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ABSTRACT  

Graphical models are powerful tools to inves ti gate complex depe nde ncy s tructures in high-throughput d atas e ts . How ev e r, mos t exis ting gra phi - 
cal models make one of two canonical as sumption s: (i) a homo ge neous gra ph with a common network for all s ubje cts or (ii) an assumption of 
norm ality, espe cially in the context of Gaus si a n gra p hical models. Both as sumption s ar e r es trictive a nd ca n fail to hold in certain app lication s such 
as proteomic networks in ca nce r. To this end, we propose an approach termed robust Bayesian graphical r egr ession (rBGR) to estimate hetero- 
ge neous gra p h s for non-norm ally distribute d data. rBGR is a flexible framework that accommodate s non- normality throu gh ra ndom ma rginal 
tran sformation s and con structs cov ari ate-dependent grap h s to ac c ommod ate he tero geneity through grap hical r egr e ssion technique s. We formu- 
late a new cha racte rization of ed ge depe nde ncies in such models called conditional sign independence with cov ari ates, along with an efficient 
pos te rior sa mpling al gorithm. In sim ulation s tudies, we de mons tra te tha t rBGR out performs exi s ting gra phical r egr e ssion mode ls for dat a ge ne r- 
ated unde r va rious leve ls of non- norm ality in both e d ge a nd cova riate selection. We use rBGR to assess proteomic networks in lung and ov ari an 
ca nce rs to sys te m atically inv es ti gate the effects of imm unoge nic hete roge neity within tumors. Our analyses reveal several important protein–
prot ein int eractions that are differentially associated with the immune cell abund ance; s ome corro borate existing bio lo gical kno wledg e, where as 
othe rs a re no vel findin gs. 

KEYWORDS: Bay esian gr aphical models; canc er; c ondition al sign independenc e; c ov ari ate-dependent grap h s; pr otein −pr otein in te ractions. 
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1 INTRODUCTION 

raphical models are ubiquitous and powerful t ools t o in-
es ti gate complex depe nde ncy s tructures in high-throughput
iomedical d atas e ts such as genomics and proteomics (Airoldi,
007 ). They allow for ho listic exp loration of bio lo gically rele-
a n t pa t terns tha t can be used for decip hering bio lo gical pro-
es s es a nd form ulating ne w te st able hypothe se s . How ev e r, mos t
xis ting gra phical models make one of two canonical assump-
ions: (i) a homogeneous graph that is common to all subjects
r (ii) an assumption of normality, as in the context of Gaus si an
raphical models (Ni et al., 2022 ). How ev er, in some biome di-
al app lication s, such as the infe re nce of ca nce r proteomic net-
orks, both as sumption s fail, as we show next. 
Prot e o mic netwo rks a nd tu m or h eterogen eity. Protein s contro l
a ny funda me n t al ce llular proce s s e s throu gh a complex but or-
ani zed s ystem of int eractions, t ermed prot ein–prot ein int erac-
ions (PPIs; Cheng et al., 2020 ). More ov e r, abe rra n t PPIs a re as-
 oci ated with v arious dis eas es, including ca nce r, a nd inves ti gat-
ng PPIs can lead to effe ctiv e strate gies and tr ea tments, includ-
ng imm unothe ra pie s, t ailor ed to differ ent individuals (Cheng
 t al., 2020 ). Con s eque n tly, it is hi ghly de sirable to e lucida te PPI s
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n ca nce r a nd cons truct flexible gra phical models that ca n ide n-
 ify mult iple types a nd ra nge s of de pe nde ncies. Mode rn data
 olle ction methods h av e allow e d sys te matic as s es sme n t of m ul -
ip le protein s sim ulta neously in the sa me tumor sa mples, of-
e n refe rred to as high-throughput proteomics (B ala dandayutha-
ani et al., 2014 ). How ev er, the res ulting da ta ar e typically
ot norm ally distribute d, ev en after extensive pr epr ocessing
nd data tran sformation s (eg, lo ga rithmic). As a n i l lustration,
anel (B) of Figure 1 shows the level of non-normality in
r otein expr es sion d at a a fte r loga rithmic tra nsformation for
 ca nce rs: lun g a de noca rc inoma (LUA D) a nd ova ria n ca nce r
OV) s amp les from The Ca nce r Ge nome A tl as (TCGA; We-
n stein e t al., 2013 ), which are us ed as cas e studies in this
a pe r. Spec i fically, in 4 exemp l ar protein s, namely Akt and
TEN for LUAD a nd E-cadhe rin a nd Rb for OV, both the em-
irical de nsity dis tributions a nd qua n tile–qua n tile (q-q) plots
e mons tra te devia tions fr om the normal distribution with he av -
er tails. T he le vel of non-normality is further quantified us-
ng the H -sc ore, define d as H( Y ) = 2�[ log { 1 − pval ( Y ) } ] ,
here � is the cumulative distribution function of the s ta n-
ard normal distribution, and pval ( Y ) is the P -value of the
 rn ation al Biometric Society. All ri gh ts rese rv e d. For permis sion s, p leas e e-mail: 

https://doi.org/10.1093/biomtc/ujae160
http://orcid.org/0000-0001-5342-5430
http://orcid.org/0000-0003-0636-5273
http://orcid.org/0000-0002-5643-2668
http://orcid.org/0000-0001-9107-3157
mailto:yaots@umich.edu
mailto:veerab@umich.edu
mailto:journals.permissions@oup.com


2 � Biometrics , 2025, Vol. 81, No. 1 

FIGURE 1 (A) A schematic diagram showing the hete roge neity in networks with observ e d re sponse s based on hete roge ne ous netw orks . 
He tero geneity in networks is cha racte rized b y cova riates, X i = (X i 1 , X i 2 ) as G i = �( X i ) . The width of e dges in the netw ork implies the 
magnitude of as s oci ation be tween 2 nodes, and the 2 types of edges r epr ese n t ne gativ e (dotte d) and positiv e (s o lid) as s oci ation s. Respon s es Y i 
are obtained on hete roge ne ous netw orks �( X i ) that vary on covariate with Y i ∼ p{ �( X i ) } , where p is a normal scale mixture distribution. 
(B) Examples of the non-normality levels of protein expression data from lung ade noca rc inoma (LUA D) a nd ova ria n ca nce r (OV). Empirical 
density from actual data (black) and the normal distribution (blue) for the expression of 4 proteins are shown on the top left with H -scores 
shown in the upper right of each protein. Quant ile–quant ile plots of the expression of 4 proteins in LUAD (Akt and PTEN) and OV 

(E- Cadher in and Rb) are i l lustrated in the lower left. The violin plot of H -scores across all proteins in LUAD and OV cancers is shown on the 
ri gh t. H -scores are bounded between 0 and 1, and a higher H -score implies a hi ghe r level of non-normality (see ma n uscript for more details). 
Tw o c ore ass umptions of existing graphical models are vio l ated in proteomic networks with he tero geneous ne tworks (A) and non-normally 
distributed data (B). 
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Ko lmo goro v–Smirno v test for the normality of Y (C hakra borty
et al., 2024 ). The H -score is bounded between 0 and 1, with
a hi ghe r H -s core imp lying increas ed departur e fr om normal-
ity. The H -scores for all 4 proteins are > 0 . 999 , consis te n t
with the conclusions from the e mpirical a nd q-q plots. Panel
(B) al so show s the H -scor e acr oss all the pr oteins in our
d atas e ts, indicating a high de gre e of non-norm ality across both
ca nce rs. 
Another axis of complexity in ca nce r resea rch is tum or h etero-

geneity . It is now well known that tumors are he tero geneous, with
distinct proteomic aberrations even for the same type of cancer 
acr oss differ ent pa tients ( Janku, 2014 ). Accumula ting evidence 
su gge s ts that conside ring tumor hete roge neity, both in ge ne ral 
and spec i fically a t the level of PPI s, ca n e nha nce our unde rs ta nd - 
ing of the pr ogr ession of tumor growth and aid the developme n t 
of a n ti -ca nce r tr ea tme n ts (Che ng et al., 2020 ). Spec i fically, tu-
mor he tero geneity is char acteriz ed by different PPIs across pa- 
tie n ts a nd could pote n ti ally result in v aried tr ea tment r espon s es
(Cheng et al., 2020 ). Hence, incorpora ting pa tie n t-spec i fic in- 
form ation, th at is, ac c ounting for tumor he tero geneity, could 
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TABLE 1 Comparison of existing methods and our proposed rBGR method across 4 diffe re n t prope rties. 

