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Abstract—In this paper, we propose a new approach to train
deep learning models using game theory concepts including
Generative Adversarial Networks (GANs) and Adversarial Train-
ing (AT) where we deploy a double-oracle framework using
best response oracles. GAN is essentially a two-player zero-sum
game between the generator and the discriminator. The same
concept can be applied to AT with attacker and classifier as
players. Training these models is challenging as a pure Nash
equilibrium may not exist and even finding the mixed Nash
equilibrium is difficult as training algorithms for both GAN and
AT have a large-scale strategy space. Extending our preliminary
model DO-GAN, we propose the methods to apply the double
oracle framework concept to Adversarial Neural Architecture
Search (NAS for GAN) and Adversarial Training (NAS for AT)
algorithms. We first generalize the players’ strategies as the
trained models of generator and discriminator from the best
response oracles. We then compute the meta-strategies using a
linear program. For scalability of the framework where multiple
network models of best responses are stored in the memory, we
prune the weakly-dominated players’ strategies to keep the ora-
cles from becoming intractable. Finally, we conduct experiments
on MNIST, CIFAR-10 and TinyImageNet for DONAS-GAN. We
also evaluate the robustness under FGSM and PGD attacks
on CIFAR-10, SVHN and TinyImageNet for DONAS-AT. We
show that all our variants have significant improvements in
both subjective qualitative evaluation and quantitative metrics,
compared with their respective base architectures.

Index Terms—Generative adversarial networks, neural archi-
tecture search, adversarial training, double oracle, game theory.
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I. INTRODUCTION

OST machine learning algorithms involve optimizing

a single set of parameters to minimize a single cost
function. For some deep learning models like GAN and AT,
however, two or more “players” adapt their own parameters
to minimize their own cost, in competition with the other
players like a game. There are two most popular architectures
that apply game theory concepts in deep learning models: i)
generative adversarial networks (GAN) where a generator net-
work generates images, while the discriminator distinguishes
the generated images from real images, resulting in the ability
of the generator to produce realistic images [5], [11], [18],
and ii) adversarial training (AT) where a classifier is trained
against an attacker who can manipulate the inputs to decrease
the performance of the classifier [12], [25]. In both cases, the
training algorithms can be viewed as a two-player zero-sum
game where each player is alternately trained to maximize
their respective utilities until convergence corresponding to a
Nash Equilibrium (NE) [1].

However, pure NE cannot be reliably reached by exist-
ing algorithms as pure NE may not exist [7], [27]. This
also leads to unstable training in GANs depending on the
data and the hyperparameters. In this case, mixed NE is a
more suitable solution concept [16]. Several recent works
propose mixture architectures with multiple generators and
discriminators that consider mixed NE such as MIX+GAN
[1] and MGAN [15] but theoretically cannot guarantee to
converge to mixed NE. Mirror-GAN [16] computes the
mixed NE by sampling over the infinite-dimensional strategy
space and proposes provably convergent proximal methods.
However, the sampling approach may not be efficient as
mixed NE may only have a few strategies in the support
set.

On the other hand, Neural Architecture Search (NAS)
approaches have also shown promising results. They have
been applied to some computer vision tasks, such as image
classification, dense image prediction and object detection.
Recently, NAS has been researched in GANs [10], [29]. Par-
ticularly, Adversarial-NAS [8] searches both of the generator
and discriminator simultaneously in a differentiable manner
using gradient-based method NAS and a large architecture
search space. Moreover, NAS is also used to search the
classifier architectures in Adversarial Training (AT) for robust-
ness. AdvRush [28] considers both transparent-box attacks
and opaque-box attacks using the input loss landscape of
the networks to represent their intrinsic robustness. However,
the NAS techniques only derive one final architecture with
a criterion such as maximum weight from the search space,
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ignoring other top-performing results from the neural archi-
tecture search.

Double Oracle (DO) algorithm [26] is a powerful framework
to compute mixed NE in large-scale games. The algorithm
starts with a restricted game that is initialized with a small
set of actions and solves it to get the NE strategies of the
restricted game. The algorithm then computes players’ best
responses using oracles to the NE strategies and adds them into
the restricted game for the next iteration. DO framework has
been applied in various disciplines [3], [17], as well as Multi-
agent Reinforcement Learning (MARL) [21]. Our previous
work DO-GAN [2] train GANs by deploying a double oracle
framework using generator and discriminator from the best
response oracles.

Extending the successful applications of the DO framework
on GAN, we propose a Double Oracle Neural Architecture
Search for GAN and AT (DONAS-GAN and DONAS-AT) to
show the improvement of performance by the double oracle
framework on neural architecture search for the two game
theoretic deep learning models. This paper presents four key
contributions.

