

1 Photorespiration Methods and Protocols Book Chapter

2

3 Title: *Using gas exchange to study CO₂ release during photosynthesis with steady- and non-*
4 *steady-state approaches*

5 Authors: Stephanie C. Schmieg^{1,2}, Berkley Walker^{3,5}, Thomas D. Sharkey^{1,3,4}

6

7 ¹Plant Resilience Institute, Michigan State University, East Lansing, MI 48824 USA

8 ²Department of Biology, Western University, London, Ontario, Canada N6A 5B7

9 ³MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
10 USA

11 ⁴Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing,
12 MI 48824 USA

13 ⁵Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA

14

15 Corresponding author: Stephanie C. Schmieg, schmie18@msu.edu

16

17

18

19 Running head (no more than 60 characters including spaces): Using gas exchange to study CO₂
20 release during photosynthesis

21

22

23

24

25 ABSTRACT

26 Measures of respiration in the light and C_i^* are crucial to the modeling of photorespiration and
27 photosynthesis. This chapter provides background on the equations used to model C₃
28 photosynthesis and the history of the incorporation of the effects of rubisco oxygenation into
29 these models. It then describes three methods used to determine two key parameters necessary to
30 incorporate photorespiratory effects into C₃ photosynthesis models: respiration in the light (R_L)
31 and C_i^* . These methods include the Laisk, Yin and isotopic methods. For the Laisk method we
32 also introduce a new rapid measurement technique.

33

34 KEY WORDS

35 Respiration in the light, Laisk method, Kok method, Yin method, isotopes, Γ^* , C_i^*

36

37 INTRODUCTION

38 Net gas exchange measurements have been essential for linking photorespiration to carbon
39 assimilation. Evidence for photorespiration and other respiration in the light has been examined
40 for the last 100 years. For example, Warburg [1] used gas exchange methods to discover that
41 oxygen inhibited photosynthesis [2]. Decker [3] showed that CO₂ evolution immediately after
42 imposing darkness was significantly greater than a somewhat stable rate of CO₂ evolution
43 reached several minutes after imposing darkness. (This Post-Illumination Burst is explored
44 further in this book.) The interpretation was that there is one or more processes that release (or
45 “respire”) CO₂ and that are stimulated by light. This was variously called photorespiration e.g.
46 Rabinowitch [4] and or light respiration (R_L). The possibility of light stimulated CO₂ release was

47 called “a nightmare oppressing all who are concerned with the exact measurement of
48 photosynthesis” by Rabinowitch [4]. Given the importance of gas exchange to the discovery of
49 photorespiration and the importance of photorespiration to predicting gas exchange of
50 photosynthesis, we present here a summary of the discoveries of photorespiration by gas
51 exchange and how these discoveries informed the subsequent equations used to model it. This
52 historical perspective is helpful to illustrate the various assumptions integrated into commonly
53 used forms of these models. We then present methods for exploring photorespiration using these
54 models and gas exchange methods based on steady- and non-steady-state assumptions. In this
55 chapter we will focus specifically on C₃ photosynthesis.

56 A significant part of CO₂ release during photosynthesis was found to be associated with,
57 but not necessarily coming directly from, glycolate metabolism in peroxisomes [5]. The source
58 of the glycolate was found to be dependent on rubisco [6]. The metabolism that involves CO₂
59 released during metabolism of glycolate produced by oxygenation of ribulose 1,5-bisphosphate
60 (RuBP) is now the definition of photorespiration, while other possible CO₂-releasing processes
61 occurring in the light were collectively called day respiration [7]. This nomenclature was the
62 result of the initial belief that this CO₂ release comes from mitochondrial reactions and is the
63 same as respiration in the dark [8] and so called R_d . To allow that there may be other sources of
64 CO₂ release during photosynthesis that are important to understanding gas exchange behavior,
65 this daytime “dark respiration” was rebranded as “day respiration” so that the abbreviation could
66 be retained. Here we will define respiration in the light (R_L) as respiration (i.e., CO₂-release) in
67 the light that is not photorespiration. While this could involve mitochondrial metabolism, isotope
68 studies have consistently shown that there is very little activity of the tricarboxylic acid cycle in
69 the light [9-11].

70 The discovery of rubisco-catalyzed RuBP oxygenation as the initial event in
71 photorespiration opened the door to a quantitative description of the effect of oxygenation on net
72 photosynthesis [12]. Thus,

73

$$74 \quad A = v_c - t \cdot v_o \quad \text{Equation 1}$$

75

76 where A is net CO₂ assimilation (what we measure in a gas exchange system), v_o and v_c are the
 77 velocities of the oxygenase and carboxylase respectively, and t is the proportion of carbon
 78 released as CO₂ during metabolism resulting from one oxygenation event. The actual velocities
 79 are denoted by lower case v's as is the norm in enzymology, to distinguish from theoretical
 80 maximum velocities, V_{max} . The value of t has been taken to be 0.5 [13] based on the glycolate
 81 metabolism pathway proposed by Tolbert [14]. The relationship between v_o and v_c , that is, the
 82 ratio of oxygenation to carboxylation, is labeled Φ and given by

83

84

$$85 \quad \frac{v_o}{v_c} = \frac{V_o K_c}{V_c K_o} \cdot \frac{o}{c} = \Phi \quad \text{Equation 2}$$

86

87 where V_o and V_c are V_{max} for the oxygenase and carboxylase activities, K_c and K_o are the
 88 Michaelis constants for carboxylation and oxygenation, and O , and C are the partial pressures or
 89 concentrations of oxygen and CO_2 . From Equation 2 it is clear that the ratio of oxygenation to
 90 carboxylation is linearly dependent on oxygen and inversely dependent on CO_2 . Keck, Ogren
 91 [13] used equations 1 and 2 to derive the CO_2 partial pressure (or concentration as long as the

92 K_m 's are in the same units) at which CO₂ assimilation by carboxylation is equal to CO₂ release
93 by oxygenation, the compensation point, Γ .