Method Unce rtain ty quan tification Undire cte d Sa mple-spe c i fic Non -n ormality 

GGMx (Ni et al., 2022 ) � � � � 

Re gGMM (Zh a ng a nd Li, 2022 ) � � � � 

GSM (B ha dra et al., 2018 ) � � � � 

BGR (Ni et al., 2019 ) � � � � 

R CGM (Chakr aborty et al., 2024 ) � � � � 

rBGR (the proposed) � � � � 

Ab brevi ation s: BGR, Bayesi a n gra phical r egr e ssion ; GGMx, Baye sia n Gaussia n gra phical models with covariates; GSM, Gaussian scale mixture; rBGR, ro bust Bayesi an grap hical 
r egr e ssion ; RCGM, Bayesian robust chain graph model; RegGMM, Gaussian graphical r egr e ssion mode ls with cov ari ates. 
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rovide v aluab le clues to ide n tify PPIs d isru pted during carcino-
enesis . In s umm ary, c on structing PPI ne tworks pos es 2 main
 tatis tical challe nges sim ulta ne ously: (i) c ohe re n tly ac c ount-
ng for non-normality in proteomic networks and (ii) incorpo-
a ting heter ogeneous pa tient-spec i fic infor mation in graphical
odeling. 
To e nca psulate the tumor he tero geneity m anifeste d in PPIs
nd the corresponding proteomic networks, here we model the
dges of the proteomic network as a function of patie n t-spec i fic
ov ari a tes, r esulting in networks that con tin uously va ry based on
hes e cov ari ates. Con s eque n tly, each patie n t is as s oci ated with
 unique proteomic network, and the o bs erv e d prote omic ex-
re ssion de pe nds on the unde rlying prote omic netw ork. To il-
us trate, Pa nel (A) of Fi gure 1 shows he tero geneous ne tworks
ha t ar e cha racte rized b y 2 cova riates with the corresponding ob-
erv e d prote omic expres sion . 
Exis t ing m eth o ds an d mo deling b ackgro un d. Mos t exis ting
e thods addres s the afore me n tione d ch alle nges sepa ra tely, tha t

s, either ac c ommodating non-norm ality without ac c ounting
or the s amp le-spec i fic infor m ation (e g, Pitt et al., 2006 ; Do-
ra a nd Le nkoski, 2011 ) or requiring normality when incor-
ora ting pa tie n t-spec i fic infor mation (Ni et al., 2022 ). To ac-
 ommodate non-norm ality, exis ting a pproaches tra nsform the
ri ginal va ri ab les into normal v ari ab les either vi a de termin-
st ic funct ions (e g, D obra a nd Le nkoski , 2011 ; Liu et al .,
012 ; Chung et al., 2022 ) or via random tran sformation s (eg,
inegold and Drton, 2011 , 2014 ). For ins ta nc e, Bh adra et al.
 2018 ) use a Gaussian scale mixture technique that ge ne ral -
 zes the t- dis tribution a nd in troduce a new gra ph cha racte ri -
a tion for undir e cte d grap h s . Ch akraborty et al. ( 2024 ) fur-
he r ge ne r aliz e this c onc ept to ch a racte rize chain gra p h s with
oth dire cte d and undire cte d e dges . How ev e r, all exis ting mod -
ls that accommodate non-normality assume a common graph
cr oss all pa tie n ts a nd fail t o incorporat e the s ubje ct-spe c i fic
nformation. 
Mor e r e c e n tly, seve ral s tudies inc orporate d the s ubje ct-

spec i fic infor mation under explicit Gaussian ass umptions . Mul-
ip le Gaus si a n gra phical models we re firs t proposed to es ti -
ate grap h s that v ary acros s he tero gene ous s ubpopul ation s
eg, Peng et al., 2009 ; Da nahe r e t al., 2014 ; Pe ters on e t al.,
015 ). Ni et al. ( 2019 ) introduce a more ge ne r al fr ame-
 ork calle d “graphical re gression” th at c onstructs c ov ari ate-
epe nde n t gra p h s through a r egr ession model and incorpo-
ates both con tin uous a nd dis cre te cov ari a tes, in dir e cte d as
 ell as undire cte d s e ttings (Ni e t al., 2022 ). Simil a rly, Zha ng
nd Li ( 2022 ) provide a pen alize d proc e dure to estimate undi-
e cte d grap h s through Gaus si a n gra phical r egr ession a nd in tro-
uc e c on tin uous cova riates in both the mean and the covari-
 nce s tructures. Howeve r, all these models are dev elope d un-
er the normality assumption for infe re n tial a nd c omputation al
eas on s (Tab le 1 ). To the best of our kno wledg e, no existing
ethod inc orporates s ubje ct-spe c i fic infor mation under non-

Gaus si an s e tt ings, which mot ivate s the deve lopme n t of a new
e thodo lo gy. 
To addre ss the se challenge s simult ane ously, w e dev el-
ped a unified and flexible modeling strate gy calle d robust
ay esian gr aphical r egr ession (rBGR), which allows the
onstruction of subject-spec i fic graphical models for non-
orm ally distribute d c ontinuous data. rBGR m akes 3 main
ontributions: 

(1) Robus t framewo rk t o build s ubje ct-s p ecific grap h s for n on-
norm a l dat a. rBGR robusti fies the nor m al ass umption
via random transformation and incorporates cov ari ates
e mplo ying gra phical r egr ession stra te gies . By ac c ommo-
dating non-normality via random scale transformations,
we obtain a Gaussian scale mixture, which pre sume s an
unde rlying late n t Gaus si an v ari ab le, allows exp licit in-
c orporation of c ov ari ates in the pre cision m atrix (Se c-
tion 2.2 ), and admits efficient posterior s amp ling proce-
dures ( Supplemen ta ry Mate rial Section S2 ). 

(2) New character i zation of dependency struct ure s for non -
norm a l grap h ica l mo dels . The introduction of the ran-
dom m argin al transform ations e nge nde rs a new type of
e dge ch aracterization of the c ondition al depe nde nce for
non- normal dat a, called conditional sign independence
with cov ari a tes (CSIx, Pr oposition 2). CSIx is a ge ne ral -
ization of the notion of c ondition al si gn indepe nde nce
(CS I), introduc e d by Bh adra et al. ( 2018 ), which explic-
itly cha racte rizes the si gn depe nde nc e betw e e n 2 va ri -
ab les that ho lds for a m uch broade r cl as s of models than
Gaus si a n gra phical models. We de mons trate via m ulti -
p le simul ation s that rBGR can accura tely r e c ov e r depe n-
de ncy s tructures unde r diffe re n t leve ls of non- normality
a nd agains t competing gra phical r egr ession appr oaches
th at ass ume norm ality (Se ction 4 ). 

(3) Deciph ering th e associa t io n of i mmuno genic hetero gene-
ity with prot e o mic netwo rks. We use rBGR to assess
prote omic netw orks across 2 ca nce rs, lung a nd ova r-
ia n, to sys te m atically inv es ti gate the effects of the

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
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inhe re n t imm unoge nic hete roge neity within tumors.
Spec i fically, we qua n tify imm une cell abunda nce across
tumors and build PPI networks that vary across dif-
fe re n t imm une cell abunda nc es . Our an alyses rev eal
seve ral importa n t PPI s tha t ar e as s oci ated with im-
mune cell abund ance; s ome corro borate existing bio-
logical kno wledg e, where as others are novel as s oci ation s
(Section 5 ). 

