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Abstract

In this paper we further extend the optimal bubble riding model proposed in Tangpi and Wang
(Optimal bubble riding: a mean field game with varying entry times, 2022) by allowing for
price-dependent entry times. Agents are characterized by their individual entry threshold that
represents their belief in the strength of the bubble. Conversely, the growth dynamics of the
bubble is fueled by the influx of players. Price-dependent entry naturally leads to a mean
field game of controls with common noise and random entry time, for which we provide an
existence result. The equilibrium is obtained by first solving discretized versions of the game
in the weak formulation and then examining the measurability property in the limit. In this
paper, the common noise comes from two sources: the price of the asset which all agents
trade, and also the the exogenous bubble burst time, which we also discretize and incorporate
into the model via progressive enlargement of filtration.

Keywords Asset Bubbles - Mean field games with common noise - Control interaction -
Random times

1 Introduction

Financial bubbles have become a topic of growing concern in the recent past. The classical
view of Beaver [10] that investors only follow “information content” is clearly not applicable
to bubbles. Empirical evidence demonstrates the substantial stock price premium following
vacuous company announcements of broad intentions to enter the cryptocurrency market [3]
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and investors’ overreaction to description of Blockchain activities in firms’ 8-K disclosures
[22]. Journeying back another thirty years, a similar “gold rush” occurs during the dot-
com bubble. Instead of avoiding the overpriced technology segment, sophisticated investors
such as hedge funds invest heavily in the bubble while acknowledging an inevitable burst
in the future [33, 41]. The herding behavior is more prevalent now due to the increasing
democratization of investing, as evidenced by the dramatic surge of retail traders during the
“meme-stock" frenzy [24]. Recent advancements in generative artificial intelligence (Al)
unleash a frenzy both on Wall Street and among retail investors, pushing up stock prices of
big technology companies. As NVIDIA’s market capitalization marches across the trillion
dollar line, many begin to suspect overvaluation in the semiconductor market. However,
despite the unprecedented interest rate hikes and the recent turmoil in the cryptocurrency
market, enthusiasm towards a potential Al bubble has not dampened. The intricate interplay
between the intention to leverage rapid growth and the apprehension towards a future price
adjustment provides the motivation for our equilibrium-based model proposed in [62], which
we further investigate in this paper.

Substantial empirical evidence points to the inaccuracy of viewing bubbles merely as
“irrational exuberance”. A wealth of literature exists on the topic of rationality behind bubbles.
The famous “greater fool” model formulated by [5], as well as a more recent adaptation
[54], pinpoints the driving factor behind bubble riding as the perception that others will
acquire the overpriced asset in the future. Abreu and Brunnermeier [1] explore the idea
of “information asymmetry” from another perspective by giving investors different entry
times and various priors on the bubble formation time (see also [29, 30] for extensions of
this model). Sotes-Paladino and Zapatero [61] use a dynamic trading model to show that
sophisticated, risk-averse money managers can invest in overvalued non-benchmark asset
due to the presence of convex incentives. The authors in [7, 58] argue that a “chain of
middlemen” could also spur the escalation of the asset price.

Despite extensive debates surrounding how a bubble is formed, or even defined, it is
commonly agreed that the influx of investors and capital is what sustains the overvaluation.
In other words, it is natural to model these events in a large population setting. This is the
motivation behind the use of a mean field game (MFG) in our previous paper [62], which
should be understood as the infinite population limit of symmetric stochastic differential
games [16, 26, 46, 52]. First introduced by Lasry and Lions [49-51] and also by Huang et al.
[35, 36], MFGs provide tractable solutions compared to large but finite population games. We
refer the readers to the monographs of Carmona and Delarue [17, 18] for the probabilistic
approach and to the notes of Cardaliaguet [15] for the partial differential equation (PDE)
approach to MFGs.

Our previous study [62] introduced a class of MFGs with varying entry times. Players
begin to take advantage of the rising price trajectory at different times during the “awareness
window”, a period viewed by Abreu and Brunnermeier [1] as a measure of heterogeneity
among traders. The inflow of traders in turn fuels the price dynamics, whose drift is a function
of the number of players currently in the game. We modeled the burst of the bubble as the
minimum of exogenous and endogenous burst times. While an exogenous crash occurs due
to events independent of trading, an endogenous crash happens when the average inventory
of the players in the game falls below a threshold. We also included price impact as a sec-
ond source of interactions among the agents through the controls, leading to an extended
MFG. We proved existence of MFG equilibrium using the method initiated in [19]. Leverag-
ing established methods on filtration enlargement, we were able to decompose the optimal
strategy into before-and-after-burst segments, each part being progressively measurable with
respect to the original filtration. Numerically, our model discovers that the equilibrium strat-
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egy attempts to delay the burst time and therefore sustain the growth if the bubble is large
enough.