94

95
$$\Gamma = \frac{tV_o K_c O}{V_c K_o}.$$
 Equation 3

96

97 Farquhar et al. [8] pointed out that to apply the above equations to gas exchange measurements
98 of photosynthesis and related photorespiration, it was necessary to account for R_L . Thus,
99 Equation 1 becomes

100

101
$$A = v_c - t \cdot v_o - R_L.$$
 Equation 4

102

103 The rubisco compensation point as defined in Equation 3 will occur when gas exchange is
104 showing a CO₂ release equal to R_L . Farquhar et al. [8] renamed Γ as defined initially by Equation
105 3 as Γ^* since it is the rubisco compensation point, not the point where net leaf CO₂ exchange is
106 zero [see 15 for full derivations]. Thus, the CO₂ partial pressure at which CO₂ exchange is
107 independent of light intensity is Γ^* (but see below regarding C_i^*). And, at Γ^* , the measured CO₂
108 exchange is a measure of R_L .

109

110 Using Φ as defined in Equation 2, Equation 4 is

111

112
$$A = v_c(1 - t\Phi) - R_L.$$
 Equation 5

113

114 Equations 2 and 3 can then be used to derive that

115

116 $\frac{v_o}{v_c} = \frac{1}{t} \frac{\Gamma_*}{c}$ typically shown to be $\frac{2 \cdot \Gamma_*}{c}$ if $t = 0.5$. Equation 6

117

118 Laisk [16] pointed out that at Γ^* , A will be independent of light and so a series of CO₂ response
119 curves at limiting light levels will cross over at Γ^* . This makes it possible to use gas exchange
120 measurements to determine a parameter that combines many rubisco characteristics, or in other
121 words, provides a powerful validation of the above theory when they do cross over *in vivo* at a
122 value predicted by rubisco kinetics *in vitro*. However, Γ^* depends on t , and so if t is variable, Γ^*
123 will be variable.

124 However, the point at which various CO₂ response curves cross over will not be Γ^* if
125 there are other sources of CO₂ release or if there is diffusion resistance between the intercellular
126 air spaces and rubisco. This is because the diffusion resistance encountered by the net flux of
127 CO₂ across the mesophyll will cause the apparent Γ^* to be at a lower CO₂ partial pressure than
128 the true Γ^* . This apparent Γ^* is called C_i^* [17]. The relationship between Γ^* and C_i^* is
129

130 $\Gamma_* = C_i^* + \frac{R_L}{g_m}$ Equation 7

131

132 where g_m is the diffusion conductance between the intercellular air spaces and rubisco. Notably,
133 if there are large diffusive barriers between the mitochondrial release of CO₂ and rubisco,
134 equation 7 is not as valid and an additional theoretical framework involving multiple resistances
135 are needed [18].

136 Gas exchange measurements can be used to estimate both C_i^* and R_L , which, as
137 demonstrated through the theoretical equations above, are important parameters to estimates of
138 rubisco oxygenation and thus photorespiration. Here we outline several gas exchange methods
139 used to estimate C_i^* and R_L , any recent advances in these methods, and any important
140 considerations when using these methods. Both C_i^* and R_L can be measured using the Laisk
141 method [Laisk [19] as described in English in Laisk [16]], whereas R_L can also be measured by
142 several other techniques including the Kok [20] and Yin [21,22] methods, and by using isotopes
143 [23,24]. Materials for these methods are listed below followed by the protocols themselves.
144 Finally, we present additional insight on isotopic methods gained from metabolic flux analysis
145 studies.

146

147

148 MATERIALS

149 ***Laisk, Kok, and Yin materials***

150 1. Infra-Red Gas analyzer (IRGA)-based gas exchange system. The system should have the
151 capability to measure both gas exchange and chlorophyll fluorescence simultaneously for
152 the Yin method.

153

154 ***Isotopic materials***

155 1. IRGA
156 2. Gas tanks: 99% $^{13}\text{CO}_2$, 99% $^{12}\text{CO}_2$, N_2 and O_2
157 3. 5 mass flow controllers

158 4. Swagelok T-joint attached to the back of the IRGA measurement head to facilitate easy
159 switching from $^{12}\text{CO}_2$ to $^{13}\text{CO}_2$
160 5. Bev-A-line IV tubing (more gas tight than Teflon tubing)
161 6. Bubbler to humidify airstream
162 7. Tunable diode laser (TDL) or equivalent method capable of identifying $^{12}\text{CO}_2$ emission
163 from a leaf in a $^{13}\text{CO}_2$ background

164

165

166 METHODS

167 This chapter does not provide detailed instructions on best practices when using gas exchange
168 systems as many such guides already exist in the literature (see for example [25]); nonetheless,
169 we do feel it is important to have a basic understanding of the measures and units used to
170 describe the proportions of a gas in air. As such, we have included a basic primer on this topic in
171 Appendix 1.

172

173 ***Laisk method for estimating C_i^* and R_L***

174 The Laisk method [16,19] estimates C_i^* and R_L by collecting at least two but in practice typically
175 three to five photosynthetic CO_2 response curves at different light intensities such that the curves
176 intersect at a single point where the x and y coordinates are equal to C_i^* and R_L , respectively
177 (Figure 4). While the expectation is that all the CO_2 response curves should cross over at the
178 same point, it has frequently been documented that the cross-over points can differ among pairs
179 of curves [18]. For this reason, several methods have been developed to identify a common
180 crossover point from the curves including averaging the values obtained from the intersection of

181 each pair of curves and the slope-intercept regression method [26,27]. The CO₂ response curves
182 used to identify this cross over point are collected either by steady-state gas exchange
183 techniques, or by employing the new dynamic assimilation technique (DAT; Figure 1) [28]. The
184 DAT technique significantly reduces the time required to collect the CO₂ response curves
185 allowing for higher throughput and leaving less time for the physiology of the leaf to change in
186 response to holding them at or below the compensation point. Both steady-state and DAT
187 techniques provide comparable estimates of R_L , although estimates of C_i^* may vary slightly
188 between the two techniques [29]. At this stage it is not fully clear why there are slight
189 differences between techniques in determining C_i^* but it is possible that these small shifts may
190 be due to slight changes in g_m or in glycine export from the photorespiratory pathway [29].