1) We propose the general double oracle framework for
Neural Architecture Search (DONAS) with two main
components of GAN and AT (generator/discriminator or
classifier/attacker) as players. The players in DONAS
obtain the best responses from their oracles and add the
utilities to a meta-matrix. We use a linear program to
obtain the probability distributions of the players’ pure
strategies (meta-strategies) for the respective oracles and
pruning for scalable implementation of the extended
algorithms.

2) We propose DONAS-GAN variant with the respective
oracles to search multiple generators and discriminators
referencing the techniques from Adversarial-NAS.

3) We also propose DONAS-AT variant with the classi-
fier/attacker oracles for robustness in the classification
tasks referencing the techniques from AdvRush to search
the classifier model and applying the general double
oracle framework.

4) We propose two methods: (a): Harmonic Mean and (b):
Nash, to sequentially finetune the searched networks
generators and discriminators for DONAS-GAN as well
as classifiers for DONAS-AT.

Finally, we provide a comprehensive evaluation on the perfor-
mances of DONAS-GAN and DONAS-AT using real-world
datasets. Experiment results show that our variants have sig-
nificant improvements in terms of both subjective qualitative
evaluation and quantitative metrics i.e., FID score.

II. RELATED WORKS

In this section, we briefly introduce existing game theoretic
deep learning architectures, double oracle algorithm and its
applications that are related to our work.

A. GAN, at and NAS

1) Generative Adversarial Networks (GAN) Architectures:
Various GAN architectures have been proposed to improve
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their performance. Apart from single architecture advance-
ments, multi-model architectures have also shown promising
improvements to the GAN training process. Considering
mixed NE, MIX+GAN [1] maintains a mixture of generators
and discriminators with the same network architecture but
has its own trainable parameters. However, training a mixture
of networks without parameter sharing makes the algorithm
computationally expensive. Mixture Generative Adversarial
Nets (MGAN) [15] proposes to capture diverse data modes
by formulating GAN as a game between a classifier, a dis-
criminator and multiple generators with parameter sharing.
However, MIX+GAN and MGAN cannot converge to mixed
NE. Mirror-GAN [16] finds the mixed NE by sampling over
the infinite-dimensional strategy space and proposes provably
convergent proximal methods. This approach may be ineffi-
cient to compute mixed NE as the mixed NE may only have a
few strategies with positive probabilities in the infinite strategy
space. [8]

2) Adversarial Training (at): As the NAS becomes widely
researched, investigations on its intrinsic vulnerability and
enhancement of robustness have also increased. Numerous
approaches have been proposed but Adversarial Training
(AT) based methods [25] still remain the strongest defense
approach. RobNet [13], randomly samples architectures from
a search space and adversarially trains each of them. However,
this is very computationally expensive. Moreover, evolutionary
algorithm architectures such as RoCo-NAS [9] are restricted
to only opaque-box attacks.

3) Neural Architecture Search (NAS): With Automatic
Machine Learning (AutoML), Neural Architecture Search
(NAS) has become one of the most important directions
for machine learning. In the context of generative networks,
AutoGAN [10] and Adversarial-NAS [8] search the generator
and discriminator architectures simultaneously in a differen-
tiable manner and GA-NAS [29] proposes to use adversarial
learning approach where the searched generator is trained
by reinforcement learning based on rewards provided by the
discriminator. Similarly for AT, AdvRush [28] proposes an
adversarial robustness-aware neural architecture search algo-
rithm using the input loss landscape of the neural networks to
represent their intrinsic robustness. However, in both GAN and
AT, NAS only samples the architectures from the search space
by picking the operations with maximum weights. To improve
the modes that are missed for training, we propose DONAS for
GANs and AT by sampling and finetuning multiple networks
instead of just selecting the maximum. DONAS does not
induce any restriction on NAS.

B. Double Oracle Algorithm

Double Oracle (DO) algorithm starts with a small restricted
game between two players and solves it to get the players’
strategies at Nash Equilibrium (NE) of the restricted game. The
algorithm then exploits the respective best response oracles
for additional strategies of the players. The DO algorithm
terminates when the best response utilities are not higher than
the equilibrium utility of the current restricted game. Hence,
it finds the NE of the game without enumerating the entire
strategy space. Moreover, in two-player zero-sum games, DO
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TABLE I
COMPARISON OF TERMINOLOGIES BETWEEN GAME THEORY AND GAN

Game Theory terminology =~ GAN terminology

Player Generator/discriminator

Strategy The parameter setting of generator/discriminator, e.g., my and mq

Policy The sequence of pargmeters (strategies) till epoch ¢, e.g., (w;, 7'('3, R 7r§)
Note: Not used in this paper.

Game The minmax game between generator and discriminator

Meta-game/ meta-matrix

The minmax game between generator and discriminator with
their respective set of strategies at epoch ¢ of DO framework

Meta-strategy

The mixed NE strategy of generator/discriminator at epoch ¢

converges to a min-max equilibrium [26]. DO framework
is used to solve large-scale normal-form and extensive-form
games such as security games [17], [32], poker games [34] and
search games [4] and it is widely used in various disciplines.
Related to our research, DO is also used to alternately train
the multiple generators and discriminators for the different
architectures of GANs with best response oracles [2]. We
present the corresponding terminologies between GAN and
game theory in Table I.

