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ABSTRACT

Graphical models are powerful tools to investigate complex dependency structures in high-throughput datasets. However, most existing graphi-
cal models make one of two canonical assumptions: (i) a homogeneous graph with a common network for all subjects or (ii) an assumption of
normality, especially in the context of Gaussian graphical models. Both assumptions are restrictive and can fail to hold in certain applications such
as proteomic networks in cancer. To this end, we propose an approach termed robust Bayesian graphical regression (tBGR) to estimate hetero-
geneous graphs for non-normally distributed data. rBGR is a flexible framework that accommodates non-normality through random marginal
transformations and constructs covariate-dependent graphs to accommodate heterogeneity through graphical regression techniques. We formu-
late a new characterization of edge dependencies in such models called conditional sign independence with covariates, along with an efficient
posterior sampling algorithm. In simulation studies, we demonstrate that rBGR outperforms existing graphical regression models for data gener-
ated under various levels of non-normality in both edge and covariate selection. We use rBGR to assess proteomic networks in lung and ovarian
cancers to systematically investigate the effects of immunogenic heterogeneity within tumors. Our analyses reveal several important protein—
protein interactions that are differentially associated with the immune cell abundance; some corroborate existing biological knowledge, whereas
others are novel findings.

KEYWORDS: Bayesian graphical models; cancer; conditional sign independence; covariate-dependent graphs; protein—protein interactions.

1 INTRODUCTION

Graphical models are ubiquitous and powerful tools to in-
vestigate complex dependency structures in high-throughput
biomedical datasets such as genomics and proteomics (Airoldi,
2007). They allow for holistic exploration of biologically rele-
vant patterns that can be used for deciphering biological pro-
cesses and formulating new testable hypotheses. However, most
existing graphical models make one of two canonical assump-
tions: (i) a homogeneous graph that is common to all subjects
or (ii) an assumption of normality, as in the context of Gaussian
graphical models (Ni et al., 2022). However, in some biomedi-
cal applications, such as the inference of cancer proteomic net-
works, both assumptions fail, as we show next.

Proteomic networks and tumor heterogeneity. Proteins control
many fundamental cellular processes through a complex but or-
ganized system of interactions, termed protein—protein interac-
tions (PPIs; Cheng et al., 2020). Moreover, aberrant PPIs are as-
sociated with various diseases, including cancer, and investigat-
ing PPIs can lead to effective strategies and treatments, includ-
ing immunotherapies, tailored to different individuals (Cheng
etal., 2020). Consequently, it is highly desirable to elucidate PPIs

in cancer and construct flexible graphical models that can iden-
tify multiple types and ranges of dependencies. Modern data
collection methods have allowed systematic assessment of mul-
tiple proteins simultaneously in the same tumor samples, of-
ten referred to as high-throughput proteomics (Baladandayutha-
pani et al, 2014). However, the resulting data are typically
not normally distributed, even after extensive preprocessing
and data transformations (eg, logarithmic). As an illustration,
Panel (B) of Figure 1 shows the level of non-normality in
protein expression data after logarithmic transformation for
2 cancers: lung adenocarcinoma (LUAD) and ovarian cancer
(OV) samples from The Cancer Genome Atlas (TCGA; We-
instein et al, 2013), which are used as case studies in this
paper. Specifically, in 4 exemplar proteins, namely Akt and
PTEN for LUAD and E-cadherin and Rb for OV, both the em-
pirical density distributions and quantile—quantile (q-q) plots
demonstrate deviations from the normal distribution with heav-
ier tails. The level of non-normality is further quantified us-
ing the H-score, defined as H(Y) = 2®[log{1 — pval(Y)}],
where @ is the cumulative distribution function of the stan-
dard normal distribution, and pval(Y') is the P-value of the
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FIGURE 1 (A) A schematic diagram showing the heterogeneity in networks with observed responses based on heterogeneous networks.
Heterogeneity in networks is characterized by covariates, X; = (Xi1, Xin) as G; = £(X;). The width of edges in the network implies the
magnitude of association between 2 nodes, and the 2 types of edges represent negative (dotted) and positive (solid) associations. Responses Y;
are obtained on heterogeneous networks $2(X;) that vary on covariate with ¥; ~ p{€2(X;)}, where p is a normal scale mixture distribution.
(B) Examples of the non-normality levels of protein expression data from lung adenocarcinoma (LUAD) and ovarian cancer (OV). Empirical
density from actual data (black) and the normal distribution (blue) for the expression of 4 proteins are shown on the top left with H-scores
shown in the upper right of each protein. Quantile-quantile plots of the expression of 4 proteins in LUAD (Akt and PTEN) and OV
(E-Cadherin and Rb) are illustrated in the lower left. The violin plot of H-scores across all proteins in LUAD and OV cancers is shown on the
right. H-scores are bounded between 0 and 1, and a higher H-score implies a higher level of non-normality (see manuscript for more details).
Two core assumptions of existing graphical models are violated in proteomic networks with heterogeneous networks (A) and non-normally

distributed data (B).

Kolmogorov-Smirnov test for the normality of Y (Chakraborty
et al., 2024). The H-score is bounded between 0 and 1, with
a higher H-score implying increased departure from normal-
ity. The H-scores for all 4 proteins are > 0.999, consistent
with the conclusions from the empirical and gq-q plots. Panel
(B) also shows the H-score across all the proteins in our
datasets, indicating a high degree of non-normality across both
cancers.