The rest of the paper is organized as follows: We introduce
rBGR models and characterization in Section 2 . Section 3 fo-
c uses on prior s a nd es t imat ion. In Sect ion 4 , we conduct a se-
ries of simul ation s to ev aluate the operating cha racte ris tics of
rBGR again st compe tin g approa ches . Se ction 5 provides a de-
taile d an alysis of the TCGA d atas e t, results, bio lo gical in te rpre-
tation s, and imp lication s. This pa pe r concludes b y d isc ussing
imp lication s of the findings, limitations, and future directions
in Section 6 . A ge ne ral -purpose R package a nd d atas e ts us ed in
this pa pe r for cons tr ucting PPI network s ar e pr ovided in the
Supplemen ta ry Mate rial . 

2 ROBUST  BAYE  SIA  N  GRA  PHICA  L  

R EGR ESSION  

We s ta rt with the Gaus si a n gra phical r egr ession (Section 2.1 ),
which is a speci al cas e of rBGR under the normality as-
sumption, a nd the n ge ne r aliz e it to the ro bust cas e b y ra n-
dom tran sformation s (Section 2.2 ). Subs eque n tly, the in-
troduction of the random scale changes the in te rpr eta tion
of the graph and motivates a new edge cha racte rization
(Section 2.3 ). 

2.1 G auss i an gra phical r egr ession 
Conside r p-dime nsional ra ndom vectors Y i =
(Y i 1 , . . . , Y ip ) T ∈ R 

p as (con tin uous) respon s es with q -
dime nsional ra ndom v e ctors of X i = (X i 1 , . . . , X iq ) T ∈ R 

q

as cov ari ates for subj ect i = 1 , . . . , n . A subject-spec i fic PPI
network fr om pr oteomics da ta Y i is c onstructe d to v ary bas ed
on the immune cell abundance X i (Section 5 ). Let G i = (V , E i )
be an undire cte d graph ov er p nodes, where V = { 1 , . . . , p} is
the s e t of node s re pre se n ting, Y i a nd E i ⊂ V ×V is the s e t of
undire cte d e d ges in the gra p h for subj ect i . An undirected edge
exists betw e en nodes j and k if { j, k} ∈ E i . Under the Gaus-
si an as s umption, giv en the c ov ari ates X i , suppos e Y i fo llows a
m ultiva riate normal distribution, 

Y i | X i ∼ N p ( 0 , ̃  �
−1 
( X i )) , for i = 1 , . . . , n, (1)

where ˜ �( X i ) = { ̃  ω 
j,k ( X i ) } p×p , j, k ∈ V is a functional pre-

cision matrix (of cov ari ates) with each ele me n t ˜ ω 
j,k ( X i ) as a

function that depends on X i . The function al pre cision m atrix
cha racte rizes the gra ph G i through zer o pr e cision elements .
Spec i fically, a ze ro ele me n t of the pre cision m a trix r epr ese n ts a
missing edge in the grap h; for examp le, for the cas e of a s cal ar
pre cision m atri x, ̃  ω 

j,k ( X i ) = ̃  ω 
j,k , zer o pr e cision implies c on-

ditional indepe nde nce (CI) a nd a missing ed ge in the gra ph of
CI under Gaus si anity (Lauritzen, 1996 ). For the functional pre-
cision matrix, Ni et al. ( 2022 ) introduc e d c ov ari ate-depe nde n t
grap h s in G and gener aliz e d the c onc ept of C I to C I with co-
v ari ates (CIx, henceforth). In es s enc e, giv en a cov ari ate X i , the 
zer o pr ecision of ̃  ω 

j,k ( X i ) = 0 imp lies a mis sing edg e of C Ix be-
tw e en nodes j and k. Contrarily, when the functional precision 
i s non- zero ̃  ω 

j,k ( X i ) � = 0 , Y j a nd Y k a re c ondition al depe nde n t
with cov ari ates (CDx, he nceforth), a nd a n ed ge exis ts betw e en 
nodes j and k given the cov ari ate X i . By modeling the functional 
pre cision m atrix, CIx defines c ov ari ate-spec i fic grap h s that v ary 
based on diffe re n t cova riates. 

2.2 Ro bust gra phical r egr essio n via ra ndo m t ra ns fo rmatio n 
In practice, the normal assumption does not always hold 
(Figure 1 B). Vio l ation of the normal assumption results in the 
failure of modeling grap h s through normal precision matrices 
and motivate s ne w mode ling strategie s (Finegold and Drton, 
2011 ; B ha dra et al., 2018 ). Here, we adapt the r andom tr ans- 
forma tion appr oa ch (B ha dra e t al., 2018 ) to allow for v arious 
non-normal distributions with diffe re n t tail beh aviors . We fo- 
cus on con tin uous dis tributions with heavy tails as o bs erv e d 
in our mot ivat ing data. To this end, let 0 < d j < ∞ for j = 

1 , . . . , pbe indepe nde n t positive ra ndom scales a nd h av e dis tri - 
bution as d j ∼ p j with 

∫ 
dp(d j ) < ∞ almost surely. Let D i = 

diag (1 /d i 1 , . . . , 1 /d ip ) be a diagonal matrix for subject i . Given 
random scales d i j , j = 1 , . . . , p and the cov ari ates X i , we as- 
sume the distribution of D i Y i conditional on D i and X i follows 
a m ultiva riate dis tribution, 

D i Y i = 

[
Y i 1 
d i 1 

, . . . , 
Y ip 
d ip 

]T 

∼ N p ( 0 , �−1 ( X i )) , 

for i = 1 , . . . , n, (2) 

where �( X i ) = { ω 
j,k ( X i ) } p×p , j, k ∈ V is the functional 

pre cision m atrix th at ch a racte rizes the gra ph with the 
cov ari ates X i . 
The model in ( 2 ) ge ne r aliz es sever al exis ting a pproaches: (i) 

Equation 1 is a special case of Equation 2 with d i j as a de- 
ge ne rated dis tribution of a poin t mass at 1; (ii) whe n d 1 = 

. . . = d p = τ with τ 2 following a n inve rse ga mma dis tribu- 
t ion, Equat ion 2 is re duc e d to a m ultiva riate t -dis tribution on
 as used by Finegold and Drton ( 2014 ); and (i i i) for gen- 
e ral d i j , ( 2 ) es tablishes a rich family of Gaus si an s cale mixtures
for the m argin al distribution of Y j with the density p(Y j ) = ∫ 
( 2 πd j ) −1 / 2 exp {−y 2 j / ( 2 d j ) } dp( d j ) . 
The introduction of random scales in Equation 2 allows us 

to construct various m argin al distributions of Y j with different 
t ail be h aviors . Spe c i fically, by matching t ail be haviors of ran- 
dom scales and the target distribution, random scales allow us 
to model diffe re n t ma rg inal di stributions that the data mi gh t ex- 
hibit. For examp le, le tting Y j decay po lynomi ally, Y j /d j follows 
a normal distribution if the random scale d j also has a poly- 
nomial tail. In Fi gure 2 , Pa nel (A) shows that the target dis- 
tribution of Y with a po lynomi al tail devi a tes fr om the normal 
distribution, but with the introduction of random scales, the 
distribution of Y/d is normally dis tributed. A simila r idea ca n be 
used for ta rget dis tribution with other tail behaviors, for exam- 
ple, expone n tial t ails. Althou gh the random scale s robustify the 
model to ac c ommodate non-norm ality, the res ult ing funct ional 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
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FIGUR E 2 R obust ificat ion of non-normal distribution with random scales and the visualization of conditional sign independence with 
cov ari ates (C SIx ) and CSDx. Panel (A) shows the qq plot to i l lustra te tha t random scale d ac c ommodate s the non- normal distribution Y with 
Y/d following the normal distribution. Panel (B) demonstrates CSIx (Cases (i) and (ii)) and CSDx (Cases (i i i) and (iv)) of Y 1 and Y 2 with the 
parti al correl ation ω 

1 , 2 (X i ) = X i conditioning on Y 3 . Cases (i) and (ii) r epr ese n t 2 examples of CSIx with zero precision of X i = 0 given 
Y 3 = 1 and 0. Cases (i i i) and (iv) demonstrate the cases of CSDx with non-zero precision of X i = 0 . 7 given Y 3 = 1 and 0. Panel (B) is c entere d 
on the values betw e en [ −10 , 10] . Panel (C) shows the nested r ela tionship betw e en CS Ix a nd CIx (top) a nd CSDx a nd CDx (bottom). See 
more details in Section 2.3 . 
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re cision m atrix �( X i ) re quires careful ch a racte rization a nd
n te rpr eta tion. 

