared by the different views [5], [7]–[11]. One prominent
example of this approach is the joint graphical lasso [5],
where fused or group lasso penalties are used to encourage
topological similarity across views. However, these methods
are limited by the assumption that the observed graph signals
are Gaussian which is usually not true for real-world applica-
tions. Furthermore, they learn the precision matrices without
imposing any graph structure constraints on the learned views.
Recently, these joint learning approaches have been extended
to jointly learn multiple graph Laplacian matrices instead of
precision matrices [12]–[14].

However, all of these methods quantify the pairwise sim-
ilarity between the views based on edge similarity. In many
settings, such as gene regulatory networks [9], the differences
between views may be better explained through the changes
in the connectivity of a few nodes. This way of modeling
the differences imposes a structure and provides an intuitive
interpretation of the network differences.

In this paper, we introduce a joint graph Laplacian learning
framework where the differences across the views are assumed
to be driven by the perturbation to the individual nodes’ con-
nectivity across views. Based on this assumption, we introduce
a Laplacian learning framework using the smoothness crite-
rion, i.e., the graph signals are smooth or low frequency with
respect to the underlying graph structure, with a regularization
term that captures the node-based similarity across views. We
focus on learning graphs where each view is assumed to be
a perturbed version of an underlying graph by changing the
connectivity of r nodes with r << n. The corresponding
optimization problem is solved using the Alternating Direction
Method of Multipliers (ADMM).

II. BACKGROUND

A. Notations

We represent a matrix of size n× n as A ∈ Rn×n, where
the (i, j)-th entry of the matrix A is denoted as Aij∀ i, j.
The trace of A is defined as: tr(A) =

∑
i Aii, which is

the sum of its diagonal elements. The symbol ⊤ is used to
denote the transpose operation. The Frobenius norm, denoted
as ∥A∥F , is given by:∥A∥F =

√∑
i,j A

2
ij , which computes
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the square root of the sum of the squared entries of the
matrix. The ℓ2,1 norm, denoted as ∥A∥2,1, represents the
sum of the ℓ2-norms of the rows of A. It is defined as:
∥A∥2,1 =

∑
i

√∑
j A

2
i,j . The symbol ⊙ is the Hadamard

product (element-wise) product of two matrices.

B. Graph Theory

An undirected graph G = (V,E) consists of a set of n
nodes in V , where |V | = n, and a set of edges E ⊆ V × V .
An edge connecting nodes i and j is denoted as Eij and is
associated with a weight wij . The graph G can be represented
algebraically by an n × n symmetric adjacency matrix W ∈
Rn×n. The graph Laplacian L is given by: L = D−W, where
D is a diagonal matrix called the degree matrix. Each diagonal
element Dii is Dii =

∑n
j=1 Wij . The eigendecomposition of

L is L = U⊤ΛU, where U is a matrix whose columns are the
eigenvectors of L, and Λ is a diagonal matrix containing the
eigenvalues in ascending order, 0 = Λ11 ≤ Λ22 ≤ · · · ≤ Λnn.

C. Smoothness Based on Graph Learning

A graph signal defined on G is a function x : V → R, which
can be represented as a vector x ∈ Rn, where each entry xi

corresponds to the signal value at node i. The eigenvectors and
eigenvalues of the Laplacian matrix of G are used to define
the Graph Fourier Transform (GFT). The GFT of x is given
by: x̂ = U⊤x, where x̂i represents the Fourier coefficient at
the i-th frequency component Λii.

A graph signal x is considered smooth if most of the energy
of x̂ is concentrated in the low-frequency components. The
smoothness of x is quantified by the total variation of x,
measured using the spectral density of its Fourier transform
as:

trace(x̂⊤Λx̂) = trace(x⊤UΛU⊤x) = trace(x⊤Lx). (1)