Another axis of complexity in cancer research is tumor hetero-
geneity. Itis now well known that tumors are heterogeneous, with

distinct proteomic aberrations even for the same type of cancer
across different patients (Janku, 2014). Accumulating evidence
suggests that considering tumor heterogeneity, both in general
and specifically at the level of PPIs, can enhance our understand-
ing of the progression of tumor growth and aid the development
of anti-cancer treatments (Cheng et al., 2020). Specifically, tu-
mor heterogeneity is characterized by different PPIs across pa-
tients and could potentially result in varied treatment responses
(Cheng et al., 2020). Hence, incorporating patient-specific in-
formation, that is, accounting for tumor heterogeneity, could
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TABLE 1 Comparison of existing methods and our proposed rBGR method across 4 different properties.

Method Uncertainty quantification Undirected Sample-specific Non-normality
GGMx (Ni et al,, 2022) v v v X
RegGMM (Zhang and Li, 2022) X v v X
GSM (Bhadra et al., 2018) v v X v
BGR (Nietal,, 2019) v X v X
RCGM (Chakraborty et al., 2024) v v X v
rBGR (the proposed) 4 v v v/

Abbreviations: BGR, Bayesian graphical regression; GGMx, Bayesian Gaussian graphical models with covariates; GSM, Gaussian scale mixture; rBGR, robust Bayesian graphical
regression; RCGM, Bayesian robust chain graph model; RegGMM, Gaussian graphical regression models with covariates.

provide valuable clues to identify PPIs disrupted during carcino-
genesis. In summary, constructing PPI networks poses 2 main
statistical challenges simultaneously: (i) coherently account-
ing for non-normality in proteomic networks and (ii) incorpo-
rating heterogeneous patient-specific information in graphical
modeling.

To encapsulate the tumor heterogeneity manifested in PPIs
and the corresponding proteomic networks, here we model the
edges of the proteomic network as a function of patient-specific
covariates, resulting in networks that continuously vary based on
these covariates. Consequently, each patient is associated with
a unique proteomic network, and the observed proteomic ex-
pression depends on the underlying proteomic network. To il-
lustrate, Panel (A) of Figure 1 shows heterogeneous networks
that are characterized by 2 covariates with the corresponding ob-
served proteomic expression.

Existing methods and modeling background. ~Most existing
methods address the aforementioned challenges separately, that
is, either accommodating non-normality without accounting
for the sample-specific information (eg, Pitt et al.,, 2006; Do-
bra and Lenkoski, 2011) or requiring normality when incor-
porating patient-specific information (Ni et al., 2022). To ac-
commodate non-normality, existing approaches transform the
original variables into normal variables either via determin-
istic functions (eg, Dobra and Lenkoski, 2011; Liu et al,
2012; Chung et al., 2022) or via random transformations (eg,
Finegold and Drton, 2011, 2014). For instance, Bhadra et al.
(2018) use a Gaussian scale mixture technique that general-
izes the t-distribution and introduce a new graph characteri-
zation for undirected graphs. Chakraborty et al. (2024) fur-
ther generalize this concept to characterize chain graphs with
both directed and undirected edges. However, all existing mod-
els that accommodate non-normality assume a common graph
across all patients and fail to incorporate the subject-specific
information.

More recently, several studies incorporated the subject-
specific information under explicit Gaussian assumptions. Mul-
tiple Gaussian graphical models were first proposed to esti-
mate graphs that vary across heterogeneous subpopulations
(eg, Peng et al, 2009; Danaher et al., 2014; Peterson et al,,
2015). Ni et al. (2019) introduce a more general frame-
work called “graphical regression” that constructs covariate-
dependent graphs through a regression model and incorpo-
rates both continuous and discrete covariates, in directed as
well as undirected settings (Ni et al.,, 2022). Similarly, Zhang

and Li (2022) provide a penalized procedure to estimate undi-
rected graphs through Gaussian graphical regression and intro-
duce continuous covariates in both the mean and the covari-
ance structures. However, all these models are developed un-
der the normality assumption for inferential and computational
reasons (Table 1). To the best of our knowledge, no existing
method incorporates subject-specific information under non-
Gaussian settings, which motivates the development of a new
methodology.

To address these challenges simultaneously, we devel-
oped a unified and flexible modeling strategy called robust
Bayesian graphical regression (rBGR), which allows the
construction of subject-specific graphical models for non-
normally distributed continuous data. rBGR makes 3 main
contributions:

(1) Robust framework to build subject-specific graphs for non-
normal data. rtBGR robustifies the normal assumption
via random transformation and incorporates covariates
employing graphical regression strategies. By accommo-
dating non-normality via random scale transformations,
we obtain a Gaussian scale mixture, which presumes an
underlying latent Gaussian variable, allows explicit in-
corporation of covariates in the precision matrix (Sec-
tion 2.2), and admits efficient posterior sampling proce-
dures (Supplementary Material Section S2).

(2) New characterization of dependency structures for non-
normal graphical models. The introduction of the ran-
dom marginal transformations engenders a new type of
edge characterization of the conditional dependence for
non-normal data, called conditional sign independence
with covariates (CSIx, Proposition 2). CSIx s a general-
ization of the notion of conditional sign independence
(CSI), introduced by Bhadra et al. (2018), which explic-
itly characterizes the sign dependence between 2 vari-
ables that holds for a much broader class of models than
Gaussian graphical models. We demonstrate via multi-
ple simulations that rBGR can accurately recover depen-
dency structures under different levels of non-normality
and against competing graphical regression approaches
that assume normality (Section 4).

(3) Deciphering the association of immunogenic heterogene-
ity with proteomic networks. We use rBGR to assess
proteomic networks across 2 cancers, lung and ovar-
ian, to systematically investigate the effects of the
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inherent immunogenic heterogeneity within tumors.
Specifically, we quantify immune cell abundance across
tumors and build PPI networks that vary across dif-
ferent immune cell abundances. Our analyses reveal
several important PPIs that are associated with im-
mune cell abundance; some corroborate existing bio-
logical knowledge, whereas others are novel associations
(Section S).

