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In the standard formulation of the classical denoising problem, one is given a probabilistic model relating
a latent variable Θ ∈ Ω ⊂ Rm (m ≥ 1) and an observation Z ∈ Rd according to Z | Θ ∼ p(· | Θ)

and Θ ∼ G∗, and the goal is to construct a map to recover the latent variable from the observation.
The posterior mean, a natural candidate for estimating Θ from Z, attains the minimum Bayes risk (under
the squared error loss) but at the expense of over-shrinking the Z, and in general may fail to capture
the geometric features of the prior distribution G∗ (e.g. low dimensionality, discreteness, sparsity). To
rectify these drawbacks, in this paper we take a new perspective on this denoising problem that is inspired
by optimal transport (OT) theory and use it to study a different, OT-based, denoiser at the population
level setting. We rigorously prove that, under general assumptions on the model, this OT-based denoiser is
mathematically well-defined and unique, and is closely connected to the solution to a Monge OT problem.
We then prove that, under appropriate identifiability assumptions on the model, the OT-based denoiser
can be recovered solely from information of the marginal distribution of Z and the posterior mean of the
model, after solving a linear relaxation problem over a suitable space of couplings that is reminiscent of
standard multimarginal OT problems. In particular, due to Tweedie’s formula, when the likelihood model
{p(· | θ)}θ∈Ω is an exponential family of distributions, the OT-based denoiser can be recovered solely
from the marginal distribution of Z. In general, our family of OT-like relaxations is of interest in its own
right and for the denoising problem suggests alternative numerical methods inspired by the rich literature
on computational OT.

Keywords: Bayes estimator; denoising estimands; optimal transport; empirical Bayes; latent variable
model; multimarginal optimal transport; Tweedie’s formula.

1. Introduction

Consider the following simple latent variable model:

Z | Θ = θ ∼ p(· | θ) and Θ ∼ G∗, (1.1)

where {p(· | θ)}θ∈Ω is a known parametric family of probability density functions (p.d.f.’s) on Rd

(d ≥ 1) with respect to (w.r.t.) the Lebesgue measure, and G∗ is a probability distribution whose support
is contained in the set Ω , a subset of Rm for m ≥ 1. We only get to observe Z from the above model
and Θ is the unobserved latent variable of interest. We denote by PZ,Θ the joint distribution of (Z,Θ) on
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Rd×Ω . By defining a joint distribution over the observable Z and the latent variableΘ , the corresponding
distribution of the observed variable is then obtained by marginalization; Z has marginal distribution μ

with density (w.r.t. the Lebesgue measure)

fG∗(z) :=
∫
p(z | θ) dG∗(θ), for z ∈ Rd. (1.2)

Such latent variable models allow relatively complex marginal distributions to be expressed in terms of
more tractable joint distributions over the expanded variable space and thus they provide an important
tool for the analysis of multivariate data. Note that (1.1) captures a conceptual framework within which
many disparate methods can be unified, including mixture models, factor models, etc; see e.g. [4]. In
fact, (1.1) can be thought of as a simple Bayesian model where the prior distribution on Θ is G∗. A few
important examples of such a setting are given below.

EXAMPLE 1 (Normal location mixture). Suppose that p(z | θ) = ϕσ (z − θ), where ϕσ (·) is the p.d.f.
of the multivariate normal distribution with mean 0 and variance σ 2Id (σ 2 known), i.e. ϕσ (z) :=

1
(
√
2πσ 2)d

exp(− z�z
2σ 2 ), for z ∈ Rd; here m = d. If G∗ is a discrete distribution with finitely many atoms,

then Z comes from a finite Gaussian mixture model. This model is ubiquitous in statistics and arises in
many application domains including clustering; see e.g. [16, 57].

EXAMPLE 2 (Normal scale mixture). Suppose that p(z | θ) = 1
θ
ϕ( z

θ
), where ϕ(·) is the p.d.f. of the

standard normal distribution on R. Here G∗ is a probability distribution on the positive real line (0,∞).
This corresponds to the Gaussian scale mixture model; see [3]. This model has many applications
including in Bayesian (linear) regression and multiple hypothesis testing, see e.g. [59, 68, 74].

EXAMPLE 3 (Uniform scale mixture). Suppose thatG∗ is a distribution on (0,∞) and p(· | θ) corresponds
to the uniform density on the interval [0, θ ] (for θ > 0). Thus, the marginal density of Z is given
by fG∗(z) :=

∫ 1
θ
I[0,θ ](z) dG

∗(θ) =
∫ ∞
z

1
θ
dG∗(θ), for z > 0. It is well known that any (upper

semicontinuous) non-increasing density on (0,∞) can be represented as fG∗ for a suitable G∗ [32,p.
158]. This class of distributions arises naturally via connections with renewal theory (see e.g. [75]),
multiple testing (see e.g. [51], [44]), etc.

We consider the goal of estimating the unobserved Θ in (1.1); we call this task denoising Z.
Traditionally, this goal has been formulated as that of finding an estimator d∗(·) that minimizes the
Bayes risk w.r.t. a loss function � : Rm × Rm → [0,∞), i.e.

E [�(d(Z),Θ)] ≡
∫

Ω

∫

Rd
�(d(z), θ) p(z | θ) dz dG∗(θ) (1.3)

over all measurable functions d : Rd → Rm, where (Z,Θ) ∼ PZ,Θ (i.e. Θ ∼ G∗ and Z | Θ = θ ∼ p(· |
θ)). The best estimator d∗(Z) of Θ , in terms of minimizing (1.3), is called the Bayes estimator under the
loss �(·, ·).
EXAMPLE 4 (Bayes estimator under squared error loss). When we use the loss function �(a, θ) := |a−θ |2
(here a, θ ∈ Rm and | · | denotes the usual Euclidean norm), the Bayes estimator θ(·) minimizing (1.3)
turns out to be the posterior mean, i.e.

θ(Z) := E[Θ | Z]. (1.4)
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FIG. 1. Toy example with n = 60 in d = 1 where p(· | θ) is the density of N(θ , 1) and G∗ = N(0, τ2). Left: observations
Z1, . . . ,Zn (in blue) obtained from model (1.1) with τ2 = 1 are connected to their true unobserved latent variables {Θi}ni=1 (in

red); the Bayes estimator θ(Zi) (in black) is connected to Θi (in red) and the corresponding OT-based denoiser δ∗(Zi) (in orange).
Right: plot of the risk curves of the three estimators of Θ—Z (in blue), θ(Z) (in black) and δ∗(Z) (in orange)—as τ2 varies from
0 to 10.

In this paper we take a different perspective on the denoising problem inspired by the theory of
optimal transport (OT). To motivate our approach to estimating the unobserved Θ in (1.1), we first
highlight a drawback of the Bayes estimator. Although the posterior mean θ(Z) ≡ E[Θ | Z] in (1.4)
attains the smallest Bayes risk (see (1.3)) among all estimators of Θ (under the squared error loss),
its distribution is different from G∗ (recall that Θ ∼ G∗). In fact, in some cases the Bayes estimator
θ(Z) yields a ‘shrunken’ estimate of Θ . The left panel of Fig. 1 illustrates this with n = 60 data points

Z1, . . . ,Zn (denoted by the blue dots) drawn from the model Zi | Θi = θ ∼ N(θ , 1), whereΘi

iid∼ G∗ with
G∗ = N(0, τ 2) and τ 2 = 1. The latent Θi’s are denoted by red dots, whereas the Bayes estimator θ(Zi)

is depicted by black dots. We can see that the Bayes estimator (excessively) shrinks the observations
in order to achieve optimal denoising (compare the distributions of the red and the black dots). The
resulting distribution of the Bayes estimators θ(Z) is N(0, 12 ), which has a much smaller variance than
G∗ ≡ N(0, 1).

In contrast, in this paper we consider theOT-based denoiser δ∗(Z) (see (2.9)), shown in the left plot of
Fig. 1 by the orange dots, which corrects this drawback and produces estimates that have the distribution
G∗; compare the distributions of the orange and the red dots. The plot of the risk functions for the three
estimators—Z, θ(Z) and δ∗(Z)—as τ 2 varies shows that the proposed OT-based denoiser δ∗(Z) achieves
the distributional stability (i.e. δ∗(Z) ∼ G∗) at very little cost; compare the risk functions for δ∗(Z) (in
orange) and θ(Z) (in black). See Remark 3 for the detailed computations.

This (over)-shrinkage by the Bayes estimator θ(Z) is more acute when d ≥ 2. In general, the Bayes
estimator θ(Z) is not necessarily guaranteed to lie ‘close’ to spt(G∗), the support1 of G∗ (recall that
Θ ∼ G∗). To illustrate this, in Fig. 2 we consider another example, this time with d = m = 2. Here we
take n = 60 data points Z1, . . . ,Zn ∈ R2 (depicted by the blue dots in the left panel of Fig. 2) drawn from

1 The smallest closed set containing probability mass 1.



4 N. G. TRILLOS AND B. SEN

FIG. 2. Toy example with n = 60 in d = 2 where p(· | θ) is the density of N(θ , (0.3)2 · I2) and G∗ is the uniform distribution on
the unit circle. Left: observations Z1, . . . ,Zn (in blue) obtained from model (1.1) are connected to the corresponding unobserved
latent variables {Θi}ni=1 (in red). Centre: the Bayes estimator θ(Zi) (in black) is connected to Θi (in red), for every i = 1, . . . , n.

Right: the Bayes estimator θ(Zi) (in black) is connected to its corresponding OT-based denoiser δ∗(Zi) (in orange) lying on the
circle.

the normal location mixture model (Example 1) with the latent variables Θ1, . . . ,Θn drawn uniformly
on the circle of radius 1 (shown by the red dots in the left panel of Fig. 2). We connect Zi with Θi by a
black line, for each i = 1, . . . , n, in the plot. The middle panel of Fig. 2 shows the Bayes estimator2 at the
observed data points θ(Zi) (depicted by the black dots) connected to the corresponding Θi’s (in red). As
can be easily seen from this plot, the Bayes estimator shrinks most of the observations towards 0 ∈ R2.
In contrast, our proposed OT-based denoiser corrects this drawback and maps the Bayes estimator θ(Zi)

to δ∗(Zi) (shown in the right panel of Fig. 2 by orange dots) which lies on the circle. Note that δ∗(Zi),
by definition, takes values in spt(G∗), the support of G∗.

In fact, if the goal is to estimate Θ ∼ G∗, it is reasonable to restrict d(·) in (1.3) to all estimators
such that d(Z) is distributed (approximately) as G∗. This type of requirement has been explored in
previous works in the literature (see e.g. [34, 55]) and is particularly important when we believe that
G∗ is discrete with a few atoms (which corresponds to the clustering problem) or when we believe that
G∗ has ‘structure’ (e.g. supported on a lower dimensional manifold in Rm). In light of this discussion, it
is natural to seek solutions to

inf
δ:Rd→Rm

E(Z,Θ)∼PZ,Θ

[
|δ(Z) − Θ|2

]
subject to δ(Z) ∼ G∗, (1.5)

among all measurable functions δ : Rd → Rm, where we consider �(·, ·) to be the squared error loss for
simplicity; see Appendix D for a discussion on more general loss functions. The constraint δ(Z) ∼ G∗

ensures that the ‘estimator’ δ(Z) of Θ has the same distribution as G∗ (in particular, the same support
as Θ ∼ G∗), thereby addressing the above drawbacks; cf. (1.3). Solutions of (1.5), if they exist, can be
described as distortionminimizers under a perfect perception quality constraint; see [5, 34] for definitions
and motivation for this terminology.

2 Here, the Bayes estimator, defined in (1.4), is approximated by a fine discretization of G∗, i.e. G∗ ≈ 1
M

∑M
i=1 δai , where

M = 1200 and the ai’s lie uniformly on the circle.
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The above discussion leads to the following natural questions:

Q1. Under what conditions can it be guaranteed that there exist solutions to problem (1.5)? Are these
solutions unique?

Q2. If there exists a solution, how can one characterize it, and what potential approaches can one
follow to find it?

Q3. Is it possible to obtain a solution solely based on the marginal distribution of observations and
knowledge of the likelihood model (without explicitly using G∗)?

The purpose of this paper is to provide answers to the above questions in the population level setting,
implicitly also assuming that G∗ is known. In this process, we lay down some mathematical foundations
and outline some strategies for future implementation of our ideas in finite data settings, with known or
unknown G∗. Q3 is motivated by the fact that, in general, an attempt to recover G∗ from observations
can lead to a difficult deconvolution problem; see more discussion below.