III. MULTIVIEW GRAPH LEARNING BASED ON NODE
PERTURBATION MODEL (MVGL-NP)

Given a set of signal samples for each view X(k) =

[x
(1)
1 , . . . ,x

(k)
n ], where n and k represent the number of nodes

and views, respectively, the goal is to learn the individual
graph structures, i.e., the graph Laplacians, Lk. Assuming that
the individual views differ due to particular nodes that are
perturbed across the views, thus have a completely different
connectivity pattern, the problem of learning the individual
graph Laplacians, Lk, with the smoothness assumption can be
expressed as:

min
Lk,Vk

K∑
k=1

tr(Xk⊤LkXk) + γ1∥Lk − I⊙ Lk∥2F

− γ2tr(log(I⊙ Lk)) + γ3∥Vk∥2,1

s.t. Lk ⪰ 0,Lk · 1 = 0, (K − 1)Lk −
K∑

j ̸=k

Lj = Vk +Vk⊤,

(2)

where Xk ∈ R(n×dv) is the data samples of the kth view with
dimension dv . The first term quantifies the total variation of

the observed signal, Xk, with respect to the graph Laplacian
Lk. The second term enforces sparsity in the learned graphs,
while the third term uses a logarithmic penalty on the degrees
of the learned graphs to ensure connectivity [15]. The last term
penalizes differences between the views using the row-column
overlap norm (RCON) [9]. Lk is constrained to be in = {L :
L ⪰ 0, Lij = Lji ≤ 0 ∀i ̸= j, L1 = 0}, which is the set of
valid Laplacians. The last constraint ensures that the difference
between each view, Lk, and every other view for k ̸= j has
a row-column sparse structure captured by Vk + (Vk)⊤. In
general, the optimization problem in Eq. (2) is nonconvex due
to the constraints. To deal with these nonconvex constraints,
we present an equivalent form of the constraints Lk ⪰ 0,Lk ·
1 = 0 as follows [16]:

Lk ⪰ 0,Lk · 1 = 0 ⇐⇒ PEkP⊤, Ek ⪰ 0, (3)

where P ∈ Rn×(n−1) is the orthogonal complement of
the vector 1, i.e., P⊤P = I and P⊤1 = 0, and Ek ∈
R(n−1)×(n−1) is a positive semi-definite matrix for the kth

view.
The optimization problem in Eq.(2) can be solved using

Alternating Direction Method of Multipliers (ADMM). The
solution of the optimization problem introduced in Eq.(2) starts
with introducing an auxiliary variable, Ck, Wk, Hk, Zk, and
Qk, to separate the variables where the optimization problem
will be reformulated as follows:

min
Vk,WkCk,Ek,

Zk,Qk,Hk

K∑
k=1

tr(BkEk) + γ1∥PEkP⊤ − Zk∥2F

− γ2tr(log(Z
k)) + γ3∥Qk∥2,1

s.t. Ck = PEkP⊤,Hk = Ck,Vk = Qk, I⊙Ck = Zk,

(K − 1)Hk −
K∑

j ̸=k

Hj = Vk +Wk⊤,Vk = Wk⊤,

(4)
where Bk = P⊤XkXk⊤P. The augmented Lagrangian func-
tion of Eq.(4) can be written as follows:

min
Vk,WkCk,Ek,

Zk,Qk,Hk

K∑
k=1

tr(BkEk) + γ1∥PEkP⊤ − Zk∥2F − γ2tr(log(Z
k))

+ γ3∥Qk∥2,1 +
α

2
∥(K − 1)Hk −

K∑
j ̸=k

Hj − (Vk +W⊤k
) +

Fk

α
∥2F

+
α

2
∥Vk −W⊤k

+
Gk

α
∥2F +

α

2
∥Hk −Ck +

Mk

α
∥2F

+
α

2
∥Zk − I⊙Ck +

Uk

α
∥2F +

α

2
∥Ck −PEkP⊤ +

Yk

α
∥2F

+
α

2
∥Vk −Qk +

Nk

α
∥2F ,

(5)

where Yk, Fk, Gk, Uk Mk, and Nk are the Lagrangian
multipliers and α is the penalty parameter. Eq. (5) can be
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solved by dividing it into multiple subproblems and optimizing
each variable while fixing the others as follows:

• Subproblem Ek: To update Ek, we fix all the other
variables and consider only the terms with Ek as follows:

Ek
l+1 = min

Ek

K∑
k=1

[
tr(BkEk

l ) + γ1∥PEkP⊤ − Zk∥2F

+
α

2
∥Ck

l −PEk
l P

⊤ +
Yk

l

α
∥2F

]
.

(6)

By taking the gradient with respect to Ek and equating it
to zero, the solution of Eq. (6) can be found as follows:

Ek
l+1 =

2γ1P
⊤ZkP+ αP⊤Ck

l P+P⊤Yk
l P−Bk⊤

2γ1 + α
.