The rest of the paper is organized as follows: We introduce
rBGR models and characterization in Section 2. Section 3 fo-
cuses on priors and estimation. In Section 4, we conduct a se-
ries of simulations to evaluate the operating characteristics of
rBGR against competing approaches. Section S provides a de-
tailed analysis of the TCGA dataset, results, biological interpre-
tations, and implications. This paper concludes by discussing
implications of the findings, limitations, and future directions
in Section 6. A general-purpose R package and datasets used in
this paper for constructing PPI networks are provided in the
Supplementary Material.

2 ROBUST BAYESIAN GRAPHICAL
REGRESSION

We start with the Gaussian graphical regression (Section 2.1),
which is a special case of rBGR under the normality as-
sumption, and then generalize it to the robust case by ran-
dom transformations (Section 2.2). Subsequently, the in-
troduction of the random scale changes the interpretation
of the graph and motivates a new edge characterization
(Section 2.3).

2.1 Gaussian graphical regression

Consider p-dimensional random vectors Y, =
(Y, ..., Yip)T € R? as (continuous) responses with g-
dimensional random vectors of X; = (X, ..., X,vq)T e R1
as covariates for subject i =1, ..., n. A subject-specific PPI
network from proteomics data Y; is constructed to vary based
on the immune cell abundance X; (Section 5). Let G; = (V, E;)
be an undirected graph over p nodes, where V.= {1, ..., p}is
the set of nodes representing, Y; and E; C V' X V is the set of
undirected edges in the graph for subject i. An undirected edge
exists between nodes j and k if {j, k} € E;. Under the Gaus-
sian assumption, given the covariates X;, suppose Y; follows a
multivariate normal distribution,

Y| X~ Ny (0,® (X)), fori=1,...,n, (1)

where §(X,) = {Z)j’k(Xi)}po, j,k €V is a functional pre-
cision matrix (of covariates) with each element &/*(X;) as a
function that depends on X;. The functional precision matrix
characterizes the graph G; through zero precision elements.
Specifically, a zero element of the precision matrix represents a
missing edge in the graph; for example, for the case of a scalar
precision matrix, @/ (X;) = @/, zero precision implies con-
ditional independence (CI) and a missing edge in the graph of
CI under Gaussianity (Lauritzen, 1996). For the functional pre-
cision matrix, Ni et al. (2022) introduced covariate-dependent

graphs in G and generalized the concept of CI to CI with co-
variates (CIx, henceforth). In essence, given a covariate X, the
zero precision of &/¥(X;) = 0implies a missing edge of Clx be-
tween nodes j and k. Contrarily, when the functional precision
is non-zero @/*(X;) # 0, Yj and Y; are conditional dependent
with covariates (CDx, henceforth), and an edge exists between
nodes j and k given the covariate X;. By modeling the functional
precision matrix, CIx defines covariate-specific graphs that vary
based on different covariates.

2.2 Robust graphical regression via random transformation

In practice, the normal assumption does not always hold
(Figure 1B). Violation of the normal assumption results in the
failure of modeling graphs through normal precision matrices
and motivates new modeling strategies (Finegold and Drton,
2011; Bhadra et al., 2018). Here, we adapt the random trans-
formation approach (Bhadra et al., 2018) to allow for various
non-normal distributions with different tail behaviors. We fo-
cus on continuous distributions with heavy tails as observed
in our motivating data. To this end, let 0 < d; < oo for j =
1, ..., pbeindependent positive random scales and have distri-
butionas d; ~ p; withfdp(dj) < 00 almost surely. Let D; =
diag(1/dy, ..., 1/d;,) be a diagonal matrix for subject i. Given
random scales d;j, j =1, ..., p and the covariates X;, we as-
sume the distribution of D;Y; conditional on D; and X; follows
a multivariate distribution,

Y, v, 1"
DY, = |, ..., 2| ~N,(0,27'(X)),
diy dip
fori=1,...,n, (2)

where R(X;) = {®*(X)},xp, j,k €V is the functional
precision matrix that characterizes the graph with the
covariates X ;.

The model in (2) generalizes several existing approaches: (i)
Equation 1 is a special case of Equation 2 with d;; as a de-
generated distribution of a point mass at 1; (ii) when d; =
...=d, =71 with 7 2 following an inverse gamma distribu-
tion, Equation 2 is reduced to a multivariate ¢-distribution on
Y as used by Finegold and Drton (2014); and (iii) for gen-
eral d;j, (2) establishes a rich family of Gaussian scale mixtures
for the marginal distribution of Y; with the density p(Y;) =
[Q@rd;)~1? exp{—y3/(2d;)}dp(d;).

The introduction of random scales in Equation 2 allows us
to construct various marginal distributions of Y; with different
tail behaviors. Specifically, by matching tail behaviors of ran-
dom scales and the target distribution, random scales allow us
to model different marginal distributions that the data might ex-
hibit. For example, letting Y; decay polynomially, Y;/d; follows
a normal distribution if the random scale d; also has a poly-
nomial tail. In Figure 2, Panel (A) shows that the target dis-
tribution of Y with a polynomial tail deviates from the normal
distribution, but with the introduction of random scales, the
distribution of Y/d is normally distributed. A similar idea can be
used for target distribution with other tail behaviors, for exam-
ple, exponential tails. Although the random scales robustify the
model to accommodate non-normality, the resulting functional
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FIGURE 2 Robustification of non-normal distribution with random scales and the visualization of conditional sign independence with
covariates (CSIx) and CSDx. Panel (A) shows the qq plot to illustrate that random scale d accommodates the non-normal distribution Y with
Y/d following the normal distribution. Panel (B) demonstrates CSIx (Cases (i) and (ii)) and CSDx (Cases (iii) and (iv)) of Y; and Y; with the
partial correlation @'?(X;) = X; conditioning on Y3. Cases (i) and (ii) represent 2 examples of CSIx with zero precision of X; = 0 given

Y; = 1 and 0. Cases (iii) and (iv) demonstrate the cases of CSDx with non-zero precision of X; = 0.7 given Y; = 1 and 0. Panel (B) is centered
on the values between [—10, 10]. Panel (C) shows the nested relationship between CSIx and CIx (top) and CSDx and CDx (bottom). See

more details in Section 2.3.

precision matrix $2(X;) requires careful characterization and
interpretation.