2.3 C hara cterization of fu n ct ion al pr ecision m atrix 
he function al pre cision m atrix in ( 2 ) determines the graph-
cal depe nde nc e as a function of c ov ari ates, but the random
m argin al) scale ch anges the standar d CI interpr eta tions in the
 esulting pr ecision ma trix, which r equir e s a ne w cha racte riza-
ion. B ha dra et al. ( 2018 ) introduc e d the c onc ept of CS I in
on-normal grap h s, defined as fo llows. Con sider the expression
f 2 proteins of in te res t as ra ndom va riables Y 1 and Y 2 , with
he expres sion d ata from the rest of the proteins de noted b y a
andom v e ctor Y 3 . Giv e n Y 3 , Y 1 a nd Y 2 a re c ondition al sign inde-
e nde n t if P(Y 2 > 0 | Y 1 , Y 3 ) = P(Y 2 > 0 | Y 3 ) and P(Y 1 >
 | Y 2 , Y 3 ) = P(Y 1 > 0 | Y 3 ) . Othe rwise, Y 1 a nd Y 2 a re condi -
ional sign dependent (CS D) giv en Y 3 . The CSI of Y 1 and Y 2 im-
lies that the information of Y 1 does not affect the sign of Y 2 given
 3 . Th at is, c onditioning on the r est of the pr otein expr ession
a ta Y 3 , the pr obability of over- or under-expression for Y 2 is in-
epe nde n t of the expression level of Y 1 . Under the multiv ari ate
istribution of ( 2 ) with a constant precision matrix �( X i ) = �,
er o pr ecision of ω 

j,k = 0 and the CSI of Y j a nd Y k give n the res t
 re equivale n t, which ca n be r epr ese n ted b y a missing ed ge be-
w e en nodes j and k in an undire cte d graph (B ha dra et al., 2018 ;
 hakra borty et al., 2024 ). 
In this pa pe r, we ge ne r aliz e the c onc ept of CS I to inc orpo-
ate cov ari ates and consider the s ubje ct-spe c i fic CSI of 2 random
 ari ab les given all the other random v ari ab les and a r ealiza tion of
ov ari ates X i , as formalized in the following proposition: 

roposition 1 (Conditional Sign In depen den ce with Covari-
 te (CSIx )) Gi ven random scales D i = d i ag (1 /d i 1 , . . . , 1 /d ip )
 nd the cova ri a t es X i , co n sider th e co ndit io nal dis tribu t io n of D i Y i as
q u a t io n 2 with funct io n a l pre cisio n ma trix �( X i ) . If ω 

j,k ( X i ) =
 , then Y i j and Y ik are CSI. Oth erwise, wh en ω 

j,k ( X i ) � = 0 , then Y i j 
nd Y ik are CSD. 

The proof of Proposition 1 follows the fact that ω 
j,k ( X i ) = 0

mplies the CSI of Y i j and Y ik given X i , and we call Y i j and Y ik 
 ondition al sign independent with cov ari ates X i to hi ghli gh t the
ole of the covariates in the gra ph. Othe rwise, Y i j a nd Y ik a re
alle d c ondition al si gn depe nde n t with cova riates (C SDx ). See
upplemen ta ry Mate rial Section S1 for details. 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
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An exa mp le CSIx. We use a simple lo w -dime nsional exa mple
to visually de mons trate a nd in te rpret CSIx a nd CSDx. Follo w -
ing Proposition 1, we show 2 examples with a ge ne ral functional
pre cision m atrix �( X i ) . Consider a triv ari ate distribution of ( 2 )
with unit diagonal ele me n ts a nd ω 

1 , 2 (X i ) = X i . We i l lustrate 2
sc en arios in Panel (B) of Figure 2 : 

� When X i = 0 , we obtain the CSIx of Y 1 and Y 2 given 2 dif-
fe re n t values of Y 3 = 0 (Case (i)) and 1 (Case (ii)). 

� When X i = 0 . 7 , Y 1 and Y 2 are CSDx, and we o bs erv e th at
the distribution of the sign of Y 2 varies based on the value
of Y 1 (Case (i i i) and Case (iv)). Spec i fically, as Y 1 increases,
Y 2 tends to be ne gativ e. 

By modeling the functional precision matrix, we can build a
cov ari ate-spec i fic prec ision matrix that depends on the different
r ealiza tions of the covariates X i . Conseque n tly, we ca n cons truct
a graph of CS I c orresponding to the precision matrix and the
cov ari ates. 
We can now c onc eptually c ompare models ( 1 ) and ( 2 ). Both

models incorporate the cov ari ates in the functional precision
m atrix, which ch a racte rize the cova riate-spec i fic graph. Ho w -
eve r, the in te rpr eta tion of the gra ph diffe rs. The gra ph from
mode l ( 2 ) encode s CSIx, whe reas the gra ph from model ( 1 ) en-
codes CIx. We visualize the r ela tionship betw e en CS Ix and CIx
in Panel (C) of Figure 2 and s umm arize it as follows: 

� For ω = 0 , CSIx is a weaker condition than CIx since CSIx
considers only the sign, while CIx depends on both the
si gn a nd the magnitude. 

� When ω � = 0 , CSDx is a s tronge r c ondition th an CDx
since C Dx allo ws either magnitude or the sign to be de-
pe nde n t, while CSDx focuses on only the sign. 

3 PRIORS  AND  ESTIMATION  

The function al pre cision m atrix �( X i ) liv es in a high-
dimension al spac e. For examp le, the PPI ne twork for OV
from our app lication con side rs O(n p(p − 1) / 2) = 197 , 620
pos sib le edges, which makes joint est imat ion d iffic ult if not
un te n able, espe cially sinc e v ari ability acros s each subj ect
i is allow e d. Henc e, w e e mplo y a nei ghborhood selection
proc e dure (Meinsh ause n a nd Bühlma nn, 2006 ) to es timate
the functional precision matrix that has been used in sev-
er al gr aphical models (eg, Ni et al., 2019 ; Zhang and Li,
2022 ). This proc e dure offers 3 main benefits: (i) tractable
est imat ion, (ii) re duc e d c omputation burde n, a nd (i i i) flexi-
ble prior e licit ation. Spec i fically, we r egr ess 1 node Y j on the
re st node s Y k , k � = j a nd build the gra p h bas e d on zero c o-
efficie n ts (Sections 3.1 and 3.2 ). This use of neighborhood
s election, which emp loys c ondition al estim ation as oppose d
to joint est imat ion in ( 2 ), effect ive ly reduce s the n umbe r of
edges to O( qp( p − 1) / 2) = 3280 —a 60-folds decrease.
More ov er, the effe ctiv e number of edges can be re duc e d by
diffe re n t model spe cifications, s uch as a thresholding me ch a-
nism (Section 3.3 ), a nd diffe re n t priors, such as spike-a nd -slab
(Section 3.4 ). 
3.1 Regr ession- bas ed app roach fo r fu n ct io nal p recisio n 
m atrix estim ation 