191

192 *Steady-state Laisk protocol*

- 193 1. Identify at least three light intensities^{1,2} that provide evenly spaced differences in the
194 initial slopes of the CO₂ response curves.
- 195 2. Identify CO₂ concentrations that span the linear portion of the CO₂ response curve but
196 minimize the amount of time spent at very low CO₂ concentrations³. Stay at each CO₂
197 concentration for at least 30 s but no more than 120 s. Point matching should be
198 employed before each measurement in IRGA's with two separate detectors⁴.
- 199 3. Run CO₂ response curves at each light intensity, returning to 420 ppm between each
200 curve until all light levels have been completed.

201

202 *DAT Laisk protocol (using the LI-6800)*

203 The LI-6800 is currently the only IRGA capable of running DAT curves, so specific instructions
204 are provided for this particular instrument.

205 1. Set up DAT on the LI-6800⁵. We have found that this technique works best with LI-
206 6800s that have the most recent processor installed. This processor decreases lagging in
207 the measurements during the CO₂ ramps.

208 a. Enable dynamic equations.
209 b. Test dynamic tuning using an empty chamber and your chosen flow rate (usually
210 between 300 – 600 $\mu\text{mol s}^{-1}$)

211 c. Set up range matching

212 2. Light intensities for each of the curves should be identified as above.
213 3. At the first light intensity, ramp the reference CO₂ concentration from high to low such
214 that you collect the approximately linear portion of a traditional A/C_i curve⁶.
215 4. Return to 420 ppm (ambient atmospheric CO₂ concentration) before running the curve at
216 the next light level to minimize time spent at low CO₂ concentrations.
217 5. Point match before running next curve, especially if the LI-COR range match was set up
218 before the IRGA was fully warmed up (within the first hour of starting up the LI-COR).
219 6. Repeat steps two through four until curves at all light levels have been completed.

220

221

222 *Laisk curve analysis protocol*

223 This method extracting C_i^* and R_L from the Laisk curves uses the slope-intercept regression
224 method [26,27].

225 1. If using DAT-collected Laisk curves, remove the first five or so points from each curve
226 as they show the initial adjustment to the CO₂ ramp and are not linear.

227 2. Visually assess the linearity of the data you have collected. Subset to datapoints in the
228 linear portion. We have found these to be the points below 85 – 100 ppm.

229 3. Fit linear regressions to the CO₂ response curves at each of the light intensities.

230 4. Extract the slope and intercept of the linear regressions⁷.

231 5. Fit a linear regression to the slopes and intercepts from step 4 with the slopes on the *x*-
232 axis and the intercepts on the *y*-axis. The slope and intercept of this line provide
233 estimates of C_i^* and R_L , respectively.

234

235 ***Kok and Yin methods for estimating R_L***

236 In addition to the Laisk method, R_L can also be estimated via the Kok or Yin method. In these
237 methods, R_L is estimated by collecting a photosynthetic light response curve with particular
238 attention to low light intensities around the light compensation point. The Kok method derives
239 its name from Bessel Kok, who discovered a subtle shift in the response of photosynthesis to
240 light intensity around the light compensation point, now called the “Kok effect” [20]. The point
241 where this shift occurs has been called the breakpoint. Biologically, it has been interpreted as the
242 point where leaf mitochondrial respiration is suppressed by light. Consequently, if a linear
243 regression is fit to the points above the breakpoint, the *y*-intercept will provide an estimate of R_L .
244 In contrast, if a linear regression is fit to the points below the breakpoint, an estimate of
245 respiration in the dark (R_D) is gained instead. An important update for this method requires
246 accounting for the fact that internal CO₂ concentrations (C_i) increases as light intensity decreases
247 [30]. The higher C_i at low light levels suppresses photorespiration relative to carboxylation

248 resulting in higher measured photosynthetic rates in the linear portion of the curve [31]. The
249 result is a lower slope in the linear relationship through the observed data than would be
250 observed if the C_i were constant, resulting in an underestimation of R_L . Correcting for changes
251 in C_i should be undertaken and methods for this are fully described in Kirschbaum, Farquhar
252 [32] and Ayub et al. [30].

253 More recently, an additional modification to the Kok method has been proposed. The
254 Kok method assumes that photosystem II electron transport efficiency (Φ_{II}) is constant across all
255 light levels used in the analysis; however, Φ_{II} declines at high light levels (Figure 2). This has
256 led to the advent of the Yin method, developed by Xinyou Yin [21,22], which incorporates this
257 decline in Φ_{II} . Φ_{II} is estimated by taking simultaneous measurements of chlorophyll
258 fluorescence during gas exchange. At each light intensity of the photosynthetic light response
259 curve, Φ_{II} is calculated as $1 - F_s/F_m'$. Then, Φ_{II} is incorporated into the traditional light
260 response curve by plotting photosynthesis as a function of $I_{inc} \Phi_{II}/4$ where I_{inc} is the incident
261 irradiance. R_L is estimated from this modified light response curve by extracting the intercept
262 from the linear regression of photosynthesis to $I_{inc} \Phi_{II}/4$ in the lower portion of the response
263 curve. These estimates of R_L often slightly larger than estimates from the Kok method, but
264 comparable to estimates acquired via the Laisk method [22].

265

266

267 *Kok and Yin protocol*

268 1. Data for Kok and Yin methods are acquired using steady-state gas exchange techniques.
269 Data for the Kok method can be collected using an IRGA with precise light intensity

270 control. Data for the Yin method must be collected with an IRGA capable of acquiring
271 simultaneous chlorophyll fluorescence and gas exchange measurements.

272 2. For the Kok and Yin methods, a larger number of datapoints should be acquired at lower
273 light intensities⁸.

274

275 ***Isotopic methods for estimating R_L***

276 In addition to gas exchange methods, there are also isotopic methods that have been used to
277 estimate R_L . Although these methods are not easily employed in field settings, limiting their
278 application, they have been lauded for their ability to measure R_L under high light and
279 photosynthetic conditions. The fact that Laisk, Kok and Yin methods require altering CO₂
280 concentrations and/or light conditions at conditions near the CO₂ or light compensation point
281 limits our ability to assess the magnitude of this flux under ambient photosynthetic conditions.