2.3 Characterization of functional precision matrix
The functional precision matrix in (2) determines the graph-
ical dependence as a function of covariates, but the random
(marginal) scale changes the standard CI interpretations in the
resulting precision matrix, which requires a new characteriza-
tion. Bhadra et al. (2018) introduced the concept of CSI in
non-normal graphs, defined as follows. Consider the expression
of 2 proteins of interest as random variables Y} and Y;, with
the expression data from the rest of the proteins denoted by a
random vectorYs. GivenY'3, Y; and Y; are conditional sign inde-
pendentif P(Y, > 0| Y;,Y3) =P(Y, > 0| Y;3)and P(Y; >
0|Y,,Y3) =P(Y; > 0] Y3). Otherwise, Y; and Y; are condi-
tional sign dependent (CSD) given Y 3. The CSI of Y; and Y3 im-
plies that the information of Y; does not affect the sign of Y, given
Y;5. That is, conditioning on the rest of the protein expression
data Y3, the probability of over- or under-expression for Y, is in-
dependent of the expression level of Y;. Under the multivariate
distribution of (2) with a constant precision matrix 2 (X;) = @,
zero precision of w/** = 0 and the CSI of Y; and Y} given the rest

are equivalent, which can be represented by a missing edge be-
tween nodes j and k in an undirected graph (Bhadra et al., 2018;
Chakraborty et al., 2024).

In this paper, we generalize the concept of CSI to incorpo-
rate covariates and consider the subject-specific CSI of 2 random
variables given all the other random variables and a realization of
covariates X ;, as formalized in the following proposition:

Proposition 1 (Conditional Sign Independence with Covari-
ate (CSIx)) Given random scales D; = diag(1/dy, ..., 1/d;,)
and the covariates X, consider the conditional distribution of D;Y ; as
Equation 2 with functional precision matrix @(X;). If o*(X;) =
0, thenY;; and Yy are CSI. Otherwise, when W (X;) # 0, then Y
and Yy, are CSD.

The proof of Proposition 1 follows the fact that w/**(X;) = 0
implies the CSI of Yj; and Yy given X, and we call ¥;; and Yy
conditional sign independent with covariates X; to highlight the
role of the covariates in the graph. Otherwise, Y;; and Yy are
called conditional sign dependent with covariates (CSDx). See
Supplementary Material Section S1 for details.
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An example CSIx. We use a simple low-dimensional example
to visually demonstrate and interpret CSIx and CSDx. Follow-
ing Proposition 1, we show 2 examples with a general functional
precision matrix (X ). Consider a trivariate distribution of (2)
with unit diagonal elements and w'?(X;) = X;. We illustrate 2
scenarios in Panel (B) of Figure 2:

* When X; = 0, we obtain the CSIx of Y} and Y, given 2 dif-
ferent values of Y3 = 0 (Case (i)) and 1 (Case (ii)).

e When X; = 0.7,Y; and Y, are CSDx, and we observe that
the distribution of the sign of Y, varies based on the value
of Y7 (Case (iii) and Case (iv)). Specifically, as Y; increases,
Y, tends to be negative.

By modeling the functional precision matrix, we can build a
covariate-specific precision matrix that depends on the different
realizations of the covariates X ;. Consequently, we can construct
a graph of CSI corresponding to the precision matrix and the
covariates.

We can now conceptually compare models (1) and (2). Both
models incorporate the covariates in the functional precision
matrix, which characterize the covariate-specific graph. How-
ever, the interpretation of the graph differs. The graph from
model (2) encodes CSIx, whereas the graph from model (1) en-
codes CIx. We visualize the relationship between CSIx and Clx
in Panel (C) of Figure 2 and summarize it as follows:

* Forw = 0, CSIxisaweaker condition than ClIx since CSIx
considers only the sign, while CIx depends on both the
sign and the magnitude.

* When w # 0, CSDx is a stronger condition than CDx
since CDx allows either magnitude or the sign to be de-
pendent, while CSDx focuses on only the sign.

3 PRIORS AND ESTIMATION

The functional precision matrix $2(X;) lives in a high-
dimensional space. For example, the PPI network for OV
from our application considers O(np(p — 1)/2) = 197, 620
possible edges, which makes joint estimation difficult if not
untenable, especially since variability across each subject
i is allowed. Hence, we employ a neighborhood selection
procedure (Meinshausen and Bithlmann, 2006) to estimate
the functional precision matrix that has been used in sev-
eral graphical models (eg, Ni et al, 2019; Zhang and Li,
2022). This procedure offers 3 main benefits: (i) tractable
estimation, (ii) reduced computation burden, and (iii) flexi-
ble prior elicitation. Specifically, we regress 1 node Y; on the
rest nodes Y, k 7 j and build the graph based on zero co-
efficients (Sections 3.1 and 3.2). This use of neighborhood
selection, which employs conditional estimation as opposed
to joint estimation in (2), effectively reduces the number of
edges to O(qp(p—1)/2) = 3280—a 60-folds decrease.
Moreover, the effective number of edges can be reduced by
different model specifications, such as a thresholding mecha-
nism (Section 3.3), and different priors, such as spike-and-slab
(Section 3.4).

