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Abstract—Many classical and modern machine learn-
ing algorithms require sclving optimization tasks under
orthogonality constraints. Solving these tasks with feasi-
ble methods requires a gradient descent update followed
by a retraction operation on the Stiefel manifold, which
can be computationally expensive. Recently, an infeasi-
ble retraction-free approach, termed the landing algorithm,
was proposed as an efficient alternative. Motivated by the
common occurrence of orthogonality constraints in tasks
such as principle component analysis and training of deep
neural networks, this letter studies the landing algorithm
and establishes a novel linear convergence rate for smooth
non-convex functions using only a local Riemannian PL
condition. Numerical experiments demonstrate that the
landing algorithm performs on par with the state-of-the-
art retraction-based methods with substantially reduced
computational overhead.

Index Terms—Riemannian optimization, orthogonality
constraints, infeasible methods, linear convergence.

. INTRODUCTION

RTHOGONALITY constraints naturally appear in many

machine learning problems, ranging from the classi-
cal principal component analysis (PCA) [17] and canonical
correlation analysis (CCA) [18] to decentralized spectral
analysis [19], low-rank matrix approximation [20] and dic-
tionary learning [23]. More recently, due to the distinctive
properties of orthogonal matrices, orthogonality constraints
and regularization methods have been used for training deep
neural networks [6], [30], providing improvements in model
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robustness and stability [29], as well as for adaptive fine-
tuning in large language models [36]. Optimization with
orthogonality constraints is typically formulated as,

min X
Mldur f{ }1

st xeStid, r) 2 [x e R xTx = 1,1, (1)
where Stid, r) is referred to as the Stiefel manifold.

The Stiefel manifold can be seen as an equality constraint
that is a non-comvex sel. As a result, traditional first-order
optimization algorithms {e.g., gradient descent) fail to solve
Problem (1) directly. The topic of functional constrained
oplimization [10] has recently emerged; although these works
address tasks with non-convex constraints, they mostly require
hierarchical algorithms for convergence. Another common
approach is to consider a Riemannian optimization algorithm,
where in each iteration, the algorithm takes a Riemannian
gradient step instead of a Euclidean one. Then, the algorithm
performs a retraction operation to ensure feasibility and stay
on the manifold [4]. It has been shown by the previous
literature that these retraction-based algorithms can achieve
similar iteration complexity rates [11], [34] compared to their
Euclidean counterparts.

While achieving favorable iteration complexity and sat-
isfying the feasibility constraint in (1), these methods are
computationally expensive due to the retraction operation in
each iteration. A typical retraction operation on the Stiefel
manifold usually requires calculating a matrix exponential,
inversion, or square root. This means that a typical retraction
requires ()dr®) or more algebraic operations. When r is large,
the calculation time for retractions could dominate the runtime
of Riemannian algorithms. In addition, matrix inversion or
exponentiation have generally not been well-suited to execute
on GPUs until recently [5], making the application of (1) in
modern machine learning computationally prohibitive.

As a mitigation, recent works have proposed infeasible
approaches to solve manifold optimization problems. These
methods do not require explicit retraction operations (or
other projections) and are often referred to as refraction-free
methods. While retraction-free optimization iterates are not
strictly feasible, they gradually converge to the feasibility
region.

In this letter, we focus on a recently proposed retraction-
free (or infeasible) method for solving Problem 1, called
the landing algorithm [1], [2]. Although [2] provided a
global finite-time convergence guarantee for this algorithm,
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the numerical results suggested that the actual convergence
speed is much faster. Our work secks to study this empirical
observation and provide a theoretical justification for the faster
convergence while exploring the possible assumptions required
on the objective function in order to achieve this convergence
guarantee. To this end,

1) In Section Il, we introduce a background for the
optimization on the Stiefel manifold and provide the
retraction-free landing algorithm.

2) In Section 11, we flesh out the set of assumptions on the
objective function, notably the local Riemannian Polyak-
t.ojasiewicz (PL) condition on the Stiefel manifold. We
then introduce the merit function for our analysis and
provide a local linear convergence guarantee for the
landing algorithm.