The aim of this paper is to remove two major limitations of the model in [62]. The first
is that the entry times could not depend on the price of the traded asset. They were instead
modeled as independent samples from the same pre-determined distribution. However, an
intuitive entry criterion for bubble riders is the first time the price crosses a certain threshold,
which we use to characterize player influx in the present work. The second improvement is
that we allow for an unbounded drift term in the price dynamics. In particular, since players’
entry affects the price, the drift term will depend on the running maximum process of the
price itself. We also provide a well-posedness result for this path-dependent dynamics.

As natural as these changes may seem, they require the model to incorporate a “common
noise” which is famously challenging because the law of the population has to react to the
realization of the noise. Just as in the case of a classical MFG, there are two approaches to deal
with common noise. The analytic approach either reformulates the problem into a coupled
system of stochastic PDEs or a deterministic, but infinite dimensional, PDE called the master
equation (see Cardaliaguet et al. [16] for a careful presentation). Given a sufficiently smooth
solution of the master equation, one can usually obtain strong results on the MFG equilibrium
such as uniqueness or even regularity. However, almost all well-posedness results of the
master equation require the Lasry-Lions monotonicity condition [51], or the “displacement
monotonicity” condition [2, 32, 37] (see also the “anti-monotonicity” condition [56]). On the
other hand, the probabilistic approach introduced by Carmona et al. [20] avoids making this
assumption by a compactness argument. Since the monotonicity condition is too strong for our
model, we take the latter route for constructing MFG equilibrium. A notable drawback to this
compactness approach is that the controls might only be measurable with respect to a larger
filtration. A well-known immersion property is enforced to ensure fairness in observing that
additional information. Immersion is a crucial property in the theory of filtration enlargement
[44, 65], stochastic control [43, 45], the theory of conditional McKean-Vlasov SDEs [48]
and of course MFGs [20]. For an extensive discussion and generalization on both methods of
tackling common noise, see [18]. Other recent extensions on related topics include MFGs with
finite state space [9], restoring uniqueness of equilibrium [25], incorporating absorption [14],
convergence from N-player games [26, 47], and MFGs with interactions through controls
[28]. To our knowledge, there are not general existence results on the equilibrium of extended
MFGs with common noise, which will be our main contribution in this work (Theorem 2.8).
It is worth noting that although we provide a more intuitive model by incorporating common
noise compared to our previous version in [62], the result is certainly weaker and less explicit,
especially for numerical analysis.

The paper is structured as follows. In Sect. 2, we recall the features of the N-player model
for bubble riding from [62] and also introduce the new mechanism for price-dependent entry.
Then we formulate the limit mean field game with common noise and state the assumptions
as well as the main existence result. The proof is broken down into two parts. In Sect.3 we
first show an intermediate step with a weaker notion of admissibility. Then we strengthen the
result in Sect.4 by reducing the filtration for the controls.
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2 Model setup
2.1 The N-player game
2.1.1 Price-dependent entry

Suppose the price trajectory P; starts at Py > 0 at time # = 0 when the bubble starts. Each

player i is characterized by p’ ES v, on [Py, 00), a price threshold for the player to deem
the bubble worth riding. The player enters the game at

f=inf{t >0: P, > p'} A (T +1).

The value T + 1 is chosen arbitrarily, but strictly greater than T, in order to bound ¢* if the
price never reaches the threshold. Note that in contrast to [62], the entry times are still random
even if we fix the individual information p’ due to their dependence on the common noise
in P.If the price trajectory is cadlag and jumps are non-positive, then P,; = p' on the event
that 1/ < T. We assume that there are initial players with thresholds Py who are already in
the game at 7 = 0. Thatis, v, ({ Po}) > 0. Let p= (pl, ce, pN) be the vector of thresholds.
Then the number of players in the game by time ¢ is

N N
. N.p
Nint, Ps ) = 3 Miyicy = D Umax, oy pezpiy = NFp 7 (max Py) (1)
i=1 i=1 B
where F ;V X is the empirical CDF of the thresholds (p!, ..., p™).