3.1 Regression-based approach for functional precision
matrix estimation

The rBGR model leverages a regression-based framework on
model (2) to relate the regression coefficients and precision ma-
trix. Given random scales D;, we regress 1 variable on all other
variables and relate the partial correlation with regression coef-
ficients. Zero coefficients are then equivalent to zero partial cor-
relations (Meinshausen and Bithlmann, 2006). Specifically, we
construct node-specific regressions as

Y « Yi
o Zﬁj,k(xi)I + €, (3)
ij kot ik

where €;; ~ N(0, 1/w//(X;)) and the functional coefficient

Bix(X;) = —% Under this specification, 8; 1 (X;) = 0 if

and only if @/*(X;) = 0, which enables the functional coef-
ficients to characterize the covariate-specific graphs. However,
the interpretation of the coefficients changes from the standard
Gaussian graphical models due to the introduction of the ran-
dom scales, which is detailed in the next section.

3.2 Graph construction through regression coefficients

We build graphs with a missing edge between nodes j and k
when Y; and Y} are CSIx given the remaining variables and the
covariates X;. Consider Y; and X; with the regression (3). We call
B;..(X;) the conditional sign independence function (CSIF) be-
cause zero CSIF, B; (X;) = 0, implies that Y; and Y; are CSIx
given all the other nodes Y _(; 1y and covariates X;, as formally
characterized in the following proposition.

Proposition2 Consider model (3).1f B; 1 (X;) = 0, then P(Y; >
0 | Yk,Y—{j,k}in) = P(Y] >0 | Y_{jyk},X,') and P(Yk >0 |
YI"Y—{IV’C}’ Xi) = P(Yk >0 | Y_{j,k],X,-).

We sketch the proof here and leave the details in
Supplementary Section S1. The proof follows from the fact

that the CSIF B;(X;) = —% is related to the partial
correlation, and a zero partial correlation is equivalent to a zero
precision of w/*(X) = 0, which ensures the CSIx between
Y; and Y (see the example in Section 2.3). Therefore, zero
CSIF indicates the CSIx between Y; and Y given the remaining

response variables Y _; 1 and covariates X;. In this paper, we

further assume @’/ in CSIF to be scalar, ﬂj,k(Xi) = —%,
for ease of computation. Note that our main interest is edge
selection, and the CSIF is 0 if and only if @/*(X;) = 0, which

is unrelated to w//.

3.3 Modeling the CSIF
Proposition 2 transforms the problem of robust graph construc-
tion to a more tractable regression coefficient selection (ie, se-
lecting which part of CSIF is exactly 0). Therefore, modeling the
CSIF is crucial to the graph estimation. To this end, we parame-
terize the CSIF as a product of 2 components:

Bik(Xi) = 0;(X;) (] 0,x(X;) [>¢t;). (4)
—— ————

Covariate function ~ Thresholding function
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We elaborate the role and justification of each component
below.

Covariate functions [0, (e)]. For simplicity, we consider only
the linear effects of covariates X;, Qj,k(Xi) = ZZ:1 ok, 1h iy
where & . j, represents the coefficients for the hth covariate. The
covariate function allows similar edge sets for individuals with a
similar level of X; and varies the graph, thus borrowing strength.
If desired, it is relatively straightforward to extend o ;. ; to non-
linear effects by, for example, using basis expansion techniques
such as splines.

Thresholding functions [1(] 64(X) |> t,)]. The edge thresh-
olding mechanism is desired to achieve sparse graphs in rBGR
due to the large number of parameters. For example, the ovar-
ian PPI network in our application requires gp(p — 1)/2 =
3280 parameters and results in a dense graph with inefficient
inference. To solve the problem, we truncate edges with
small magnitudes with an indicator function (| 0k x) |> t ),
where t; is the threshold parameter specific to the node j. An
edge is shrunk to 0 and removed when the magnitude is smaller
than the threshold parameter, resulting in a sparse graph. One
might consider the threshold parameter as ¢; ;. However, ¢; ;. is
not fully identifiable when e ., = O forallh =1, ..., g since
when 6 i (X;) = 0, the value of t j.k can be arbitrary. To alleviate
the problem, we assume t; ;. = t; to improve the identifiability
as long as one of 0 ;. # 0.

3.4 Prior specification
rBGR contains 3 parameters: (1) random scales d}, (2) thresh-
old parameter t;, and (3) covariate coefficients e k. . To com-
plete the model specification, we assign priors as follows:

d]' ~ (1 — ﬂj)él(dj) + njpj(dj); tj ~ Unlf(O, tmax)
okn ~ VidkesN(O, i) + (1 = ¥ 6n)N(O, vovj k),

where v and fyx are pre-specified hyperparameters, 7; mod-
els the degree of non-normality with a beta prior of 7; ~
Beta(ay, by ), p j is a function to accommodate the non-
normality, ¥j . is a binary variable with a Bernoulli prior of
Vikh ™~ Ber(pj), and v; ;. ; decides the variance of ®j ki with
an inverse gamma prior of v; ¢, ~ InvGa(a,, b, ). Specifically,
when d; = 1,Y; is normally distributed. When d; ~ p;, Y; fol-
lows a non-normal distribution. We match the tail behavior of p ;
and the marginal distribution of Y; and allow each marginal dis-
tribution Y; to have a different level of non-normality by specific
;. For the current model, we focus on the Y; with polynomial
decay, as illustrated by the motivating data in Figure 1, and assign
aninverse gamma distributionon p;(d;) = InvGa(dJZ. | ag, bg).
For threshold parameter t;, we assign a uniform prior on t; to
model the thresholding mechanism and control the graph spar-
sity. Intuitively, when t; — 0, no edge is truncated with a fully
connected graph. When t; — 00, all edges are shrunk to 0 with
all nodes disconnected. For covariate coefficients oy 5, we as-
sign a spike-and-slab prior to achieve the covariate sparsity with
a small vy because not all covariates necessarily contribute to
the varying structure. These model specifications enable an ef-
ficient Gibbs sampler, and we show details of the posterior in-
ference, including the conditional distributions and coefhicient
symmetrization in Supplementary Material Section S2.
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4 SIMULATION STUDIES