(7)

• Subproblem Zk: The solution of Zk can be found by
solving the following problem:

Zk
l+1 = min

Zk

K∑
k=1

[
γ1∥PEkP⊤ − Zk∥2F − γ2tr(log(Z

k))

+
α

2
∥Zk − I⊙Ck +

Uk

α
∥2F

]
.

(8)

The solution of Eq. 8 can be found as :

Zk
l+1=

Jk +
√
(Jk)2 + 4(2γ1 + α)γ2I

2(2γ1 + α)
, (9)

where Jk = 2γ1PEkP⊤ + αI⊙Ck −Uk.
• Subproblem Ck: The solution of Ck can be found by

solving the following problem:

Ck
l+1 = min

Ck

K∑
k=1

[
α

2
∥Ck

l −PEk
l+1P

⊤ +
Yk

α
∥2F

+
α

2
∥Hk −Ck +

Mk

α
∥2F + ∥Zk − I⊙Ck +

Uk

α
∥2F

]
.

(10)

The problem in (10) will update the diagonal and off-
diagonal parts of the matrices, separately. To find the
solution, the gradient with respect to C(k) is taken and
set to zero. The resulting solution can be expressed as
follows:

[
Ck

l+1

]
ij

=


α[PEkP⊤]ii−Y k

ii+αHk
ii+Mk

ii+Zk
ii+Uk

ii
3α

, for i = j,
α[PEkP⊤]ij−Y k

ij+αHk
ij+Mk

ij

2α
, for i ̸= j.

(11)
• Subproblem Hk: In order to update Hk, we fix all the

other variables and consider the terms with Hk only as
follows:

Hk
l+1 = min

Hk

K∑
k=1

[
α

2
∥Hk

l −Ck
l+1 +

Mk
l

α
∥2F

+
α

2
∥(K − 1)Hk

l −
K∑

j ̸=k

Hj
l − (Vk

l +Wk
l ) +

Fk
l

α
∥2F

]
.

(12)

By taking the gradient of (12) and setting it to zero, the
solution of Hk can be written as follows:

[
Hk

l+1

]
ij
=


[
Γk
h ⊙ I

]
+
, for i = j[

Γk
h ⊙ (11⊤ − I)

]
−
, for i ̸= j,

(13)
where Γk

h =
α
∑K

j ̸=kH
j
l +αVk

l +αWk
l −Fk

l +αCk
l+1−Mk

l

αK . The
term

[
Γk
h⊙I

]
+

represents a diagonal matrix in which all
elements are non-negative, where positive elements are
retained and negative elements are set to zero. The term[
Γk
h ⊙ (11⊤ − I)

]
−

represents an off-diagonal matrix
where only negative elements are kept, and positive
elements are replaced by zeros. This ensures that Hk is
a valid Laplacian matrix.

• Subproblem Vk: In order to update Vk, we fix all the
other variables and consider the terms with Vk only as
follows:

Vk
l+1 = min

Vk

K∑
k=1

[
α

2
∥Vk

l −Wk
l
⊤

+
Gk

l

α
∥2F +

α

2
∥Qk

l −Vk
l +

Nk
l

α
∥2F

+
α

2
∥(K − 1)Hk

l+1 −
K∑

j ̸=k

Hj
l+1 − (Vk

l +Wk
l ) +

Fk
l

α
∥2F

]
.

(14)

By taking the derivative and equating it to zero, the
solution of Eq. (14) can be found as:

Vk
l+1 =

ϕk − αWk
l + Fk

l + αQk
l +Nk

l + αWk
l
⊤ −Gk

l

3α
, (15)

where ϕk = α(K − 1)Hk
l+1 − α

∑K
j ̸=k H

j
l+1.

• Subproblem Qk: In order to update Qk, we fix all the
other variables and consider the terms with Qk only as
follows:

Qk
l+1 = min

Qk
γ3∥Qk

l ∥2,1 +
α

2
∥Qk

l −Vk
l+1 +

Nk
l

α
∥2F .

