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1 | INTRODUCTION

Machine learning (ML) is increasingly being leveraged
as a sophisticated predictive tool in many subdomains
of materials science.'®] Among these applications, a
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Abstract

As a subfield of artificial intelligence (AI), machine learning (ML) has emerged
as a versatile tool in accelerating catalytic materials discovery because of its abil-
ity to find complex patterns in high-dimensional data. While the intricacy of
cutting-edge ML models, such as deep learning, makes them powerful, it also
renders decision-making processes challenging to explain. Recent advances in
explainable AI technologies, which aim to make the inner workings of ML mod-
els understandable to humans, have considerably increased our capacity to gain
insights from data. In this study, taking the oxygen reduction reaction (ORR) on
{111}-oriented Pt monolayer core-shell catalysts as an example, we show how the
recently developed theory-infused neural network (TinNet) algorithm enables a
rapid search for optimal site motifs with the chemisorption energy of hydroxyl
(OH) as a single descriptor, revealing the underlying physical factors that gov-
ern the variations in site reactivity. By exploring a broad design space of Pt
monolayer core—shell alloys (~ 17,000 candidates) that were generated from
~ 1500 thermodynamically stable bulk structures in existing material databases,
we identified novel alloy systems along with previously known catalysts in the
goldilocks zone of reactivity properties. SHAP (SHapley Additive exPlanations)
analysis reveals the important role of adsorbate resonance energies that origi-
nate from sp-band interactions in chemical bonding at metal surfaces. Extracting
physical insights into surface reactivity with explainable AI opens up new design
pathways for optimizing catalytic performance beyond active sites.

KEYWORDS
d-band theory, electrocatalysis, interpretable deep learning, Newns-Anderson model, oxygen
reduction reaction

notable advancement is its ability to accurately estimate
the binding strength of reaction intermediates on hetero-
geneous catalyst surfaces, a capability that is significantly
accelerating the discovery and development of novel cat-
alytic materials and offering a transformative approach to
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catalysis science. With the availability of ever-growing
datasets in open-access repositories, such as Catalysis
Hub,!”! Computational Materials Repository,!®! ioChem-
BD,I°! and Open Catalyst Project,/'’] deep learning has
demonstrated a dramatically superior performance over
traditional ML models with hand-crafted feature descrip-
tors. These data-driven models, though, have been viewed
as black-box nonlinear function estimators, without expla-
nations for the prediction unlike their classical equiv-
alents, such as linear regression and its variants. The
concerns on lack of interpretability in the implementa-
tion of deep learning have lately been highlighted in the
catalysis field.['""?! This concern is especially relevant in
predicting surface reactivity because of the intrinsic com-
plexity of chemical bonding at active sites; consequently,
physical factors governing chemisorption remain hidden
within the black-box ML models. Uncovering these fac-
tors is undoubtedly important to advance catalysis science
but remains notoriously difficult. On the other hand,
physics-based models, for example, the d-band theory of
chemisorption in heterogeneous catalysis, ! directly pro-
vides valuable insights into governing factors of catalytic
outcomes, for example, the filling, center, and higher-order
moments of the d-states distribution projected onto site
atoms.!"*] However, the use of physical models to catalytic
sites with strongly perturbed properties is hampered by
the lack of meaningful model parameters and its limited
accuracy.! %]

Explainable AI aims to make Al systems more transpar-
ent by providing explanations for their predictions.!'®! One
approach to creating more explainable Al is incorporat-
ing physical principles into ML models. Physics-inspired
ML involves encoding physical knowledge and constraints
into the structure and learning process of models, pro-
viding both the accuracy and explanatory insights. In
this endeavor, a theory-infused neural networks (TinNet)
approach was developed with chemisorption processes at
surfaces as an example.!'’! TinNet integrates physics-based
and data-driven modules within a graph neural network
(GNN) architecture, '] which combines domain theories
with the flexibility of neural networks to model complex
systems. The approach can be used to elucidate the funda-
mental mechanisms of chemical bonding at surfaces while
ensuring accurate predictions of site reactivity. TinNet
plays a pivotal role by extracting crucial electronic fac-
tors, akin to the genetic information in biology that defines
a catalyst’s unique characteristics. The comprehension of
these key elements in catalysis opens new pathways to
rationally manipulate and design catalytic functions. Cen-
tral to this approach is the application of model-agnostic,
explainable AI, with techniques such as SHapley Additive
exPlanations (SHAP) being particularly valuable. These
methods help unravel the complex electronic factors influ-

encing chemisorption, providing deep insights into the
behavior and interactions of a catalyst with reactive species
at the orbital level.