We empirically demonstrate the performance of rBGR under a
variety of non-normal contaminations and against other com-
peting models in terms of edge and covariate selection. To
the best of our knowledge, no other existing method estimates
covariate-specific graphs for non-normal data. Therefore, we
compare rBGR to 2 models that estimate the covariate-specific
graph without addressing the violation of the normality as-
sumption. Specifically, we consider Bayesian graphical regres-
sion (BGR; Ni et al., 2019) and the Gaussian graphical regres-
sion models with covariates (RegGMM; Zhang and Li, 2022)
representative of a fully Bayesian and a frequentist penalization-
based model for the covariate-specific graph under the nor-
mal assumption, respectively. Implementation details of all algo-
rithms can be found in Supplementary Materials Section S3.1.
Data-generating mechanism. We generate the observed non-
normal data by multiplying the random scale by the latent data

T
Y = [Y,’f, e Yt:] . Specifically, the latent data are normally

B
distributed as Y <N (0, Q71(X;)), where covariates follow

a uniform distribution as X; % U(—1,1) and (X;) is the
true precision matrix representing the undirected graph. For
Q(X;), we assign unit diagonal elements and randomly pick 2%
of the off-diagonal to be non-zero. We let the non-zero preci-
sion depend on the covariates linearly and truncate the preci-
sion with a magnitude smaller than 0.15. We obtain the ran-
dom scales from a mixture distribution of the point mass at 1
and an inverse gamma distribution and assign 3 different lev-
els of non-normal contamination: 7 € {0, 0.5, 0.8}. We multi-
ply the random scales by Y7 to generate the observed data of
Y, ..., Y] = [Yidu, ..., Yi;d,-p]. For all simulations, we set
the sample size and the dimensions of Y; and X; as (n, p, q) =
(250, 50, 3) based on our real data case studies. We show the
results for 50 independent replicates.

Performance metrics. We evaluate the graph recovery through
the edge and covariate selection. For covariate selection, we re-
port the true positive rate (TPR), true negative rate (TNR),
Matthew’s correlation coefficient (MCC) with the cut-off for the
posterior inclusion probability (PIP) at ¢y = 0.5, and the area
under the receiver operating characteristic curve (AUC). For
edge selection, we use AUC and 3 metrics of TPR, TNR, and
MCC with the cut-off for the edge posterior probability (ePP)
at ¢; = 0.5. We further investigate the sign consistency by ex-
amining the agreement between the posterior probability for the
signs of CSIF sgn(;/g\j,k (X;)) and the true signs of sgn (8 ¢ (X;) ).
Specifically, we exclude the zero CISF and focus on the subset
of the data with both true and estimated non-zero CSIF to re-
strict the problem as 2-class classification (positive versus neg-
ative). We assess the sign consistency by MCC (referred to as
sign-MCC).

Simulation results. Panel (A) of Figure 3 shows the simulation
results for covariate selection. We observe that tBGR outper-
forms BGR and RegGMM across all non-normality levels, as
indicated by higher MCC and AUC. The difference in MCC
and AUC between rBGR and the other competing methods in-
creases when the non-normality contamination level increases,
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FIGURE 3 Simulation results: graph recovery for Bayesian graphical regression (BGR) (red), robust Bayesian graphical regression ({BGR)
(green), and Gaussian graphical regression models with covariates (RegGMM) (blue) under different levels of non-normality in terms of (A)
covariate selection (top row) and (B) edge selection (bottom 2 rows). Panel (A) shows the covariate selection through 4 metrics (from left to
right: true positive rate [TPR], true negative rate [TNR], Matthew’s correlation coefficient [MCC], and area under the receiver operating
characteristic curve [AUC]) that are measured under 3 different levels of non-normality. Panel (B) demonstrates the edge selection by 4 criteria
(from upper left to lower left: TPR, TNR, MCC, and AUC) and the sign consistency by sign-MCC (lower right) for non-zero edges. All values

for TPR, TNR, and MCC are measured at a cut-offat ¢y = ¢; = 0.5.

which is expected. For TNR, rBGR performs slightly worse than
BGR but better than RegGMM across all non-normality levels.
However, all 3 methods select correct covariates (> 93%) with
small differences (< 5%) in terms of TNR. For TPR, rBGR out-
performs BGR under all levels of non-normality, and the advan-

tage of rBGR becomes more prominent as the non-normality
increases. Compared to RegGMM, rBGR’s performance is com-
parable under a normal distribution in TPR, but rBGR is pre-
ferred when the level of non-normality increases. Overall, mod-
eling non-normality using random scales in rBGR is favorable
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compared to models without random scales in terms of covariate
selection.

We show the graph recovery for the edge selection in Panel
(B) of Figure 3. For edge selection, rBGR outperforms BGR and
RegGMM in AUC, and the advantage of rBGR increases with
a larger discrepancy between rBGR and the competing meth-
ods when the non-normality level increases. For MCC, rBGR
outperforms RegGMM under all levels of non-normality, but is
slightly inferior compared to BGR under the normal distribu-
tion. However, rBGR is favored when the non-normality level
increases. For TPR, rBGR is better than BGR under all levels of
non-normality, and slightly worse than RegGMM under the nor-
mal assumption. However, when non-normality increases, iBGR
starts to surpass the RegGMM. Both TNR and sign-MCC show
excellent selection performance (> 95%) for all 3 methods,
with minimal differences (< $%) across the 3 non-normality
levels.