2.1.2 Price dynamics in the bubble phase

Let PT denote the price process in the bubble phase before the burst. The growth of the
bubble should depend on the inflow of players, N;, (¢, P; p), which by (1) is a function of
the maximum process of the bubble price itself. This motivates the following price dynamics
before burst

dP’ = b(t, max P}, PH)dt +0odB;, Py = Py, )
S=

where b is called the bubble trend function. Because the price grows with entry, b depends
on the thresholds p and should be monotone increasing in its second argument. We present
the generalized form of the two examples for b given in [62] with price-dependent entry.

Example 2.1 (Exponential Bubble) Abreu and Brunnermeier [1] assumed a fully determin-
istic model with exponential price trajectory. In our setting, this translates to

AP} =¢Prdt +oodB;, € =LF) *5(m3tx P,
s<

where £ > 0 stands for the peak growth rate of the bubble. If we assume that everyone enters
at t = 0, that is having p' = Py for all i, we obtain the model used in [1] with rate £.

Example 2.2 (LPPL Bubble) The Johansen-Ledoit-Sornette (JLS) model proposed by
Johansen et al. [39] uses an assumption on the hazard rate %, of the burst time and arrives at a
mean trajectory following the log-periodic power law (LPPL). While we model the burst time
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very differently, we can match the shape of the process by taking d ;" = h, P,*dt + o0d B,
with

he =A@t — )+ Clte — ) T eos(wIn(t. — 1) — ¢),

with parameters A, C, w, ¢ and critical time ¢, set to 7. In particular, the vanilla JLS model
uses £, = £ € (0, 1) to measure the power law acceleration of prices, which we generalize
by incorporating the impact from the players’ entry, namely

& = €Fy) P (max P), £ € (0, 1),

Similar to the previous example, if all players enter at ¢ = 0, the model reduces to a standard
LPPL. See [40, 59, 60] for more detailed analysis of the JLS model.

Itis not obvious that the path-dependent SDE (2) is strongly solvable, since b is not necessarily
bounded or Lipschitz, as in the case of empirical CDF. We defer the well-posedness result
to the Appendix (Proposition A.1), where monotonicity of the drift is the key condition that
ensures existence and uniqueness of a strong solution. The risk of the bubble bursting is not
reflected in (2) since this is the dynamics given that the bubble is still alive. We take a constant
diffusion as the time horizon is relatively short-term by nature of a bubble.

2.1.3 Inventory and trading rate

Each player i has initial endowment K(i) £ vk on R and goes “all in” when they enters the
bubble ride. For simplicity, assume that there is no transaction cost when joining a bubble
ride. That s, each player joins the game with K 6 /p' shares of the bubble asset. We also allow
for negative values of Kj, which represent an initial short (attack) position on the asset. Note
that allowing price-dependent entry fixes a shortcoming of the original model proposed in
[62] where only the initial inventory is assumed to be i.i.d., which implies that the players
who enter later will have more initial wealth due to the higher asset price at entry.

Suppose that there is a common horizon T > 0. By choosing her trading rate o/ =
(ah),i << after entry, the player can control her inventory trajectory by

dX; = ajdt + 0dW/, X;=0ont <1, X, =Ky/p".

where o > 0 is fixed and W', ..., W¥ are independent 1-dimensional Brownian motions
corresponding to random streams of demand [19, 53]. A positive «; corresponds to buying
and a negative «; corresponds to selling. We require ozf =0ont < t before entry for each
ief{l,...,N},and af takes values in a compact interval A C R.

2.1.4 Burst time and post-burst price dynamics

Following [1] and [62], we allow the bubble to burst for both exogenous and endogenous
reasons. An exogenous burst will be modeled as a non-anticipative random time, more specif-
ically a totally inaccessible stopping time t that is independent from the market information
(B, {W'}i=1....n). On the other hand, an endogenous burst occurs when the inventory of the
active players (i.e. those who have entered) becomes too low to sustain the frenzy of the
bubble. Define the empirical measure of the inventory ;Lfv and the average inventory [i; as

N N
1 Tin .z . Tin. .z
N =N {Nin(t, P; p)#0} i {Nin(t, P; p)7#0} N
1 = Yy, @l im DO 3y =a—/w (dx).3)
! N &5 ! Nin(t, P; p) 1= ! F,iv’p(maxssz Py) /R '
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Note that our assumption on the existence of initial players allows us to drop the indicator
forallt € [0, T] when N — oo. For a given inventory threshold function ¢ : [0, T] — R,
define the endogenous burst as

-N, N . . i
T = inf {¢ > min ' : inf <
w™) { ie{l,2,..,N}  s€l0, z]“5 gl}

The true burst time is defined as the first of the two events:
) = AtV ).