3) In Section IV, we present numerical experiments and
demonstrate the advantage of the landing algorithm in
terms of convergence speed and efficiency in a high-
dimensional PCA task as well as training convolutional
neural networks (CNNs).

A. Related Literature

1) Retfraction-Based Riemannian Optimization: The classi-
cal optimization algorithms under Riemannian geometry rely
on the diffeomorphic nature between a Riemannian man-
itold and the Euclidean space. A classical approach is
the line-search method; this includes Armijo line search
and accelerated line search [3]. However, these approaches
are rarely used in modern machine learning with large
datasets, since multiple evaluations along a geodesic are
often undesirable. As a mitigation, many methods such as
Riemannian gradient descent [34] use retractions to ensure
the feasibility of the iterates. With both retractions and
parallel transports, a wide range of optimization algorithms
have been adapted to the manifold context. These methods
include Riemannian accelerated gradient [35], Riemannian
conjugate gradient [25], and adaptive Riemannian gradient
methods [9].

2) Refraction-Free Approaches: In order to ensure the
feasibility of the manifold constraint, the previously mentioned
algorithms still require costly operations, such as retractions
and parallel transports. Recently, several approaches have been
proposed in an atternpt to reformulate the constrained problem
in (1) into equivalent unconstrained problems, which can be
solved efficiently. Reference [26] introduced ODCGM, using
a non-smooth penalty to ensure that stationarity is strictly
recovered in the alternative merit function. Another approach
stems from Fletcher's penalty function [14] and implements
a smooth merit function. Reference |[15] proposed a proximal
linearized augmented Lagrangian algorithm (PLAM) and solved
the optimization problem with an augmented Lagrangian
method. Reference [33] proposed PenC, an exact penalty
function model, and implemented a projected inexact gradient
algorithm. PenC was later extended to a constraint dissolving
function {CDF) approach in [32], with examples covering a
wide range of manifolds. In this letter, our focus is on proving
tast local convergence for the landing algorithm [1], [2] as it
provides a simple approach to retraction-free optimization on
the Stiefel manifold, and the empirical evidence in [2] suggested
fast convergence speed around stationary points.

Il. PROBLEM FORMULATION
A. Notations

We start this section with definitions and notations used in
this letter. We denote the transpose of vector x (and matrix A)
asx' (and A"), respectively. The Frobenius norm of matrix A
is denoted as ||A[|lf. The skew and symmetric parits of a square
matrix A are denoted as skew(A) = %{A —A") and sym(A) =
%{A + AT), respectively. The matrix inner product of matrices
A and B is defined as (A, B) £ Tr(ABT ). We denote the identity
matrix of rank r as [,. Given a set S, we represent D(5, §) =
{x | dist(&, x) = 48}, where dist(S, x} = minyes [|[x — ¥|lF.

B. Riemannian Optimization

In the Euchidean space, the function gradient Vf(x) is
calculated as the differential of f evaluated at x. The classical
gradient descent (GDY) algorithm seeks to minimize the objec-
live function by taking a step towards the negative Euclidean
gradient, and the iterate is defined as x4 = X —a'Vf(x), with
o denoting the step size. On the other hand, the Riemannian
gradient gradf(x) is defined on the tangent space of a point x
on the manifold with respect to a given metric. For the Stiefel
manifold specifically, the Riemannian gradient with respect to
the canonical metric [13] is given by the following closed-form
expression:

gradf (v) = skew( Y/ Gx" ). 2)

The Riemannian GD uses gradf(x) to perform a retraction
operation on the iterate, which allows the iterate to move while
staying on St(d, r); the Riemannian GD algorithm updates the
iterates as

Xyt = Ry (—egradf (x)),

where R, : T.5tid.r) — Stid,r) denotes the retraction
operation, which maps vectors in the tangent space at point x
to points on the Stiefel manifold. Though there are multiple
choices of retraction operations on the Stiefel manifold, includ-
ing exponential retraction, Caylay retraction, and projection
retraction, all of them require high computational costs. To
address this issue, many recent application-focused works such
as deep leaming-related studies [8] use a penalty function
instead and aim to minimize f(x) + AN(x), where A(x)
penalizes the constraint violation. Although these methods are
conceptually simple and have relatively low computational
complexity, they only find an approximately accurate solution,
and the end product is often infeasible.