282 One of the first isotopic methods used to assess R_L under high light and high photosynthetic
283 conditions was the method developed by Francesco Loreto [23,24]. In this technique the leaf is
284 rapidly transitioned to 99.9% ¹³CO₂ environment and the ¹²CO₂ emission from the leaf
285 (measured using an IRGA with reduced sensitivity to ¹³CO₂) is measured as an estimate of R_L .
286 Theoretically this method provides accurate estimates of R_L because CO₂ released by R_L comes
287 from older stored pools of carbon that will not be labeled by exposure to ¹³CO₂. The advantage
288 of this method is that R_L can be assessed under a variety of different light conditions and CO₂
289 concentrations. Nevertheless, there are several caveats that are important to be aware of when
290 using this method.

291 The first of these is that the intermediates of the Calvin Benson cycle label quickly during
292 the first 5-10 minutes, but are not fully labeled for many hours [33]. We know that the Calvin

293 Benson cycle intermediates are 80 to 90% labeled after 20 min and can take this degree of label
294 into account when estimating R_L . However, because the Calvin Benson cycle is incompletely
295 labeled, we can infer that photorespiration also remains incompletely labeled to some degree.
296 Up until now, there have been few estimates of the degree of label in photorespiration, making it
297 challenging to ascertain whether the total measured $^{12}\text{CO}_2$ efflux from the leaf is due to R_L or the
298 incomplete labeling of photorespiratory CO_2 release. However, a recent metabolic flux analysis
299 by Xu et al. [10] may provide the information necessary to estimate this (see below).

300 An additional factor that must be accounted for is the fact that CO_2 released in the cell
301 can be refixed in the Calvin Benson cycle or released into the atmosphere. Any estimates of R_L
302 via this isotopic labeling method must take refixation into account. In fact, a simple
303 mathematical method was used by Loreto et al. [23] in which reassimilated $^{12}\text{CO}_2$ was calculated
304 from the ratio of $^{12}\text{C}_i$ to $^{13}\text{C}_i$ multiplied by the photosynthetic rate. In the second appendix to this
305 chapter, we provide a more complex accounting for refixation that considers the updated
306 understanding of $^{13}\text{CO}_2$ labeling time courses, the potential for competitive interactions between
307 the isotopes, and photorespiration effects on the relationship between photosynthesis and the
308 velocity of carboxylation (see Appendix 2).

309 In the method below we present a modified version of the setup used by Loreto, where
310 instead of a $^{13}\text{CO}_2$ -insensitive IRGA, we use a TDL tuned to wavelengths that can sensitively
311 detect $^{12}\text{CO}_2$ in an enriched $^{13}\text{CO}_2$ background with great sensitivity and precision.

312

313 $^{13}\text{CO}_2$ labeling protocol

314 System setup to prepare the air mixture that will be fed into the gas exchange system

315 1. Connect the O_2 , 99% $^{12}\text{CO}_2$ and 99% $^{13}\text{CO}_2$ to flow controllers

316 2. For the N₂ divide the airstream into two separate tubing paths with separate flow
317 controllers. One path will pass through a bubbler, the other through desiccant. This will
318 allow some control of the humidity in the airstream.

319 3. The humid and dry N₂ airstreams should then be joined to the O₂ airstream.

320 4. Install the Swagelok T-joint on the air inlet of the IRGA head.

321 5. Connect the N₂, O₂ tube, and the ¹³CO₂ and ¹²CO₂ lines such that turning the four way
322 switching valve will rapidly add either ¹³CO₂ or ¹²CO₂ to the N₂, O₂ airstream entering
323 the leaf chamber (see Figure 3 for a flow path diagram of the system setup).

324 6. Flow controllers should be set to provide 80% N₂, 20% O₂ and 420 ppm of either ¹³CO₂
325 or ¹²CO₂.

326 7. Connect the chamber (sample) and reference air outlets from the IRGA to a TDL or
327 equivalent system to measure the ¹²CO₂ in the exhaust chamber air.

328 Measurements

329 1. Let the leaf acclimate in ¹²CO₂ until photosynthesis and stomatal conductance are stable
330 (often approximately 20 min). Record photosynthesis, transpiration, and flow rate on the
331 gas exchange system. These will be used later to calculate ¹²CO₂ concentrations.

332 2. After acclimation, switch from ¹²CO₂ to ¹³CO₂ (Figure 4). Record the O₁₆C₁₂O₁₆ peak of
333 the TDL absorbance spectra for 20 min.

334 Calculating ¹²CO₂ efflux

335 1. To calculate the total ¹²CO₂ efflux from the O₁₆C₁₂O₁₆ peak of the TDL absorbance
336 spectra, you will need to take into account your leaf area and correct your flow rate to
337 account for transpiration as water vapor efflux from the leaf increases total the flow rate
338 [see appendix 2 in 34].

339

340

341 INSIGHT FROM METABOLIC FLUX ANALYSIS

342 One of the concerns with isotopic methods for estimating R_L is the fact that we do not know how
343 much of the $^{12}\text{CO}_2$ efflux from the leaf is due to R_L as opposed to incomplete labeling of
344 photorespiration with $^{13}\text{CO}_2$. Metabolic flux analysis provides a unique opportunity to examine
345 the contributions of different CO_2 releasing processes to total $^{12}\text{CO}_2$ emission. Xu et al. [10]
346 provide a unique dataset that allows a first approximation of the contributions from the various
347 CO_2 releasing processes in the leaf occurring during photosynthesis. Their dataset includes the
348 degree of label in a variety of different metabolites along with the velocity of CO_2 release from
349 the enzymes catalyzing the processes. From these data, we can calculate the total ^{12}C emission
350 from a leaf as the sum of the CO_2 releasing fluxes multiplied by the degree of ^{12}C label
351 remaining in the metabolites after 30 minutes in a 99% pure $^{13}\text{CO}_2$ environment if we assume
352 that the enrichment of these metabolites is the same during a $^{13}\text{CO}_2$ experiment measured with
353 the TDL. Thus, contributing pathways could include the glucose 6-phosphate (G6P) shunt, fatty
354 acid synthesis, photorespiration and the tricarboxylic acid (TCA) cycle such that:

355

$$356 \quad ^{12}\text{C} = (1 * R_{UDPG} * v_{6PGD}) + (1 * R_{PEP} * v_{PDH.c}) + (0.5 * R_{RUBP} * v_o) + (1 * R_{PEP} * \\ 357 \quad v_{PDH.m}) + (1 * R_{ICl} * v_{IDH}) + (1 * R_{ICl} * v_{KGDH}) \quad \text{Equation 12}$$

358

359 where ^{12}C is the total ^{12}C emission from the leaf, v is the velocity or rate of flux contributing to
360 the total ^{12}C emission, and R is the % ^{12}C label remaining in the metabolites. UDPG, UDP
361 glucose; 6PGD, 6 phosphogluconate dehydrogenase; PEP, phosphoenolpyruvate; PDH.c,

362 chloroplastic pyruvate dehydrogenase; RUBP, ribulose-1,5-bisphosphate, v_o , velocity of
363 oxygenation; PYR.m, mitochondrial pyruvate; PDH.m, mitochondrial pyruvate dehydrogenase;
364 ICI, isocitrate; IDH, isocitrate dehydrogenase; KGDH, α -ketoglutarate dehydrogenase.