At burst time, the price drops by a fraction g; of the bubble component y;, defined by
t
._ + p+
V= /0 b(s, I;lélAX P, Pds. 4)

The function B : [0, T] — R, is referred to as the “size” of the bubble [1], or the “loss
amplitude” in the JLS model [60].

The setup becomes an optimal execution problem after the crash. Trades convey infor-
mation which has a long-term impact to the price dynamics. When the bubble is present, the
frenzy of the bubble growth dominates the impact from selling. However, after the crash, the
asset price is governed by price impact within the short horizon. We use the game-theoretic
extension of the model by Almgren and Chriss [6], where the aggregate trading rate deter-
mines the instantaneous price impact.

Let p : A — R be a concave (hence also continuous) function for the instantaneous
impact. See [13, 55, 57] for reasons of the concavity of price impact. Define the empirical
measures of controls 6V and the permanent price impact term <,0, GtN ) NP as

N
1 LN, P )20} Liwin e, P: )20} N
=—35,, <p,9N> = AN (@) = —Nn@P:D20) | @0 .
N ; a; t F,},V" Nin(t, P; p) Z Np(man<t Py t
5)

This is the second source of interaction among players currently in the game. Since by
definition ' and X* are both 0 before entry, there is a factor 1/F [ﬁv in both (3) and (5) before
the integral. After burst, the bubble trend is no longer present, so the price P~ after burst
follows on [t*, T']

AP~ <,0 9N> _dt +00dB,, Po =Pl — Breyee. 6)

T

Define D} = 1{;>+). Using chain rule on P; = Pt+(1 — D}) + P, Dj gives us the price
dynamics
dP, = (1 - D})dP" — PTdD} + D}dP, + P/ dD}

+ — * (7)
=Ny d P;" + L) d P — Yo Bexd Dy

2.1.5 Objective and equilibrium

Player i’s cash process is modeled by
dK! = —(al P, + k(@))dt, K{~ vx.
where « (-) is a continuous, strictly convex function satisfying « (0) = 0 that measures the

temporary price impact that affects only the individual trader and not the price itself. The
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well-known linear temporary impact [6] corresponds to k being quadratic. See also [19,
Section 2.1] for choosing « as the antiderivative of p. Note that the cash process remains at
the initial endowment until the player enters the game, since o' is kept at 0. Under the usual
self-financing condition, the pre-burst wealth V' of this player follows

dV} = dK| + X|dP, + PdX,

=( k(@) + X[b(t. max PY, PO ey + X] (p,@tN> . m*}) dt

F

- Xtﬁtylth + GOX[dBt + O’P[thl

The players are allowed to continue trading until 7', even if the burst has already happened.
But by definition of riding a bubble, the players do not believe in the fundamental value of
the asset. Therefore, we impose a quadratic terminal inventory penalty c(X )2 with ¢ > 0
to encourage selling. For a fixed ¢ > 0, we also impose a quadratic running inventory cost
o(X ; )2 which Cartea et al. [21] refer to as ambiguity aversion. Adding these costs to the
negative of increase in wealth, we have the total cost of player i that she wants to minimize:

INi(a, p) :=E[—(v} )+/ o (XH2dr + c(Xh) } [c(x 24 X B y,*]
T
+E |:f (K(O{t) + ¢(X’) - X! b(t max P+, P[")IL{,Q*})
tl
+X; (p. 6} >FW n{,zmdt] ®)

for given vectors of strategies & = (', ..., a™) and entry thresholds p = (p', ..., p™).
The interaction among the players appears both in the price impact term through the average
trading speed and also the burst time through the average inventory. We refer the readers to
[62] for more details on the model.

It is well-known that finite-player games of this type quickly becomes intractable as N
increases. Since the phenomenon of bubble riding fits naturally in the large-population setting,
we shift our focus directly to the mean field limit of the game described above.

2.2 Mean field game setup

Let (2, F, P) be a probability space that supports independent (Ko, W, B, 7), whose law
under P is vg x W x W x v, where W is the (one dimensional) Wiener measure. Let
F = (Ft)tefo,1) be a P-completed filtration defined on this probability space such that W, B
are (IF, P) Brownian motions, the initial wealth K¢ is Fo-measurable, and exogenous burst
time 7 is not an [F-stopping time. Let G be the smallest filtration, on which 7 is a stopping
time, that contains F. We will see in later sections that by construction, T will in fact be
a G-totally inaccessible stopping time under mild assumptions. Ko and &7 are the initial
endowment and entry threshold, respectively. The initial inventory at entry is Ko/ 2.