C. Retraction-Free Algorithm

Contrary to the existing retraction-based and penalty-
based algorithms, this letter focuses on the landing algorithm
proposed by [1] as an infeasible, retraction-free numerical
solver for Problem (1). Unlike retraction-based algorithms,
the iterates of the landing algorithm do not strictly stay
on the Stiefel manifold, avoiding high computational costs.
The landing algorithm also differs from conventional penalty
methods as it converges to a critical point on the manifold.

The landing algorithm updates are based on the landing
ficld, defined as

A(x) £ gradf(x) + AVp(x), (3)
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Algorithm 1 Retraction-Free Landing Algorithm

I: Input: initial point xp € Stid, r)*, @ = 0,4 = 0, € &
(0, 3).
2 for k=0,1,... do
3:  Calculate the landing field Aix) and update x as:
AG) = gradf () + (T — 1),
Xpp1 = Xp — oo Alxg).

4: end for

where the penalty function pix) = %HxTx — frlli!: and
A = 0 is a constant. The exact update for the landing algorithm
is provided in Alporithm 1, where « denotes the step size.
Though the iterate x; may not belong to St(d, ), gradfixg) is
still well-defined as in (2) and is referred to as the relative
gradient.

Observe that when x is on the manifold, the penalty
function p(x) and its gradient ¥Vp(x) are equal to zero; hence,
Mx) = gradfix) for x = St(d, r). In addition, the two
terms of the landing field are orthogonal to each other, since
{gradf (x), Vp(x)) = (skew(Vf(xx"), x(x x—7)x") = 02].
Therefore, A(x) = 0 il and only if Vpix) = 0 and
gradf{x) = 0, which shows that A(x) = 0 when x is a firsi-
order stationary point of f{x) on the manifold.

While the landing algorithm allows the iterates to move
outside of the manifold, one must ensure that they stay close
enough to the manifold within a safety region.

Definition 1 {Safety Region [2]): With € = (0,3/4), we
defing the safety region as

St(d, r)* & [x € ]R"‘”|’|xTx "y

Ffél. (4)

It has been shown that for the landing field A(x) defined
in (3), a safety step size exists such that the algorithm never
leaves the safety region.

Proposition 1 (Safety Step Size [2]): Let X < Std, r)*.
Assuming that ||gradf(x)||[r = G, the next ilerate salisfies
Xppq € Stld, r)® if the step size o salisfies

Ae(l —€) e 1
Friltoe V2@

[1l. THEORETICAL ANALYSIS

In this section, we first state our theoretical assumptions and
then introduce the merit function for our analysis. Next, we
provide our main theoretical result, which is the local linear
convergence of the landing algorithm.

O = sape = min

A. Technical Assumptions

Let us start by introducing the following assumptions on the
objective function in (1). These assumptions are considered to
be standard in the literature [16], [34] and are necessary for
our improved convergence guarantee,

Assumption 1 {Lipschitz Smoothness): We assume that the
function f : B¥*" — R is twice continuously differentiable
and L-smooth, ie., for all x,y € R?*", we have

L
FO) =S+ (V@ y =0 + Sy — 2. (5)

Different from the retraction-based algorithms, since the
ilerates can go outside the manifold in the infeasible algo-
rithms, we assume the smoothness of the function in the entire
Euclidean space instead of the Stiefel manifold. We also note
that the smoothness is defined with respect to the Euclidean
gradient instead of the Riemannian gradient.

Mext, we discuss the local gradient growth of the non-
convex function f(x) in the sense of Polyak-tojasiewicz,
formally defined below.

Assumption 2 (Local Riemannian PL Condition): The
objective function f(x) : B?*" — R satisfies the local
Riemannian Polyak-tojasiewicz (PL) condition on the Stiefel
manifold with a factor g > 0 if

|f(x) — 18| = l||gmdf{x:n I (6)
2u

for any point x € St(d, r) NINS, 248), where & denotes the set
of all local minima with a given value f3.