Herein, we focus on the oxygen reduction reaction
(ORR) in proton-exchange membrane (PEM) fuel cells as
a prime example for the application of our approach. Ini-
tially, we showcase the effectiveness of TinNet in the dis-
covery of catalysts for ORR. TinNet is employed to swiftly
predict OH-binding energies, serving as a critical descrip-
tor for ORR activity on metal catalysts, in conjunction with
a high-throughput active learning strategy. The integration
of physics-informed ML with quantum-chemical simula-
tions paves the way for the expedited discovery of efficient
catalysts. By going beyond the black-box predictions, we
identify the dominant factors influencing the ORR. To
achieve this, we utilize two types of model explanation
methods: local instance-level explanations and global-level
explanations. For global explanations, we apply Shapley
values to quantify the contribution of electronic factors
to bonding strength, thereby highlighting key descriptors
that influence reactivity trends. For local explanations, we
develop justifications for individual alloy surfaces to offer
deep chemical insights into site perturbation relative to
Pt. By merging global visualization techniques with local
structural explanations, our approach enables a thorough
extraction of knowledge from sophisticated deep learning
models. This comprehensive method enhances our under-
standing of the governing factors in ORR and guides the
development of more efficient catalysts in PEM fuel cells.

2 | METHODS

2.1 | DFT methods

Quantum ESPRESSO was used to conduct spin-polarized
DFT calculations on *OH adsorption systems with
ultrasoft pseudopotentials. With revised Perdew-
Burke-Ernzerhof,l'”!  the exchange-correlation was
approximately calculated using the generalized gradient
approximation. The Pty alloys were simulated using
(2x2) supercells with six layers and a 15-A vacuum in
between. The top three layers and adsorbates were let to
relax till a force threshold of 0.1 eV/A, while the bottom
three layers were fixed. The energy cut-off for plane
waves was 500 eV. For molecules and radicals, just the
Gamma point was employed, while the Brillouin zone was
sampled using a Monkhorst-Pack mesh of 6 X 6 x 1. With
a smearing parameter of 0.1 eV for adsorbate systems and
0.001 eV for molecules, the Methfessel-Paxton smearing
strategy was used. The projected atomic and molecular
density of states were produced by projecting the complete
system’s eigenvectors onto the ones of the portion, as
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estimated by gas-phase calculations, at a denser k-point
sampling (12 X 12 X 1) with an energy spacing of 0.01 eV.

2.2 | Theory-infused neural networks
GNN-based models were used as the ML framework to pre-
dict formation energies of *OH on Pty alloy surfaces. The
GNN architecture consists of a convolutional neural net-
work for feature extraction from graph representations of
adsorbate-substrate systems, and a fully connected neural
network mapping these features to the target property.

To enable model interpretability, the GNNs were inte-
grated with a theory module based on the Newns-
Anderson model Hamiltonians in a TinNet architec-
ture.l'”] The theory module imposes scientific constraints
during training to produce physics-informed predictions.

Hyperparameter optimization of the three key GNN
hyperparameters (layer numbers, neuron counts, learning
rate) was performed using Bayesian optimization with the
Ray Tune library. A 10-fold cross-validation method was
employed, wherein models were trained on 81% of data,
validated on 9% to enable early stopping, and tested on
the remaining 10%. The hyperparameters with the lowest
average validation loss were selected.

Rigorous nested 10-fold cross-validation was then con-
ducted, generating 100 total models. 90 models were
used to evaluate in-sample accuracy. The other 10 models
were applied to an alloy test set to demonstrate out-of-
sample performance and suggest candidates for future
DFT calculations.

Model optimization was performed using the AdamW
algorithm on mini-batches of 64 examples. The multiobjec-
tive loss function contained mean squared error terms for
adsorption energies as well as d-band moments and pro-
jected density of states onto 3o, 177, and 40* orbitals from
the theory module. This ties model predictions directly to
the underlying theory of chemisorption.