Let B(E) denote the Borel subsets of a Polish space (E, d), and let P(E) denote the set
of all probability measures on B(E). Unless specified otherwise, P(E) is equipped with the
topology of weak convergence of measures, and P(E) is also a Polish space. Denote the
Wasserstein space (or order 1) by P (E), that is

Pi(E) := {,u e P(E) : / d(xg, x)u(dx) < oo} .
E
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where the choice of xg € E is arbitrary. Equip P (E) with the 1-Wasserstein distance

Wiw, ') == _inf / d(x, y)dm(x,y).
relliuxp’) JExE

Let X := C ([0, T], R) denote the space of all continuous functions from [0, 7'] to R equipped
with the sup—norm. Let D ([0, T'], R) denote the space of all cadlag functions from [0, 7] to
R. For a fixed t* < T, define

X = {xt* € D([0, T],R) :xi* = 0on [0, t*), continuous on [t*, T]} and X* := U X,
t*€[0,T]

For each x'" € X*, we require 1* to be the largest value such that x" e X to avoid
redundancies. Suppose t1, t; € [0, T].Letx'!, y € X*. Notice that the standard sup distance
d(x'"', y2) = ||x" —y"|| is no longer suitable on X* because it does not allow two processes
to be close unless 1; = t,. Therefore, for each x" e x* , we can define its continuous
counterpart ¥’ € C([0, T], R) as

o X oreqo,r
X, = t* %
xp ot >t

We then define a metric on X* C D([0, T], R) to be
dy(x", y?) i= ¥ = 3o + 111 — 12], and X" a = X oo + 1% (9)

Define ®4 := P([0, T] x A) with time marginal being Lebesgue, and define
M= {M € P(X") /Mllxllx*u(dx) < OO} = Pi(X"). (10)

Equip M and ©4 with the topology of 1-Wasserstein convergence and weak convergence,
respectively. Each 0 € ©4 can uniquely disintegrate into 0(dt, da) = 6,(da)dt with some
measurable map ¢ — 6, € P(A). Let F), be the CDF of the price threshold distribution v),.
Each i € M can also be viewed as a P(R)-valued process ¢ — p;, where iy = o & !
with & : & — R being the time coordinate mapping. Let 1 and 6 be the law of X and
«. Then the average inventory among the players in the game and their price impact are the
natural limit of (3) and (5), namely:

1
- Fp(max,<; Py)

1
s (o) 0.0 p, 1= (0.6)) .

 Fp(max,< Py)

2.2.1 Burst time
While the exogenous burst time is the same as the N-player game, the endogenous burst now

depends on fz. To ensure that there are already players in the game at time ¢ = 0, we assume
that v, ({Pp}) > 0 and define

T(n) := inf {t el0, T]: inf s < {t} AT,
s€[0,¢]

where ¢ : [0, 7] — RT is deterministic, continuous and strictly increasing with ¢y €
(0, E[Kol/ Po). The upper bound is set so that the bubble at least survives the initial players.
These conditions guarantee enough regularity of T for the equilibrium to exist (see [62,
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Sections 2.1.5 and 6.1]). The actual burst time is again t*(u) = 7(u) A t. Throughout the
paper, we work under the following assumptions.

Assumption 1 (E)

(E1) A is a compact interval that includes 0.

(E2) vy is absolutely continuous with respect to Lebesgue measure on RT satisfying
vr(t > T) > 0. Moreover, its deterministic, non-negative intensity process k : Ry —
Ry is bounded by some Cy > 0 on [0, T].

(E3) Ko has all moments. p : A — R is locally bounded.

For a cadlag process Y, define M} = sup,_,_, Y;. Observe from Examples 2.1 and 2.2 that
the bubble trend function b depends on the running maximum of the price P naturally through
the CDF of entry thresholds. That is, the dynamics of P depends on F p(MtP ) where F), is
not necessarily Lipschitz continuous. Therefore, the SDE defining the price process may
not be well-posed. We will show in the appendix that appropriate growth and monotonicity
conditions on b below, which we make as standing assumptions on the bubble, allow to obtain
well-posedness.

Assumption2 (B)

(B1) The bubble function b : [0, T] x [0,1] x R — R is non-negative and satisfies the
assumptions in Proposition A.1.