Our first main result, Theorem 4, states that, under certain assumptions on the model, problem (1.5)
indeed possesses a unique solution δ∗(·); throughout the paper, by unique solution wemean uniqueμ-a.e.
What is more, this solution can be found by solving an OT problem (defined precisely in (2.10)) between
the distribution of the Bayes estimator θ(Z) and G∗, and can be characterized as the composition of the
gradient of a certain convex function and θ(·). We refer to this δ∗(·) as the OT-based denoiser associated
with the model ({p(· | θ)}θ∈Ω ,G∗). Problem (1.5) can also be interpreted as an extreme case in a family
of problems with a soft penalty defined according to

inf
δ:Rd→Rm

E(Z,Θ)∼PZ,Θ

[
|δ(Z) − Θ|2

]
+

1

2τ
W2

2

(
δ�μ,G

∗
)
, (1.6)

where τ > 0 is a tuning parameter, δ�μ is the pushforward ofμ by δ (i.e. the distribution of δ(Z) if Z ∼ μ;
see Definition 1) and W2(·, ·) denotes the 2-Wasserstein distance between probability distributions (see
Definition 2.3). Formally, when τ → ∞ we recover the standard unconstrained risk minimization
problem, whose solution is the Bayes estimator, whereas we recover problem (1.5) when τ → 0. For any
other value of τ in between these two extremes,Theorem 5 guarantees that the solution to (1.6) is unique
and can be explicitly written as a simple linear interpolation of the OT-based denoiser δ∗(·) and the Bayes
estimator θ(·), a result very closely related to the characterization of the so-called distortion-perception
trade-off in Wasserstein space established in [34]. We will refer to (1.6) as a latent space penalization
approach to denoising, given that the penalty term W2

2 (δ�μ,G
∗) involves an explicit comparison of

distributions in the latent space Ω ⊂ Rm. It is worth highlighting that other optimization problems
similar to (1.6) have been considered in papers such as [5, 72] (see also references therein), where the
W2 distance between measures is substituted by other metrics over probability measures, including the
1-OT distance W1 and other loss functions as used in generative adversarial networks. As mentioned
earlier, and in contrast to the aforementioned papers, in this paper we pursue an in-depth analysis of the
properties of solutions to problems like (1.6) (or (1.7) below) and suggest novel strategies to find them.

Although the characterization of the OT-based denoiser δ∗(·) as a solution to an OT problem is
appealing, in many real applications G∗ may be unknown, making this characterization difficult to
implement. One possible approach to go around this issue is to estimate G∗ using i.i.d. data from (1.1)
using tools from what is usually referred to in statistics as deconvolution (see e.g. [9, 29, 58, 77]). This
approach is also taken in the empirical Bayes literature; see, e.g. [23, 26, 45, 63, 67], as well as the brief
discussion on this topic that we present in Appendix E. In this paper, however, we offer an alternative
approach and study yet another formulation for the denoising problem that closely resembles (1.6) but
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where we directly work with μ, the (marginal) distribution of the observed data (see (1.2)). Indeed, we
consider the optimization problem:

inf
δ:Rd→Rm

Eτ (δ) := E(Z,Θ)∼PZ,Θ

[
|δ(Z) − Θ|2

]
+

1

2τ
W2

2 (μδ ,μ); (1.7)

here, for a given map δ we define μδ as the probability measure over Rd defined as

μδ(A) :=
∫

A

∫

Rd
p(z′ | δ(z)) dμ(z) dz′, ∀A ⊆ Rd Borel measurable. (1.8)

In words, μδ is the marginal distribution of the variable z assuming that the underlying distribution of the
latent variable θ is given byG = δ�μ. Wewill refer to (1.7) as an observable space penalization approach

to denoising, given that the penalty term W2
2 (μδ ,μ) involves an explicit comparison of distributions

in the observable space Rd. In Proposition 7 we show that, under suitable assumptions, the objective
function Eτ (in (1.7)) is Gateaux differentiable w.r.t. the target δ ∈ L2(Rd : Rm;μ)3 and provide an
explicit formula for its gradient (see (3.1)). The formula for the gradient, which can be easily adapted
to the empirical setting, can in principle be used to implement a first-order optimization method seeking
a solution for (1.7). Unfortunately, problem (1.7) is non-convex in δ and one cannot guarantee the
convergence of a steepest descent scheme towards a global minimizer of Eτ (·). In fact, even the existence
of global solutions to (1.7) is not guaranteed by straightforward arguments in the calculus of variations.
Themain technical difficulty for this is the lack of lower semicontinuity of the functional δ �→ W2

2 (μδ ,μ)

w.r.t. the weak topology in the Hilbert space L2(Rd : Rm;μ) (see Definition C1), a natural topology
where one can guarantee pre-compactness of minimizing sequences.

Despite the above discussion, we can prove that indeed there exist solutions to (1.7); seeTheorem 11.
This is achieved by considering a suitable relaxation argument where we ‘lift’ the original problem
(1.7) to a problem over couplings (see (3.4) for details) that, while not of a standard type in OT theory,
does resemble multimarginal optimal transport (MOT) problems. Like MOT problems, our relaxation is
linear, and its search space enjoys better compactness properties than the original problem (1.7) that in
particular can be used to prove existence of solutions (see Theorem 10). This relaxation, which we show
is exact under suitable assumptions, also motivates the use of computational tools in OT for constructing
solutions of (1.7); this will be explored in future work. Finally, we highlight that this relaxation is
the key mathematical construction that allows us to prove Theorem 13, which states that, under the
identifiability assumptions on the probabilistic model that are written down precisely in Assumption 12,
the solutions δ∗

τ of (1.7) converge, as τ → 0, to the OT-based denoiser δ∗; in Remark 12 we discuss the
non-identifiable case.

As we discuss in Section 6, in order to use the relaxation problem (3.4) to approximate δ∗ from
finitely many observations, one would first need to estimate θ(·) from the available data. This is where
Tweedie’s formula (see (B.5) in Appendix B) can be very useful. This formula expresses the posterior
mean θ(·) in an exponential family model (see Appendix A) in terms of the marginal density fG∗ of
the observations (and its gradient) only, and can thus be estimated (non-parametrically) directly from
observations Z1, . . . ,Zn, say via kernel density estimation. We thus anticipate to be able to construct

3 L2(Rd : Rm;μ) is the space of vector valued (equivalence classes of) measurable functions from Rd into Rm that are square-
integrable w.r.t. μ.
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consistent estimators for δ∗ without knowing G∗ explicitly or having to directly estimate it, at least in
the case when the likelihood model is an exponential family of distributions.

1.1 Previous works

The main motivation of our work comes from the theory of empirical Bayes (Robbins, [63]) and its
recent revisitations (see e.g. Efron, [20–22, 26]) which consider large data sets that arise from parallel
and similar experiments. In the classical empirical Bayes set-up the unknown parameters arising from
the parallel experiments are assumed to be i.i.d. random variables with an unknown common prior
distribution G∗.

Typically, empirical Bayes methodologies (see e.g. [6,23–25,39,40,45,47–50,67,79] and the ref-
erences therein) provide statistical procedures which approximate the Bayes rule for the true model
(without specifying a prior). In this paper we question this very premise and illustrate (cf. Figs 1 and 2)
that the Bayes estimator, which is optimal in terms of squared error risk, deforms the underlying true
distribution of the latent variables (i.e. Θi’s) and may not be ideal in large-scale denoising problems.
This naturally leads us to the field of OT in search of strategies to correct for this deformation.

The area of OT has seen rapid growth in the past years with various applications in statistics and
machine learning. In statistical theory, OT appears in at least two general settings: (i) as an interesting
estimation problem in its own right, where one uses observations to either approximate the Wasserstein
distance between two ground truth distributions (see e.g. [14, 33, 73]) or to estimate the actual OT map
between them (see e.g. [12,18,30,43,56]), and (ii) as a tool to propose and/or analyse statistical models
in classical Euclidean settings (e.g. as in [10,13,38,41,42,65]) or in more abstract settings where data
sets consist of, for example, probability distributions (e.g. as in the regression setting for distribution-
on-distribution data explored in works like [36, 37, 76]). This paper better fits the second class of works,
but the adaptation of our ideas to the finite data setting will require the exploration of questions that fall
in the first category mentioned above.

Connections between the denoising problem (understood in a general sense) and ideas from
computational OT have been explored before in applications to image and signal denoising in works
like [5, 17, 34, 72]; a hard constraint version of (1.6) has been considered in [34], where a quantitative
form of the so-called distortion-perception trade-off is established. Modern approaches for noise removal
with additional good perception quality constraints have been proposed in [15]. These approaches
take advantage of the gradient structure that denoisers often have. In this paper, we pursue a deeper
mathematical analysis than previous works in the literature and explore new approaches, motivated by
ideas from the theory of OT, for recovering the OT-based denoiser. One of the key tools that we use in
our paper from the literature of OT is the concept of MOT (see [60]), which has been explored in the past
in a variety of fields including density functional theory in physics and chemistry [7, 11], economics [8,
28] and image processing [62], among others. This paper introduces new applications of closely related
OT problems.

1.2 Outline

The rest of the paper is organized as follows. In Section 2 we present our main results on problems (1.5)
and (1.6). First, in Section 2.1 we introduce some necessary notation and background that we use in the
rest of the paper. Then, in Section 2.2 we state our first main result, Theorem 4, which establishes the
existence and uniqueness of solutions of (1.5). In Section 2.3 we state Theorem 5, which characterizes
the solution of the soft penalty problem (1.6). Section 3 is devoted to the observable space penalization
problem (1.7). First, we provide a characterization of the Frechét derivative of its objective under suitable
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differentiability assumptions on the likelihood model. Then we present Theorems 11 and 13, where,
respectively, we state the existence of solutions to (1.7) and characterize the behaviour of solutions to
(1.7) as the parameter τ goes to zero. In particular, Theorem 13 states that, under suitable identifiability
assumptions, the OT-based denoiser δ∗ can be recovered as a limit of solutions to (1.7). Sections 4 and 5
are devoted to the proofs of our main results from Sections 2 and 3, respectively. In Section 6, we discuss
some future directions for research stemming from this work.

In Appendices A–E we provide various discussions connected to our main results. In particular, in
Appendices A–B we introduce exponential families of distributions and describe Tweedie’s formula.
In Appendix C we state and prove a few results from measure theory and functional analysis that are
relevant to the proof of Theorem 13. Appendix D briefly describes OT formulations of (1.5) when using
more general loss functions (beyond the squared error loss). In Appendix E we briefly review the (non-
parametric) maximum likelihood estimator of G∗, which could potentially be used to implement (1.5) in
practical settings.

2. Denoising with latent space penalization

2.1 Preliminaries

We first introduce some definitions and notation from the theory of OT (see e.g. [69, 70]). For any metric
space X, let B(X) denote the set of all Borel measurable subsets of X, and let P(X) be the set of all
Borel probability measures over X. It will be convenient to first introduce the notion of pushforward of
a measure by a map and rewrite the constraint in (1.5) in terms of pushforwards.

DEFINITION 1 (Pushforward of a measure). Given a measurable map δ : X → Y and a probability
measure ν over X, the measure δ�ν, the pushforward of ν by δ, is the measure defined according to

δ�ν(A) := ν(δ−1(A)) for every Borel subset A of Y. In other words, if X ∼ ν, then δ(X) ∼ δ�ν.

REMARK 1. The constraint δ(Z) ∼ G∗ in (1.5) can be rewritten as δ�μ = G∗.

Let two probability measures ν, ν̃ be defined over two Polish spaces X and Y, and consider a lower
semicontinuous cost function c : X × Y → [0,∞]. The dual of the Kantorovich OT problem (see e.g.
[69, 70])

C(ν, ν̃) := min
π∈Γ (ν ,̃ν)

∫ ∫
c(x, y) dπ(x, y), (2.1)

where Γ (ν, ν̃) denotes the set of all Borel probability measures on the product X × Y with marginals ν

and ν̃ (a.k.a. couplings between ν and ν̃), is the problem

sup
φ,ψ

∫
φ(x) dν(x) +

∫
ψ(y) d̃ν(y), s.t.φ(x) + ψ(y) ≤ c(x, y), ν-a.e. x ∈ X, ν̃-a.e. y ∈ Y, (2.2)

where φ and ψ are, respectively, in L1(X, ν) and L1(Y, ν̃). Theorem 5.10 in [70] guarantees that primal
and dual problems are equivalent. Any solution pair (φ,ψ) of (2.2), if it exists, will be referred to as
optimal dual potentials for the OT problem (2.1).

We will often consider the setting where the space X is a subset of some Euclidean space, X = Y,
and c(x, y) = |x − y|2. When in this setting, we will refer to (2.1) as the 2-OT problem between ν and
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ν̃ and denote by W2
2 (ν, ν̃) the minimum value in (2.1), which is nothing but the square of the so-called

Wasserstein distance between ν and ν̃.

DEFINITION 2 (2-Wasserstein distance). Given two probability measures ν, ν̃ over Rp with finite second
moments, we define their Wasserstein distance W2(ν, ν̃) as

W2
2 (ν, ν̃) := min

π∈Γ (ν ,̃ν)

∫
|x− y|2 dπ(x, y). (2.3)

A landmark result in the theory of OT due to Brenier characterizes the optimal coupling π for the 2-
OT problem between twomeasures ν and ν̃ when ν is absolutely continuous w.r.t. the Lebesgue measure;
see e.g. Villani [70, Theorem 3.15].