III. PRELIMINARIES

In this section, we mathematically explain the preliminary
works to effectively support our approach in addition to our
previous work DO-GAN [2].

A. Adversarial Training

Given a fixed classifier with parameters 6, a dataset X (e.g.,
an image x with true label y), and classification loss L, a
bounded non-targeted attack is done by

max £(x+6,y,6),5 € S, (1)

where § = {6 | ll6ll, < €} is the space for the perturbation,
[I'll, is the p-norm distance metric of adversarial perturbation
and e is the manipulation budget. We leverage Projected
Gradient Descent (PGD) which uses the sign of the gradients
and projects the perturbations into the set S, to construct an
adversarial example for each iteration ¢ with step size e.

X =g (X7 + € sgn(V,.L(x ', y,0))). )

K-PGD [25] is the iterative attack of the adversarial examples
constructed in Eq. (2) with uniform random noise as initial-
ization, i.e., x° = x + £ where ¢ is from noise distribution.
The strength of PGD attacks to generate adversarial examples
depends on the number of iterations. It has an inner loop that
constructs adversarial examples, while its outer loop updates
the model using mini-batch stochastic gradient descent on the
generated examples. However, it is generally slow. Thus, we
adapt Free AT [30] as the AT algorithm of our DO-Framework.
It computes the ascent step by re-using the backward pass
needed for the descent step. To allow for multiple adversarial
updates to the same image without performing multiple back-
ward passes, Free AT trains on the same mini-batch several
times in a row.

B. Double Oracle Framework for GANs

DO-GAN [2] translates GAN as a two-player zero-sum
game between the generator player and the discriminator
player. A two-player zero sum game is defined as a tuple
(I, U) where I1 = (I, I1,) is the set of strategies for generator
player and discriminator player, U : Il, x Il; — R is a utility
payoff table for each joint policy played by both players. For
zero-sum game, the gain of generator player u(mg, 74) is equal
to the loss of discriminator player —u(m,, 74).

Then, at each iteration ¢, DO-GAN creates a restricted
meta-matrix game with the newly trained generators 7, and
discriminators 7/, as strategies of the two players, calculates the
payoffs, and expected utilities of mixed strategies to compute
mixed NE of the restricted meta-matrix game U’ between
generator and discriminator players to get the probability
distributions (o7, 07;). Using the probability distribution, we
compute the best responses and adds them into the restricted
game for the next iteration. We adapted [21] as the general
framework for extending the double oracle framework to NAS
for GAN and AT. For the scalable implementation, DO-GAN
uses pruning and continual learning techniques and removes
the least-contributing strategies toward each player’s winning
to keep the number of generator and discriminator models
from the best response at a size that the memory can support.

IV. DONAS FOR GAME THEORETIC DEEP LEARNING

In this section, we describe the double oracle frameworks
with network architecture search for GAN and AT consisting
of extending DO-GAN. Moreover, recent works propose evo-
lutionary computation methods to neural architecture search
methods for more compact and flexible architectures [35],
[36]. Inspired by the evolutionary methods, we propose
Adversarial-Neural Architecture Search (DONAS-GAN) and
Neural Architecture Search for Adversarial Training (DONAS-
AT) to compute the mixed NE efliciently improving the
generalizability and flexibility in model architecture. Over the
different NAS methods for GAN and AT, the DO framework
builds a restricted meta-matrix game between the two players
and computes the mixed NE of the meta-matrix game, then
iteratively adds more strategies of the two players (genera-
tors/discriminators or classifier/attacker) into the meta-matrix
game until termination.
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Algorithm 1 DONAS: General Framework

Algorithm 2 DONAS for GANs

1: P, Py = In1t1allzeModels()

2: P1 « {P1}, P2 + {P2}, Up1 = Up2 =[1]
3: for epoch t =1,2,... do

4 P = Playerl NASSearch()

5: I1; = SampleFromSupernet(P;)

6: P, =Player2 NASSearch()

7: II; = SampleFromSupernet(P;)

8: P1 < P1UIL , P2 < P2 UIl,

9:  FineTuning()

10:  Augment U'~! with P, and P» to obtain U*
11:  Compute mixed-NE (Up“{, ap2> for U*

12:  if TerminationCheck(U*, Upl,O'pg) then

13: break
14: end if
15: end for

A. General Framework for DONAS

We have discussed the two prominent approaches to
optimizing network architecture in adversarial machine learn-
ing, mainly, DO as the mixed-architecture approach, and
Adversarial-NAS and AdvRush as the NAS approach for
GANSs and AT, respectively. DO finds the best response archi-
tecture by only updating weights for predefined architecture in
the oracles, while NAS methods select only one final network
from the search space and may miss the information trained
by other top search architectures. To mitigate the issues in
both methods, we propose the DONAS approach to combine
them, allowing searched networks in a mixed-architecture
framework.