(B2) The bubble size B : [0, T] x Q2 — R is a positive, continuous, bounded F-progressively
measurable process.

Using Proposition A.1, the price dynamics (7) is well defined for a fixed (u, 8) € M x ©4,
namely

b = 1{1<T*}Pt+ + Ljsey P

where the pre-burst price P follows (2) and the post-burst price P~ follows

t

P~ = Prt — Brryrx +f (p, O.Y)Fp ds + 09(B; — B+)
r*
t

= Py + Yo+ +00Brx — Brryr +/ (o, 9s>Fp ds + 0o(B; — Byx)

T
t
= Ryt [ 19,05, ds +ouBi + (1= By
T*

The bubble component y is defined by (4). Before crash, the bubble component dominates
the drift of the price dynamics, whereas the impact term takes over after the the crash. Note
that the price has exactly one jump at ¥, and the jump size — B+ y;+ is always negative.

2.2.2 Entry time

Since the underlying asset starts at a known value Py, the entry threshold should be at
least this amount, that is, v, is a distribution on [Py, c0). Consider the product probability
space (2 x [Py, 00), F ® B([ Py, 0)), P ® v,). We naturally extend (Ko, W, B, T) on the
product space. The representative player enters the game at a random G-stopping time 7(p*),
p* € [Py, 00), where 7: Q x [Py, 00) — [0, T1U {T + 1} is given by

Tp*):=inf{t € [0,T]: P, > p*IAN(T +1), P—a.us (11)
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The value T + 1 is again arbitrarily chosen. Then for every p* € [Py, 00), Z(p*) is a bounded
stopping time with respect to the filtration generated by B.

Lemma 2.3 Consider T: Q x [Py, 00) — [0, T1U {T + 1} in equation (11). For P-almost
every w, the function T(w, -) is strictly increasing until and if it reaches T + 1. Moreover; it
is left continuous with right limit on [ Py, 00), and T is jointly measurable.

Proof Monotonicity is obvious. To see that it is strict, we can first write 7(p*) = inf{r > 0 :
MFP > p*} A (T +1). Note that the price process P is P-almost surely continuous except at
7* where there is a non-positive jump. Therefore, M* is a monotone increasing, P-almost
surely continuous process, which implies strict monotonicity of 7.

For each o such that M * is continuous, 7(p*) = T + 1 for p* > ML . For p* < MF, we
have 7(p*) € [0, T] and M+ = p*. Take an increasing sequence p, 1 p*. Then 7(p,) is
also an increasing sequence which converges to some 1 < 7(p*) asn — oo. If t < 7(p*),
then we can find ¢’ € (¢, 7(p*)) such that p, < M,I,) < p* for all n by monotonicity of
MPF . p, converging to p* implies M f = p* which contradicts the definition of 7(p*). The
existence of right limit follows a similar argument. Joint measurability follows from Lemma
A2. O

2.2.3 Admissibility of controls

By continuity of P, given 7 = t* we can also recover the price threshold by p* = P.
However, it is still useful to define admissibility of controls in two separate ways: one in terms
of entry times, and the other in terms of entry thresholds. To simplify notation, we denote
by PM(G) (resp. ) the o-algebra generated by the G (resp. IF)-progressively measurable
subsets of  x [0, T'].

Definition 2.4 Define the following sets for admissible controls:

e For t* € [0, T, let A(*) denote the set of square integrable, PM (G)-measurable pro-
cesses o : 2 x [0, T] — A such that a; = 0 for 7 € [0, t*). We also set A(T + 1) to be
the singleton of the constant 0 process.

e A time-admissible control o is a process Q2 x [0, T]1x [0, T] > (w, t, t*) > a,’* (w) e A
that is PM(G) ® B([0, T])-measurable such that for almost all £*, '~ € A(t*). Let A
denote all such strategies.

e A price-admissible control «a is a process Q2 x [0,T] x [Py, 0) > (w,t, p*) +—
ai(w, p*) € A that is PM(G) ® B([ Py, oc))-measurable such that for v,-almost all
p*, a;(-, p*) = Oa.s. on the random interval [0, 7(p*) A T). Let A* denote all such
strategies.