365 Note that in some cases the nearest upstream metabolite was not available and so nearby
366 representative metabolites were chosen instead. Thus, in the G6P shunt, we have used % ^{12}C
367 release from UDPG instead of 6-phosphogluconate (6PG) as 6PG is very hard to estimate. In
368 fatty acid synthesis, we have used PEP instead of chloroplastic pyruvate (PYR.c) as evidence
369 from work on isoprene by Sharkey et al. [33] indicates that sources of carbon for the methyl
370 erithritol pathway, glyceraldehyde 3-phosphate and pyruvate, are labeled to a similar degree as
371 CBC intermediates. In photorespiration, we have used RUBP instead of glycine because glycine
372 can also be stored in the vacuole making it challenging to differentiate between slow and fast
373 pools of this metabolite. The % label in glycine would need to be the total of both slow and fast
374 pools. Thus, the % ^{12}C label in glycine would be most accurately characterized according to the
375 following equation:

376

$$377 R_{GLY} = (v_o * R_{RUBP} + v_{GLY.v} * R_{GLY.v}) / (v_o + v_{GLY.v}) \quad \text{Equation 13}$$

378

379 Where the total label in glycine includes the rate of exchange with, and ^{12}C label in, the slow,
380 vacuolar pool of glycine (GLY.v). As we do not have estimates of GLY.v, we have used RUBP
381 to set the degree of label in glycine. Finally, in the TCA cycle CO_2 releasing reactions, we have
382 used the label in PEP instead of in mitochondrial pyruvate because there is large variability in the
383 pool of pyruvate and we have used the label in ICI instead of α -ketoglutarate as we have no
384 estimate of the % ^{12}C label in this α -ketoglutarate.

385 It is worth noting here that there is a possible additional CO₂ releasing pathway in which
386 malate is decarboxylated by malic enzyme to form pyruvate. This reaction has not previously
387 been considered in flux analysis studies. Consequently, we do not know the velocity of this
388 reaction compared to other CO₂ releasing reactions, and have therefore excluded it from this
389 current assessment. Future studies could examine this further.

390 By using the % ¹²C label from the identified metabolites from Xu et al. [10], and
391 converting the velocities from $\mu\text{mol metabolite g}^{-1}\text{FW hr}^{-1}$ to $\mu\text{mol m}^{-2} \text{s}^{-1}$ using the ratio of fresh
392 weight to area of 550 g m⁻², we have calculated the contribution to ¹²CO₂ release from each of
393 the processes (Table 1). From these calculations we estimate that the processes usually
394 considered to contribute to R_L (the G6P shunt, fatty acid synthesis and the TCA cycle) release a
395 total of 0.374 $\mu\text{mol m}^{-2} \text{s}^{-1}$ CO₂ while photorespiration releases 0.245 $\mu\text{mol m}^{-2} \text{s}^{-1}$ CO₂. Thus,
396 we can see that photorespiration comprises a large fraction of the total ¹²CO₂ release as measured
397 using isotopic methods, and accurately accounting for this photorespiratory contribution is
398 critical to accurate estimations of R_L via this technique. Not only is this new accounting
399 important for isotopic methods, it highlights that photorespiration contributes a large proportion
400 to the total CO₂ release during photosynthetic daylight hours.

401

402

403 NOTES

404 ¹When setting the light intensity on a LI-COR gas exchange instrument such as the LI-6800, we
405 set the proportion of red light and blue light reaching the leaf is 50:50, which might be better for
406 keeping the stomata open during multiple rounds of variation in light and CO₂ [35].

407 ²An initial light response curve can be used to select light intensities that will give an even
408 spread of slopes during the Laisk measurement.

409 ³Generally, it is not recommended to go below 25 ppm when taking steady-state gas exchange
410 measurements. We have used the following CO₂ concentrations with good results: 150, 100, 75,
411 50, 25 ppm.

412 ⁴Some gas exchange systems are not capable of measuring at CO₂ levels below the cross over
413 point. It is possible to use projections from the higher CO₂ concentrations, but this is not optimal.

414 ⁵For all Laisk measurements, if using a gas exchange system with fluorescence capabilities,
415 make sure that fluorescence is turned off.

416 ⁶We have found that starting at 150 ppm and ramping to 0 ppm at a rate of 50 ppm min⁻¹ works
417 well.

418 ⁷There is a spreadsheet available in the supplemental information of [27] to perform the analysis
419 according to the slope-intercept regression method.

420 ⁸We recommend collecting the photosynthetic and fluorescence measurements at the following
421 light intensities: 100, 75, 50, 45, 40, 35, 30, 25, 20, 15, 10, 5 $\mu\text{mol}_{\text{photons}} \text{m}^{-2} \text{s}^{-1}$. These
422 measurements can be combined with a full light response curve if desired.

423

424

425 APPENDICES

426 *Appendix 1 – A primer on gas exchange – measures of the proportion of a gas in air*

427 There are several aspects of using gas exchange to study photorespiration that can be confusing
428 initially. To start, how should one describe the amount of gas being used? Gases dissolve into
429 liquids in proportion to their partial pressure (Henry's law). In ideal gases, the total pressure is

430 the sum of the pressures that would be exerted by each component (Dalton's law). A common
431 unit of pressure is the standard atmosphere (at sea level). The SI unit for pressure is the Pascal
432 (Pa), one standard atmosphere is 101.3 kPa. People use bar, which is convenient because 1 bar is
433 1.013 atmospheres. The atmosphere with a sea-level pressure of 101.3 kPa total pressure would
434 have about 78 kPa nitrogen, 21 kPa oxygen, 1 kPa argon, 42 Pa CO₂, and zero to ~4 kPa water
435 vapor.