We describe the general framework for our proposed
DONAS. We adapt the double oracle framework, in which
Neural Architecture Search is used as the best response oracle
for the two players: generator-discriminator for GANs and
classifier-attacker for AT. We search and sample the best
response strategies for the two players with respective ora-
cles. Then, we finetune to improve the quality of the image
generation and robustness against adversarial attacks. To speed
up the training, we introduce the terminating condition €.

Algorithm 1 initializes the first pair of models and stores
them in the two arrays P; and P,. Then, we can randomly
sample pure strategies to augment the meta-game and compute
the distribution of the player strategies. We initialize the meta-
strategies 0' = [1] and 0' = [1] since only one pair of player
strategies 1s avallable (hne 1-2). For each epoch, we search
the new strategy for each player (line 4, 6), obtaining the
supernets P; and P,. Next, we sample the networks to derive
the architecture from supernet (line 5, 7). We then finetune
the selected models (line 9). In DONAS for AT, we do not
have sampling and finetuning for the best response oracle for
attacker player since we do not need to search architecture for
the attacker player. Next, we generate the meta-game U’ and
compute mixed NE with linear programming proposed in [2]
to obtain 0';1 and 0';2 (line 10-11). The algorithm terminates
if the terminating condition € is satisfied (line 12) which we
follow the procedures of the DO-GAN/P [2].

B. DONAS for GAN

In this section, we use DONAS for GANs to allow the use
of multiple generators and discriminators. We let P, = G

Procedure: InitializeModels|()
1: Initialize the generator G and discriminator D
2: FineTune(G)
Procedure: GeneratorQOracle()
3: G = initialize()
4: for s steps do
5:  Sample mini-batch of 2m noise samples.
6: Update the architecture of generator:

m_|D) .
~log(1 = D;(G(2)))]

ZI[Z oy
i=1j

7. Update the welghts of generator:
2m |D]

Vwe o ; [ 3" log(1 — D;(G(2")))]
8: end for =
Procedure: DiscriminatorOracle()
9: D = initialize()
10: for s steps do
11:  Sample 2m samples for noise and real data

12:  Update the architecture of discriminator:

Vi it floga' + 317, o7 - log(1 — D(G()))]
13: Update the weights of discriminator:

Vwp % Z?;Lm[logx + 2‘9‘1 oy -log(1 — D(G;(2")))]
14: end for
Procedure: SampleFromSupernet ()
15: Sample top k subnetworks & according to «
16: II = argming., adv_loss()
Procedure: SequentialFineTune()
17: for r=1,2,... do
18: fori=1,...,|G| do
19: maxg, IEZ [Z‘D‘
20:  end for
21:  forj=1,...,|D| do
22: maxg, E.[log D;(z)] + Y1, E.[log(1 —
23:  end for
24:  Augment U' and find mixed-NE (o7, 0})
25: end for

Dy(Gi(2)) - ©]

D;j(Gr(2)))]

and P, = D as the two-player zero-sum game between the
generator and discriminator with their architectures as @ and
B respectively. Theoretically, using multiple generators and
discriminators with mixed strategies covers multiple modes
to produce better generated images [1], [15], [16].

Algorithm 2 describes specific changes to adapt DONAS for
GANSs. We initialize the first generator-discriminator pair G, D
and finetune the models in InitializeModels() (line 1-2).
The two-player oracles are shown in GeneratorOracle() and
DiscriminatorOracle() which describe the best response
oracles in the DO-framework of a two-player min-max game
with networks (@ and () where the weight of each network
must be the best response to the other player.

1) Adapting Adversarial-NAS: GAN optimization process
in Adversarial-NAS is defined as a two-player min-max game
with value function V(a,B) where the weight of each net-
work must be the best response [8]. The min-max game is
min, maxg V(e,B) as:

V(a,B) = Exep,,, (0Ollog D(x|B, Wp(B)]

+ Eovp o llog(1-D(G(zla, W (@), Wp(B)], (3)

where the two weights W (), W}, (B) for any architecture pair
(@, B) can be obtained through another min-max game between
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WG and WD, i.e., minWG(a) maXwp,g) V(WG(Q), WD(/;)) as:

VW6, Wpp)
= Exepua (0[l0g D(x|B, Wpg)]
+Eop.ollog(l = D(GGla, We)IB, Wpg))l.  (4)

The weights of generator and discriminator w.r.t. the architec-
ture pair (@, 5), {Wé(a)» Wg(ﬁ)}, can be obtained by a single step
of adversarial training as vanilla GANSs [8], [30]. The optimal
architectures or weights in each iteration can be achieved by
ascending or descending the corresponding stochastic gradient
by updating in the order of architecture followed by the
weights.