Different from Assumption 1, the assumption on the PL con-
dition is strictly on the manifold, and the condition deals with
the Riemannian gradient gradf(x) instead of the Euclidean
gradient Vf(x).

The local Riemannian PE condition is less restrictive com-
pared to other commonly studied scenarios. It is a relaxation of
the global Riemannian PE condition, which could be restrictive
in this case since the Stiefel manifold has a positive curvature.
This assumption is also easier to satisfy compared to the
geodesic strong convexity. Many traditional tasks involving the
Stiefel manifold, such as the PCA problem and the generalized
quadratic problem, satisfy the local PL condition but do not
meetl the other two conditions mentioned above. These are
sometimes referred to as quadratic problems and have been
shown to satisfy Assumption 2, demonstrated in [22].

B. Merit Function

To better understand the dynamics of the landing algorithm,
we consider the following merit function [2], which is defined
with respect (o the objective in (1) as

L(x) £ [(x) + hix) + yp(x).
and  h(x) £ —%{sym(xva{x}),xTx— . (7
From the definition of £, one can prove that for any point
x e Sifd, r), VLX) = Vfiilx) —x sym(xT"Ff (x)) (see eq. (44)

in [2]). Similar to [2, Proposition 6], for a given € € (0, 3/4),
¥ is required to satisfy the following condition:

2 (1+¢)?
> Ll — 35+ P ———,
Y_3_4E({ )+ 35+ l{l—s})
where s = sup |sjrm(xT?f {x})" . and
TEStid,r)* E
L= L, v : 8
max( Max 'V €x) ||F) (8)

The following proposition on the properties of C(x) is also
given in [2] and is useful for our technical analysis.
Proposition 2: The merit function C(x) satisfies
following properties.
1) Lix) is Le-smooth on x € St(d, r)°, with Lg < Leyy +
(2 + 3e)y, where Ly is the smoothness of '+ h.

the
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2) For p = min{}, m{ﬂﬂ and x € St(d, r)¢, we have

{AX), VL)) = pll A |1E

The first property in Proposition 2 shows that £ is indeed a
smooth function. The second property establishes a relation-
ship between the landing field and the gradient of the merit
function. Since [A(x), VL(x)) = 0, the landing field always
points towards an ascent direction for the merit function.
Therefore, a landing step can be seen as a descent step on
the merit function. Moreover, since {gradf(x), Vpix)) = 0, the
second property shows that within the neighborhood St(d, r)*,
it VL(x) =0, we have Vpix) =0 and gradfix) =

In addition, due to the Lipschitz smoothness of f, it is
easy to show that A(x) is first-order Lipschitz continuous; we
denote its Lipschitz constant as L. Ly and Ly can be set to
be on the same order as L given ideal A and y. For the ease
of analysis below, we denote L' = max|L, Ly, Ls).

C. Local Linear Convergence of Landing Algorithm

In this section, we study the convergence of the landing
algorithm under the local Riemannian PE condition. Since
this letier focuses on the local convergence guaraniees of the
landing algorithm, and that Assumption 2 is only applicable to
x & St{d, ry IS, 28), we only characterize the convergence
rate assuming that the iterates have reached a neighborhood of
a local minimum x* € &. This assumption is not surprising:
even some classical methods (e.g., Newton's method) achieve
faster local rates when inilialization is close enough to a local
minimizer. Nevertheless, one can guarantee that iterates of
Algorithm 1 can reach a neighborhood of a stationary point
given the general convergence theorem in [27] as well as the
global finite-time convergence of the landing algorithm in [2].

Without loss of generality, we assume f& = 0 and omit 2
when applicable. We first present the following lemma to show
that for any x in the neighborhood of a local minimizer and
in the safety region, the merit function is locally dominated
by the landing field.

Lemma 1 (Pseudo Gradient Domination [28]): Let x
Stid, r)* NINS, §), and without the loss of generality assume
f& = 0. Then, under Assumptions 1 and 2, we have,

1
Lix) = Slaw I (9)

1 _ 1 203421 24l
where F_max{ﬁ, TR I

We note that i depends on a number of factors. In practice,
if we set A = (L") and also L' and L are of the same order,
the two terms in w' are of the same order, and we have p' = .