THEOREM 1 (Brenier). Let ν and ν̃ be two Borel probability measures overRp such that
∫

|x|2 dν(x) < ∞
and

∫
|y|2 d̃ν(y) < ∞. Suppose further that ν has a Lebesgue density. Then there exists a convex function

ψ : Rp → R∪{+∞} whose gradient T = ∇ψ pushes ν forward to ν̃. In fact, there exists only one such
T that arises as the gradient of a convex function, i.e. T is unique ν-a.e. Moreover, T uniquely minimizes
Monge’s problem:

inf
T : T�ν=ν̃

∫
|x− T(x)|2dν(x)

and the coupling (Id × T)�ν uniquely minimizes (2.3). In the above and in the remainder of the paper,
the map (Id × T) : Rp → Rp × Rp is defined as (Id × T)(x) = (x,T(x)).

2.2 Rewriting (1.5) as an OT problem

In this subsection we study problem (1.5) and develop its connection with standard Monge and
Kantorovich OT problems with a suitable cost function. Due to Remark 1, problem (1.5) can be written
as

min
δ : δ�μ=G∗

E(Z,Θ)∼PZ,Θ

[
|δ(Z) − Θ|2

]
. (2.4)

In turn, problem (2.4) is equivalent to

min
δ : δ�μ=G∗

EZ∼μ

[
|δ(Z) − θ(Z)|2

]
, (2.5)

where

θ(z) := E(Z,Θ)∼PZ,Θ [Θ | Z = z] (2.6)

is the posterior mean (and the Bayes estimator under the quadratic loss). This equivalence follows from
the well-known bias-variance decomposition for the squared error loss:

E[|δ(Z) − Θ|2 | Z] = E[|δ(Z) − θ(Z)|2 | Z] + E[|θ(Z) − Θ|2 | Z],
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which implies that for any arbitrary δ : Rd → Rm we have

E(Z,Θ)∼PZ,Θ

[
|δ(Z) − Θ|2

]
= EZ∼μ

[
|δ(Z) − θ(Z)|2

]
+ E(Z,Θ)∼PZ,Θ

[
|θ(Z) − Θ|2

]
,

from where it follows that the objective in (2.4) is equal to the objective function in (2.5) up to the
constant RBayes := E(Z,Θ)∼PZ,Θ [|θ(Z) − Θ|2], i.e. the Bayes risk.

The advantage of problem (2.5) is that, as discussed below, it is amenable to the type of relaxation
methods that have been studied in OT theory. Indeed, in order to construct a solution to (2.5) (and thus
also to (2.4)), at least for certain families of models ({p(· | θ)}θ∈Ω ,G∗) satisfying suitable assumptions,
we will first consider a Kantorovich relaxation of (2.5) given by

min
π∈Γ (μ,G∗)

∫∫
cG∗(z,ϑ) dπ(z,ϑ), (2.7)

where the cost function cG∗(·, ·) is defined as

cG∗(z,ϑ) := |θ(z) − ϑ |2, (z,ϑ) ∈ Rd × Ω; (2.8)

note the dependence of G∗ on the cost function cG∗(z,ϑ) in (2.8) via the Bayes estimator θ(z), which
depends on G∗.

We make the following assumptions.

ASSUMPTION 2. The distributionG∗ is such that
∫
Ω

|ϑ |2dG∗(ϑ) < ∞, i.e.G∗ has finite second moments.

ASSUMPTION 3. The measure θ�μ is absolutely continuous w.r.t. the Lebesgue measure in Rm.

REMARK 2 (On our assumptions). Since μ is absolutely continuous w.r.t. the Lebesgue measure (recall
(1.2)), note that Assumption 3 holds if we assume that the map θ : Rd → Rm is locally Lipschitz (and
thus differentiable Lebesgue a.e.) and that the Jacobian matrix Dθ(z) ∈ Rd×m has full rank μ-a.e. z;
indeed, this implication follows from the so-called coarea formula (see e.g. the theorem in section 3.1
in [31]). Thus, implicitly, we would be assuming that d ≥ m. In particular, the above is satisfied for
the following scenario. If {p(· | θ)}θ∈Ω is a regular k-parameter exponential family in canonical form,
then θ(·) is the gradient of a convex function κ(·) (which happens to be the log-partition function of the
family); see Section A and Section B. Moreover, κ(z) is a strictly convex function of z on its domain
if the representation is minimal; see e.g. Wainwright [71, Proposition 3.1]. As convex functions are a.e.
twice continuously differentiable, the Jacobian matrix Dθ(z) ∈ Rd×m exists a.e., and thus Assumption 3
is automatically satisfied. Assumption 2 just assumes a finite second moment condition on G∗, which is
quite mild.

We are ready to state our first main result.

THEOREM 4. Under Assumptions 2 and 3, there exists a unique solution π∗ to problem (2.7) with cost
function (2.8), which takes the form

π∗ = (Id × δ∗)�μ
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for a map δ∗(·) that is the μ-a.e. unique solution to problem (2.4), i.e. it is the OT-based denoiser.
Furthermore, δ∗(·) can be written as

δ∗(z) = ∇ϕ∗(θ(z)), for z ∈ Rd, (2.9)

to be read: ‘the gradient of the function ϕ∗ evaluated at θ(z)’, where ϕ∗ : Rm → R ∪ {+∞} is a convex
function. In fact, T∗ := ∇ϕ∗ is the solution to the standard quadratic cost Monge OT problem

min
T:T�(θ�μ)=G∗

∫
|θ − T(θ)|2 dθ�μ(θ) (2.10)

between the measures θ�μ and G∗.

The proof of Theorem 4 is presented in Section 4. It builds upon Brenier’s theorem (Theorem 1). The
first part of Theorem 4 implies that, under Assumptions 2 and 3, the value of Kantorovich’s relaxation
problem in (2.7) is indeed the same as that of Monge’s problem (2.4). Further, the optimal coupling in
(2.7) yields the solution to (2.4). Theorem 4 further says that the optimal solution δ∗(·) of (2.4) is related
to the Bayes estimator (2.6); in fact, δ∗(·) pushes the Bayes estimator θ(·) to satisfy the distributional
constraint δ∗(Z) ∼ G∗. The fact that δ∗(·) has such a simple form is not immediately obvious from the
original formulation of the problem in (1.5).

REMARK 3 (Normal–normal location model). Suppose that d = m and Θ ∼ Nm(θ∗,Σ∗) and Z | Θ =
θ ∼ Nd(θ ,Σ), where θ∗ ∈ Rm is known, and Σ∗ ∈ Rm×m and Σ ∈ Rd×d are symmetric positive
definite (fixed) matrices. It is then well known that

θ(Z) = Σ∗(Σ∗ + Σ)−1Z + Σ(Σ∗ + Σ)−1θ∗,

which shows that

θ(Z) ∼ Nm

(
θ∗,A

)
, where A := Σ∗(Σ∗ + Σ)−1Σ∗, (2.11)

as unconditionally, Z ∼ Nd(θ
∗,Σ∗ +Σ). Therefore, by Theorem 4, to find the OT-based denoiser δ∗ we

need to find the OT map T∗ between the distributions Nm
(
θ∗,A

)
and Nm

(
θ∗,Σ∗

)
, which is given by

T∗ : y �→ θ∗ + B(y− θ∗), where B := A−1/2(A1/2Σ∗A1/2)1/2A−1/2.

Thus, the OT-based denoiser δ∗ has the form δ∗(Z) = T∗(θ(Z)).
To get a better feel for the estimators—θ(Z) and δ∗(Z)—in this problem, let us consider the special

case d = m = 1 with Σ = 1 and Σ∗ = τ 2 and θ∗ = 0. Here we can see that the Bayes estimator
satisfies

θ(Z) := τ 2(1 + τ 2)−1Z, and thus, θ(Z) ∼ N(0, τ 4/(1 + τ 2)).

Note that τ 4/(1+τ 2) < τ 2 and thus the Bayes estimator has lower variance thanG∗ ≡ N(0, τ 2) (see Fig.
1 for an illustration of this phenomenon via a simple simulation). However, the OT-based denoiser δ∗
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has the form T∗(θ(Z)), where T∗(y) := τ(τ 4/(1+ τ 2))−1/2y. Here the Bayes risk (i.e. E[(θ(Z) − Θ)2])

is τ 2/(1 + τ 2) < 1 and the risk of δ∗ is 2τ 2
(
1 − τ

1+τ 2

)
(see the black and orange curves in the right

panel of Fig. 1).

REMARK 4 (When m = 1). In the special case when m = 1, the OT-based denoiser δ∗(·) in (2.9) can
be explicitly expressed as δ∗(z) = F−1

G∗ (Fθ (θ(z))), for z ∈ R, where F−1
G∗ is the quantile function

corresponding to the distribution G∗ (i.e. F−1
G∗ (p) := inf{x ∈ R : p ≤ FG∗(x)}, for p ∈ (0, 1)) and

Fθ is the distribution function of the random variable θ(Z). This follows easily from the fact that, in one
dimension, Brenier maps have explicit solutions in terms of distribution/quantile functions.

2.3 Soft penalty versions of (2.4)

We now consider problem (1.6), which is a type of relaxation of problem (2.4) where we use a soft
penalty on δ to enforce δ�μ to be sufficiently close to G∗ as opposed to enforcing a hard constraint as
in (2.4). The strength of the penalization is determined by the parameter τ , and, intuitively, we should
expect to recover the classical Bayes estimator θ(Z) when τ → ∞, and the OT-based denoiser δ∗(Z)

when τ → 0. As we show in the result below (see Section 4.2 for its proof), the estimators recovered by
solving (1.6) are simple linear interpolators of the Bayes estimator θ(Z) and δ∗(Z).

THEOREM 5. Under the same assumptions as in Theorem 4, there exists a unique solution δ∗
τ to (1.6).

Furthermore, the map δ∗
τ (·) can be written as

δ∗
τ (z) =

2τ

1 + 2τ
θ(z) +

1

1 + 2τ
δ∗(z), for z ∈ Rd, (2.12)

where δ∗(·) is the map from Theorem 4.

REMARK 5 (On the proof of Theorem 5). The proof of Theorem 5 is based on a simple relaxation argument
that mimics the relaxation in [1] used to reformulateWasserstein barycentre problems asMOT problems.

3. Denoising with observable space penalization

Although the characterization of the OT-based denoiser δ∗(·) as a solution to an OT problem is appealing,
in most real applications G∗ is unknown. As discussed in the Introduction right before (1.7) (see also
Appendix E), one possible approach to go around this issue is to estimate G∗ using i.i.d. data from
(1.1) using deconvolution techniques that are also used in the empirical Bayes literature; the resulting
approach is in line with the concept of g-modelling discussed in [24]. In this section, and in the spirit
of the f -modelling discussed in [24], we take a different approach and study yet another formulation for
the denoising problem that closely resembles (1.6) but where we directly work with μ, the (marginal)
distribution of the observed data (see (1.2)). In particular, we consider the optimization problem (1.7)
with objective Eτ (δ).

First, we provide an explicit formula for the Gateaux derivative of Eτ w.r.t. δ, when the likelihood
model is sufficiently regular. In principle, this Gateaux derivative can be used to implement a first-order
optimization method to find solutions of (1.7), but as discussed in the Introduction, the convergence to
global optimizers of this scheme cannot be guaranteed due to the non-convexity of Eτ . For this reason we
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consider an alternative methodology which holds under milder assumptions and which will allow us to:
(1) prove the existence of solutions of (1.7), (2) suggest a linear optimization problem for solving (1.7)
and (3) recover δ∗, the OT-based denoiser, without explicit knowledge of G∗. Throughout this section
we make the following assumption, which is used to guarantee that problem (1.7) is non-trivial.

ASSUMPTION 6. The marginal distribution μ with density as in (1.2) has finite second moments.

PROPOSITION 7. Suppose that Assumptions 2 and 6 hold. Suppose also that the likelihood model is such
that p(z | θ) is continuously differentiable in θ (for every z ∈ Rd). Let δ ∈ L2(Rd : Rm;μ) and suppose
thatμ,μδ (recallμδ was defined in (1.8)) are such that they admit a unique (up to constant shifts) solution
(φ̃, ψ̃) to the dual of the 2-OT problem between μ and μδ ; in particular,

∫
φ̃ dμ +

∫
ψ̃ dμδ = W2

2 (μ,μδ).