2) Generator Oracle: We initialize the generator and sam-
ple the noise samples (line 5). Then, we search and update
the architecture of the generator by descending its stochastic
gradient using the probability distribution ¢, for the pure
strategies of the discriminator (line 6). Finally, we update
the weight of the generator by the stochastic gradient descent
while considering o (line 7).

3) Discriminator Oracle: Similarly, we initialize the dis-
criminator, sample noise samples and real-data examples
(line 11). Then, we update the architecture (line 12) and
weights (line 13) by stochastic gradient ascent with the prob-
ability distribution o7, for the pure strategies of the generator.

4) Sampling Architecture From Supernet: After the search,
we derive the architecture from the resulting supernet
(line 15- 16). We sample top k networks selecting maximum
values of a and select the networks that give the minimum
adversarial loss against the other player.

5) Sequential Finetuning: After the two oracles provide the
new strategies for the two players (new generator and discrim-
inator), we sequentially finetune them by Nash distributions
o9 and o that we obtained from solving the meta-game
with linear programming (line 17-22). To finetune multiple
generators altogether, we update the objective function of
the generator in training with E(., )[D(G(z,6g))] and the
sequential generators with harmonic mean [33]. Hence, the
generator update is:

max B p.0[D(Gi(z, bg)) - D], ®)

where @ is the harmonic mean of the remaining generators in
the array: ® = HM((1-D(G;-1(z,6,,_,)), . .., (1-D(G(z, 65,)))].

This ensures that the current generator focuses on the data
samples from the modes ignored by the previous generators.
Arithmetic means and geometric means cannot generalize the
ignored data samples well in the case of sampled generators
where one of the generators is performing much better. The
Harmonic Mean makes sure the currently trained generator
focuses on the ignored data samples. The details of sequential
finetuning with HM are mentioned in Algorithm 3.

The sequential finetuning of K generators by Harmonic
Mean is shown in Algorithm 3. For every epoch, each gener-
ator is updated according to Eq. (5) (line 3) followed by the
discriminator update where the fake data from the generator is
the combination of all K generators (line 5). After the training
has finished, we augment the meta-game and solve it to obtain
the distribution of K generators to be used in the next iteration.

2467

Algorithm 3 Fintuning K Generators
1: for iteration 1,2, ... do
22 fori=1,..., K do
3: Update the generators using Harmonic Mean:
maxg, E..p. ) [D(Gi(z,04:)) x HM((1 —
D(Gifl(z'/ '9571‘71)))7 ) (1 - D(Gl(z7 991))))]
end for
Update the discriminator:
maxg, Ezp,.,. [log D(x,04)] +
Y i Eap () [log(1 = D(Gi(2,04,),0a))]
6: end for

However, HM only tells the ignored samples and cannot give
a clear picture of which samples are being captured more than
the others at each epoch of the finetuning.

Using the meta-game, which only takes linear complexity
to solve, gives Nash distribution of the generators, and hence,
the update of the objective function can have a better picture
to focus on the less-captured data samples. This method is
more effective than focusing heavily on the ignored data
samples. Algorithm 2: SequentialFineTune() describes the
finetuning of multiple generators and discriminators with
Nash. Using a similar equation as Eq. (5) and ©® = 0'2‘1*(1 -
Di(Gi_1(z,0,,_,))) X ... % cr;,*(l - D(G(z,0,,))), we finetune
each generator (line 19) and discriminator (line 22) using Nash
distribution. Instead of using HM, we use the Nash distribution
from generating the augmented meta-game and compute mixed
NE by linear programming (line 24).

C. DONAS for at

We also propose DONAS for AT where we have the two
players as the training classifier P, = C and the adversarial
P, = A. We search the classifier in ClassifierOracle()
against the perturbed datasets from AttackerOracle(). Given
L,u and Ly, as loss functions on the validation and training
sets respectively, the search process of NAS is defined as a
bi-level optimization problem:

minQ Lval(w* (0), 0)
s.t. w*(0) = argmin,, Lyqin(w, 0). (6)

For NAS in the classification task, the expensive inner opti-
mization in Eq. (6) is normally approximated by one step train-
ing [23] as: VGLval(W*(g)» 0) ~ Vé’Lval(W - fvatrain(W’ 9), 9)
where w denotes the current weights and £ is the learning rate
for a step of inner optimization.

1) Adapting AdvRush: Algorithm 4 describes the specific
changes to adapt DONAS for AT. To obtain the first pair
of classifier # and perturbed dataset 6, we perform neural
architecture search for 6 by AdvRush [28] and set 6 = 0
in InitializeModels(), then store the parameters in the
two arrays C and A (line 1-2). For each epoch, we search
the new classifier and generate a new perturbed dataset with
ClassierOracle() and AttackerOracle() using the meta-
strategies o7, and o7,. We refer to the Free adversarial training
(Free AT) algorithm [30], with comparable robustness to the
traditional 7-step PGD [25] with significantly faster training.
We then convert it to the DO-Framework with the two oracles

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on July 01,2025 at 15:16:12 UTC from IEEE Xplore. Restrictions apply.