Next, we use the following lemma to demonstrate the
quadratic growth of the merit function £(x) around the set of
local minima &S,

Lemma 2 (Quadratic Growth): Let Assumptions 1 and 2
hold. For x = St(d, r)* N DS, §), the merit function £(x)
satisfies

'
£0) = Edist(s, v, (10)

Proof: Since x  St{d, r)*, given Proposition 2, it is clear
that |[VL)|lF = pllA(x)|F. Combined with Lemma 1, we
have,

1 1
L) = < IAWE = — I VL@IE
T w'p

Therefore, we know that the local Euclidean PE condition
for £(x) holds on ¥x = NS, &) N Sud, )¢, Given [24,
Proposition 2.2], the local Euclidean PE condition on L£(x)
implies the quadratic growth relationship (10, [ ]

With the introduction of the previous two lemmas, we can
now present our theorem. We show that when x is in the
neighborhood of a local minimizer, Algorithm 1 exhibits a
local linear convergence under Assumption 2.

Theorem I: Let function [ satisfy Assumptions | and 2, and
the initial point xp € TS, 8} N SUd, r)® is such that Lixg) =
f"—r"l’ﬁ—‘s Choose the step size 0 = o =< min|§, agy) and
let iterates {x;} follow Algorithm 1. Then, the merit function
defined in (7) converges linearly ¥k = 0, such that

IR
L) < (1 - “"%) L) (11)

Proof: We prove the theorem by induction. Suppose that

xp = TS, 8) N St(d, r)* and that C(xp) = J"il‘;'ﬁ— for some k.
Since the merit function is L'-Lipschitz smooth, using the
update of the landing algorithm, we get
Lﬂ
Lixppn) = Ll + (VLOR), X — 28) + 5 Pk — X I
Ty
L
= L) — VLG, A + —— | ACw)F
2 !
< Lix) — apll AG)IIF + —IlﬁfxﬂllF

Ty
< (1 —u (ap - %))E(m,

where the second to last ling is from Proposition 2, and the
last inequality is from Lemma . Now, if we choose a safe

step size 0 < o = mm{-F; Qsqfe}. We gel ap — 5= @'l = -{'- This
implies the monotonicity of £, and

L) < ( - %)ﬁm:r

Given that x; = DS, §) N St(d, r), from Lemma 2 we get
dist(S, xp) = %‘-:—fl = % Therefore, for the next iteration

K+ 1, we have

(12)

dist(S, xpp1) = dist(S, w) + o — s lle
= disti(S, 1) + || Al ||p
= dist{&, xp) + el dist(S, x) = 5.

The last line stems from lhc Lipschitz continuity of A(x) and
the fact that @ < £ < 5. This relationship combined with
the safety guarantee ensures that for the ncxt iteration, xpy €
D(S, 5) N St(d, ) and that £ixg,) < due to (12).

Therefore, given the initial condition on X and by recursion,
x e TNE, &) N Stid, r)* and L) < '&ﬁ— is guaranteed to
be satisfied by all k. Hence, we get

k
aoi’
2’"’ ) Lixg).

Lixg) = (1 -

|

Theorem | guarantees the exponential convergence of the
merit function £(x) while ensuring the iterates never leave the
safe neighborhood region. Using Lemma 2 and the Lipschitz
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Fig. 1.
Cayley counterparts for ResNet on CIFAR-100 dataset.

continuity of A(x), linear convergence rates for dist(&, x;) and
[|Axe)||p can be easily derived.

V. NUMERICAL RESULTS

For the experiments, we first evaluate the landing algorithm
on a PCA task with synthetic data (Section TV-A) and compare
it with existing methods. Then, we evaluate it on training
orthogonal-constrained CNNs (Section TV-B).

A_ High-Dimensional PCA Task

We start the numerical resulis with a traditional PCA task.
The objective function for PCA can be writlen as:

max {ATAJc, xDy st ox e Sud, r),
xR

where A € R™*4 j5 the data matrix and D is a diagonal matrix
with [P = «+« = [, = 0. We want to find the top-r
principal components of the data matrix. Let us set d = 500,
r=20,m = 1000 in our experiment.