2.3 | SHAP analysis

To explore how much each of the electronic factors
and interaction parameters is responsible for the change
of OH adsorption energies upon alloying, we leveraged
the SHAP,[20-22] an additive feature attribution method
for post hoc analysis. SHAP provides a model-agnostic
approach based on cooperative game theory to explain the
output of ML models. Specifically, SHAP values indicate
the contribution of each feature to a particular predic-
tion, relative to a baseline. Being developed based on the
Shapley values, SHAP takes each feature (i) as a player
in the game and assigns an importance value, ¢;, to them

which indicates their fair contribution to the output of the
model. The SHAP simplifies the original model into an
explanation model, g:

M
g(x') = ¢o + ), ¢ix/, @
i=1

where M is the number of simplified input features, xl.’ S
0,1 is the coalition vector, ¢; is the feature attribution for
feature i, Shapley values, and ¢, represents the model out-
put with all the simplified inputs being 0. For the instance
of interest, the explanation model uses simplified inputs
x' that map to the original inputs through a mapping func-
tion x = h,(x’). The function maps an entry of 0 to replace
the feature value with a base value and maps 1 to keep the
feature value as it is.

We have estimated the Shapley values by exact explain-
ers as implemented in the SHAP library.[??l As Shapley
values are measures of the contribution of each feature in
the change of chemisorption energy, a positive (negative)
sign for these values refers to the contribution in weak-
ening (strengthening) of the OH adsorption to a Pt site.
The summation of all Shapley values is the total estimated
change in the chemisorption energy relative to the pure Pt.
Analyzing and comparing the SHAP values for different
sites provides detailed, local interpretations for the varia-
tions in reactivity and breaks down the contributing roles
of specific electronic structure changes.

3 | RESULTS AND DISCUSSION

3.1 | OH chemisorption as a reactivity
descriptor for ORR

The sluggish kinetics of the ORR at the cathode is a
major source of voltage loss in PEM fuel cells, limiting
their widespread adoption.!?*2°] Even the state-of-the-art
Pt nanoparticle catalyst exhibits ORR overpotentials of ~
300 mV at practical current densities.[>>l Oxygen reduction
is generally accepted to follow an associative mechanism
on Pt-based catalysts at fuel cell operating potentials,
whereby O, adsorbs through a proton-coupled electron
transfer to form *OOH, followed by electrochemical reduc-
tion to *O and *OH and ultimately formation of H,0.126-3!]
This mechanism is supported by density functional theory
(DFT) calculations of the free energy diagram on Pt(111),
which shows that all elementary steps become exergonic
at ~ 0.8Vyyg with a theoretical overpotential of —0.43 V
(Figure 1a).1?*] However, recent studies propose a more
nuanced understanding of these mechanisms.

Emerging research, including that by Keith and Jacob,
introduces additional intermediates and pathways,
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FIGURE 1 (a)DFT-calculated free energy of ORR on Pt(111) at relevant potentials. The computational reversible hydrogen electrode

(RHE) is used for relating the free energy of a (H* + e™) pair at any pH value to that of H,(g, 1.0 bar) at 300 K. The zero-point energy and

entropic contributions to the free energy of an adsorbed species were taken into account.!?>*2] The solvation energy of adsorbed species (*O:
—0.04 eV, *OH: —0.6 eV, *OOH: —0.3 eV) is assumed to be independent of metal surfaces.[*] (b) The ORR rate enhancement (left axis) and
limiting potential (right axis) as a function of DFT-calculated OH binding energies. The dashed lines reflect the theoretical trend assuming a

basic kinetic model with rate limited by either O, activation or OH elimination from the surface. The experimentally measured rate

enhancement of various (111) surfaces: Pty,;; on pure metal ((]), binary alloy (¢, x), and ternary alloy (/\) surfaces shows a volcano-shaped

dependency. The rates were obtained from the literature,**-

underscoring that the ORR on Pt may involve a variety
of mechanisms beyond the direct *OOH — *O — *OH
sequence.!*°! Furthermore, evidence from Exner suggests
that the oxygen reduction volcano plot likely represents
overlapping free energy landscapes of multiple pathways,
rather than a singular, uniform mechanism.’”! This
indicates that while associative steps similar to those we
have considered may dominate on more strongly binding
metals (left of the volcano peak), significant branching
to new intermediates likely occurs in the weaker binding
regime (right of the optimal activity).