Finally, suppose that the function

z ∈ Rd �→
∫

Rd
ψ̃(z′)∇θp(z

′ | δ(z)) dz′

belongs to L2(Rd : Rm;μ).
Then the objective function Eτ : L2(Rd : Rm;μ) → R defined in (1.7) is Gateaux differentiable at

δ, and its gradient at that point takes the form

∇Eτ (δ) = 2(δ(·) − θ(·)) +
1

2τ

∫

Rd
ψ̃(z′)∇θp(z

′ | δ(·)) dz′. (3.1)

Proof. Given the form of Eτ , it suffices to compute the Gateaux derivative of W2
2 (μ,μδ) at δ. Let η ∈

L2(Rd : Rm;μ) be arbitrary. Taking the derivative ofW2
2 (μδ+εη,μ) w.r.t. ε at ε = 0, we obtain

d

dε

∣∣∣
ε=0

W2
2 (μδ+εη,μ) =

d

dε

∣∣∣
ε=0

sup
(φ,ψ)s.t.φ(x)+ψ(y)≤|x−y|2

∫
φ dμ +

∫
ψ dμδ+εη

=
d

dε

∣∣∣
ε=0

∫
ψ̃ dμδ+εη

=
d

dε

∣∣∣
ε=0

∫ ∫
ψ̃(z′)p(z′ | δ(z) + εη(z)) dz′ dμ(z)

=
∫

Rd

∫

Rd
ψ̃(z′)

d

dε

∣∣∣
ε=0

(p(z′ | δ(z) + εη(z))) dz′ dμ(z)

=
∫

Rd

∫

Rd
ψ̃(z′)〈∇θp(z

′ | δ(z)), η(z)〉
Rm

dz′ dμ(z)

=
∫

Rd

〈
η(z),

∫

Rd
ψ̃(z′)∇θp(z

′ | δ(z)) dz′
〉

Rm

dμ(z).

(3.2)
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The second equality follows as in Proposition 7.17 (and Proposition 7.18) in [64] and the third equality
just uses the definition of μδ+εη. Since η was arbitrary, we deduce (3.1). �

REMARK 6. When given finitely many observations Z1, . . . ,Zn sampled from μ, the formula in (3.1)
suggests the following algorithm to construct a (finite sample) denoising estimator from the observations.
In what follows we let

μn :=
1

n

n∑

i=1

δZi

be the empirical measure of the observations.
Set k = 0, and initialize δk(Z1), . . . , δk(Zn) ∈ Rm.
Then do until a stopping criterion is satisfied:

1. Find ψ̃ , optimal dual potential for the 2-OT problem between μn and the measure with density
1
n

∑n
i=1 p(· | δk(Zi)).

2. Set, for i = 1, . . . , n,

δk+1(Zi) := δk(Zi) − λ

(
2(δk(Zi) − θ(Zi)) +

1

2τ

∫
ψ̃(z′)

∇θp(z
′ | δk(Zi))

p(z′ | δk(Zi))
p(z′ | δk(Zi)) dz

′
)
.

3. Set k = k + 1.

In the above, λ > 0 is a time step parameter. Note that when the likelihood model is an exponential
family of distributions, we can use Tweedie’s formula (see Appendix B) to estimate θ(Zi). The
computation of ψ̃ can be carried out with an OT solver. We leave it for future work to explore the use of
different solvers for computing the gradient of Eτ in practical finite data settings.

3.1 A Kantorovich relaxation of (1.7) and recovery of δ∗

We now turn our attention to studying the existence of solutions to problem (1.7). To achieve this, we
first introduce a suitable Kantorovich relaxation of (1.7) for which we can prove existence of solutions
using the direct method of the calculus of variations. Under Assumption 8 stated below, we will further
characterize the structure of solutions of this relaxation and in particular show that any solution to (3.4)
(see below) naturally induces a solution to the original problem (1.7). To define the desired Kantorovich
relaxation, let us first introduce the set of admissible couplings

A :=
{
γ ∈ P(Rd × Ω × Rd × Rd) : γ1 = μ, γ4 = μ, and

∫
p(· | θ) dγ2(θ) = γ3(·)

}
; (3.3)

in the above display by γk, for k = 1, 2, 3, 4, we mean the kth marginal of γ . We observe that the set A
is determined by μ (the marginal distribution of observed variables) and {p(· | θ)}θ∈Ω (the likelihood
model). We now introduce the problem

inf
γ∈A

∫
cτ (z1, θ , z3, z4) dγ (z1, θ , z3, z4), (3.4)
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where the cost function cτ is defined as

cτ (z1, θ , z3, z4) := |θ − θ(z1)|
2 +

1

2τ
|z3 − z4|

2. (3.5)

REMARK 7 (Comparison with MOT). Problem (3.4) resembles an MOT problem (e.g. see [60]) with four
marginals, but differs from a standard MOT in the type of constraint that we put on the second and third
marginals of the coupling γ .

We will make the following assumptions on our probabilistic model.

ASSUMPTION 8. We assume that the set Ω is a closed subset ofRm. In addition, we assume that the family
of probability measures {p(· | θ)}θ∈Ω is continuous in θ in the weak sense, i.e. if {θn}n∈N is a sequence
in Ω converging to some θ ∈ Ω , then p(· | θn) converges weakly to p(· | θ).

ASSUMPTION 9. We assume that the posterior mean θ(z) is continuous for μ-a.e. z ∈ Rd.

REMARK 8 (On the first part of Assumption 8). In order to prove the existence of solutions to problem
(3.4) we assume that Ω is a closed subset of Rm for simplicity. In case Ω is not closed, one can consider
modifying the definition of problem (3.4) by changing all appearances of Ω with Ω , the closure of Ω .
This can be done if we assume that the family {p(· | θ)}θ∈Ω can be extended to a family of distributions
{p(· | θ)}θ∈Ω (not necessarily with densities w.r.t. the Lebesgue measure) for which we still have the
weak continuity property: if {θn}n ⊆ Ω and θn → θ , then p(· | θn) converges weakly to p(· | θ). For
instance, this can be done in the normal scale mixture problem in Example 2.

REMARK 9 (On Assumption 9). We will also impose Assumption 9 to guarantee the existence of
solutions to the relaxation problem (3.4). This assumption is mild and for example is satisfied when
{p(· | θ)}θ∈Ω is an exponential family of distributions under suitable assumptions (see Lemma B2 in
Appendix B). Indeed, in this case θ(·) coincides with the gradient of a real-valued convex function.
As, by Alexandrov’s theorem, a convex function is (Lebesgue) a.e. twice differentiable, its gradient is
(Lebesgue) a.e. continuous. Since μ has a density w.r.t. the Lebesgue measure, it then follows that θ(z)

is indeed continuous for μ-a.e. z ∈ Rd.

As stated in the next theorem, problem (3.4) admits minimizers. More importantly, all minimizers of
this problem possess a convenient structure that we later use to prove existence of solutions to problem
(1.7).

THEOREM 10. Suppose Assumptions 2, 6, 8 and 9 hold. Then there exist solutions to (3.4). Moreover, if
γ ∗ is a solution of (3.4), then γ ∗

12, the projection of γ onto the first two coordinates, is a solution to the
problem

inf
π∈Γ (γ ∗

1 ,γ
∗
2 )

∫
|θ − θ(z)|2 dπ(z, θ).

In turn, under Assumption 3, γ ∗
12 must have the form γ ∗

12 = (Id × δγ ∗)�μ for δγ ∗ ∈ L2(Rd : Rm;μ) the
unique solution to the problem:

inf
δ:δ�μ=γ ∗

2

∫
|δ(z) − θ(z)|2 dμ(z). (3.6)
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Theorem 10 is proved in Section 5.1, and, as stated earlier, will be used to deduce the existence of
solutions of (1.7). Precisely, as we state in Theorem 11 below, the existence of solutions of (1.7) follows
from the equivalence between problems (1.7) and (3.4). To describe this equivalence, we introduce some
notation first.

Given δ ∈ L2(Rd : Rm;μ), let π δ
34 be a 2-OT plan between μδ (as defined in (1.8)) and μ. Using

π δ
34, we define γδ as the measure which acts on an arbitrary test function φ : Rd × Ω × Rd × Rd → R

according to

∫
φ(z1, θ , z3, z4) dγδ(z1, θ , z3, z4) =

∫
φ(z4, δ(z4), z3, z4) dπ

δ
34(z3, z4). (3.7)

In simple terms, to sample from γδ it is sufficient to sample (z3, z4) ∼ π δ
34 and then set z1 = z4 and

θ = δ(z4). Notice that γδ ∈ A. The proof of Theorem 11 below can be found in Section 5.2.

THEOREM 11. Under Assumptions 2, 3, 6,8 and 9 the following properties hold:

1. Let γ ∗ be any solution to (3.4). Then the map δγ ∗ for which γ ∗
12 = (Id × δγ ∗)�μ is a solution to

(1.7). In particular, due to Theorem 10, there exist solutions to (1.7).

2. Conversely, if δ̃ is a solution to (1.7), then γδ̃ ∈ P(Rd × Ω × Rd × Rd) defined as in (3.7) for
δ = δ̃ is a solution to (3.4).

REMARK 10 (Equivalence between (3.4) and (1.7)). Theorem 11 captures the equivalence between
problems (3.4) and (1.7): from a solution γ ∗ to (3.4) (which exists by the first part of Theorem 10)
we can obtain a map δ∗ that is a solution to (1.7). Conversely, from a solution to (1.7) we can construct a
solution to (3.4). Interestingly, the relaxation (3.4) provides an avenue for designing alternative numerical
methods for optimizing (1.7) that do not rely on the gradient descent strategy in the L2(Rd : Rm;μ)

space suggested at the beginning of Section 3. Notice that (3.4) is a linear optimization problem, which,
as discussed in Remark 7, resembles an MOT problem. For this reason we expect to be able to use
computational OT techniques to solve (1.7).

REMARK 11. We do not claim uniqueness of solutions of (1.7). This non-uniqueness may not be
surprising, since problem (1.7) is in general non-convex in δ.

Next, we discuss the behaviour of solutions to problem (1.7) as the parameter τ → 0. We show in
Theorem 13 (see Section 5.3 for its proof) that under the identifiability assumption stated below, we can
recover δ∗, the OT-based denoiser, from the solutions of (1.7).

ASSUMPTION 12. The following identifiability condition on {p(· | θ)}θ∈Ω holds: If
∫
Ω
p(· | θ) dG(θ) =∫

Ω
p(· | θ) dG′(θ) for two probability measures G and G′ over Ω , then G = G′.

THEOREM 13. Let {τn}n≥1 be a sequence of positive numbers converging to 0. Let δ∗
n be a solution

to problem (1.7) with τ = τn (we know solutions exist due to Theorem 11). Then, under the same
assumptions as in Theorem 11 and the additional Assumption 12, δ∗

n converges in L
2(Rd : Rm;μ) to δ∗

as defined in Theorem 4. In other words,

lim
n→∞

∫
|δ∗
n(z) − δ∗(z)|2 dμ(z) = 0.
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REMARK 12 (Non-identifiable version of Theorem 13). An inspection of the proof of Theorem 13 reveals
that if we drop Assumption 12, then we can conclude that the set of accumulation points of {δ∗

n}n∈N in
the (strong) L2(Rd : Rm;μ) topology is contained in the set of minimizers of the problem

min
δ : μδ=μ

E(Z,Θ)∼PZ,Θ

[
|δ(Z) − Θ|2

]
.

In other words, from the family of problems (1.7) we can find a map δ with the smallest risk attainable
within the set of maps that consistently reproduce the distribution of observations μ.

REMARK 13. Theorem 13 suggests taking small values of τ in (1.7) (or in its equivalent formulation
(3.4)) to recover the OT-based denoiser. However, we anticipate a certain computational hardness for the
optimization problem (1.7) when τ is small. To better appreciate this, observe that small values of τ in
the equivalent formulation (3.4) essentially enforce the hard constraint

∫
p(·|θ)dγ2(θ) = μ,

which is equivalent to solving a deconvolution problem.

4. Proofs of main results from Section 2

4.1 Proof of Theorem 4

In order to prove Theorem 4, we first present some preliminary results relating solutions of problem (2.7)
(with the cost function as in (2.8)) and its dual with solutions of the problem

min
π∈Γ (θ�μ,G∗)

∫ ∫
|θ − ϑ |2dπ(θ ,ϑ) (4.1)

and its dual.

PROPOSITION 14. Let π̃ and (φ̃, ψ̃) be solutions to (4.1) and its dual, respectively. Suppose that Assump-
tion 2 holds. Then (4.1) = (2.7). Furthermore, the functions (φ̃ ◦ θ , ψ̃) form a solution pair for the dual
of (2.7). In addition, the coupling π defined according to

dπ(z, θ) := dπ̃(θ | θ(z)) dμ(z) (4.2)

is a solution for (2.7); here, by π̃(· | ϑ) we mean the conditional distribution of θ given ϑ when
(θ ,ϑ) ∼ π̃ .

Proof. Using the Kantorovich duality theorem (see Theorem 1.3 in [70]), it follows that

∫
φ̃(ϑ)dθ�μ(ϑ) +

∫
ψ̃(θ)dG∗(θ) =

∫
|θ − ϑ |2dπ̃ (ϑ , θ).