The rBGR model leverages a r egr e ssion- based frame work on 
model ( 2 ) to r ela te the r egr ession coefficie n ts a nd pre cision m a-
trix. Give n ra ndom scales D i , w e re gress 1 variable on all other 
v ari ab les and r ela te the partial corr ela tion with r egr ession coef- 
ficie n ts. Ze ro coefficie n ts a re the n equivale n t to ze ro pa rtial cor-
r ela tions (Meinshausen and Bühlm ann, 2006 ). Spe c i fically, we 
c onstruct node-spe c i fic r egr es sion s as 

Y i j 
d i j 

= 

p ∑ 

k � = j 

β j,k ( X i ) 
Y ik 
d ik 

+ εi j , (3) 

where εi j ∼ N( 0 , 1 /ω 
j, j ( X i )) and the function al c oefficie n t 

β j,k ( X i ) = −ω j,k ( X i ) 
ω j, j ( X i ) 

. Under this spec i fication, β j,k ( X i ) = 0 if 
and only if ω 

j,k ( X i ) = 0 , which enables the functional coef- 
ficie n ts to cha racte rize the cova riate-spec i fic graphs . How ev er, 
the in te rpr eta tion of the coefficie n ts cha nges from the s ta nda rd
Gaus si a n gra phical models due to the in troduction of the ra n- 
dom scales, which is detailed in the next section. 

3.2 Graph co nst ructio n through regression coefficients 
We build grap h s with a missing edge betw e en nodes j and k
whe n Y j a nd Y k a re CS Ix giv e n the re maining va riables a nd the
cov ari ates X i . Con sider Y i and X i with the r egr ession ( 3 ). We call 
β j,k ( X i ) the c ondition al si gn indepe nde nc e function (CS IF) be- 
cause zero CSIF, β j,k (X i ) = 0 , implies that Y j and Y k are CSIx 
given all the other nodes Y −{ j,k} and cov ari ates X i , as formally 
cha racte rized in the following proposition. 

Proposition 2 Con sider m o del ( 3 ). I f β j,k (X i ) = 0 , then P(Y j >
0 | Y k , Y −{ j,k} , X i ) = P(Y j > 0 | Y −{ j,k} , X i ) and P(Y k > 0 |
 j , Y −{ j,k} , X i ) = P(Y k > 0 | Y −{ j,k} , X i ) . 

We sketch the pr oof her e and leave the details in 
Supplemen ta ry Section S1 . The proof follows from the fact 
th at the CS IF β j,k ( X i ) = −ω j,k ( X i ) 

ω j, j ( X i ) 
is r ela t ed t o the partial 

corr ela tion, a nd a ze ro pa rti al correl ation is equivale n t to a zero
precision of ω 

j,k ( X ) = 0 , which ens ures the CS Ix betw e en 
 j and Y k (see the example in Section 2.3 ). Ther efor e, zer o 
CSIF indicates the CS Ix betw e en Y j and Y k given the remaining 
respon s e v ari ab les Y −{ j,k} and cov ari ates X i . In this paper, we 
fur ther assume ω 

j, j in CSIF to be s cal ar, β j,k ( X i ) = −ω j,k ( X i ) 
ω j, j 

, 
for ease of c omputation. Note th at our m ain in te res t is ed ge 
sele ction, and the CS IF is 0 if and only if ω 

j,k ( X i ) = 0 , which
is unr ela t ed t o ω 

j, j . 

3.3 Modeling the CSIF 
Proposition 2 tran sform s the pro b lem of ro bus t gra p h con struc- 
tion to a more tractable r egr ession coefficie n t selection (ie, se- 
lecting which part of CSIF is exactly 0). Ther efor e, modeling the 
CSIF is crucial to the graph est imat ion. To this end, we parame- 
terize the CSIF as a product of 2 compone n ts: 

β j,k ( X i ) = θ j,k ( X i ) ︸ ︷︷ ︸ 
Cov ari ate function 

I (| θ j,k ( X i ) | > t j ) ︸ ︷︷ ︸ 
Thresholding function 

. (4) 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
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e elaborate the role and just ificat ion of each component
elow. 
Cova ri a t e funct io ns [ θ•(•) ]. For simplicity, w e c onsider only
he linear effects of cov ari ates X i , θ j,k ( X i ) = 

∑ q 
h =1 α j,k,h X ih ,

here α j,k,h re pre se n ts the coefficie n ts for the h th cov ari ate. The
ov ari ate function al lows simi lar edge s e ts for individuals with a
imilar level of X i and varies the graph, thus borrowing strength.
f desired, it is re lative ly s trai gh tforwa rd t o ext end α j,k,h t o non-
inear effects by, for example, using basis expansion techniques
uch as splines. 
T hreshold ing fu nct io ns [ I ( | θ•( X ) | > t •) ]. The edge thresh-
lding me ch ani sm i s desire d to achiev e spa rse gra p h s in rBGR
ue to the large number of parameters. For example, the ovar-
 an PPI ne twork in our app lica tion r equir es qp(p − 1) / 2 =
280 pa ra mete rs a nd results in a den s e grap h with inefficie n t
nfe re nce. To s o lve the pro b lem, we truncate edges with
m all m agnitudes with an indicator function I ( | θ j,k ( X ) | > t j ) ,
here t j is the threshold pa ra mete r spec i fic to the node j. An
dge is shrunk to 0 and remov e d when the magnitude is smaller
han the threshold parameter, resulting in a sparse grap h . One
i gh t conside r the threshold pa ra mete r as t j,k . How ev er, t j,k is
ot fully ide n tifiab le when α j,k,h = 0 for all h = 1 , . . . , q since
hen θ j,k ( X i ) = 0 , the value of t j,k can be a rbitra ry. To alleviate
he pro b lem, we as sume t j,k = t j to improve the ide n tifiability
s long as one of θ j,k � = 0 . 

3.4 Prior sp eci fication 
BGR con tains 3 pa ra mete rs: (1) ra ndom scales d j , (2) thresh-
ld pa ra mete r t j , a nd (3) cova riate coefficie n ts α j,k,h . To com-
 le te the model spec i fication, we assign priors as follows: 

d j ∼ (1 − π j ) δ1 (d j ) + π j p j (d j ) ; t j ∼ Unif (0 , t max ) 

α j,k,h ∼ γ j,k,h N(0 , ν j,k,h ) + (1 − γ j,k,h ) N(0 , v 0 ν j,k,h ) , 

here v 0 and t max are pre-spec i fied hype rpa ra mete rs, π j mod -
ls the de gre e of non-norm ality with a beta prior of π j ∼
eta (a π , b π ) , p j is a function to ac c ommodate the non-
ormality, γ j,k,h is a binary v ari ab le with a Bernoulli prior of
j,k,h ∼ Ber(ρ j ) , and ν j,k,h decides the v ari ance of α j,k,h with
 n inve rse ga mma prior of ν j,k,h ∼ InvGa (a ν, b ν ) . Spec i fically,
hen d j = 1 , Y j is normally dis tributed. Whe n d j ∼ p j , Y j fol-
ows a non-normal distribution. We match the tail behavior of p j 
nd the m argin al distribution of Y j and allo w e ach m argin al dis-
ribution Y j to h av e a diffe re n t leve l of non- norm ality by spe c i fic
j . For the curre n t model, we focus on the Y j with po lynomi al
ecay, as i l lus trated b y the mot ivat ing da ta in Figur e 1 , a nd assi gn
 n inve rse ga mma dis tribution on p j (d j ) = InvGa (d 2 j | a d , b d ) .
or threshold pa ra mete r t j , we assi gn a uni for m prior on t j to
ode l the thre sholding me ch a nism a nd con trol the gra ph spa r-
ity. In tuitively, whe n t j → 0 , no ed ge is truncated with a fully
 onne cte d grap h . When t j → ∞ , all edges are shrunk to 0 with
ll nodes disc onne cte d. For c ovariate c oefficie n ts α j,k,h , we as-
ign a spike-and-slab prior to achieve the cov ari ate sparsity with
 small v 0 because not all cov ari ate s nece s s a rily con tribut e t o
he varying structure. These model spec i fication s enab le an ef-
cie n t G ib bs s amp ler, and we show details of the posterior in-
e re nce, including the cond itional d is tributions a nd coefficie n t
 ymmetri zation in Supplemen ta ry Mate rial Section S2 . 
4 SIMULATION  STUDIES  