In summary, modeling non-normality through random scales
in rBGR results in equivalent (under the normal distribution) or
better performances in all metrics for edge selection compared
to the other methods.

Additional simulations and model evaluations. We provide addi-
tional simulation results in the Supplementary Material for (i)
details of data-generating mechanisms (Section $3.2), (ii) con-
vergence of the algorithm (Section $3.3), (iii) different cut-off
of ¢g and ¢; controlling for false discovery rates (Section $3.4),
(iv) exponential tails of p;(d;) = Exp(dﬂad) (Section S3.5),
(v) high-dimensional networks of p = 100 and q = 1 (Sectio
n $3.6), and (vi) comparison to homogeneous graph models
(Section S3.7). Overall, rBGR generates equivalent or better
performances compared to other methods under various non-
normal tails and higher dimensional networks.

S ANALYSES OF PROTEOMIC NETWORKS
UNDER IMMUNOGENIC HETEROGENEITY

Key scientific questions and dataset overview. Aberrant PPIs are as-
sociated with various diseases, including cancer (Cheng et al,,
2020), and immune cells around the tumor can modulate mal-
functioning PPIs to influence tumor growth and progression
(Joyce and Fearon, 2015). In cancer, cells around the tumor
form the tumor microenvironment (TME), which closely inter-
acts with the tumor (Whiteside, 2008). For example, dysregu-
lated PPIs in the tumor suppress multiple immune cells in the
TME to escape detection of the tumor by the immune system
(Whiteside, 2008), while immune cells in the TME can alter the
aberrant PPIs to eliminate cancerous cells (Joyce and Fearon,
2015). This demonstrates the connection between the dysregu-
lated PPIs and the TME and shows the importance of immuno-
genic heterogeneity in tumor behavior. A better understanding
of the association of immune cells with aberrant PPIs offers a
foundational paradigm for potential targeted therapies in can-
cer (Cheng et al,, 2020). To this end, our key scientific ques-
tions were as follows: (i) identify important PPIs across differ-
ent cancer types and (ii) discover the effect of immunogenic
heterogeneity on aberrant PPIs as potential targets for future
investigation.
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We exemplify the utility of rBGR by using data from TCGA
to build patient-specific PPI networks and investigate the asso-
ciation of immunogenic heterogeneity across 2 different cancers.
Specifically, we used a reverse-phase protein array for proteomic
data (Y) to build the PPI network of a CSIx graph, and we in-
corporated the immune cell transcriptome signatures as covari-
ates (X) as markers of immunogenic heterogeneity. Our anal-
ysis focuses on OV and LUAD as representative examples of
2 cancers that elicit distinct immune responses. OV represents
an immunologically “cold” tumor, with a weaker immune re-
sponse, while LUAD is considered an immunologically “hot” tu-
mor, with a stronger immune response (Galon and Bruni, 2019).
We focus on proteins in 12 important cancer-related pathways
(Haetal,, 2018) and obtain p = 41 proteins with n = 241 and
n = 360 patients for OV and LUAD, respectively. For covariates,
we included mRNA-derived immune cell gene signatures and
quantified the immune cell abundance corresponding to T cells
and 2 crucial types of myeloid-derived suppressor cells, mono-
cytes and neutrophils, for both OV and LUAD. Both T cells
and myeloid-derived suppressor cells are essential in both OV
and LUAD since T cells are the main immune component that
kills cancer cells, while myeloid-derived suppressor cells regu-
late T cells (Whiteside, 2008). We ran rBGR on OV and LUAD
with 20 000 iterations and discarded the first 19 000 iterations.
The convergence diagnostics and the details of data preprocess-
ing procedures are provided in Supplementary Material Section
S4.1.

5.1 Population-level proteomic networks

We first focus on the covariate-dependent population-level net-
works for OV and LUAD that are estimated by &; . . The corre-
sponding networks are shown in Figure 4 (Panels (A) for LUAD
and (B) for OV). We observed that the number of edges is much
fewer in OV compared to LUAD for all immune components
(T cells: [7, 15], monocytes: [S, 82], and neutrophils: [7, 260]
for [OV, LUAD]). This is further evidenced in Panel (C), which
shows the distribution of PIPs for OV and LUAD. Interestingly,
we observe that the PIPs for LUAD are higher than those for
OV for all immune components (medians of [OV, LUAD] for
T cells: [0.123, 0.271], monocytes: [0.131, 0.307], and neu-
trophils: [0.127, 0.380]). The higher PIPs in LUAD imply that
immune components have a greater correlation with PPIs in
LUAD compared to OV. This finding is consistent with the ex-
isting biology (Galon and Bruni, 2019), as LUAD belongs to the
immune hot tumors, with a stronger immune response.
Population graphs also confer specific information about the
interaction between proteins. For example, we observe an edge
between Akt and PTEN with the highest PIP regulated by T cells
for LUAD (Figure 4A), suggesting an association of T cells with
the PPI between Akt and PTEN. It is well known that PTEN
downregulates Akt, and the loss of tumor suppressor PTEN of-
ten leads to a dysregulated PI3K pathway, including Akt and tu-
mor growth in LUAD (Conciatori et al., 2020). For OV, despite
the smaller number of PPIs, we still identify important PPIs.
For example, rBGR suggests a PPI regulated by T cells between
Caveolin-1 and PR. In OV, Caveolin-1 is regulated by proges-
terone, which is mediated by PR, and suggests a result consis-
tent with the estimated PPI between Caveolin-1 and PR (Syed
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bigger node represents a higher degree of connectivity.

et al.,, 2005). Overall, our analyses capture important hub pro-
teins and characterize the cancer PPIs, and the results are highly
concordant with the existing cancer literature.