(16)

The solution of Eq. (16) can be found by using the
proximal operator for l2,1-norm, and it can be found as
follows:

Qk
l+1 = T2,1(Vl+1 +

Nl

α
,
γ3
α
). (17)

• Subproblem Wk: The solution of Wk
l+1 can be found

by solving the following minimization problem:

Wk
l+1 = min

Wk

K∑
k=1

[
α

2
∥(K − 1)Hk

l+1 −
K∑

j ̸=k

Hj
l+1 − (Vk

l+1 +Wk
l ) +

Fk
l

α
∥2F

+
α

2
∥Vk

l+1 −Wk
l
⊤

+
Gk

l

α
∥2F

]
.

(18)
Then, the solution of Wl+1 can be written as follows:

Wk
l+1 =

Ψk − αVk
l+1 + Fk

l + αV⊤
k l+1 +G⊤

l

2α
, (19)
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where Ψk = α(K − 1)Hk
l+1 − α

∑K
j ̸=k H

j
l+1.

Finally, the Lagrangian multipliers and the penalty pa-
rameters can be updated as follows:

Yk
l+1 = Yk

l + α(Ck
l+1 −PEk

l+1P
⊤).

Fk
l+1 = Fk

l + α((K − 1)Hk
l+1 −

K∑
j ̸=k

Hj
l+1 − (Vk

l+1 +Wk
l+1)).

Gk
l+1 = Gk

l + α(Vk
l+1 −W⊤k

l+1).

Mk
l+1 = Mk

l + α(Hk
l+1 −Ck

l+1).

Nk
l+1 = Nk

l + α(Vk
l+1 −Qk

l+1).

Uk
l+1 = Uk

l + α(Zk
l+1 − I⊙Ck

l+1).

αl+1 = µαl, µ > 1.
(20)

IV. EXPERIMENTAL RESULTS

A. Simulated Networks

In our experiments, an Erdős-Rényi (ER) random network
model is used to test the performance of the proposed model.
Node pairs are connected independently with a fixed proba-
bility of 0.1, resulting in a graph where edges are distributed
uniformly at random. In this network model, the adjacency
matrix A is replicated K times to generate the different views.
To introduce perturbations, r nodes are randomly selected.
For each of these randomly selected nodes, the corresponding
rows and columns in all K matrices are updated with entries
independently sampled from a Bernoulli distribution. This
process generates r perturbed nodes across K views.

B. Data Generation

Given K view graphs, each Xk ∈ Rn×dk is derived
from Gk using the smooth graph filter h(Lk) as described
in [17]. Specifically, each column of Xk is generated as
Xk

·j = h(Lk)x0, where x0 ∼ N (0, I). In this paper, we
used a Gaussian filter (h(L) = L†), which results in Gaussian
distributed signals where the graph Laplacian and the precision
matrix are equivalent. Additionally, η% noise is added to
each generated Xk. The average F-score is reported across
10 realizations.

C. Benchmark Models

We evaluate the proposed method by comparing it with the
following approaches:

• SV: A single-view graph learning method proposed in [1],
which independently learns the graph topology for each
view under the assumption that the signals are smooth
with respect to the graph of each view.

• MVGL: A multiview graph learning approach introduced
in [14], which jointly learns multiple graph Laplacians
by assuming signal smoothness on each view’s graph.
Additionally, it enforces similarity between views by
minimizing the ℓ1-norm error between each view’s graph
and the learned consensus graph.

• GGL: Group Graphical Lasso (GGL) model utilizes
group lasso penalties to promote topological similarity
across different views. However, its effectiveness is con-
strained by the assumption that the observed graph signals

follow a Gaussian distribution, which is often not the case
in real-world networks [5].

1) Results and Discussion: In the first experiment, we fix
the number of nodes, n = 100, the number of signal samples,
dv = 900, the number of perturbed nodes, r = 4, and vary the
number of views. As it can be seen in Fig. 1, as the number of
views increases the performance of multiview graph learning
techniques improve while the performance of single view
method stays constant. The proposed method outperforms
both multiview Laplacian learning and GGL as it takes the
perturbation model into account.

In the second experiment, we fix the number of views, K =
8, the number of nodes and perturbed nodes to, n = 100,
r = 4, respectively, and vary the number of signal samples.
The performance of all methods improve with the increase in
the number of samples.