e e mpirically de mons trate the pe rforma nce of rBGR unde r a
 arie ty of non-normal con ta minations a nd agains t othe r com-
eting models in terms of edge and cov ari ate s election . To
he best of our kno wledg e, no other existing method e stimate s
ov ari ate-spec i fic grap h s for non-normal d a ta. Ther efor e, we
ompare rBGR to 2 models that estimate the cov ari ate-spec i fic
rap h without addres sing the vio l ation of the normality as-
 umption. Spe c i fically, w e c onside r Bayesia n gra phical r egr es-
ion (BGR; Ni et al., 2019 ) and the Gaus si a n gra phical r egr es-
ion models with cov ari ates (RegGMM; Zhang and Li, 2022 )
 epr ese n tative of a fully Bayesian and a frequentist penalization-
ased mode l for the cov ari ate-spec i fic gra ph unde r the nor-
 al ass umption, respe ctiv ely. Imple me n tation details of all algo-
ithms can be found in Supplementary Materials Section S3.1 . 
Da ta-genera t ing me cha n is m. We ge ne rate the o bs erv e d non-
ormal dat a b y m ultiplying the ra ndom scale b y the late n t data

 
∗
i = 

[ 
Y ∗i 1 , . . . , Y 

∗
ip 

] T 
. Spec i fically, the late n t data a re normally

istributed as Y ∗i 
iid ∼ N p ( 0 , �−1 ( X i )) , where cov ari ates fo llow

 uni for m dis tribution as X i 
iid ∼ U (−1 , 1) a nd �( X i ) is the

rue precision matrix re pre se n ting the undire cte d grap h . For
( X i ) , we assign unit diagonal ele me n ts a nd ra ndomly pick 2%
f the off-diagonal to be non-zero. We let the non-zero preci-
ion depend on the cov ari ates linearly and truncate the preci-
ion with a magnitude smaller than 0.15. We obtain the ran-
om scales from a mixture distribution of the point mass at 1
 nd a n inve rse ga mma dis tribution a nd assi gn 3 diffe re n t lev-
ls of non-normal con ta mination: π ∈ { 0 , 0 . 5 , 0 . 8 } . We m ulti -
ly the random scales by Y ∗i to generate the o bs erv e d data of
 Y i 1 , . . . , Y ip ] = [ Y ∗i 1 d i 1 , . . . , Y 

∗
ip d ip ] . For all simul ation s, we s e t

he s amp le size and the dimen sion s of Y i and X i as (n, p, q ) =
(250 , 50 , 3) based on our real data case studies. We show the
esults for 50 indepe nde n t r eplica tes. 
Performan ce m etrics. We ev aluate the grap h re c ov ery through
he edge and cov ari ate s election . For cov ari ate s ele ction, w e re-
ort the true positive rate (TPR), true negative rate (TNR),
a t thew’s corr ela tion coefficie n t (MCC) with the cut-off for the
os te rior inclusion probability (PIP) at c 0 = 0 . 5 , and the area
nder the re c eiv er operating characteristic curve (AUC). For
 dge sele ction, w e us e AUC and 3 me trics of TPR , TNR , and
CC with the cut-off for the edge posterior probability (ePP)
t c 1 = 0 . 5 . We furthe r inves ti gate the si gn consis te ncy b y ex-
mining the agreement betw e en the posterior probability for the
igns of CSIF sgn ( ̂  β j,k ( X i )) and the true signs of sgn ( β j,k ( X i )) .
pec i fically, we exclude the zero CISF and focus on the subs e t
f the data with both true and estim ate d non-zero CS IF to re-
trict the pro b lem as 2-cl as s cl as sificat ion (posit iv e v ers us ne g -
tive). We as s es s the sign con sis te ncy b y MCC (refe rred to as
ign-MCC). 
Si mul a t io n res ults . Pa nel (A) of Figure 3 shows the simulation
esults for cov ari ate s election . We o bs e rve that rBGR outpe r-
orms BGR and RegGMM across all non-normality levels, as
ndicated b y hi ghe r MCC a nd AUC. The diffe re nce in MCC
nd AUC betw e en rBGR and the other compe ting me thods in-
reases when the non-normality con ta mina tion level incr eases,

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
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FIG URE 3 Simul a tion r esults: graph r e c ov e ry for Bayesia n gra phical r egr ession (BGR) (r ed), r o bust Bayesi a n gra phical r egr ession (rBGR) 
(gree n), a nd Gaus si a n gra phical r egr e ssion mode ls with cov ari ates (RegGMM) (b lue) unde r diffe re n t leve ls of non- nor mality in ter ms of (A) 
cov ari ate s election (top row) and (B) edge selection (bottom 2 rows). Panel (A) shows the cov ari ate s e lection throu gh 4 metrics (f rom lef t to 
ri gh t: true positive rate [TPR], true negative rate [TNR], Ma t thew’s corr ela tion coefficie n t [MCC], and area under the re c eiv er operating 
cha racte ris tic curve [AUC]) that are meas ure d under 3 different levels of non-normality. Panel (B) de mons trates the e dge sele ction by 4 cr iter ia 
(from upper left to lower left: TPR, TNR, MCC, and AUC) and the sign consistency by sign-MCC (lower right) for non-zero e dges . All values 
for TPR, TNR, and MCC are meas ure d at a cut-off at c 0 = c 1 = 0 . 5 . 
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which is expe cte d. For TNR, rB GR performs sl i gh tly w orse th an
BGR but better than RegGMM across all non-normality levels.
How ev er, all 3 methods select correct cov ari ates ( > 93% ) with
small diffe re nces ( < 5% ) in terms of TNR. For TPR, rBGR out-
pe rforms BGR unde r all levels of non-normality, and the advan-
tage of rBGR be c omes mor e pr omine n t as the non-normality 
incr eases. Compar ed to RegGMM, rBGR’s pe rforma nce is com- 
pa rable unde r a normal distribution in TPR, but rBGR is pre- 
fe rred whe n the level of non- normality increase s . Ov e rall, mod - 
e ling non- normality using random scales in rBGR is favorable 



Biometrics , 2025, Vol. 81, No. 1 � 9 

c  

s
 

(  

R  

a  

o  

o  

s  

t  

i  

n  

m  

s  

e  

w  

l
 

i  

b  

t
 

t  

d  

v
o  

(  

(  

n  

(  

p  

n

K  

s  

2  

f  

(  

f  

a  

l  

T  

(  

a  

2  

l  

g  

o  

f  

c  

t  

e  

h  

i

 

t  

c  

S  

d  

c  

a  

y  

2  

a  

s  

m  

W  

(  

n  

w  

q  

a  

c  

a  

a  

k  

l  

w  

T  

i  

S

W  

w  

s  

a  

f  

(  

f  

s  

w  

O  

T  

t  

i  

L  

i  

i
 

i  

b  

f  

t  

d  

t  

m  

t  

F  

C  

t  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/81/1/ujae160/7951962 by Texas A&M
 C

ollege Station user on 01 July 2025
 ompare d to models without random scales in terms of covariate
 election . 
We show the graph re c ov ery for the edge selection in Panel
B) of Figure 3 . For edge s election, rBGR outperform s BGR and
egGMM in AUC, and the advantage of rBGR increases with
 la rge r discrepa ncy betw e e n rBGR a nd the compe ting me th-
ds when the non-normality level increases. For MCC, rBGR
utper forms R e gGMM under all lev els of non-normality, but is
li gh tly infe rior compa red to BGR under the normal distribu-
ion. How ev er, rBGR is fav ore d when the non-norm ality lev el
ncreases. For TPR, rBGR is better than BGR under all levels of
on-normal ity, and sl ightly wor se th an Re gGMM under the nor-
 al ass umption. How ev e r, whe n non- normality increase s, rBGR