This complex interplay of mechanisms across the vol-
cano plot suggests that the governing steps driving catal-
ysis vary considerably. The possibility that cooperative
effects between competing routes near the apex might
enhance turnover rates of top catalysts, rather than a
single dominant mechanism, introduces a new layer of
complexity to our understanding of ORR landscapes.!**!

While we continue to use the *OOH/*O/*OH interme-
diate scaling as a reasonable approximation for estimating
ORR catalysis from *OH-binding energies, we acknowl-
edge the limitations of this approach in fully capturing
the intricacies of ORR activity. The field is progressively
uncovering the rich and varied landscape of ORR path-
ways, underscoring the importance of considering these
dynamics in interpreting catalytic activity trends.

I which were measured at 0.9 V with respect to the RHE in acidic conditions.

Late transition and noble metals for oxygen reduction
illustrate a strong linear scaling constraint of the free
formation energies of the *OH and *OOH intermediates
in an aqueous environment, AG«goy = AGxoy + ~ 3.2
eV.[3%4] Therefore, the free energy of *OH formation
can serve as a representative descriptor for ORR activity
on metal surfaces.!***3! Figure 1b depicts the theoreti-
cal activity volcano along with experimentally measured
ORR activity of several known surfaces as a function of
the DFT-calculated *OH free formation energies relative
to H, O(g, 0.035 bar) and H,(g, 1.0 bar) at 300 K. The vol-
cano peak represents the optimal region of *OH-binding
energies to balance O, activation to *OOH against surface
poisoning by *OH. Alloy catalysts that bind *OH ~ 0.1 eV
weaker than Pt(111) are predicted to be highly active. Over-
all, this illustrates how the theoretical scaling relations
and activity descriptor(s) provide fundamental insights
into ORR kinetics and guide the design of improved
ORR electrocatalysts.

3.2 | High-throughput screening of Pty
core-shell catalysts for ORR

Intuitively, the binding energy of *OH can be tuned by con-
trolling the lattice strain (the bond distances of an active
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site with neighboring atoms) and the metal ligand (the
nature of atoms surrounding a catalytic center).!*>*°] Pt
monolayer (Pty;,) core—shell electrocatalysts have shown
promise for enhancing the ORR due to their ability to
tune both strain and ligand effects.!”'->] By modifying
the core composition and structure, the ORR perfor-
mance and stability of the Pty shell can be optimized.
However, rationally modifying the alloying configura-
tions presents challenges, as the complex interplay of
strain and ligand effects in site reactivity is unknown a
priori.[49,3058-60]

Extensive work has investigated first- and second-
generation Pty core—shell alloys to optimize Pt surface
activity while reducing Pt content. First-generation alloys
have a Pty;;, pseudomorphically deposited on a core metal
or alloy, while second generation contains a buffer layer
beneath the Pt. The vast possibilities for metal selections,
compositions, and configurations can theoretically lead
to an infinitely large design space for Pty electrocata-
lysts. To efficiently navigate this vast materials space, we
generated a database of first- and second-generation Pty
core-shell alloys by systematically enumerating different
combinations of 26 transition metals in AB and A; B type
structures with face-centered cubic (FCC), body-centered
cubic (BCC), hexagonal closed packing (HCP), and sim-
ple tetragonal (ST) phases, based on the Materials Project
database.[®) Environmentally unfriendly elements were
excluded, for example, lead (Pb), resulting in 1518 bulk
alloy structures. These were used to construct ~17,000
nearly close-packed Pty slab models with 29,040 distinct
surface sites.

Although high-throughput DFT screening has seen
some successes in catalytic materials design,[62] its exten-
sive cost poses significant challenges. To address this, we
adopt an activity model that uses *OH-binding energy
as a descriptor for the ORR to quickly screen poten-
tial Pty catalysts. Concurrently, the TinNet model to be
discussed in the next section is employed for efficient pre-
diction of *OH-binding energies, thereby bypassing the
need for exhaustive DFT calculations. Figure 2 illustrates
our refined high-throughput screening process, which is
designed to expedite the discovery of optimal Pty electro-
catalysts.