5.2 Patient-specific networks: 81 (X;)

We next focus on patient-specific PPI networks to examine the
effect of immune component abundance (X;) on PPIs. Specifi-
cally, we vary 1 immune component, with the rest of the com-
ponents fixed at their mean, and generate networks of CSIx for
different individuals at S percentiles (Sth, 25th, SOth, 75th, and
9Sth percentiles) of the varying immune component. We set
the cut-off for the ePP at ¢; = 0.5 and show the networks for
LUAD in Figure S with the networks for OV in Supplementary
Material S4.

We focus on PPIs of CSDx that show dependency on the
abundance of a specific immune component. We present PPIs
that change signs in the Sth and 95th percentiles, indicating
specific PPIs that are correlated with an immune component,
such as Akt-PTEN for T cells, Bid-PCNA for monocytes, and
Bax-GATAS3 for neutrophils. Interestingly, we discovered that
the sign of Akt-PTEN is positively correlated with the T-cell
abundance. Specifically, when T-cell abundance is higher, Akt-
PTEN is positive, whereas Akt-PTEN is negative when T cells
are scarcer. It is well established that PTEN suppresses Akt sig-
naling and that the loss of PTEN results in the hyper-activation
of Akt in cancer cells and low T-cell abundance in lung cancer
(Conciatori et al., 2020). In addition, we find the Bid-PCNA
edge is positively correlated with monocyte abundance. It has
been shown that PCNA promotes Bid through caspase proteins
and is crucial to immune evasion in cancers (Wang et al., 2021).
Finally, we discover that the Bax-GATA3 edge is positively cor-
related with neutrophil abundance. Recently, GATA3 has been
found to downregulate BCL-2 (Cohen et al., 2014), which in-
hibits the Bax protein (Cohen et al., 2014 ), and neutrophils pro-
mote the Bax to induce apoptosis (Li et al., 2020). These find-

ings highlight specific PPIs that are influenced by the abundance
of immune components and suggest potential targets for further
investigation.

6 DISCUSSION

In this paper, we develop a flexible Bayesian framework called
rBGR to construct heterogeneous networks that explicitly ac-
count for covariate-specific information for non-normally dis-
tributed data. By accommodating the non-normal marginal
tail behaviors through random scales, we construct covariate-
specific graphs through graphical regression-based approaches.
This framework allows us to explicitly characterize, infer, and
interpret covariate-specific edge dependencies through CSIFs.
We also propose an efficient Gibbs sampler for posterior
inference. Our simulations demonstrate that rBRG outper-
forms other existing Gaussian-based methods that construct
the covariate-specific graphs under a variety of settings, which
display non-normal marginal behavior such as heavy tails or
skewness.

We employ rBGR on proteogenomic datasets in 2 cancers to
build patient-specific PPI networks and identify PPIs that are
impacted by tumor heterogeneity. Specifically, we quantify the
immune cell abundance to elucidate the effects of immunogenic
heterogeneity on aberrant PPIs for lung and OVs that are trig-
gered by different levels of immune responses. Our analyses align
with existing biology along 3 major axes: (i) immune responses,
(i) hub proteins, and (iii) PPIs. For example, higher connec-
tions in LUAD are consistent with existing biology since LUAD
belongs to the class of the immunologically “hot” tumors. We
identify a hub protein of HER2, which is associated with poor
survival in LUAD. Another example is the PPI of Akt-PTEN,
which is consistent with the knowledge that PTEN downregu-
lates Akt. Our study further suggests PPIs that vary with spe-
cific immune components. For example, we discover that PPIs
of Akt-PTEN, Bid-PCNA, and Bax-GATA3 vary positively with
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FIGURE 5 Covariate-specific networks of lung adenocarcinoma (LUAD) under S different percentiles of immune component abundances for
(A) T cells, (B) monocytes, and (C) neutrophils with the other 2 components fixed at mean zero. The estimated networks for varying immune
components are shown from left to right for Sth, 25th, 50th, 75th, and 95th percentiles. Edges are identified with signs (green: positive and red:
negative) when the edge posterior probabilities (ePPs) are higher than ¢; = 0.5.

T cells, monocytes, and neutrophils, respectively. These find-
ings suggest potential future targets for immunotherapy in lung
cancer.

In the current implementation, we consider only the linear ef-
fect of continuous covariates to reduce the inferential and com-
putation burden. One extension is to consider discrete covariates
such as membership indicators that result in a robust multiple-
group graphical model. It is also possible to include the non-
linear functionals through basis expansion techniques such as
splines (Ni et al,, 2019); however, this will increase the com-
putational burden. Another possible extension is other types of
graphical dependencies. For example, a chain graph considers an
ordered multi-level structure via directed and undirected edges
(eg, Chakraborty etal., 2024). By introducing random scales and
generalizing the regression coeflicients as functional coefficients,
the model can include the covariates in the precision matrix to
build the subject-specific chain graphs. Another direction can be
to include discrete nodes and to extend the concept of CSIx for
discrete data (Bhadra etal., 2018). All these directions are left for
future investigations.

SUPPLEMENTARY MATERIALS
Supplementary material is available at Biometrics online.

‘Web appendices, Figures, and data and code referenced in Sec-
tions 2 to S are available with this paper at the Biometrics web-
site on Oxford Academic. The code is also available on GitHub
https://github.com/bayesrx/rBGR.
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