Now, the left-hand side of the above display can be written as

∫
φ̃(θ(z))dμ(z) +

∫
ψ̃(θ)dG∗(θ),
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while the right-hand side can be written, using the disintegration theorem, as

∫ (∫
|θ − ϑ |2dπ̃(θ |ϑ)

)
dθ�μ(ϑ) =

∫ (∫
|θ(z) − θ |2dπ̃(θ |θ(z))

)
dμ(z)

=
∫ ∫

|θ(z) − θ |2dπ(z, θ).

It follows that
∫

φ̃ ◦ θ(z)dμ(z) +
∫

ψ̃(θ)dG∗(θ) =
∫

|θ(z) − θ |2dπ(z, θ),

implying that π and (φ̃ ◦ θ , ψ̃) are solutions of (2.7) and its dual, respectively. This computation also
shows that (4.1) = (2.7), as claimed. �

For the uniqueness statement in Theorem 4 we will establish a converse statement to Proposition 14.
Namely, we will prove that any solution to (2.7) must have the form (4.2). We notice that without the
additional Assumption 3 this converse statement may fail, as the next remark illustrates.

REMARK 14. In general, a converse statement to Proposition 14 may not be true if Assumption 3 does
not hold (i.e. if θ�μ is not absolutely continuous w.r.t. the Lebesgue measure), as the following example
illustrates. Let G∗ be the uniform measure over the set Ω := {0, 1, 3, 4}, and for every θ ∈ Ω , let p(· | θ)

be the uniform distribution on the interval [0, 1]. Then, we can see that μ is the uniform distribution on
[0, 1] and θ(·) ≡ 2, which implies that θ�μ = δ2, the Dirac delta measure at the point 2. Since θ�μ is
concentrated at a point, there is a unique solution π̂ to problem (4.1) (in fact, there is only one coupling
between a Dirac delta measure and an arbitrary probability measure). However, as θ(·) is a constant, any
coupling between μ =Uniform[0,1] and the uniform distribution on Ω would have the same cost; hence
there are actually multiple solutions to problem (2.7).

In what follows we let ν ∈ P(Rd ×Rm) be the joint distribution of (Z, θ(Z)) where Z ∼ μ. We use
the disintegration theorem to write ν as

dν(z, θ) = dν(z | θ) d(θ�μ)(θ), for θ ∈ Rm, z ∈ Rd. (4.3)

Notice that the support of ν(· | θ) can be assumed to be contained in {z ∈ Rd : θ(z) = θ}.

LEMMA 1. Let π0 ∈ Γ (μ,G∗) and let π̂ := (θ , Id)�π0 ∈ Γ (θ�μ,G
∗), where (θ , Id) : (z,ϑ) �→

(θ(z),ϑ). Suppose, in addition, that π̂ is known to have the form π̂ = (Id × T)�(θ�μ) for some map T .
Then

π0(· | z) = δT◦θ(z)(·)

for μ-a.e. z. In the above, π0(· | z) stands for the conditional distribution of θ given z when (z, θ) ∼ π0.
In particular,

π0 = (Id × T ◦ θ)�μ.
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Proof. For (θ , θ̃ ) ∼ π̂ of the form π̂ = (Id, T)�(θ�μ) ∈ Γ (θ�μ,G
∗) it is clear that

π̂(· | θ) = δT(θ) (4.4)

for θ�μ-a.e. θ . On the other hand, from the representation π̂ = (θ , Id)�π0, for any bounded and
measurable function φ : Rm × Rm → R we have

∫

Rm

∫

Rm
φ(θ , θ̃ ) dπ̂ (θ , θ̃ ) =

∫

Rd

∫

Rm
φ(θ(z), θ̃ ) dπ0(z, θ̃ )

=
∫

Rd

(∫

Rm
φ(θ(z), θ̃ ) dπ0(θ̃ | z)

)
dμ(z)

=
∫

Rd

∫

Rm

(∫

Rm
φ(θ , θ̃ ) dπ0(θ̃ | z)

)
dν(z, θ)

=
∫

Rm

∫

Rd

∫

Rm
φ(θ , θ̃ ) dπ0(θ̃ | z) dν(z | θ) d(θ�μ)(θ),

where we recall that ν is the joint distribution of (Z, θ(Z)) for Z ∼ μ. From this computation and the
uniqueness of conditional distributions in the disintegration theorem it follows that

π̂(· | θ) =
∫

Rd
π0(· | z) dν(z | θ),

for θ�μ-a.e. θ . That is, for any Borel measurable A ⊆ Rm we have

π̂(A | θ) =
∫

Rd
π0(A | z) dν(z | θ).

Combining with (4.4), it follows that for θ�μ-a.e. θ

δT(θ)(·) = π̂(· | θ) =
∫

Rd
π0(· | z) dν(z | θ).

For a θ for which the above is true, we may take the singleton A = {T(θ)} and conclude that

1 =
∫

Rd
π0(A | z) dν(z | θ),

which implies that π0(A | z) = 1 for ν(· | θ)-a.e. z. That is,

π0(· | z) = δT(θ).
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for ν(· | θ)-a.e. z. Finally, as discussed right after (4.3), for z in the support of ν(· | θ) we have θ = θ(z).
It then follows that for ν(· | θ)-a.e. z we have

π0(· | z) = δT◦θ(z).

At this stage we can apply Fubini’s theorem to conclude that

π0(· | z) = δT◦θ(z)

for μ-a.e. z ∈ Rd, completing in this way the proof. �

We are now ready to prove Theorem 4.

Proof of Theorem 4. Under the assumption that θ�μ is absolutely continuous w.r.t. the Lebesgue
measure, we can use Brenier’s theorem (Theorem 1) to deduce that there exists a unique solution π̃

to (4.1), which has the form

π̃ = (Id × T)�(θ�μ)

for some measurable map T of the form T = ∇ϕ for a convex function ϕ; existence of solutions to the
dual of (4.1) is guaranteed by Theorem 2.12 in [69]. Further, from Brenier’s theorem we also know that
T�(θ�μ) = G∗ and that T minimizes the objective (2.10). Proposition 14 then implies that

π := (Id × T ◦ θ)�μ

is a solution of (2.7).
It remains to show that the obtained solution to (2.7) is unique. To see this, suppose that π0 is a

solution of (2.7), and let π̂ := (θ , Id)�π0. It follows that

∫
|θ − ϑ |2 dπ̂(θ ,ϑ) =

∫
|θ(z) − ϑ |2 dπ0(z,ϑ) = (2.7) = (4.1),

and thus π̂ is a solution of (4.1); notice that the latter of the above equalities follows from Proposition
14. From this and the uniqueness of solutions to (4.1), by Assumption 3 as θ�μ is absolutely continuous

w.r.t. the Lebesgue measure, it follows that π̂ = π̃ . Using the fact that π̂ = (θ ×Id)�π0 = (Id×T)�(θ�μ)

in Lemma 1 we can conclude that necessarily π0 = (Id × T ◦ θ)�μ, proving in this way the uniqueness
of solutions to (2.7). �

REMARK 15. Suppose that the Bayes estimator θ satisfies Assumption 2 and 3. Then it can be easily seen
that the above proof can be used to deduce that, for any G ∈ P(Ω) with finite second moments (not
necessarily equal to the prior G∗), the problem

inf
π∈Γ (μ,G)

∫
|θ − θ(z)|2 dπ(z, θ)
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has a unique solution π̃ . This unique solution takes the form

π̃ = (Id × δ̃)�μ,

for δ̃ the unique solution to the problem

inf
δ:δ�μ=G

EZ∼μ[|θ(Z) − δ(Z)|2].

4.2 Proof of Theorem 5

In order to prove Theorem 5 we begin by relaxing (1.6) as follows:

inf
π ,π̃

∫
|θ(z) − θ̃ |2 dπ(z, θ̃ ) +

1

2τ

∫
|θ̃ − θ |2 dπ̃(θ̃ , θ), (4.5)

where the inf is taken over pairs (π , π̃) satisfying: π ∈ P(Rd × Rm), π̃ ∈ P(Rm × Rm), π1 = μ,
π̃2 = G∗ and π2 = π̃1. We will characterize solutions to (4.5) following the proof of a theorem in [1].
Wewill then relate these solutions with problem (1.6) and with the characterization given in the statement
of Theorem 5.

LEMMA 2. Let τ > 0. Then problem (4.5) is equivalent to problem

min
γ∈Γ (μ,G∗)

∫
B(z, θ)dγ (z, θ), (4.6)

where B(·, ·) is the barycentre cost:

B(z, θ) := min
θ̃∈Rm

{
|θ(z) − θ̃ |2 +

1

2τ
|θ̃ − θ |2

}
=

1

(1 + 2τ)
|θ(z) − θ |2.

Proof. Let γ ∗ ∈ Γ (μ,G∗) be a solution to (4.6) (note that a solution to (4.6) indeed exists). For a given
(z, θ) in the support of γ ∗ we consider

T(z, θ) := argmin
θ̃∈Rm

{
|θ(z) − θ̃ |2 +

1

2τ
|θ̃ − θ |2

}
=

2τ

1 + 2τ
θ(z) +

1

2τ + 1
θ . (4.7)

Let ν ∈ P(Rd × Ω × Rm) be given by

ν := (Id, T)�γ
∗,

where (Id, T) is the map (Id, T) : (z, θ) ∈ Rd × Ω �→ (z, θ ,T(z, θ)), and let

π∗ := P13�ν, π̃∗ := P32�ν,
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where P13(z, θ , θ̃ ) = (z, θ̃ ) and P32(z, θ , θ̃ ) = (θ̃ , θ). Notice that (π∗, π̃∗) is a feasible pair for (4.5). For
this pair we have

(4.6) =
∫
B(z, θ) dγ ∗(z, θ) =

∫ (
|θ(z) − T(z, θ)|2 +

1

2τ
|T(z, θ) − θ |2

)
dγ ∗(z, θ)

=
∫

|θ(z) − θ̃ |2dπ∗(z, θ̃ ) +
1

2τ

∫
|θ̃ − θ |2dπ̃∗(θ̃ , θ)

≥ (4.5).

(4.8)

Let us now consider an arbitrary feasible pair (π , π̃) for (4.5). From (π , π̃) we can construct γ ∈
Γ (μ,G∗) by glueingπ and π̃ together as we describe next. Let ν0 = π2 = π̃1. Then, by the disintegration
theorem applied to π and π̃ , we can decompose π and π̃ in terms of conditionals relative to one of their
marginals (in this case ν0):

dπ(z, θ̃ ) = dπz|θ̃ (z)dν0(θ̃), dπ̃ (θ̃ , θ) = dπθ |θ̃ (θ)dν0(θ̃).

Using these decompositions, we define γ ∈ P(Rd × Ω) as the probability measure acting on smooth
test functions ϕ according to

∫

Rd

∫

Ω

ϕ(z, θ)dγ (z, θ) =
∫

Rm

(∫

Rd

∫

Ω

ϕ(z, θ)dπz|θ̃ (z)dπθ |θ̃ (θ)

)
dν0(θ̃).

To intuitively explain the joint distribution (Z,Θ) ∼ γ above, we consider a joint distribution on three
variables (Z,Θ , Θ̃) defined as follows: Θ̃ ∼ ν0, Z and Θ are independent given Θ̃ , with Z | Θ̃ ∼ πz|θ̃ ,

and Θ | Θ̃ ∼ πθ |θ̃ . Thus, γ is the joint distribution of (Z,Θ) according to the above model. It is
straightforward to check that γ ∈ Γ (μ,G∗). Moreover, we have the following:

∫
|θ(z) − θ̃ |2 dπ(z, θ̃ ) +

1

2τ

∫
|θ̃ − θ |2 dπ̃(θ̃ , θ)

=
∫ ∫

|θ(z) − θ̃ |2 dπz|θ̃ (z) dν0(θ̃) +
1

2τ

∫ ∫
|θ̃ − θ |2 dπ̃θ |θ̃ (θ) dν0(θ̃)

=
∫ [∫ ∫ (

|θ(z) − θ̃ |2 +
1

2τ
|θ̃ − θ |2

)
dπz|θ̃ (z)dπ̃θ |θ̃ (θ)

]
dν0(θ̃)

≥
∫ (∫ ∫

B(z, θ)dπz|θ̃ (z) dπ̃θ |θ̃ (θ)

)
dν0(θ̃)

=
∫ ∫

B(z, θ) dγ (z, θ) ≥ (4.6).

(4.9)

Since the above is true for any arbitrary feasible pair (π , π̃), we deduce that (4.5) ≥ (4.6). Combining
with (4.8) we obtain the equality.

From the equality (4.5) = (4.6), we see from (4.8) and (4.9) that there is an explicit way to map
solutions γ ∗ of (4.6) to solutions (π∗, π̃∗) of (4.5) and vice versa. �
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LEMMA 3. For any fixed τ > 0 problem (4.6) is equivalent to (2.7). In particular, its unique solution γ ∗

has the form

γ ∗ = (Id × δ∗)�μ

for δ∗ as defined in (2.9).