When investigating an alloy material for catalytic pur-
poses, the initial consideration is its synthesizability, which
can be partly determined by its bulk thermodynamic sta-
bility. Therefore, the first phase of our high-throughput
strategy involves selecting structures with core alloys that
exhibit a high degree of thermodynamic stability. The
potential for two metals to form a stable intermetallic com-
pound is often gauged by the alloy’s formation energy,
denoted as AE ;. However, the formation energy alone does
not fully capture the thermodynamic stability of a material.

An alternative metric, the convex hull distance, defined
as the decomposition energy of a phase into its most sta-
ble constituents (AEy,,;;), also serves as a vital measure for
assessing the stability of bulk alloys. In our analysis, we
used both the formation energy criterion (AE; < 0eV) and
the convex hull distance criterion (AEy,,; < 0.1 eV/atom)
to evaluate materials stability. The hull distance thresh-
old aims to \retaining potentially synthesizable candidates
while screening extremely unlikely structures, considering
errors in computational methods.[°***] Our thermody-
namic stability analysis revealed that, within our initial
design space, a total of 830 bulk systems, 8610 slabs,
and 15,960 unique sites meet the criteria for thermody-
namic stability, making them suitable as candidates for
further screening.

Descriptor-based analysis facilitates the evaluation of
alloy catalysts for enhanced catalytic activity. Adhering to
the established criteria for an active ORR catalyst, specif-
ically (0 < AEgy — AEpy, pi< 0.15) €V, we advance to the
next level of high-throughput screening for Pty catalysts.
In this stage, we estimate the OH adsorption energies of
the candidate catalysts within the thermodynamically sta-
ble design space. These estimations are performed using a
TinNet model that has been trained with DFT data (see the
Methods section).[””! TinNet was trained using an active
learning framework that minimizes reliance on extensive
data. Instead, it focuses on progressively constructing the
minimal dataset required for effective candidate explo-
ration. This approach incorporates uncertainty estimates
derived from nested 10-fold cross-validation into the cri-
teria for data acquisition. The active learning process is
concisely summarized in Table 1.Figure 3 presents a sta-
tistical analysis of the model’s accuracy and effectiveness
within the active learning framework. Through iterative
learning of the structure-reactivity relationships among
the candidate materials, the uncertainty in predictions was
progressively reduced to below 0.1 eV. To assess the model’s
precision, we calculated the mean absolute error (MAE) of
the predictions and their standard deviation using a nested
10-fold cross-validation method. The model demonstrated
a high level of accuracy, achieving an MAE of 0.05 eV with
a standard deviation of 0.04 eV.

Using the active learning scheme, TinNet models
rapidly identified alloy systems with the *OH adsorp-
tion energy being 0-0.15 eV weaker than that on Pt(111),
which is the ideal range for optimal activity. The mod-
els confirmed known electrocatalysts for oxygen reduction
that have lower overpotential than pure Pt, such as Pt;
B@Pty, (B: Co, Ni, and Ti),l®>%! pd;Fe — Pd@Pt,,; .1**!
Additionally, the model uncovered several new first-
generation Pty core-shell alloys nanostructures using
earth-abundant metals, like Co;B@Pt,,; (B: Ni, V, Ti, Mo),
MnB@Pt,,; (B: Sc and Ni), and FeB@Pt,,; (B: Ti, V, Ir),
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The design space for ORR catalysts. First- and second-generation Pty;; core-shell alloys were generated by systematically

enumerating different combinations of 26 transition metals in AB- and A; B-type structures with face-centered cubic (FCC), body-centered
cubic (BCC), hexagonal closed packed (HCP), and simple tetragonal (ST) phases, based on the Materials Project database. ORR, oxygen

reduction reaction.!®!].

which exhibit near-optimal *OH adsorption energies and
are more cost-effective.

To narrow down the selected active and stable candi-
dates into candidates with low-cost core bulk alloys, the
prices of the selected core bulk alloys are estimated by the
price of the two metals that make up them. This assess-
ment is predicated on the assumption that the cost of the
catalyst is independent of the process used to prepare it
and is instead determined only by the cost of pure metals.
The cut-off value was set at $5000 kg_1 to get rid of alloys
that contain precious metals. The final low-cost candidates
include five AB;-type core bulk alloys and 12 AB-type core
bulk alloys. Most of the predicted stable, active, and low-

cost alloys contain earth-abundant elements such as Fe,
Co, and Ni in their core alloy composition. The full catalyst
screening results from our high-throughput framework are
listed in Table S1 in the Supporting Information.