2468

Algorithm 4 DONAS for AT

Input: Samples X, learning rate -y, the number of hopsteps
m
Procedure: InitializeModels()
1: § = AdvRushSearch()

2:6=0
Procedure: AttackerOracle()
3: Letd =0

4: for step s = 1,2,..., 3 do
5:  for mini-batch B C X do

6: fori=1,2,...,m do
E Yadv = v:l:,@N(C,Ozf)l(w + 57 Y, 0)7 T,y € B
8: Update §
0 < Clip(0 + € - sign(gadv), —€, €)
9: end for
10:  end for
11: end for

Procedure: ClassifierOracle()
12: Initialize architecture and weight (wq, ay)
13: for iteration i = 1,2, ... do
14:  Update weights by descending its stochastic gradient:
Vw Lirain(Wi—1, 0ti—1)
15:  Update the architecture, i.e., a:
Va [L’U(ll (wia ai—l)]a
v(x [L’z)al (wi; ai—l) + '_YL)\]v
16: end for
Procedure: SampleFromSupernet(f)
17: Derive 6 through discritization steps from DARTS
Procedure: FineTune()
18: for steps s = 1,2,..., 2 do
19:  for mini-batch B C X do

iftt<o
else

20: for:=1,2,...,m do

21: 90 <+ E(z.y)eB[Vo,5n(a,0:) (7 + 8,9, 0)]
22: 0 0—~-gg

23: end for

24:  end for

25: end for

to allow multiple adversarial updates to be made to the same
images without multiple backward passes by training the same
mini-batch for m times.

2) Attacker Oracle: For each iteration, we calculate the
adversarial gradient using 8 € C sampled with the probability
distribution of the classifier’s strategies from the meta-game
o to update § (line 7-8).

3) Classifier Oracle: We adapt AdvRush to search for the
architecture and update the weights. According to the ablation
study by [28], we set y = 0.01 and AdvRush loss term L,
is introduced at ¢ = 50 which we set as iteration number for
warm-up process. (line 15).

4) Sampling Architecture From Supernet: After the search
and update of the classifier’s architecture and weights, we
derive the final architecture (line 15) by running the discretiza-
tion procedure of DARTS [23].

5) Finetuning: We adversarially train the classifier against
the attacker. We update 6 with stochastic gradient descent (line
21-22) with ¢ sampled from A with o7. We consecutively train
each mini-batch for m times.
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Finally, we augment the meta-game by calculating the cross-
entropy loss and solve it to obtain the distribution. DONAS-
AT ends when terminating criteria is satisfied meaning both
oracles have searched the best response strategies.

V. EXPERIMENTS

We conduct our experiments on a machine with Xeon(R)
CPU E5-2683 v3@2.00GHz and 4x Tesla v100-PCIE-16GB
running Ubuntu operating system. We extend to NAS architec-
tures such as Adversarial-NAS, AdvRush and evaluate against
SOTA architectures such as AutoGAN, AlphaGAN, ResNet-
18 and RobNet. We adopt the parameter settings and criterion
of the baselines as published. We set s = 10 unless mentioned
otherwise. We compute the mixed NE of the meta-game with
Nashpy.

A. Experiments on DONAS for GAN

We first conduct an experiment to evaluate DONAS-GAN
on the datasets: CIFAR-10 [20], STL-10 [6], TinyImageNet
[22] and CelebA [24] and evaluate the quantitative perfor-
mance with FID score against the baselines AutoGAN [10],
Adversarial NAS [8] and AlphaGAN [31] to compare with our
DONAS-GAN variants where we investigated ablation studies
with different approaches varying the number of generators
and discriminators.

1) Variants of DONAS-GAN: Initially, we reproduce the
Adversarial-NAS search which searches 1 generator followed
by sampling multiple top networks from the supernet after
the search. We run the experiments for DONAS-GAN/Ind.,
DONAS-GAN/HM and DONAS-GAN/Nash with K, where
K is the number of generators, to select a sample of mul-
tiple K generators instead of 1 maximum and finetune the
generators. We set the number of discriminators as 1. DONAS-
GAN/Ind. uses independent finetuning where all K generators
are trained independently whereas DONAS-GAN/HM and
DONAS-GAN/Nash use sequentially finetuning where the
sampled K generators are finetuned by Harmonic Mean (HM)
and Nash. Next, we search K generators iteratively in DONAS-
GAN/Iter. and sample the architecture with the maximum «
instead of a one-time search. To avoid having the searching
architecture for the same batches, we shuffle the train data
for each iteration. After the iterative process, we finetune
the resulting K generators by Nash. Finally, we perform
experiments with the full-version of DONAS-GAN with the
pruning limit of K for both generators and discriminators. We
set K to prune the generator and discriminator arrays G and
D, and the terminating condition € is now set as 5e73,