By Lemma 2.3, any time-admissible control & € A induces a price-admissible control by

a (-, p*) = atT("p *)(-). Let & denote the identity map for the last coordinate on [Py, 00),
which represents the entry threshold with law v,,. Then for each € A*, the corresponding
state process satisfies

t
X7 = 1=70Ko/ 2 +f asds +o(Wiyr— W), 1€[0,T]. (12)
0
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2.2.4 Objective and equilibrium
Following the same derivation from the N-player game, using (8) we can define the running
cost function f : [0, T] X Rx R x [0, T]x R x A — R:
f@t,x,0.m,0,0) = k(@) + ¢x* = x(0Ljr<n) + 0L (r=n)) (13)
and the terminal cost function g : Q X R x R x [0, T] — R:
g(x1, 2. m) = exf + Bynaz. (14)
Allowing C > 0 to vary in each step, by Assumptions (2), (1) and Proposition A.1 we have

nel0,7T],acA* nefo,7] nefo,7]

- ., 5
<CE 1+</ b(t,M[P,Pt)dt>:|
0

T
<CE 1+/ |M,‘P‘|2dz]
0

r 4
K
IE[ sup |g(X?a,X§a,ﬂ)\2i| <CE|1+ (pg) +o*Wi + sup y% + sup X%i|

<CE|14+T sup P,2 < 00.
tel0,7T]

Given a price process P, define the process btP :=b(t, M?, P,).Forafixedd = (CAIENA
and u = (1r)refo, 7], the objective which the representative player minimizes over A* is:

T
J0 @) =E [g(X?“, X8 T () +/T [ X9 b! T (w), (p,9s),as)dS].
AT

If the player does not enter by time 7', her total cost is 0. This is also true by construction,
see Remark 2.5 (C4) below.

Remark 2.5 We make a note that the following set of properties of the cost structure will be
utilized in the proof.
(C1) The running cost function f : [0, T] x RxR x [0, T] xR x A — R is (jointly) Borel
measurable and can be decomposed as
ft,x,0,n,0a) = fua(t,x,a) + fo(t,x,0)Lj0<i<ny + fe(t, x, 0)Ly>n).
Foreacht, f,(t,-, "), fo(t,-, ) and f.(t,-,-) are continuous. In addition, there exists
Ly > O such that for all (t,b,0,x) € [0, T] xR xR x R:
| fa(t,x. @)+ | fot, 0, O+ | felt,x, 0] < €5 (14 x> +16]%).
(C2) The terminal cost function g : 2 x R x R x [0, T] — R is almost surely continuous in
(x1, x2,M). Inaddition, there exists C > 0 such thatE I:Supne[O,T],aeA* |g(X;70l’ X%Ta,

n? <c].

(C3) f is strictly convex in (a, x); g is convex in x| and x3.

(C4) f(t,0,b,m,0,0) =0forany (t,b,1,0) € [0,T] x Rx [0,T] x R. g(0,0,1) =0
forallm € [0, T].

Although we will focus on the specific case of the model with cost functions (13) and (14),
most of our results remain true for arbitrary costs satisfying (C1)—(C4).
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2.2.5 Identical threshold case

A special case is where everyone has the same threshold p* = Py and thus enters all at the
beginning. Then the bubble function b does not depend on M?”. Suppose further that b also
does not depend on P. Then the game reduces to a fixed entry time case in [62, Proposition
A.10].

2.2.6 Common noise and admissible setup

Unlike idiosyncratic noise, the presence of common noise does not vanish even when the
number of players goes to infinity. As a consequence, we need to consider “random versions”
of (i, 0), which we denote as (i, D), to represent the conditional probability measures given
the common noise. Specifically, the probability setup should also support random variable
P = (1, 9) : @ - M x ©4. Therefore, for @ € A*, the objective a representative agent
minimizes is

T
JH) =E [g(X%"’, XTI v () + /T . FGs, X bP ¥ (W), (0, 95) s oes)ds] :
(15)

where X7¢ follows (12).

In our setup, there are two sources of common noise to the players: a Brownian motion
B from the price process P and a jump process D; = 1({;<; for the exogenous burst.
For any stochastic process Z and random variable &, define their natural filtration FZ%5 .=
(.7-',Z ’S),E[O,T] where ]-',Z % is the P-completion of o ((§, Zs)se0,1)- Intuitively, (p, 9) are
conditional laws given (B, D), so if we view ‘B as a P(R) x P(A)-valued process, it should
be FB-P-adapted. The natural filtration to work with is the completion of FX0-7-W.B.D ' Ap
equilibrium of this type is called a strong solution, which is known to be very hard to obtain
(see e.g. the monograph [18]). Instead, we look for a weak equilibrium in the sense of [20,
45] where we only require (i, d) to be the conditional law of state and control processes
given both the common noise (B, D) and the law process ‘P itself.