436 For photorespiration studies we want to know the availability of CO₂ and oxygen.

437 According to Henry's law, CO₂ dissolves into the water-saturated cell walls inside a leaf
438 according to its partial pressure. To illustrate, at the top of a mountain the ratio of oxygen partial
439 pressure to total pressure is the same as at sea level, but the total pressure is less and so the
440 partial pressure of oxygen is less, making it hard to breath.

441

442 Most often people express CO₂ in parts per million (and oxygen in %). These are unitless ratios
443 (% and PPM are not units, they are used when units cancel). A very useful fact is that the partial
444 pressure of a gas divided by the total pressure is the same as the partial volume of a gas divided
445 by the total volume or the number of moles of the gas divided by the total number of moles of all
446 gases present. This is mole fraction and denoted χ . Since there are only 0.00042 moles of CO₂ in
447 a mole of air, we express this as moles of CO₂ per million moles of air, ppm. This is different
448 from the ppm used in fertilizer studies. In that usage, 1 ppm is 1 mg per liter. Since milligrams
449 and liters are not the same, use of ppm in this context is often frowned upon, but in gases,
450 expressing mole fraction is defensible. However, the criticism of mg per liter as ppm spilled into
451 gas studies so now to avoid saying ppm we use $\mu\text{l l}^{-1}$ or, because lower case l is confused with

452 the numeral one, $\mu\text{L L}^{-1}$. Others use $\mu\text{mol mol}^{-1}$ and also $\mu\text{bar bar}^{-1}$ or $\mu\text{Pa Pa}^{-1}$. They are all
453 mole fraction and identical.

454

455 mole fraction, $\chi = \frac{\text{mol}}{\text{mol}} = \frac{\text{Pa}}{\text{Pa}} = \frac{\text{L}}{\text{L}}$ Equation A1.1

456

457 So, when should mole fraction be used and when should partial pressure be used? When
458 communicating about how CO_2 affects photosynthesis, it is best to use partial pressure. That
459 way, the effective CO_2 availability is the same regardless of total pressure. A CO_2 response curve
460 reported in partial pressure will be the same at sea level (101.3 kPa atmospheric pressure) and in
461 Denver Colorado, USA (84 kPa). If you report in mole fraction, then the effective CO_2
462 availability for photosynthesis in Denver will be only 83% of what was available at sea level. On
463 the other hand, mole fraction is often the more convenient measure in the lab. Most mass flow
464 meters report the molar flow of a gas. If you mix two gas streams, you will know the ratio of the
465 molar flux of each. If you mix them at high pressure and reduce the pressure, the mole fraction
466 will stay the same while the partial pressure will change. This is especially applicable to isotope
467 studies. We routinely start with a pressure vessel with a known amount of $^{13}\text{CO}_2$ or $^{14}\text{CO}_2$ and
468 then pressurize the tanks. In this case, partial pressure can be ignored, just the molar ratios need
469 to be considered.

470 Mole fraction and partial pressure issues also apply to water vapor but there is another
471 consideration for water vapor, the dew point. This is the temperature at which humid air has as
472 much water vapor as possible. Any colder and condensation will occur. Condensation is an all-
473 too-common disaster in gas exchange systems. So, in addition to mole fraction and partial
474 pressure, there are two additional ways to describe how much water vapor is in the air. The first

475 is the dew point of the air, that is the temperature at which dew (condensation) would occur if the
476 air comes to that temperature, regardless of the current air temperature. The partial pressure of
477 water vapor above liquid water, often denoted e_0 , is a function of absolute temperature and
478 appears exponential. Thus, an empirical equation to determine the partial pressure above liquid
479 water (e_0) in kPa, where T is temperature in degrees Celsius [36] is

480

$$481 e_0 = 0.61121 \left(\left(18.678 - \frac{T}{234.5} \right) \cdot \left(\frac{T}{257.14+T} \right) \right) \quad \text{Equation A1.2}$$

482

483 In gas exchange we estimate the partial pressure of water vapor in the airspaces inside the leaf
484 by knowing the leaf temperature and looking up in a table (or using an empirical equation) to
485 determine the partial pressure of water vapor for pure water at that temperature. On the other
486 hand, relative humidity is very often used to describe the amount of water vapor in air. This is
487 the partial pressure of water vapor divided by the partial pressure that the air at that temperature
488 could hold before condensation would occur. Table 1 shows how these measures of water vapor
489 are related at three temperatures.

490

491

492 Table A1.1. Expressing the amount of water vapor in air at 25, 30, and 35°C. The water vapor
493 pressure above liquid water at the indicated temperature is in the second column. The remainder
494 of the columns are for a relative humidity of 60%, a common target humidity used in gas
495 exchange studies. The mole fraction assumes an atmospheric pressure of 101.3 kPa. From this
496 table it is clear that in order to make gas exchange measurements at 35°C to examine the effect
497 of temperature on photorespiration, it would be necessary to do the experiment in a warm
498 greenhouse or growth chamber or accept less than 60% relative humidity (the alternative of
499 risking condensation in the gas exchange system is not advised). Table 10 shows that it is
500 difficult to set humidity to be constant at higher temperatures. If you use relative humidity, then
501 the absolute humidity (partial pressure) will vary. If you set the vapor pressure difference
502 between the leaf and air constant, then relative humidity will be different.