Proof. Notice that a direct computation reveals, from Lemma 2, that for all z ∈ Rd and θ ∈ Ω , B(z, θ) =
(1 + 2τ)−1|θ(z) − θ |2. Therefore, problem (4.6) is equivalent to problem (2.7). �

LEMMA 4. Problem (4.5) has a unique solution, which is given by

π∗ = F�μ, π̃∗ = F̃�μ, (4.10)

where F : z ∈ Rd �→ (z, δ∗
τ (z)) and F̃ : z ∈ Rd �→ (δ∗

τ (z), δ∗(z)). Here δ∗
τ is defined via (2.12).

Proof. First, notice that from the proof of Lemma 2 we know that using γ ∗ = (Id × δ∗)�μ we can
construct a solution (π , π̃) of (4.5) according to

π = P13�((Id, T)�γ
∗), π̃ = P32�((Id, T)�γ

∗).

Recall T(·, ·) from (4.7) and note that T(z, δ(z)) = δ∗
τ (z). Using the form of γ ∗, it is straightforward to

verify that π and π̃ defined above have the form in (4.10). It remains to show that this solution is unique.
To see this, let (π∗, π̃∗) be an arbitrary solution to (4.5). Let Υ be the probability measure over

Rd × Rm × Ω defined by

∫
ψ(z, θ̃ , θ) dΥ (z, θ̃ , θ) =

∫ ∫ ∫
ψ(z, θ̃ , θ) dπ∗

z|θ̃ (z) dπ̃
∗
θ |θ̃ (θ) dν0(θ̃),

for all smooth test functions ψ ; here recall the definitions of π∗
z|θ̃ (·), π̃∗

θ |θ̃ (·) and ν0 from the proof of

Lemma 2. Using (4.9) and the fact that the following inequality is actually an equality (and that both
are integrals w.r.t. the measure Υ ), we can deduce that for Υ -a.e. (z, θ̃ , θ) we have θ̃ = T(z, θ) (as the
integrands must be a.e. equal; cf. (4.7)). From this it follows that the joint distribution Υ is determined
by the joint distribution of (z, θ) and the other variable θ̃ is a deterministic function of (z, θ), i.e. Υ =
H�(P13�Υ ), where H : (z, θ) �→ (z, T(z, θ), θ). From (4.9) we can also deduce that P13�Υ is a solution
of (4.6), which by Lemma 3 must be equal to (Id × δ∗)�μ. Therefore,

Υ = H�((Id × δ∗)�μ).

From this and the fact that by construction we have π∗ = P12�Υ and π̃∗ = P23�Υ it follows that π∗ and
π̃∗ are as in (4.10). �

Proof of Theorem 5. Let δ : Rd → Rm be an arbitrary measurable map. Let π̃ be a 2-OT transport plan
between δ�μ and G∗, and let π = (Id, δ)�μ. We see that (π , π̃) is a feasible pair for (4.5) and that

EZ∼μ[|δ(Z) − θ(Z)|] +
1

2τ
W2

2 (δ�μ,G
∗) =

∫
|θ̃ − θ(z)|2 dπ(z, θ̃ ) +

1

2τ

∫
|θ̃ − θ |2 dπ̃(θ̃ , θ).
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From the above and the form of the unique solution to (4.5) deduced in Lemma 4 it follows that
problem (1.6) admits a unique solution, which must have the form (2.12). �

5. Proofs of main results from Section 3

5.1 Proof of Theorem 10

Proof. First we establish the existence of solutions to (3.4). Let {γ n}n∈N ⊆ A be a minimizing sequence
for the objective function in (3.4); we recall that A, defined in (3.3), is the feasible set for problem (3.4).
In particular, we suppose that

lim
n→∞

∫
cτdγ

n = inf
γ∈A

∫
cτdγ =: M0 < +∞.

The fact that M0 is finite follows from the fact that we can take the coupling γ = F�PZ,Θ (recall PZ,Θ
is the joint distribution of Z and Θ) with F(z, θ) := (z, θ , z, z), for which one can see (by Assumption 2)
that

∫
cτdγ < +∞ and γ ∈ A. Without the loss of generality we assume that

sup
n∈N

∫
cτdγ

n ≤ 2M0.

First, we prove that the sequence {γ n}n∈N is precompact in the weak sense. By Prokhorov’s theorem it
suffices to prove that the sequence {γ n}n∈N is tight. To see this, notice that

∫
|θ |2dγ n2 (θ) ≤ 2

∫
|θ − θ(z1)|

2dγ n(z1, θ , z3, z4) + 2
∫

|θ(z)|2dμ(z) ≤ 4M0 + 2
∫

|θ(z)|2dμ(z),

which follows from the elementary pointwise inequality |θ |2 ≤ 2|θ − θ(z)|2 +2|θ(z)|2 and a subsequent
integration w.r.t. γ n on both sides. Likewise,

∫
|z3|

2dγ n3 (z3) ≤ 2
∫

|z3 − z4|
2dγ n(z1, θ , z3, z4) + 2

∫
|z4|

2dμ(z4) ≤ 8τM0 + 2
∫

|z4|
2dμ(z4).

From the above we can conclude that all second moments of the family of distributions {γ n}n∈N are
uniformly bounded, and thus the family {γ n}n∈N is indeed tight. It follows that, up to the extraction of a
subsequence that is not relabelled, γ n converges weakly, as n → ∞, towards a limit that we will denote
by γ ∗.

Next we show that the limiting γ ∗ must be feasible for (3.4), i.e. it must belong to the feasible set A.
First, observe that γ ∗

1 = γ ∗
4 = μ follows from the weak convergence of γ n towards γ ∗ and the fact that

for all n ∈ N we have γ n1 = γ n4 = μ. To check that
∫
p(· | θ)dγ ∗

2 (θ) = γ ∗
3 (·), and thus conclude that

γ ∗ ∈ A, it is sufficient to show that

∫ ∫
ϕ(z)p(z | θ) dz dγ ∗

2 (θ) =
∫

ϕ(z) dγ ∗
3 (z) (5.1)



A NEW PERSPECTIVE ON DENOISING BASED ON OPTIMAL TRANSPORT 25

for all ϕ ∈ Cb(R
d) (here Cb(R

d) is the set of all bounded continuous functions from Rd to R). To see
this, first notice that

∫ ∫
ϕ(z)p(dz|θ)dγ ∗

2 (θ) =
∫ (∫

ϕ(z)p(dz|θ)

)
dγ ∗

2 (θ) = lim
n→∞

∫ (∫
ϕ(z)p(dz|θ)

)
dγ n2 (θ),

which follows from the fact that the function θ ∈ Ω �→
∫

ϕ(z)p(dz|θ) belongs to Cb(Ω) by Assumption
8 and the fact that ϕ is bounded and the weak convergence of γ n2 towards γ ∗

2 as n → ∞. On the other
hand, the fact that γ n ∈ A for all n and the weak convergence of γ n3 to γ ∗

3 imply that

lim
n→∞

∫ (∫
ϕ(z)p(dz|θ)

)
dγ n2 (θ) = lim

n→∞

∫
ϕ(z)dγ n3 (z) =

∫
ϕ(z)dγ ∗

3 (z).

Combining these identities we deduce (5.1).
To show that γ ∗ is a solution of (3.4), we start by noticing that, due to Assumption 9, there is a set

B ⊆ Rd with μ(B) = 1 in which the function θ(·) is continuous. Let B := B×Ω ×Rd ×Rd, and notice
that

γn(B) = γ ∗(B) = 1, ∀n ∈ N,

since the first marginals of the γn and γ ∗ are all equal to μ. We deduce that the function cτ is continuous
in B. In addition, cτ is lower bounded by a constant (because it is non-negative). We can thus invoke
Proposition 5.1.10 in [2] and from the weak convergence of γn towards γ ∗ deduce that

M0 ≤
∫

cτ dγ
∗ ≤ lim inf

n→∞

∫
cτ dγ

n = M0.

In the first inequality above we just use the fact that M0 is the infimum over all couplings.
Next, we discuss the structure of solutions γ ∗ of (3.4). Consider an arbitrary γ ∈ A and let π12 be

optimal for the problem

min
π∈Γ (γ1,γ2)

∫
|θ − θ(z)|2 dπ(z, θ)

and let π34 be optimal for the 2-OT problem

min
π∈Γ (γ3,γ4)

∫
|z3 − z4|

2 dπ(z3, z4).

We define γ̃ := π12 ⊗ π34, i.e. γ̃ is the product measure between π12 and π34. Since γ̃l = γl for all
l = 1, 2, 3, 4, it follows that γ̃ ∈ A as well. Moreover, due to the fact that the cost cτ is the sum of two
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terms without shared variables, we have

∫
cτ (z1, θ , z3, z4) dγ̃ (z1, θ , z3, z4) =

∫
|θ − θ(z1)|

2dπ12(z1, θ) +
1

2τ

∫
|z3 − z4|

2dπ34(z3, z4)

≤
∫

|θ − θ(z1)|
2dγ12(z1, θ) +

1

2τ

∫
|z3 − z4|

2dγ34(z3, z4)

=
∫

cτ (z1, θ , z3, z4)dγ (z1, θ , z3, z4).

From the above display we conclude that if γ = γ ∗ is a solution to (3.4), then the inequality above must
in fact be an equality, and thus we necessarily have

∫
|θ − θ(z1)|

2dπ12(z1, θ) =
∫

|θ − θ(z1)|
2dγ12(z1, θ),

∫
|z3 − z4|

2dπ34(z3, z4) =
∫

|z3 − z4|
2dγ34(z3, z4).

This in particular implies that γ ∗
12 is a solution of (3.6) and γ ∗

34 is a 2-OT plan between γ ∗
3 and γ ∗

4 . The
specific form (Id × δ)�μ for γ ∗

12 under Assumption 3 follows from Remark 15. �

Next we present the proof of Theorem 11, which implies the existence of solutions to (1.7) for
arbitrary τ .

5.2 Proof of Theorem 11

Proof. Let δ ∈ L2(Rd : Rm;μ), and consider the associated measure γδ to δ as defined in (3.7). Then

(3.4) ≤
∫

cτdγδ = EZ∼μ[|δ(Z) − θ(Z)|2] +
1

2τ

∫
|z3 − z4|

2 dπ δ
34(z3, z4)

= EZ∼μ[|δ(Z) − θ(Z)|2] +
1

2τ
W2

2 (μδ ,μ).

(5.2)

Since δ was arbitrary, the above implies that (3.4) ≤ (1.7) −RBayes, where we recall RBayes is the Bayes
risk (see the beginning of Section 2.2).

Let γ ∗ be a solution to problem (3.4). By Theorem 10, γ ∗
12 can be written as γ ∗

12 = (Id × δγ ∗)�μ

for some δγ ∗ ∈ L2(Rd : Rm;μ). In particular, γ ∗
2 = δγ ∗�μ and thus also γ3 = μδγ ∗ . From the proof of

Theorem 10 we further deduce that

(3.4) =
∫

cτdγ
∗ =

∫
|θ − θ(z1)|

2dγ ∗
12(z1, θ) +

1

2τ

∫
|z3 − z4|

2dγ ∗
34(z3, z4)

= EZ∼μ[|δγ ∗(Z) − θ(Z)|2] +
1

2τ
W2

2 (μδγ ∗ ,μ)

≥ (1.7) − RBayes.

(5.3)
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Combing the above two inequalities we deduce that (3.4) = (1.7) −RBayes and that in (5.3) the inequality
is actually an equality. In particular, δγ ∗ is a solution to (1.7).

Conversely, now that we know that (3.4) = (1.7) −RBayes, (5.2) implies that if δ is optimal for (1.7),
then γδ , as defined in (3.7), is optimal for (3.4). �

5.3 Proof of Theorem 13

Proof. Let {τn}n∈N be a sequence of positive numbers converging to 0. Let δ∗
n be a solution of problem

(1.7) for τ = τn. Due to the second part of Theorem 11, the measure γδ∗
n
associated with δ∗

n that was
defined in (3.7) is a solution for the problem (3.4) with τ = τn. In what follows, we use γ n to denote γδ∗

n

in order to make the notation less cumbersome.
Using similar arguments to those in the first part of the proof of Theorem 10, we can show

that {γ n}n∈N is precompact in the weak topology of probability measures and that all its possible
accumulation points are in A. Let us then take a subsequence of {γ n}n∈N that converges weakly to some
γ ∈ A. For notational simplicity let us denote the subsequence also by {γ n}n∈N. We will characterize
γ12, the projection of γ onto the first two coordinates.

First, observe that, since τn → 0, as
∫
cτn
dγ n is bounded from above (see the initials steps in the

proof of Theorem 5.1),

W2
2 (γ

n
3 ,μ) ≤

∫
|z3 − z4|

2 dγ n(z3, z4) ≤ 2τn

∫
cτn
dγ n → 0.