 ta rts to surpass the RegGMM. Both TNR and sign-MCC show
xcelle n t selection pe rforma nce ( > 95% ) for all 3 methods,
ith minimal diffe re nces ( < 5% ) across the 3 non-normality
ev els . 
In s umm ary, mode ling non- normality throu gh random scale s

n rBGR results in equivale n t (unde r the normal distribution) or
ette r pe rforma nces in all metrics for edge selection compared
o the other methods. 
Addit io n a l simu la t io ns and model eval u a t io ns . We provide addi -

 ional simulat ion results in the Supplemen ta ry Mate rial for (i)
etails of dat a -ge ne rating me ch anisms ( Section S3.2 ), (ii) c on-
e rge nce of the algorithm ( Section S3.3 ), (i i i) d ifferent c ut-off
f c 0 and c 1 controlling for false disc ov ery rates ( Section S3.4 ),
iv) expone n tial tails of p j (d j ) = Exp (d 2 j | a d ) ( Section S3.5 ),
v) hi gh-dime n sional ne tworks of p = 100 and q = 1 ( Sectio
 S3.6 ), and (vi) comparison to homogeneous graph models
 Section S3.7 ). Ove rall, rBGR ge ne rates equivale n t or bette r
e rforma nces compa red to othe r methods unde r va rious non-
ormal t ails a nd hi ghe r dime n sional ne tw orks . 

5 A  NA  LY  S  ES  OF  PROTEOMIC  NETWORKS  

UNDER  IMMUNOGENIC HETEROGENEITY 

ey scientific ques t io ns and da taset overv iew. A be rra n t PPIs a re as-
 oci ated with various d iseases, includ ing ca nce r (Che ng et al.,
020 ), a nd imm une cells a round the tumor can modulate mal-
unctioning PPIs to influence tumor growth and pro gres sion
 Jo yce a nd Fea ron, 2015 ). In ca nce r, cells a round the tumor
orm the tumor micr oenvir onment (TME), which closely in te r-
cts with the tumor (Whiteside , 2008 ). For example , dysregu-
a ted PPI s in the tumor suppr es s multip le immune cells in the
ME to es cape de tection of the tumor by the immune system
White side, 2008 ), while immune ce lls in the TME ca n alte r the
be rra n t PPIs to elimin ate canc erous c ells ( Joyc e a nd Fea ron,
015 ). This de mons trates the c onne ction betw e en the dysre gu-
a ted PPI s and the TME and shows the importance of immuno-
e nic hete roge neity in tumor behavior. A better under stand ing
f the as s oci ation of immune cells with abe rra n t PPIs offe rs a
oundational pa radi gm for pote n tial ta rgeted the ra pies in ca n-
e r (Che ng et al., 2020 ). To this end, our key scie n tific ques-
ions were as follows: (i) ide n tify importa n t PPI s acr oss differ-
 n t ca nce r types a nd (i i) d isc ov er the effe ct of imm unoge nic
e tero geneity on aberrant PPIs as potential targets for future
nves ti gation. 
We exemplify the utility of rBGR by using da ta fr om TCGA
o build patie n t-spec i fic PPI networks and inves ti gate the as s o-
iation of imm unoge nic hete roge neity across 2 diffe re n t ca nce rs.
pec i fically, we used a revers e-p has e protein array for proteomic
ata ( Y ) to build the PPI network of a CSIx gra ph, a nd we in-
 orporate d the immune cell tran s criptome signa tur es as cova ri -
tes ( X ) as ma rke rs of imm unoge nic hete roge neity. Our a nal -
sis focuses on OV and LUAD as r epr ese n tative exa mples of
 ca nce r s that el icit d is tinct imm une respon s es. OV r epr ese n ts
 n imm uno lo gically “co ld” tumor, with a weake r imm une re-
pon s e, while LUAD is con side red a n imm uno lo gically “hot” tu-
or, with a s tronge r imm une respon s e (Galon and Bruni, 2019 ).
e focus on proteins in 12 importa n t ca nce r-r ela ted pa th ways
Ha et al., 2018 ) and obtain p = 41 proteins with n = 241 and
 = 360 patie n ts for OV a nd LUAD, respe ctiv ely. For c ov ari ates,
 e include d mRNA-deriv e d immune c ell ge ne si gna tur es and
ua n tified the imm une cell abunda nce corresponding to T cells
nd 2 crucial types of myelo id- deriv e d s uppres s or cells, mono-
yte s and ne utrophils, for both OV and LUAD. Both T cells
 nd myeloid -de riv e d s uppres s or ce lls are e s s e n tial in both OV
nd LUAD since T cells are the main imm une compone n t that
i l ls ca nce r cel ls, whi le myelo id- deriv e d s uppres s or c ells re gu-
at e T cells (Whit eside, 2008 ). We ran rBGR on OV and LUAD
ith 20 000 iterations and discarded the first 19 000 iterations.
he c onv e rge nce diagnos tics a nd the de tails of d a ta pr epr ocess-
ng proc e dures are provided in Supple me n ta ry Mate rial Section
4.1 . 

5.1 Popul ation-le vel proteomic n etwor ks 
e fir st foc us on the cov ari ate-dependent popul ation-level ne t-
orks for OV and LUAD that are estim ate d by ̂  α j,k,h . The corre-
ponding networks are shown in Figure 4 (Panels (A) for LUAD
nd (B) for OV). We o bs erv e d th at the n umbe r of ed ges is m uch
ew er in OV c ompare d to LUAD for all immune components
T ce lls: [7, 15], monocyte s: [5, 82], and ne utrophils: [7, 260]
or [OV, LUAD]). This is further evidenc e d in Panel (C), which
hows the distribution of PIPs for OV and LUAD. Interestingly,
e o bs erve that the PIPs for LUAD a re hi ghe r tha n those for
V for all immune c omponents (me di an s of [OV, LUAD] for
 ce lls: [0.123, 0.271], monocyte s: [0.131, 0.307], and ne u-
rophils: [0.127, 0.380]). The hi ghe r PIPs in LUAD imply that
mm une compone n ts have a gr ea ter corr ela tion with PPI s in
UAD c ompare d to OV. Thi s finding i s consi s te n t with the ex-
sting bio lo gy (Galon and Bruni, 2019 ), as LUAD belongs to the
mmune hot tumors, with a stronger immune respon s e. 
Popul ation grap h s als o c onfer spe c i fic infor mation about the

n te raction betw e en proteins . For example, w e o bs e rve a n ed ge
etw e e n Akt a nd PTEN with the hi ghes t PIP r egula ted by T cells
or LUAD (Figure 4 A), su gge sting an as s oci ation of T cells with
he PPI betw e e n Akt a nd PTEN. It is well known that PTEN
ownr egula tes Akt, and the loss of tumor suppressor PTEN of-
en leads to a dysr egula ted PI3K pa th way, including Akt and tu-
or growth in L UAD ( Conci atori e t al., 2020 ). For OV, despite
he smalle r n umbe r of PPIs, we s ti l l ide n tify importa n t PPIs.
or example, rBGR su gge sts a PPI r egula ted by T cells between
av e olin-1 and PR. In OV, Cav e olin-1 is r egula ted by proges-
erone, which is me diate d by PR, and su gge sts a re s ult c onsis-
e n t with the estim ate d PPI betw e en Cav e olin-1 and PR (Sye d

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
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FIG URE 4 Popul a tion-level pr ote omic netw orks . The pos te rior inclusion probability ( PIP) ( Pa nel (C)) a nd the popul ation ne tworks of PPIs 
with the cut-off at c 0 = 0 . 5 for lung ade noca rc inoma (LUA D) (Pa nel (A)) a nd a nd ova ria n ca nce r (OV) (Pa nel (B)). For each pa nel of LUAD 

and OV, PPI networks of spec i fic immune compone n ts a r e shown fr om left to ri gh t for T ce lls, monocyte s, and ne utr ophils. For each pr otein, a 
bi gge r node r epr ese n ts a hi ghe r de gre e of c onne ctivity. 
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et al ., 2005 ). Overall , our analyses capture important hub pro-
teins a nd cha racte rize the ca nce r PPIs, a nd the results a re hi ghly
c onc orda n t with the existing cancer litera tur e. 