Figure 3c displays the mapping of some notable known
and new core-shell Pty;; nanostructures onto the ORR
activity volcano. The TinNet models also predict that the
ligand effect from a buffer metal leads to shifts in OH
chemisorption energies in the second-generation alloys
compared to first-generation counterparts. Specifically,
our model suggests that adding Ru as a buffer layer in
state-of-the-art Pt;Co@Pt,,; and Pt;Ni@Pt,,; structures
can propel them to the top of the ORR activity volcano.
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TABLE 1 An active learning algorithm for training TinNet models.
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Step Description

1 Initialization:

- Generate initial dataset D, by randomly sampling candidate structures and computing DFT energies.

- Train initial TinNet model f4 on D,,.
- Set € « ¢, iteration ¢ « 1.

2 Active Learning Loop:
Whilet <T:

- Use current f to predict energies y; and uncertainties o; for remaining candidates.

-Fori=1ton,:
- Sample random r ~ Uniform(0, 1).
-Ifr < e: Sample a random candidate.
- Else: Sample a high uncertainty candidate.
- Add the sampled candidate to batch B,.
- Compute DFT energies for batch B,.
- Update dataset D, = D,_; U B,.
- Retrain fy on D;.
-Decaye =¢,-y',y <1.
-t t+1.
3 Termination Check:
- Compute the ratio r of reliable predictions.
- While r < 0.98: Continue the active learning loop.

4 Return the final trained model f.

3.3 | Development of TinNet models of
surface chemisorption of OH

The application of TinNet for estimating OH adsorp-
tion energies offers distinct benefits compared to con-
ventional neural network models, particularly due to its
interpretable architecture. Specifically, TinNet integrates a
GNN for quantitative prediction with a physics-based the-

i

ory module for interpretability. The theory module lever-
ages the Newns—Anderson model Hamiltonians to char-
acterize the adsorption process through the d-band theory.
In this framework, the interaction between the adsorbate
and the transition metal is described in two steps. Initially,
the electronic states of the adsorbate broaden into reso-
nances and experience a downward energy shift as they
interact with the metal’s broad sp-band near the surface.

(@) _0.60 (b) ©
N —— All candidates or Gm
;:, —4— Optimal candidates gleE:gg'(B +£0.04 eV = % losr

= 0. Pt3Co-Ir ’
50.45F 1 3 S > PtaCo-Rugy ¥y C
g -2} 5> Ao 5
° 8 =i © HTiCo {ossa 5
2 = © o1 kS Q
20.30f : = < . I~
‘s o) oD SeNi * S
- -4 s CNigg ' o
iy bl 2® : igPtaNi 081 3
= - S . \ o
£ E 2 ; \ 2
g 0151 ] o S MnNi =
§ : &7 < % ZrCuE J0.78 S
—6F - 10° o
= g \
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Number of Iterations AE oy per (€V) AG,,— AGOH, o (8V)
FIGURE 3 Model performance: (a) Evolution of prediction uncertainty across iterations, (b) parity plots comparing DFT-calculated and

TinNet-predicted adsorption free energies on Pty; surfaces for *OH, and (c) Representation of identified optimal structures on the activity
volcano plot. Pty on bimetallic metal alloy surfaces is represented by the core alloy composition. MAE, mean absolute error; RHE, reversible

hydrogen electrode.
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Subsequently, a further interaction occurs between the d-
states of metals and renormalized adsorbate states which
leads to upshifts in energy levels of adsorbate orbitals
(orthogonalization) and splitting of the adsorbate density
of states into bonding and antibonding orbitals (hybridiza-
tion). The chemisorption energy is, therefore, governed by
two contributions from both the sp-band and d-band of the
metal site:

AE = AE;, + AE,. )

Since the d-block metals have a similar, free-electron
like sp-band, AE,, can be approximated as a surface-
independent constant while still having the largest con-
tribution to the bonding.!”! The chemisorption energy
differences from one metal to another for a given facet and
site, thus, are governed mainly by the hybridization energy
gain and orthogonalization energy cost of the interactions

of adsorbate states with metal d-states! %701
orth hyb
AE, = AEY™ 4+ AE”. (3)