We compare the performance of the landing algorithm with
two other iterative gradient-based algorithms.! We first con-
sider a traditional Riemannian GD algorithm using projection
as its retraction step. Secondly, we consider a state-of-the-art
retraction-free approach named ExPen [31]. All the algorithms
are run with the same hyper-parameters and with the same
initial points xp. The results are provided in Fig. I{a).

It is easy to verify that as long as the data matrix 4 is not ill-
conditioned and rank(A) = r, Assumplion 2 is satisfied [22].
We plot the dynamics of gradient norm |[gradf(x)|| and the
distance of iterates to M, ie., |x"x — I.|g, with respect to
iterations as well as the CPU time. (i) All three algorithms

"'The code for the PCA experiment is available st Rttps:#github.con
sundove ] M5 Landing-Linear-Convergence.

{a) Perfiormance of the landing algonthm on PCA. (b) Comparison of retraction-free methods vs. SGD and Adam-type optimizers and their

exhibitl similar linear convergence in terms of iterations, but the
two retraction-free algorithms converge much faster in CPU
time. (ii) Though the two retraction-free algorithms fail to
strictly salisfy feasibility constrainis initially, they eventually
converge to a feasible critical point on Stid, r). (iii) While
the landing algorithm performs similarly to ExPen, it does
not require calculating the gradient of an alternative point
other than x; not only is it more efficient, but also it is more
suitable for implementation in modern neural networks, which
we present in the next experiment.

E. Training CNNs Without Retractions

We adopt the experimental setting in [21] to compare
retraction-free algorithms with the state-of-the-art Cayley SGD
and Cayley Adam, as well as vanilla SGD and Adam, which
are suitable for unconstrained Euclidean problems. Although
no strict function assumptions are satisfied by neural networks
due to the nature of RelU activations, some works [7]
suggested that the loss of wide neural networks can be coupled
with that of a quadratic model. We refer to the retraction-
free methods as RF-5GD and RF-Adam, respectively. For
the adaptation of RF-Adam, we refer to [21, Algorithm 2]
for details but replace the Cayiey loop with a retraction-free
landing update.

We evaluate all algorithms with Wide ResNet (WRN-28-
1) on the CIFAR-100 dataset, where generalization is an
important metric. All hyper-parameters are adapted from [21]
with no modifications. We present the results in Fig. 1(b), sug-
gesting that orthogonality constraints (imposed in Riemannian
optimization) may help with better generalization, a phe-
nomenon also observed in other works (e.g., [12]). We note
that the mini-batch training in neural networks introduces
stochastic noise in gradient evaluations, negatively impacting
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convergence. In our experiments, all three methods are run
with a learning rate decay scheduler in accordance with the
previous literature, resulting in a multi-stage convergence
with jumps every 50 epochs. In terms of generalization, both
RF-5GD and RF-Adam perform betier than their Cayley
counterparts [21], which suggests that compared to inexact
Cayley updates, RF-based algorithms are perhaps more accu-
rate and/or have more desirable properties in training neural
networks.

We also plot the convergence of loss vs. computation time.
Retraction-free (RF) methods have much faster convergence
compared to Cayley-retraction methods. We note that the
update in [21] is already an approximate solution with empha-
sis on efficiency, yet the landing algorithm helps with faster
convergence and moderately improves the generalization.

V. CONCLUSION

In this letter, we studied a faster convergence for the
retraction-free landing algorithm, addressing optimization
under orthogonality constraints. We used the local Riemannian
Pt. condition on the objective function to derive a local
linear convergence rate for the landing algorithm. We also
provided numerical results as a verification of the convergence
speed while highlighting the computational efficiency of the
algorithm compared to existing benchmarks.

For future research, generalization of these techniques to
general manitold constraints, such as the Grassmann and
Hyperbolic manifolds, is an interesting direction. In addition,
given the wide application of orthogonality constraints in
modern neural network structures, developing adaptive and
momentum-based retraction-free optimization algorithms is
another interesting open question,
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