Temperature, °C	Vapor pressure, kPa	Relative humidity, %	Partial pressure, kPa	Mole fraction, %	Dew point °C
Constant relative humidity of 60%					
25	3.17	60	1.90	1.88	16.7
30	4.24	60	2.54	2.51	21.4
35	5.63	60	3.38	3.33	27.8
Constant Vapor pressure difference of 1.5 kPa					
25	3.17	53	1.67	1.64	14.7
30	4.24	65	2.74	2.37	20.2
35	5.63	73	4.13	4.08	29.3

503

504

505

506

507

508

509

510

511 ***Appendix 2 – Accounting for refixation in isotopic methods***

512

513 Loreto et al. (2001) originally accounting for refixation according to the following equation:

514

515
$$R_{LR} = {}^{12}C_i / {}^{13}C_i \cdot AE \quad \text{Equation A2.1}$$

516

517 where R_{LR} is released ${}^{12}\text{CO}_2$ that is reassimilated, ${}^{12}C_i$ is calculated below and ${}^{13}C_i$ is calculated
518 from gas exchange.

519

520 $^{12}C_i = R_L/g_s$ Equation A2.2

521

522 Where R_L is the rate of respiration in the light and g is stomatal conductance to CO_2 .

523

524 Given our updated understanding of $^{13}\text{CO}_2$ labeling it may be necessary to elaborate on the
 525 original equations. Thus, the ratio of $^{12}\text{CO}_2$ carbon fixation to $^{13}\text{CO}_2$ carbon fixation can be
 526 described as:

527

528
$$\frac{^{12}v_c = V_{cmax} \cdot ^{12}C / (^{12}C + (K_C \cdot (1 + O/K_O) + ^{13}C/K_C))}{^{13}v_c = 0.97 \cdot V_{cmax} \cdot ^{13}C / (^{13}C + (K_C \cdot (1 + O/K_O) + ^{12}C/K_C))}$$
 Equation A2.3

529

530 (V_{cmax} for $^{13}\text{CO}_2$ is 0.97 times that for $^{12}\text{CO}_2$). Let us call the ratio of these two equations $^{12/13}R$.

531 In these equations we use the CO_2 concentrations inside the chloroplast by:

532

533 $^{13}C = ^{13}C_a - \frac{1.6 \cdot A \cdot 0.97}{g_s} - \frac{A \cdot 0.97}{g_m}$ Equation A2.4

534 and

535

536 $^{12}C = ^{12}C_a + \frac{1.6 \cdot R_L}{g_s} + \frac{R_L}{g_m}$ Equation A2.5

537

538 Assuming similar diffusion paths for $^{12}\text{CO}_2$ and $^{13}\text{CO}_2$ but opposite directions of flux.

539

540 If we know total A we can estimate $^{13}v_C$.

541

542 $A = {}^T v_c (1 - 0.5\phi) - R_L$ Equation A2.6

543

544 where ${}^T v_c$ is the total velocity of carboxylation. Then assume ${}^{12} v_c$ is negligible relative to ${}^{13} v_c$ (we
545 estimate 1%), then ${}^T v_c \approx {}^{13} v_c$ and so

546

547 ${}^{13} v_c = \frac{(A + R_L)}{(1 - 0.5\phi)} .$ Equation A2.7

548

549 Then the rate of carboxylation of ${}^{12}\text{CO}_2$, i.e. refixation, is

550

551 ${}^{12} v_c = {}^{12/13} R \cdot {}^{13} v_c .$ Equation A2.8

552

553

554

555

556

557

558

559

560

561

562

563

564

565 REFERENCES

566 1. Warburg O (1920) Über die Geschwindigkeit der photochemischen
567 Kohlensäurezerersetzung in lebenden Zellen. II. Biochemische Zeitschrift 103:188-207

568 2. Kutschera U, Pieruschka R, Farmer S, Berry JA (2020) The Warburg-effects: basic metabolic
569 processes with reference to cancer development and global photosynthesis. Plant Signal Behav
570 15 (7):1776477. doi:10.1080/15592324.2020.1776477

571 3. Decker JP (1955) A rapid, postillumination deceleration of respiration in green leaves. Plant
572 Physiology 30 (1):82-84

573 4. Rabinowitch EI (1945) Photosynthesis and Related Processes. In: Chemistry of
574 Photosynthesis, Chemosynthesis and Related Processes in Vitro and in Vivo, vol I. Interscience
575 Publishers Inc., New York, p 569

576 5. Tolbert NE, Yamazaki RK (1969) Leaf peroxisomes and their relation to photorespiration and
577 photosynthesis. Annals of the New York Academy of Sciences 168 (2 The Nature an):325-341.
578 doi:10.1111/j.1749-6632.1969.tb43119.x

579 6. Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by
580 ribulose diphosphate carboxylase. Biochemistry and Biophysics Research Communications
581 45:716-722

582 7. Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskell MA, Gong
583 XY, Crous KY, Griffin K, Way D, Turnbull M, Adams MA, Atkin OK, Farquhar GD, Cornic G
584 (2017) Leaf day respiration: low CO₂ flux but high significance for metabolism and carbon
585 balance. New Phytologist 216 (4):986-1001. doi:10.1111/nph.14816

586 8. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic
587 CO₂ assimilation in leaves of C₃ species. Planta 149:78-90

588 9. Calvin M, Massini P (1952) The path of carbon in photosynthesis. XX. The steady state.

589 Experientia 8 (12):445-457

590 10. Xu Y, Wieloch T, Kaste JAM, Shachar-Hill Y, Sharkey TD (2022) Reimport of carbon from

591 cytosolic and vacuolar sugar pools into the Calvin-Benson cycle explains photosynthesis labeling

592 anomalies. Proceedings of the National Academy of Sciences 119 (11):e2121531119.

593 doi:doi:10.1073/pnas.2121531119

594 11. Xu Y, Fu X, Sharkey TD, Shachar-Hill Y, Walker B (2021) The metabolic origins of non-

595 photorespiratory CO₂ release during photosynthesis: A metabolic flux analysis. Plant Physiology

596 186:297-314. doi:<https://doi.org/10.1093/plphys/kiab076>

597 12. Laing WA, Ogren WL, Hageman RL (1974) Regulation of soybean net photosynthetic CO₂

598 fixation by the interaction of CO₂ , O₂ and ribulose 1,5-diphosphate carboxylase. Plant

599 Physiology 54:678-685

600 13. Keck RW, Ogren WL (1976) Differential oxygen response of photosynthesis in soybean and

601 *Panicum milioides*. Plant Physiology 58 (4):552-555. doi:10.1104/pp.58.4.552

602 14. Tolbert N (1971) Microbodies-peroxisomes and glyoxysomes. Annual Review of Plant

603 Physiology 22 (1):45-74

604 15. Von Caemmerer S (2013) Steady-state models of photosynthesis. Plant, Cell & Environment

605 36 (9):1617-1630. doi:<https://doi.org/10.1111/pce.12098>

606 16. Laisk A (2022) Prying into the green black-box. Photosynthesis Research 154 (2):89-112.