In particular, γ3, which is the limit of γ n3 , must be equal to μ. By Assumption 12, we deduce from∫
p(·|θ) dγ2(θ) = γ3(·) = μ(·) =

∫
p(·|θ) dG∗(θ) that γ2 = G∗. Therefore, γ12 ∈ Γ (μ,G∗). On the

other hand, by weak convergence of γ n to γ (and Assumption 9) we get

∫
|θ − θ(z)|2 dγ12(z, θ) ≤ lim inf

n→∞

∫
|θ − θ(z)|2 dγ n12(z, θ)

≤ lim inf
n→∞

∫
cτn
dγ n.

(5.4)

Now, an arbitrary π12 ∈ Γ (μ,G∗) induces a γ̃ ∈ A as follows:

γ̃ := π12 ⊗ (Id × Id)�μ,

and as can be easily verified we have

∫
cτn
dγ̃ =

∫
|θ − θ(z)|2 dπ12(z, θ).

Since γ n is optimal for (3.4) with τ = τn, it follows that

∫
cτn

dγ n ≤
∫

cτn
dγ̃ =

∫
|θ − θ(z)|2dπ12(z, θ).

Taking lim inf on both sides of the above inequality, combining with (5.4), and using the fact that π12 was
arbitrary, we deduce that γ12 is a solution to (2.7). Theorem 4 thus implies that γ12 = π∗ = (Id× δ∗)�μ,
where δ∗ is our OT-based denoising estimand. We have thus shown that any convergent subsequence of
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the original {γ n}n∈N converges to the same limit point π∗ := (Id × δ∗)�μ, and as a consequence the
original sequence also converges to this same limit point.

At this stage we may use a series of results from functional analysis and measure theory that we
present in Appendix C to deduce that δ∗

n →
L2(Rd :Rm;μ) δ∗. Indeed, first notice that Lemma C1 implies

that δ∗
n converges to δ∗ in μ-measure (see definition in the statement of Lemma C1). In addition, since

we also have

sup
n∈N

∫
|δ∗
n(z)|

2dμ(z) < ∞,

as can be easily verified, we can invoke Lemma C2 to conclude that δ∗
n converges weakly in L2(Rd :

Rm;μ) to δ∗ (see Definition C1). In particular, we have

lim
n→∞

∫
δ∗
n(z) · θ(z) dμ(z) =

∫
δ∗(z) · θ(z) dμ(z).

Since in addition we have

lim
n→∞

∫
|δ∗
n(z) − θ(z)|2 dμ(z) =

∫
|δ∗(z) − θ(z)|2 dμ(z),

after expanding the square we conclude that

lim
n→∞

∫
|δ∗
n(z)|

2dμ(z) =
∫

|δ∗(z)|2dμ(z).

Lemma C3 now implies that δ∗
n converges in L

2(Rd : Rm;μ) to δ∗, as we wanted to prove. �

6. Discussion and future work

In this paper we have presented a new perspective on the denoising problem—where one observes Z
(from model (1.1)) and the goal is to predict the underlying latent variable Θ ∼ G∗—based on OT
theory. We define the OT-based denoiser δ∗(Z) as the function which minimizers the Bayes risk in this
problem subject to the distributional stability constraint δ∗(Z) ∼ G∗. Moreover, we have developed two
approaches to characterize this OT-based denoiser δ∗(Z), one where we explicitly useG∗ (Section 2) and
one where we directly involve μ (the marginal distribution of Z) and the likelihood model {p(· | θ)}θ∈Ω

without an explicit use of the prior G∗ (Section 3).
One important direction that we believe is worth investigating in future work is the numerical

implementation of our proposals in the finite data setting. In Appendix E we outline an approach to
implementing the sample version of the Kantorovich relaxation problem (2.7) (by directly plugging in
an estimator of G∗) which would lead to an estimator of δ∗ (cf. (2.9)). We conjecture that this approach
would yield a consistent estimator of δ∗ and it would be interesting to study its rate of convergence.

The adaptation of our approach in Section 3 to the finite data setting to find a solution to (1.7) can, in
principle, avoid direct estimation ofG∗. Here the key challenge is to find a suitable sample version of the
Kantorovich relaxation problem (3.4) (which under appropriate conditions yields a solution to (1.7); see
Theorem 11). Indeed, in contrast to the gradient descent approach outlined in (6) for solving (1.7) in the
finite data setting, the Kantorovich relaxation (3.4) is a linear program whose optimizers are guaranteed
to induce global solutions to (1.7). However, the first hurdle in developing an empirical version of
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(3.4) is to estimate the cost function cτ in (3.5) which involves the Bayes estimator θ(·). This is where
Tweedie’s formula (see (B.5) in Appendix B) can be very useful. It expresses the posterior mean θ(·) in
an exponential family model (see Appendix A) in terms of the marginal density fG∗ of the observations
(and its gradient) that can be estimated (non-parametrically) directly from the sample Z1, . . . ,Zn, say via
kernel density estimation. Thus, Tweedie’s formula can yield an estimated cost function without directly
estimating the unknown prior G∗. The next step would be to solve problem (3.4) with this estimated
cost. As problem (3.4) is closely reminiscent of a MOT problem we expect that some adaptations of
existing computational OT tools can be useful in solving it. We leave a thorough study of this approach
as future work.
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A. Exponential families

Consider a random vector Z ∈ Rd having a density w.r.t. a dominating measure λ, parametrized by
θ := (θ1, . . . , θm) ∈ Rm and expressible as

p(z | θ) := exp

⎡
£

m∑

j=1

θjTj(z) − A(θ)

¤
⎦ h(z), for z ∈ Rp. (A.1)

Here h : Rd → R is a non-negative function, T = (T1, . . . ,Tm) is a measurable function from Rd to Rm

and the parameter space is the set

Ω := {θ ∈ Rm : A(θ) < ∞}, (A.2)

where the function A : Ω → R (sometimes referred to as the cumulant function or the log-partition
function) is defined as

A(θ) := log
∫

exp

[
m∑

i=1

θiTi(z)

]
h(z) dλ(z). (A.3)
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Through the discussion in this appendix we will assume that Ω is a non-empty open subset of Rm for
simplicity.

In this case, Z is said to belong to a regular m-parameter exponential family, and θ is the natural or
canonical parametrization. There are many examples of parametric families belonging to an exponential
family, e.g. Gaussian, binomial, multinomial, Poisson, gamma and beta distributions, as well as many
others. Here are some examples.

EXAMPLE A1 (Exponential distribution). Consider the exponential distribution parametrized by β ∈
(0,∞):

pβ(z) = βe−βz1(0,∞)(z). (A.4)

The above family is indeed a one-parameter exponential family with natural parameter θ := −β and
Ω = (−∞, 0). Here T(x) = x, h(x) = 1(0,∞)(x) and A(θ) = log

∫ ∞
0 eθxdx = log(−θ−1).

EXAMPLE A2 (Multivariate normal). Consider the family of multivariate normal distributions on Rd with
a fixed known non-singular covariance matrix Σ ∈ Rd×d and unknown mean vector β = (β1, . . . ,βd) ∈
Rd, i.e. Z ∼ Nd(β,Σ) has density given by

pβ(z) =
e−

1
2 (z−β)�Σ−1(z−β)

√
(2π)d|Σ |

, for z ∈ Rd. (A.5)

It is easy to check that (A.5) can be expressed in the form (A.1) where we take

θ := Σ−1β, T(z) := z, A(θ) :=
1

2
θ�Σθ and h(z) ≡ p0(z) =

e−
1
2 z

�Σ−1z

√
(2π)d|Σ |

.

Suppose that Z ∼ p(· | θ) as in (A.1). Here are some important properties of exponential families.

1. The support of Z (i.e. z such that p(z | θ) > 0) does not depend on θ .

2. It is clear that the statistic T(Z) is a sufficient statistic for this family. It can be shown that4

Eθ [Tj(Z)] =
∂A(θ)

∂θj
, for j = 1, . . . ,m. (A.6)

3. The natural parameter spaceΩ is a convex set and the cumulant function A(·) is a convex function.

4. The moment generating function of T ≡ (T1(Z), . . . ,Tm(Z)) is, for u ∈ Rm such that u+ θ ∈ Ω ,

MT(u) := E[eu
�T ] =

∫
eu

�Teθ
�T−A(θ)h(z) dλ(z)

= eA(u+θ)−A(θ)

∫
p(z | u+ θ)dλ(z) = eA(u+θ)−A(θ).

4 A proof of this can be obtained as follows. Recall (C.3). Thus, eA(θ) =
∫
eθ

�T(z)h(z) dλ(z). Differentiating this

expression w.r.t. θj, which can be done under the integral if θ ∈ Ωo (here Ωo is the interior of Ω), gives eA(θ) ∂A(θ)
∂θj

=
∫
Tj(z)e

θ�T(z)h(z) dλ(z) ⇒ ∂A(θ)
∂θj

=
∫
Tj(z)p(z | θ) dλ(z) = Eθ [Tj(Z)].
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5. The cumulant generating function is

KT(u) := logMT(u) = A(u+ θ) − A(θ). (A.7)

6. Noting that if MT(·) is finite in some neighbourhood of the origin, then MT has continuous
derivatives of all orders at the origin, and for rj ≥ 0, for j = 1, . . . ,m,

E[Tr11 (Z) × · · · × Trss (Z)] =
∂r1

∂u
r1
1

. . .
∂rs

∂u
rs
s

MT(u)

∣∣∣
u=0

.

Thus, when rj = 1 and rk = 0 for all k �= j, we obtain (A.6).

See Keener, [46, Chapter 10] and [27] for a more detailed study of exponential families.

B. Tweedie’s formula

Now suppose that Θ is assumed to have a prior distribution G∗ (on Ω ⊂ Rm). Thus our model becomes

Θ ∼ G∗ and Z | Θ = θ ∼ p(· | θ), (B.1)

where we assume that p(· | θ) comes from the exponential family (A.1). Then the marginal density of Z
(w.r.t. λ) is

fG∗(z) :=
∫
p(z | θ) dG∗(θ), for z ∈ Rd.

Let Z ⊂ Rd be the support of the marginal distribution of Z. Now Bayes rule provides the posterior
density of Θ given Z. Suppose that Θ has density g(·), w.r.t. a dominating measure ξ , with support
contained in the set Ω ⊂ Rm. Then, the posterior density of Θ given Z = z (w.r.t. ξ ) is given by, for
θ ∈ Ω and z ∈ Z,

pΘ|Z(θ | z) =
p(z | θ)g(θ)

fG∗(z)
=
eθ

�T(z)−A(θ)h(z)g(θ)

fG∗(z)
= eθ

�T(z)−κ(z)e−A(θ)g(θ), (B.2)

where

κ(z) := log

(
fG∗(z)

h(z)

)
, for z ∈ Z. (B.3)

This implies that Θ | Z = z is also an exponential family with canonical parameter T(z), sufficient
statistic Θ and log-partition function κ(z). Thus, the cumulant generating function is (cf. (A.7))

logE[eΘ
�t | Z = z] = κ(t + z) − κ(z) (B.4)

for z ∈ Z such that t + z ∈ Z.
Tweedie’s formula, given below, calculates the posterior expectation of Θ given Z = z in the setting

(B.1).

LEMMA B1 (Tweedie’s formula). For z ∈ Z, we have

E[Θ | Z = z] = ∇κ(z) =
∇fG∗(z)

fG∗(z)
−

∇h(z)
h(z)

. (B.5)

Proof. The result is a direct consequence of the fact that the distribution of Θ | Z = z is an m-parameter
exponential family with log-partition function κ(·) defined via (B.3): By property 2. above (see (A.6))
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the expectation of the sufficient statistic Θ can then be expressed as the gradient of the log-partition
function. �

For d = m = 1, the above formula for the Gaussian case was given in Robbins, [63]. Efron, [23]
calls this Tweedie’s formula since Robbins attributes it to M.C.K. Tweedie; however it appears earlier in
Dyson, [19] who credits it to the English astronomer Arthur Eddington.

LEMMA B2. Consider model (B.1) where we assume that p(· | θ), for θ ∈ Ω , is a member of an
exponential family of distributions as in (A.1) with T(z) = z and m = d. Suppose further that h(·)
in (A.1) integrates to 1 (w.r.t. λ). Then κ(·), as defined in (B.3), is a convex function. As a consequence,
E[Θ | Z = z] is the gradient of a convex function.

Proof. Observe that under the assumptions of the lemma, from (B.3) we see that the distribution of
Θ | Z = z is an m-parameter exponential family with log-partition function κ(·) defined by (B.3). As
the log-partition function κ(·) is known to be convex, the result follows. �

REMARK B1 (Tweedie’s formula for multivariate normal distribution). Suppose now that Z has multi-
variate normal distribution with known covariance matrix as in Example A2. Then, for z ∈ Rd,

E[Θ | Z = z] = ∇κ(z) = Σ−1z+
∇fG∗(z)

fG∗(z)
,

where the last equality follows from (B.5) and the fact that ∇h(z) = −h(z)(Σ−1z). Thus, the Bayes
estimator of mean μ in (A.5) is

E[μ | Z = z] = z+ Σ
∇fG∗(z)

fG∗(z)
. (B.6)

C. Auxiliary results from measure theory and functional analysis

LEMMA C1. Let μ be a Borel probability measure overRd. Suppose that {Tn}n∈N is a sequence of (vector
valued) Borel measurable maps Tn : Rd → Rm and suppose that T is another Borel measurable map
from Rd into Rm.