5.2 Patient-sp eci fic networks: β jk ( X i ) 
We next focus on patie n t-spec i fic PPI networks to examine the
effect of imm une compone n t abunda nce ( X i ) on PPIs. Spec i fi-
cally, we vary 1 immune component, with the rest of the com-
pone n ts fixed at their mea n, a nd ge ne rate networks of CSIx for
diffe re n t individuals at 5 pe rce n tiles (5th, 25th, 50th, 75th, and
95th pe rce n tiles) of the va rying imm une compone n t. We s e t
the cut-off for the ePP at c 1 = 0 . 5 and show the networks for
LUAD in Figure 5 with the networks for OV in Supple me n ta ry
Material S4 . 
We focus on PPIs of CSDx that show depe nde ncy on the

abundance of a spec i fic imm une compone n t. We prese n t PPIs
th at ch a nge si gns in the 5th a nd 95th pe rce n t iles, indicat ing
spec i fic PPI s tha t ar e corr ela ted with an immune component,
such as Akt-PTEN for T cells, B id -PCNA for monocytes, a nd
Bax-GATA3 for neutrophils. In te res tingly, w e disc ov ere d th at
the sign of Akt-PTEN is positiv ely c orr ela ted with the T-cell
abundanc e. Spe c i fical ly, when T-cel l abunda nce is hi ghe r, Akt-
PTEN is positive, whereas Akt-PTEN is ne gativ e when T cells
a re sca rce r. It is well established that PTEN suppres s es Akt sig-
naling and that the loss of PTEN results in the hyper-act ivat ion
of Akt in ca nce r cells and low T-cell abundance in lung ca nce r
(Conci atori e t al ., 2020 ). In addit ion, we find the B id -PCNA
edge is positively corr ela ted with monocyte abundance. It has
been shown that PCNA promotes Bid through caspase proteins
and is crucial to immune evasion in cancers (Wang et al., 2021 ).
Fin ally, w e disc ov er th at the Bax-GATA3 e dge is positiv ely c or-
r ela ted with neutr op hil abund anc e. Re c ently, GATA3 h as be en
found to downr egula te BCL-2 (Cohen et al., 2014 ), which in-
hibits the Bax protein (Cohen et al., 2014 ), and neutr ophils pr o-
mote the Bax to induce apoptosis (Li et al., 2020 ). These find-
ings hi ghli gh t spec i fic PPI s tha t ar e influenc e d b y the abunda nce
of imm une compone n ts a nd su gge s t pote n tial ta rgets for furthe r
inves ti gation. 

6 DIS  CUSS  ION 

In this pa pe r, w e dev e lop a flexible Baye sia n fra mew ork calle d
rBGR to construct hete roge ne ous netw orks th at explicitly ac- 
c ount for c ov ari ate-spec i fic infor mation for non-nor mally dis- 
tribute d data. By ac c ommodating the non-normal marginal 
t ail be haviors throu gh random scale s, w e c onstruct c ov ari ate- 
spec i fic grap h s through grap hical r egr e ssion- b ased appro aches. 
This framework allows us to explicitly cha racte rize, infe r, a nd 
in te rpre t cov ari ate-spec i fic edge de pendencie s throu gh CS IFs . 
We also propose an efficient G ib bs s amp ler for posterior 
infe re nce. Our sim ul ation s demon stra te tha t rBRG outper- 
forms othe r exis ting Gaus si an-bas ed me thods that con struct 
the cov ari ate-spec i fic grap h s under a v arie ty of s e ttings, which
disp l ay non-norm al m argin al beh avior s uch as heavy tails or 
ske wne ss. 
We e mplo y rBGR on pr oteogenomic da tasets in 2 ca nce rs to 

build patie n t-spec i fic PPI networks and identify PPIs that are 
impacted by tumor he tero g eneity. S pec i fically, we qua n tify the 
immune cell abundance to elucidate the effects of imm unoge nic 
he tero geneity on aberrant PPIs for lung and OVs that are trig- 
ge red b y diffe re n t levels of immune respon s es . Our an alyses align 
with existing bio lo gy along 3 m a jor axes: (i) immune respon s es, 
(ii) h ub proteins, a nd (i i i) PPIs. For exa mple, hi ghe r c onne c- 
tions in LUAD are consis te n t with existing bio lo gy since LUAD 

belongs to the cl as s of the immuno lo gically “hot” tumors. We 
ide n tify a hub protein of HER2, which is as s oci ated with poor 
survival in LUAD. Anothe r exa mple is the PPI of Akt-PTEN, 
which i s consi s te n t with the knowled ge tha t PTEN downr egu- 
lates Akt. Our s tudy furthe r sugges ts PPI s tha t vary with spe- 
c i fic imm une compone n ts. For exa mp le, we dis cover tha t PPI s
of Akt-PTEN, B id -PCNA, a nd Bax-GATA3 va ry positively with 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae160#supplementary-data
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FIG URE 5 Cov ari ate-spec i fic networks of lun g a de noca rc inoma (LUA D) under 5 di ffe re n t pe rce n tiles of imm une compone n t abunda nces for 
(A) T cells, (B) monocytes, and (C) neutrophils with the other 2 components fixed at mean zero. The estim ate d netw orks for va rying imm une 
compone n ts a r e shown fr om left to ri gh t for 5th, 25th, 50th, 75th, a nd 95th pe rce n tiles. Ed ges a re ide n tified with si gns (gree n: positive a nd red: 
ne gativ e) when the edge posterior probabilities (ePPs) are higher than c 1 = 0 . 5 . 

T  

i  

c
 

f  

p  

s  

 

l  

s  

p  

g  

o  

(  

g  

t  

b  

t  

d  

f

S

 

t  

s  

h

N

N

T  

p

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/81/1/ujae160/7951962 by Texas A&M
 C

ollege Station user on 01 July 2025
 ce lls, monocyte s, and ne utr ophils, r espe ctiv ely. These find-
ngs su gge s t pote n tial future ta rgets for imm unothe ra p y in lung
a nce r. 
In the curre n t imple me n tation, we consider only the linear ef-

ect of con tin uous cova riat es t o re duc e the infe re n tial a nd com-
uta tion bur de n. One exte n sion is to con sider dis cre te cov ari ates
uch as me mbe r ship ind icator s tha t r esult in a robust multiple-
group graphical model. It is also possible to include the non-
inear functionals through b asis exp ansion te chniques s uch as
plines (Ni et al., 2019 ); how ev er, this wi l l increase the com-
uta tional bur de n. Anothe r pos sib le exten sion is other types of
ra phical depe nde ncies. For exa mple, a chain gra p h con side rs a n
r der e d multi-lev el structure via dire cte d and undire cte d e dges
e g, Ch akraborty et al., 2024 ). By in troducing ra ndom scales a nd
e ne ralizing the r egr ession coefficie n ts as function al c oefficie n ts,
he model can include the cov ari a tes in the pr e cision m atrix to
uild the s ubje ct-spe c i fic chain gra phs. Anothe r direction can be
o include dis cre te nodes and to extend the c onc ept of CS Ix for
is cre te d ata (B ha dra et al., 2018 ). All these directions are left for
uture inves ti gations. 
SUPPLEMENTA  RY  MATERIA  LS  
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Web a ppe ndices, Fi gures, a nd data and code r efer enc e d in Se c-
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tt ps://g ithub.com/bayesrx/rBGR. 
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