2) Experiments Results: Table II shows the experiment
results with various methods and datasets investigated on
DONAS-GAN. We initially set up the experiment for the
CIFAR-10 dataset and recorded the FID scores: AutoGAN
as 12.42, ALphaGAN as 10.35, Adversarial-NAS as 16.35
for the searched architecture and 10.87 after finetuning. For
the variants of DONAS-GAN, the results indicate that our
variants bring significant improvements over AdversarialNAS
to the results. While DONAS-GAN Iter. suffers from long
finetuning time without terminating condition recording 60.88
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TABLE I
GENERATIVE RESULTS FOR DONAS-GAN

Methods | AutoGAN  AdvNAS  AlphaGAN | DONAS-GAN
‘ ‘Ind. HM Nash. Iter.  Full
| Search space | | 105 1038 2 x 101 | 1038
5 1422 1422 1422 1443 -
Search 1 1 - 16.35 - 1404 1404 1404 1389 -
CIFAR-10 Finetune 5 12.42 10.87 10.35 1062 927 9.06 9.12 893
metu 10 : : =22 11033 932 919 91 893
5 29.16 29.16 29.16 30.02 -
Search - 32.48 -
STL10 10 2895 2895 2895 2899 -
. 5 28.88 26.44 2613 26.15 2531
Finetune | o | 31.01 26.98 24319870 266 2617 2582 24.75
5 1753 1753 1753 - .
Tiny Search 1 1 - 17.99 - 1691 1691 1691 - -
ImageNet
. 5 1521 1385 1236 - 1118
Finetune 1 5 | 1621 15.10 - 146 1328 1194 - 1042
| Search space | | 1.1x 10 1.8 x10° | 1.1 x 10
Search 5 ] ] ] 344 343 3 294 293
10 344 345 292 292 293
CelebA Finetun 5 - 1 311 313 297 291 287
etune g . > . 292 297 297 29 286

GPU Hours for K = 5 and 109.52 GPU Hours for K = 10,
DONAS-GAN shows satisfying results terminating within
32.28(K = 5) and 54.19(K = 10) GPU Hours for the best
run.

Similar promising trends are observed in STL-10 datasets.
We also compared DONAS-GAN against baselines for Tiny-
ImageNet dataset and recorded 16.21 for AutoGAN, 15.10
for Adversarial-NAS and 11.18(K = 5),10.42(K = 10) for
DONAS-GAN showing that DONAS-GAN can capture the
diversity of data examples better. We also compared our
DONAS-GAN variants following the StyleGAN2 modification
(without dynamic selection of intermediate latent space W
for CelebA dataset. Although we did not change the our
search space to match AlphaGAN’s for fair comparisons,
we can see that under the same search space, our DONAS-
GAN outperforms AdversariaNAS. Qualitative examples in
Appendix I of the Supplementary Material also indicate the
realistic image generation and the ability to capture the diver-
sity of the classes without mode-collapse. We also present the
runtime comparison of AdversarialNAS, AlphaGAN and our
DONAS-GAN on CIFAR-10 dataset in Appendix II of the
Supplementary Material.

3) Application to Industrial Use Cases: In addition to
traditional datasets with large sample sizes, we demonstrate
that our DONAS-GAN is applicable to downstream tasks in
industrial settings, such as generating multi-label defect data
in less-data scenarios. This capability is particularly useful for
augmenting the data samples to train data-driven algorithms
and mitigating data imbalance through synthetic sampling.

To validate this, we conducted an experiment using the
WaferMap dataset, MixedWM38,! which contains only 594

Uhttps://github.com/Junliangwangdhu/WaferMap

data points of (1 x 52x52) across 38 classes. Unlike Adversar-
ialNAS, which performs the search process only once, our
DONAS algorithm searches for generator models multiple
times (K =5,10). This iterative approach ensures that reducing
the step size in each oracle does not significantly impact
performance. As shown in Figure 2, AdversarialNAS tends to
lean to just ‘donut’ defect samples while our DONAS-GAN
effectively generates reliable wafer map samples for multiple
types of single defect R3:C1, R1:C3, R3:C3, R4:C3 as well
as 2 defects R2:C2 and 3 defects R3:C2, demonstrating its
potential for industrial applications.

4) Internal Representation of Networks: To analyze how
the representation of the networks evolve and differ from each
other, we use the centered kernel alignment (CKA) [19] to
measure the similarity of the representation between layers
and networks of DONAS-GAN trained on TinylmageNet. In
Fig. 1, we visualize the CKA values of layers in the same
network of DONAS-GAN as heatmaps. We can see that there
is a considerable similarity between the hidden layers as
represented by the green area but the similarity goes down at
the later layers. The trend indicates that our generation quality
progressively improves with depth.