The orthogonalization cost of interacting orbitals, AES”h,
is proportional to the coupling integral, V, and orbital
overlap integral, S:

AET™ = 2(A, + f)SV. 4)

The constant 2 considers spin degeneracy of the orbital,
fi, is the occupancy of the renormalized adsorbate states,
and f is the idealized d-band filling of the metal atom. The
orbital overlap integral, S, is linearly proportional to the
coupling integral V' by the coefficient « for a given orbital.
a is a metal-independent parameter that is constant for a
given adsorbate orbital and site type. V2 can also be written
as ﬁVﬁ 4> Where 8 denotes the orbital coupling coefficient
when the atoms are aligned along the z-axis. The standard
values Vﬁ ; for d-metals relative to Cu are readily available
on the solid-state table.[”"! The hybridization energy gain,
AEZy b, can be calculated from one-electron eigenenergies
using Green’s function approach!”l:

ef A
AEZyb = 2 / arctan L de
T J_ €—¢€, —A(e)

2 [ Ay(e
— —/ arctan <—0( ) ) de,
T J o €—¢,
where A(e) is the chemisorption function consisting of the
sp- and d-states contributions and A(e) is its Hilbert trans-
form. €, is the effective energy level of the renormalized

adsorbate density of states. (Interested readers can refer to
Refs. [69, 73] for further details on deriving the theory.)

A widely accepted concept from the d-band theory
of chemisorption, commonly employed in catalysis and
surface chemistry, correlates the binding energy of an
adsorbate with the position of the electronic d-states’
center, projected onto a metal site relative to the Fermi
level.[ 7] According to this inference, a metal site with
a higher d-band center binds adsorbates more strongly
than geometrically equivalent sites on metals with the d-
band center further down the Fermi level.[”>7°] Although
this simple take from the d-band theory has been able
to capture the variations of chemisorption energy of a
given adsorbate across metal sites, it is still inadequate to
explain the complete chemisorption behavior of complex
adsorbate-surface systems. Attaining a thorough under-
standing of reactivity trends can be made possible by
further considering all related electronic factors and inter-
action parameters in the Newns—Anderson model. The
TinNet framework allows us to gain a deep understanding
by learning the local interaction parameters of the indi-
vidual adsorbate orbitals with the metal states, including
the substrate function of sp-states (A,), renormalized OH
orbital energies (¢}), and effective coupling coefficients
(B;) as well as the d-band moments of site atoms if not
given. For OH chemisorption on d-metals, the filled 3o,
double degenerate, partially-filled 17z, and empty 40 elec-
tronic states are the frontier molecular orbitals of a gas
phase OH radical that are known to be responsible for
its bonding to the metal substrate. Therefore, current Tin-
Net models have explicitly accounted for the interaction of
these orbitals with the substrate sp- and d-states.

3.4 | Revealing reactivity origin via
explainable Al

SHAP analysis provides critical insights into the origin
of Pt;Co@Pt,;; enhanced ORR activity by explaining its
weaker OH binding than pure Pt(111). As a near-optimal
ORR catalyst, Pt;Co@Pt,;; binds OH ~ 0.13 eV weaker.
The change in *OH chemisorption energy on Pt; Co@Pty;.
relative to Pt is derived from a set of changes in elec-
tronic factors such as the coupling strength of adsorbate
17 resonance orbital with metal d-states, the center posi-
tion of d-states, the width, etc. As shown in Figure 4a, the
1m—d coupling strength coefficient (8) and d-band cen-
ter are major contributors to weakening OH binding on
Pt;Co@Pt,; . The increased 17—d coupling strength coef-
ficient (8) by +0.15 leads to a 0.05 eV weaker bond and the
downshifted d-band center by —0.16 eV also contributes
to the weakening of the bond ~0.05 eV. The increase in
the coupling strength in this case is due to the extended
d-states of metal sites influenced by the strain effect. The
biaxial compressive strain of 2.19% from the Pt;Co core
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(a) Local interpretation of OH adsorption on Pt;Co@Pt,,; (111) relative to Pt(111) and Pt; Co-Ru@Pt,,, (111) to Pt;Co@Pt,;;