Finally, in the last experiment, we fix the number of nodes,
n = 100, the number of samples dv = 900, the number of
views, K = 10, and vary the number of perturbed nodes. As
more nodes are perturbed, the assumption of the difference
between views having a few number of nonzero rows and
columns becomes weaker thus reducing the performance of
all methods. However, MVGL-NP is still the most robust one
against perturbations.

V. CONCLUSIONS

In this paper, we introduces a node-based multiview graph
learning framework. The proposed framework assumes the
smoothness of graph signals with respect to the underlying
graph structure while making the assumption that each view
is a perturbed version of the others through a random wiring
of a small number of nodes’ connections. Based on this
assumption, we introduced an optimization framework that
incorporated the structured sparsity of the difference between
pairs of views. The proposed framework is evaluated on
simulated graph signal models for different number of signals,
views and perturbed nodes. Future work will consider other
node-based similarity metrics across views such as the co-hub
model.

REFERENCES

[1] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning lapla-
cian matrix in smooth graph signal representations,” IEEE Transactions
on Signal Processing, vol. 64, no. 23, pp. 6160–6173, 2016.

[2] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs
from data: A signal representation perspective,” IEEE Signal Processing
Magazine, vol. 36, no. 3, pp. 44–63, 2019.

[3] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–
441, 2008.

[4] K. Tsai, O. Koyejo, and M. Kolar, “Joint gaussian graphical model
estimation: A survey,” Wiley Interdisciplinary Reviews: Computational
Statistics, vol. 14, no. 6, p. e1582, 2022.

[5] P. Danaher, P. Wang, and D. M. Witten, “The joint graphical lasso for
inverse covariance estimation across multiple classes,” Journal of the
Royal Statistical Society Series B: Statistical Methodology, vol. 76, no. 2,
pp. 373–397, 2014.

[6] M. Navarro, Y. Wang, A. G. Marques, C. Uhler, and S. Segarra, “Joint
inference of multiple graphs from matrix polynomials,” The Journal of
Machine Learning Research, vol. 23, no. 1, pp. 3302–3336, 2022.

1033

Authorized licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 15:09:26 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)

Fig. 1. The impact of increasing the number of (a) views, (b) samples,and (c) perturbed nodes on F-score value.

[7] J. Guo, E. Levina, G. Michailidis, and J. Zhu, “Joint estimation of
multiple graphical models,” Biometrika, vol. 98, no. 1, pp. 1–15, 2011.

[8] W. Lee and Y. Liu, “Joint estimation of multiple precision matrices
with common structures,” The Journal of Machine Learning Research,
vol. 16, no. 1, pp. 1035–1062, 2015.

[9] K. Mohan, P. London, M. Fazel, D. Witten, and S.-I. Lee, “Node-based
learning of multiple gaussian graphical models,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 445–488, 2014.

[10] J. Ma and G. Michailidis, “Joint structural estimation of multiple
graphical models,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 5777–5824, 2016.

[11] F. Huang and S. Chen, “Joint learning of multiple sparse matrix gaussian
graphical models,” IEEE transactions on neural networks and learning
systems, vol. 26, no. 11, pp. 2606–2620, 2015.

[12] Y. Yuan, K. Guo, Z. Xiong, T. Q. Quek et al., “Joint network topology
inference via structural fusion regularization,” IEEE Transactions on
Knowledge and Data Engineering, 2023.

[13] X. Zhang and Q. Wang, “A graph-assisted framework for multiple graph
learning,” IEEE Transactions on Signal and Information Processing over
Networks, 2024.

[14] A. Karaaslanli and S. Aviyente, “Multiview graph learning with consen-
sus graph,” arXiv preprint arXiv:2401.13769, 2024.

[15] V. Kalofolias, A. Loukas, D. Thanou, and P. Frossard, “Learning time
varying graphs,” in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Ieee, 2017, pp. 2826–2830.

[16] L. Zhao, Y. Wang, S. Kumar, and D. P. Palomar, “Optimization al-
gorithms for graph laplacian estimation via admm and mm,” IEEE
Transactions on Signal Processing, vol. 67, no. 16, pp. 4231–4244, 2019.

[17] V. Kalofolias, “How to learn a graph from smooth signals,” in Artificial
intelligence and statistics. PMLR, 2016, pp. 920–929.

1034

Authorized licensed use limited to: Michigan State University. Downloaded on July 01,2025 at 15:09:26 UTC from IEEE Xplore.  Restrictions apply. 