607 doi:10.1007/s11120-022-00960-5

608 17. Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO₂ transfer

609 conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant, Cell &

610 Environment 27:137-153

611 18. Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012) Variable mesophyll conductance
612 revisited: Theoretical background and experimental implications. *Plant, Cell and Environment*,
613 vol 35. doi:10.1111/j.1365-3040.2012.02538.x

614 19. Laisk A (1977) Kinetics of photosynthesis and photorespiration in C₃ plants. Nauka,
615 Moscow, Russia

616 20. Kok B (1948) A critical consideration of the quantum yield of *Chlorella*-photosynthesis.
617 *Enzymologia* 13:1-56

618 21. Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van Der Putten PEL, Vos J (2009)
619 Using combined measurements of gas exchange and chlorophyll fluorescence to estimate
620 parameters of a biochemical C₃ photosynthesis model: A critical appraisal and a new integrated
621 approach applied to leaves in a wheat (*Triticum aestivum*). *Plant, Cell and Environment* 32:448-
622 464. doi:10.1111/j.1365-3040.2009.01934.x

623 22. Yin X, Sun Z, Struik PC, Gu J (2011) Evaluating a new method to estimate the rate of leaf
624 respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence
625 measurements. *Journal of Experimental Botany* 62:3489-3499. doi:10.1093/jxb/err038

626 23. Loreto F, Velikova V, Di Marco G (2001) Respiration in the light measured by ¹²CO₂
627 emission in ¹³CO₂ atmosphere in maize leaves. *Australian Journal of Plant Physiology*, vol 28.
628 doi:10.1071/pp01091

629 24. Pinelli P, Loreto F (2003) ¹²CO₂ emission from different metabolic pathways measured in
630 illuminated and darkened C₃ and C₄ leaves at low, atmospheric and elevated CO₂ concentration.
631 *Journal of Experimental Botany*, vol 54. doi:10.1093/jxb/erg187

632 25. Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the
633 underlying limitations to photosynthesis? Procedures and sources of error. *Journal of*
634 *Experimental Botany* 54 (392):2393-2401. doi:10.1093/jxb/erg262

635 26. Walker BJ, Ort DR (2015) Improved method for measuring the apparent CO₂
636 photocompensation point resolves the impact of multiple internal conductances to CO₂ to net gas
637 exchange. *Plant, Cell and Environment* 38:2462-2474. doi:10.1111/pce.12562

638 27. Walker BJ, Skabelund DC, Busch FA, Ort DR (2016) An improved approach for measuring
639 the impact of multiple CO₂ conductances on the apparent photorespiratory CO₂ compensation
640 point through slope-intercept regression. *Plant Cell and Environment* 39:1198-1203.
641 doi:10.1111/pce.12722

642 28. Saathoff AJ, Welles J (2021) Gas exchange measurements in the unsteady state. *Plant Cell*
643 and Environment 44:3509-3523. doi:10.1111/pce.14178

644 29. Schmiege SC, Sharkey TD, Walker B, Hammer J, Way DA (in review) Laisk measurements
645 in the non-steady state: Two tests in plants exposed to warming and variable CO₂ concentrations.
646 *Plant Physiology*

647 30. Ayub G, Smith RA, Tissue DT, Atkin OK (2011) Impacts of drought on leaf respiration in
648 darkness and light in *Eucalyptus saligna* exposed to industrial-age atmospheric CO₂ and growth
649 temperature. *New Phytologist* 190:1003-1018. doi:10.1111/j.1469-8137.2011.03673.x

650 31. Villar R, Held AA, Merino J (1994) Comparison of methods to estimate dark respiration in
651 the light in leaves of two woody species. *Plant Physiology*, vol 105. doi:10.1104/pp.105.1.167

652 32. Kirschbaum MU, Farquhar GD (1987) Investigation of the CO₂ Dependence of Quantum
653 Yield and Respiration in *Eucalyptus pauciflora*. *Plant Physiology* 83:1032-1036.
654 doi:10.1104/PP.83.4.1032

655 33. Sharkey TD, Preiser AL, Weraduwage SM, Gog L (2020) Source of ^{12}C in Calvin-Benson
656 cycle intermediates and isoprene emitted from plant leaves fed with $^{13}\text{CO}_2$. Biochemical Journal
657 477:3237-3252. doi:10.46678/pb.20.1046526

658 34. von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of
659 photosynthesis and the gas exchange of leaves. *Planta*, vol 153.

660 35. McClain AM, Sharkey TD (2020) Building a better equation for electron transport estimated
661 from Chl fluorescence: accounting for nonphotosynthetic light absorption. *New Phytologist* 225
662 (2):604-608. doi:<https://doi.org/10.1111/nph.16255>

663 36. Campbell G, Norman J (1998) An Introduction to Environmental Biophysics. 2nd Edition
664 edn. Springer, New York, NY

665

666

667

668

669

670

671

672

673

674

675

676

677

678 **Table 1.** Remaining % ^{12}C label in metabolites at 30 minutes (means, $n = 3$), and velocities of
 679 ^{12}C emission [10] used to calculate $^{12}\text{CO}_2$ release from the leaf.

		% ^{12}C label	Velocity ($\mu\text{mol m}^{-2} \text{s}^{-1}$)	$^{12}\text{CO}_2$ release ($\mu\text{mol m}^{-2} \text{s}^{-1}$)
G6P Shunt	UDPG	0.214	$v_{6\text{PGD}}$	1.069
Fatty Acid Synthesis	PEP	0.11	$v_{\text{PDH.c}}$	0.061
Photorespiration	RUBP	0.063	v_o	7.792
	PEP	0.11	$v_{\text{PDH.m}}$	0.141
TCA Cycle	ICI	0.873	v_{IDH}	0.141
	ICI	0.873	v_{KGDH}	0.000
TOTAL $^{12}\text{CO}_2$ release				0.619

680