(111). The blue color indicates the features contributing to the weakening of the bond (positive Shapley value). The red color displays the

parameters and factors pushing toward strengthening the bond (negative Shapley value), and the length of the ribbons is a direct measure of
these contributions. (b) A graphical illustration of the Newns—Anderson model for an adsorbate resonance state interacting with metal
d-states. DFT-calculated density of states (DOS) projected onto the 17 orbital of *OH on Pt; Co-Ru@Pt,; , Pt; Co@Pt,,; , and Pt are shown
with adsorbate-metal antibonding states highlighted for comparison. (c) Global SHAP analysis of TinNet models of OH adsorption showing a
strong correlation of the machine-learned d-band center (c), adsorbate 17 resonance energy (d), and 17 — d coupling strength with the

adsorption-energy contribution, that is, the SHAP value. SHAP, SHapley Additive exPlanations.
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on the Pt monolayer reduces the internuclear distances
between Pt atoms on the surface. It intuitively increases the
overlap between the d-states of metals and the adsorbate
resonance states that leads to enhanced Pauli repulsion,
making the Pt site less reactive. The downshift in the d-
band center of metal sites is also a major contributor to the
weakening of the bond as it leads to a lower lying, more
occupied adsorbate-metal antibonding state.

Our screening framework has also identified Pt; Co-
Ru@Pt,;; as a second-generation Pty core-shell cata-
lyst in the optimal region of theoretical activity volcano
(Figure 3c). Looking into the SHAP analysis for OH
chemisorption model for this structure compared with
Pt;Co@Pty;; as a base, as illustrated in Figure 4a, it
shows that the impact of the hybridization originated from
the upshift of the renormalized 17 state contributes to
the attractive binding energy and overcompensates the
increase of repulsive contribution due to the downshift
in the d-band center. The energy-level shift of renormal-
ized adsorbate states is a function of the electron transfer
from substrate sp-states. Being more electronegative than
Co and less electronegative than Pt, Ru in this structure
will lose more electrons to the surface Pt sites and it
makes the surface Pt sp-bands more electron dense com-
pared to Pt;Co@Pty,, . This electron transfer shifts the
¢ up and eventually results in a more attractive contri-
bution due to the less occupation of the adsorbate-metal
antibonding states.

We reason that the change in the Pt—OH bond strength
is primarily a function of the position of the metal d-
states (¢4) and renormalized oxygen 17 states (¢.7), and the
Pt—OH coupling strength (51,_4), which together deter-
mine the filling of Pt—OH antibonding states. The partial
dependency of model prediction on these factors is shown
in Figure 4c—e. These plots illustrate the trend of variations
of governing factors’ contribution to OH chemisorption
energy versus their values. The novel insights gained into
the chemisorption process at metal sites are crucial for
the systematic development of catalysts with improved
activities. This understanding enables the manipulation of
catalytic properties at specific sites by externally adjust-
ing the key influencing factors, for example, by using
electrolyte molecules or ions to exert an additional cou-
pling term with the adsorbate energy level. Exploring those
strategies to fine-tune electronic factors in chemical bond-
ing can open up innovative approaches in catalyst design
beyond active sites.

4 | CONCLUSION

In our study, we utilized the TinNet interpretable frame-
work combined with an active learning approach to swiftly

navigate through the vast design space of Pt-active sites.
This enabled us to identify sites with optimal catalytic
properties positioned near the peak of the activity vol-
cano, while also elucidating the electronic factors driving
reactivity trends. Our findings highlight the potential of
modulating active sites through core-shell alloying and
incorporating buffer layers of Ir, Rh, and Ru, offering
a promising strategy to enhance surface reactivity and
reduce Pt usage for the ORR. However, crafting second-
generation Pty core-shell alloy nanoparticles, smaller
than 5 nm, with stable buffer layers and earth-abundant
core elements, demands near-atomic precision in catalyst
synthesis, posing a significant challenge in the field.

The development of user-centric explanations and com-
prehensive metrics is crucial for interpretable catalyst dis-
covery. By applying explainable Al techniques, we gained
insights into the electronic factors influencing the surface
reactivity of the identified structures. Our research indi-
cates that the adsorption energy of adsorbate-substrate
pairs cannot be solely attributed to the d-band center’s
position. Other factors, including renormalized adsor-
bate states originating from sp-band interactions, are also
critical in understanding catalysis functions.
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