In Fig. 3, we visualize the similarity across the models.
The result indicates that the search process of DONAS-GAN
can obtain diverse architectures of generators (e.g., Generators
0, 1, and 3) to be used as mixed-architecture mitigating the
mode-collapse problem. We present the full network similarity
analysis in Appendix III of the Supplementary Material.

B. Experiments on DONAS for AT

Finally, we evaluate the robustness of the architectures
searched and adversarially trained by DONAS-AT on CIFAR-
10 using FGSM and PGD transparent-box-attacks [25]. In
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TABLE III
ROBUST ACCURACY UNDER FGSM AND PGD ATTACKS
Methods | ResNet-18 | RobNet | AdvRush | DONAS-AT
| | Large LargeV2 Free | |
FGSM 49.81% | 54.98% 57.18% 59.22% | 60.87% 62.31%
CIFAR-10 | PGD-20 45.86% | 49.44% 50.53% 52.57% | 53.07% 59.57%
PGD-100 | 45.10% | 49.24% 50.26% 51.14% | 52.80% 57.20%
FGSM 88.73% | 93.01% - 93.04% | 94.95% 95.91%
SVHN | PGD-20 69.51% | 86.52% - 88.50% | 91.14% 91.40%
PGD-100 | 46.08% | 78.16% - 78.11% | 90.48% 91.83%
. FGSM 16.08% | 22.16% - 23.11% | 25.20% 28.11%
I Tm}{\l PGD-20 13.94% | 20.40% - 21.05% | 23.58% 26.30%
magelNet | pGD-100 | 13.96% | 19.90% - 20.87% | 22.93% | 24.10%
Note: For ResNet-18 and RobNets, we presented the results from the papers [13], [28].
Generator 0 Generator 2 1.0
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: . & | || [ [ ]
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E I- l Generator
REEEX mf:yelr4 EEEEEER mfazyelr" RREEE Fig. 3. Linear CKA averaging between the same layers of DONAS-GAN
searched networks trained on TinylmageNet. Generators 0, 1 and 3 have
Fig. 1. Linear CKA between layers of the individual searched networks of  different architectures.

DONAS-GAN trained on TinyImageNet dataset.

(a) AdversariaNAS

(b) DONAS-GAN

Fig. 2. Generated wafer images by AdversarialNAS and DONby DONAS-
GAN.

particular, we evaluate our proposed DONAS-AT with ResNet-
18 [14], variations of RobNet [13] and finally, AdvRush [28]
on CIFAR-10, TinylmageNet and SVHN datasets. According
to [13], the model’s robustness is better as we increase the
computational budget and thus, we compare with RobNet-
Large and RobNet-LargeV2 which have comparable network
parameters (number of channels and cells) to WideResNet.

Moreover, we also select RobNet-Free which relaxes the cell-
based constraint. After searching the classifier and training in
DONAS-AT, we attack the model using PGD attacks where
perturbation data is added to input for T iterations (PGD”). We
then use this perturbed input to the model for classification and
calculate cross-entropy loss against the target label as criterion.
We test the classifiers using PGD?° and increase the iterations
to 100, i.e., PGD'? to introduce stronger attacks.

Evaluation results are shown in Table IIl. We observe
promising results of DONAS-AT with 62.31% accuracy
for FGSM attacks on the CIFAR-10 dataset surpassing
the baseline methods such as ResNet-18, RobNet-Large,
RobNet-LargeV2, RobNet-Free and AdvRush that record
49.8%,54.98%, 57.18%, 59.22%, 60.87%. We also evaluated
with PGD transparent-box attacks PGD* and PGD'®. We
obtain 59.57% accuracy on PGD* transparent-box attacks and
57.20% for PGD'® observing similar trends which demon-
strates the stronger robustness of our approach.

VI. CONCLUSION

In this paper, we propose the double oracle framework solu-
tion to NAS for game theoretic deep learning models such as
GAN as well as AT. The double oracle framework starts with
a restricted game and incrementally adds the best responses
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of the player oracles (either for generator/discriminator or
classifier/attacker) as the players’ strategies. We then compute
the mixed NE to get the players’ meta-strategies by using
a linear program. We leverage two NAS algorithms Adver-
sarial NAS and AdvRush to DO-framework, and introduce
sequential finetuning: Harmonic Mean and Nash; to allow the
finetuning of multi-models. Extensive experiments with real-
world datasets with abundant data such as MNIST, CIFAR-10,
SVHN, TinylmageNet and CelebA as well as real-world
industry datasets with less data such as MixedWM38, show
that our variants of DONAS-GAN and DONAS-AT have
significant improvements in comparison to their respective
base architectures in terms of both subjective image quality
and quantitative metrics.
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