The sequence of measures πn =: (Id × Tn)�μ converges weakly to π := (Id × T)�μ if and only if
Tn converges in μ-measure to T, i.e. for every η > 0 we have

lim
n→∞

μ
({
z ∈ Rd : |Tn(z) − T(z)| ≥ η

})
= 0.

Proof. Recall that weak convergence of probability measures is equivalent to convergence in Levy–
Prokhorov metric, which we recall is defined as

dLP(πn,π) := inf
{
ε > 0 : πn(A) ≤ π(Aε) + ε andπ(A) ≤ πn(A

ε) + ε, ∀A ∈ B(Rd × Rm)
}
.

In the above, for an arbitrary A the set Aε is defined as the set of points (z, θ) such that there exists
(̃z, θ̃ ) ∈ A with |z− z̃| + |θ − θ̃ | < ε.

Let us first assume that πn converges weakly to π and let εn := 2dLP(πn,π). Fix η > 0 and r > 0.
From the fact that μ is a Borel probability measure over Rd, it follows that T can be approximated in
the μ-a.e. convergence sense by a sequence of Lipschitz continuous functions (with possibly growing
Lipschitz constants). Indeed, by density (in the μ-a.e. sense) of simple functions in the set of all
measurable functions and the fact that we are considering the Borel σ -algebra (which is generated by
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open sets) one can reduce the problem to approximating (scalar) indicator functions of open sets. In turn,
using rescaled distance functions (which are Lipschitz), one can easily approximate indicator functions
of open sets with Lipschitz continuous functions as desired. It thus follows that there exists a Lipschitz
function ψr : R

d → Rm such that

μ(Gr) ≤ r

for the set Gr defined as

Gr :=
{
z ∈ Rd : |ψr(z) − T(z)| ≥

η

3

}
.

The above says that we can approximate the Borel measurable function T up to accuracy η/3 by the Lip-
schitz functionψr on a set with ‘large’μ-probability. Intersecting the set

{
z ∈ Rd : |Tn(z) − T(z)| ≥ η

}

with Gr and, separately, with G
c
r , we get the inequality

μ
({
z ∈ Rd : |Tn(z) − T(z)| ≥ η

})
≤ r + μ

({
z ∈ Rd : |Tn(z) − ψr(z)| ≥

2

3
η

})
.

Let us now consider the set

Ar :=
{
(z, θ) ∈ Rd × Rm : |ψr(z) − θ | ≥

2

3
η

}
.

Due to the specific form of the measure πn, we can write

μ

({
z ∈ Rd : |ψr(z) − Tn(z)| ≥

2

3
η

})
= πn(Ar) ≤ π(Aεn

r ) + εn.

On the other hand,

π(Aεn
r ) = μ

({
z ∈ Rd : ∃ (̃z, θ̃ ) s.t.|z− z̃| + |θ̃ − T(z)| < εn and|θ̃ − ψr (̃z)| ≥

2

3
η

})

≤ μ

({
z ∈ Rd : ∃ z̃ s.t.|z− z̃| < εn and|T(z) − ψr (̃z)| ≥

2

3
η − εn

})
.

In turn, we see that

μ

(
Gr ∩

{
z ∈ Rd : ∃ z̃ s.t.|z− z̃| < εn and|T(z) − ψr (̃z)| ≥

2

3
η − εn

})
≤ r,

and μ(Gcr ∩ {z ∈ Rd : ∃ z̃ s.t.|z− z̃| < εn and|T(z) − ψr (̃z)| ≥ 2
3η − εn}) is smaller than

μ

({
z ∈ Rd : ∃ z̃ s.t.|z− z̃| < εn and|ψr(z) − ψr (̃z)| ≥

1

3
η − εn

})
.

Since the function ψr is Lipschitz and εn → 0 as n → ∞, it follows that

lim
n→∞

μ

({
z ∈ Rd : ∃ z̃ s.t.|z− z̃| < εn and|ψr(z) − ψr (̃z)| ≥

1

3
η − εn

})
= 0.
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From all the above inequalities it follows that

lim sup
n→∞

μ
({
z ∈ Rd : |Tn(z) − T(z)| ≥ η

})
≤ 2r.

Since r > 0 was arbitrary, we conclude that

lim
n→∞

μ
({
z ∈ Rd : |Tn(z) − T(z)| ≥ η

})
= 0,

as we wanted to prove.
Conversely, if Tn converges in μ-measure, then we can assume without loss of generality that the

convergence is actually μ-a.e. (as we can work along subsequences). It follows now that for every φ ∈
Cb(R

d × Rm),

lim
n→∞

∫
φ(z, θ) dπn(z, θ) = lim

n→∞

∫
φ(z, Tn(z)) dμ(z)

=
∫

lim
n→∞

φ(z, Tn(z)) dμ(z)

=
∫

φ(z, lim
n→∞

Tn(z)) dμ(z)

=
∫

φ(z, T(z)) dμ(z)

=
∫

φ(z, θ) dπ(z, θ),

where the second equality follows from the dominated convergence theorem, and the third equality
follows from the continuity of φ. This shows that πn converges weakly to π . �

REMARK C1. Lemma C1 is analogous to the characterization of the TLp convergence in Proposition 3.12.
in [35]. In Lemma C1, however, we have restricted our attention to the case where the base measure for
the entire approximating sequence is the same (i.e. μ).

We recall the definition of convergence in the weak topology of the Hilbert space L2(Rd : Rm;μ).

DEFINITION C1. We say that the sequence {Tn}n∈N converges weakly in L2(Rd : Rm;μ) to T if

lim
n→∞

∫
Tn(z) · g(z) dμ(z) =

∫
T(z) · g(z) dμ(z) ∀g ∈ L2(Rd : Rm;μ).

The next two lemmas are well-known results in measure theory and functional analysis.

LEMMA C2. Suppose that Tn → T in μ-measure (as defined in Lemma C1) and that

sup
n∈N

∫
|Tn(z)|

2 dμ(z) < ∞.

Then Tn converges weakly in L2(Rd : Rm;μ) to T, as n → ∞.
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Proof. From the second moment condition we deduce that the sequence {Tn}n∈N is uniformly integrable.
This, together with the dominated convergence theorem, allows us to conclude that

lim
n→∞

∫
Tn(z) · g(z) dμ(z) =

∫
T(z) · g(z) dμ(z)

for every g ∈ L2(Rd : Rm;μ), which is what we wanted to show. �

LEMMA C3. If Tn converges weakly in L2(Rd : Rm;μ) to T, and in addition we have

lim
n→∞

∫
|Tn(z)|

2dμ(z) =
∫

|T(z)|2 dμ(z),

then

lim
n→∞

‖Tn − T‖
L2(Rd :Rm;μ) = 0.

Proof. Expanding the square, we get
∫

|Tn(z) − T(z)|2 dμ(z) =
∫

|Tn(z)|
2 dμ(z) +

∫
|T(z)|2 dμ(z) − 2

∫
Tn(z) · T(z) dμ(z).

The result follows now from the above display, the assumed consistency of second moments and the fact
that Tn converges weakly to T (see Definition C1). �

D. More general loss functions �(·, ·)

If the squared error loss in problem (1.5) is substituted with an arbitrary loss function �(·, ·), the resulting
problem

inf
δ:Rd→Rm

E(Z,Θ)∼PZ,Θ [�(δ(Z),Θ)] subject to δ(Z) ∼ G∗ (D.1)

can still be written as a standard OT problem in Monge form:

min
δ : δ�μ=G∗

∫

Rd
c�(δ(z), z) dμ(z) (D.2)

for the cost function

c�(θ , z) := E[�(θ ,Θ) | Z = z], for θ ∈ Rm, z ∈ Rd.

The existence of solutions for (1.5) then reduces to proving existence of an OT map for (D.2).
Investigating the existence of OT maps for specific transport problems is an important topic in the

theory of OT. A general strategy that can be followed for proving existence of optimal maps (also-
called Monge maps) is based on the analysis of the optimality conditions of solutions to the Kantorovich
relaxation [69,chapters 1–3] of the original Monge problem; an important property of Kantorovich
relaxations is that they can be shown to have solutions under very mild lower semicontinuity assumptions
on the transportation cost function (see e.g. Villani, [70,chapter 5]). Notice that the Kantorovich
relaxation of (D.2) takes the form

min
π∈Γ (μ,G∗)

∫
c�(θ , z) dπ(z, θ).
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Under appropriate assumptions on the cost function and marginals of a general OT problem, one can
show that a solution to the Kantorovich relaxation must be supported on a graph of a function, and from
this one can infer the existence of a solution to the original Monge problem. In principle, one could
attempt to carry out this program for the OT problem (D.2), but we notice that the dependence of the
cost c�(·, ·) on the loss function � and on the model PZ,Θ may, in general, be rather intractable. For
this reason, in this paper we have focused on one tractable and important case, namely, the setting of
the squared error loss, for which we can prove a variety of theoretical results and discuss a variety of
algorithmic consequences.

E. An empirical Bayes approach to estimating the OT-based denoiser δ∗

Suppose that we observe Z1, . . . ,Zn from model (1.1) where the unobserved latent variables are
Θ1, . . . ,Θn drawn i.i.d. from G∗. We assume here that G∗ is unknown and belongs to a (sub)-family
P of P(Ω), the space of all probability measures on Ω ⊂ Rm. In the following text we discuss an
approach to estimate the OT-based denoiser δ∗ based on the observed data Z1, . . . ,Zn. We plan to pursue
a more thorough analysis of this framework in future work.

Our approach can be broken down into three steps: (a) first we estimate the unknown prior G∗, say
by Ĝ, using the method of maximum likelihood, and (b) then use Ĝ as a plug-in estimator to solve an
empirical version of the Kantorovich relaxation problem in (2.7). This yields an optimal coupling (based
on the data) which can (c) then be used to define an estimator of the OT-based denoiser δ∗.

Let us describe each step in a bit more detail now.
(a) We apply the method of maximum likelihood (ML) to estimate G∗. Marginally, the observations

Zi’s are i.i.d. with density fG∗ (as defined in (1.2)). An ML estimator is any Ĝ ∈ P which maximizes
the marginal likelihood of the observations (Zi)

n
i=1, i.e.

Ĝ ∈ argmax
G∈P

1

n

n∑

i=1

log fG(Zi). (E.1)

Note that when P = P(Ω), the space of all probability measures on Ω ⊂ Rm, this estimator is called
the non-parametric MLE (NPMLE) of G∗ and has been studied in detail in the statistics literature; see
[45, 47, 53, 54, 67] and the references therein. In particular, in this case (E.1) is an infinite-dimensional
convex optimization problem for which several algorithms have been proposed; see e.g. [6, 50, 52, 67,
78]. Moreover, this approach can be applied even when P � P(Ω) and/or P is finite-dimensional.
In the empirical Bayes literature this approach falls under the general framework of G-modelling as we
directly estimate the unknown prior G∗ ([26]).

(b) In our second step, given an estimate Ĝ of the prior G∗, empirical Bayes imitates the optimal
Bayesian analysis [26]. IfG∗ were known, the Bayes estimator ofΘi (under the squared error loss) would
be the posterior mean EG∗ [Θi | Zi] as defined in (1.4) (here by EG∗ [. . .] we emphasize the dependence
on G∗). The NPMLE (E.1) yields a fully data-driven, empirical Bayes estimate of this posterior mean
via

θ̂ (Zi) := EĜ
[
Θ̂i | Zi

]
, where Θ̂i ∼ Ĝ and Zi | Θ̂i = θ ∼ p(· | θ). (E.2)

Once we obtain an estimator (̂θ as above) of θ(·), we can solve an empirical version of (2.7) defined via

π̂ ∈ argmin
π∈Γ (μn,Ĝ)

∫
|̂θ(z) − ϑ |2 dπ(μn,ϑ), (E.3)
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where μn := 1
n

∑n
i=1 δZi is the empirical distribution of the Zi’s. If Ĝ is the NPMLE over P(Ω), the

above computation is quite straightforward as it is known that Ĝ is finitely supported (see [54]) and thus
(E.3) reduces to a discrete-discrete OT problem which can be solved using the various computational
OT tools available in the literature (see e.g. [61]).

(c) The optimal coupling π̂ obtained in (E.3) can now be used to construct an estimator of the OT-

based denoiser δ∗(·) ≡ ∇ϕ∗(̂θ(·)) (see (2.9) and (2.10)) via the barycentric projection of π̂ :

δπ̂ (z) :=
∫

Ω

ϑ dπ̂(ϑ |z), for z ∈ Z. (E.4)

We conjecture that δπ̂ will be a consistent estimator of δ∗; see [12] and [66] where the barycentric
projection estimator has been investigated and shown to be consistent for estimating OT maps.
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