We collect all the components from this section in the next definition in a more general
setting where we do not assume that the underlying probability space has a product structure.

Definition 2.6 An admissible probability setup is a filtered probability space (2, F, G =
(G1)iero,11, P) satisfying the usual conditions that supports the following mutually indepen-
dent random elements:

1. A two-dimensional Brownian motion (W, B).

2. Go-measurable initial data 7 := (Ko, &) € R x [Py, 00) with law vg ® v,.

3. A G-stopping time t with law v;, from which we can define the jump process D; :=
LREEDE

If an admissible probability setup additionally supports 3 = (i, 9) taking values in M x ©4,
we can then define t*(), the price process P and random entry time

T:=inf{t €[0,T]: P, — P >0} A(T+1).
Observe that 7may not be defined for every threshold value p* € [Py, co) that &2 takes, mak-

ing this setup slightly weaker. Similarly, we will also weaken the notion of price-admissibility
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and let A* denote the set of processes 2 x [0, T] 3 (w, t) — a,(w) € A thatis G-progressive
measurable such that P-almost surely, a; 1{;¢[0,7;; = 0. In fact, Lemma 2.3 ensures that our
p*-by-p* construction is also a particular case under this new definition.

It is worth noting that if 7 is also independent from 3, then T will be an FZB.W.D ’m-totally
inaccessible stopping time (see Remark 3.5). In particular, if G is just 28 W-2% this would
be a desired feature for the exogenous burst time because the admissible controls can only
react to it once T occurs but cannot anticipate it.

Definition 2.7 A weak MFG equilibrium with strong control is an admissible probability
setup (2, F, G, P) that supports a Gr-measurable random variable p = ({1,9) : Q@ —
M x ®4 paired with optimal control @ € A* and corresponding state process X T4 satisfying
(12) such that

(1) The filtration G = FL.8W.D.%,
(2) & minimizes over A* the objective J o defmed in (15).
(3) [uis a version of the conditional law of X Ta given (B, D, ) under IP. That is,

W) =P (X,m c .|ff’D"”3) for almost all 7 € [0, T].

4) 9 is a version of the conditional law of & given (B, D, ‘3) under P. That is,
() =P (o?t € -|]-'f’D‘§“U) for almost all ¢ € [0, T].

Theorem 2.8 Under Assumptions (2) and (1), there exists a weak MFG equilibrium with
strong control.

3 Existence of MFG solutions with weak control
3.1 Weak controls

The term “strong control”” in Definition 2.7 refers to the fact that & is an A valued process that
is FL.B.W.D 'm-progressive. We shall prove Theorem 2.8 by following the chain of arguments
presented in [20]. Specifically, we use a fixed point and compactness argument by discretizing
the common noise (B, D) and then taking weak limit to obtain an equilibrium. To ensure
that the limit exists, we first work with relaxed controls in a larger filtration.

3.1.1 Relaxed controls

Since the space of uniformly bounded functions is not compact, a standard workaround when
analyzing extended MFGs, especially in the presence of common noise, is to consider relaxed
controls. A relaxed control is a randomized strategy taking values in I' where

I' :={y € P([0, T] x A) with time marginal being the Lebesgue measure}.

Any v € T can be characterized, with dz-a.s. uniqueness, by the form y(dt, da) = y,(da)dt
where t — vy, € P(A) is a Borel measurable mapping. Therefore, we can view eachy € I'
as a P(A)-valued process. For a given admissible probability setup, the set of admissible
relaxed controls is defined as

I:= {y € I that is G-progressive such that’ — almost surely v, 1 ¢[0,77; = 6o V¢ € [0, T]} .
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A strict control refers to the case where y; is P-almost surely a Dirac measure almost
everywhere. The state process corresponding to a relaxed control y € I is

'
X[T'Y =1y>1Ko/ P +/ / ay(ds,da) +oc(Wyyr— Wp, tel0,T]. (16)
0 Ja

Define ® as the subset of P([0, T'] x P(A)) whose first projection is Lebesgue measure dt on
[0, T]. Any 6 € ® can be characterized, with dt a.s. uniqueness, by {6; € P(P(A))}i<i0,1]
such that 0(dt,dq) = 6;(dq)dt. We naturally extend any bounded measurable function
F :P(A) - Rto F : P(P(A)) — Rby

F@©®) = / 0(dq)F(q).
P(A)

In particular, F(8,) = F(q) for g € P(A). Recall from Remark 2.5 (C1) that we have
separability between a and ¢ in the cost f. Therefore, when evaluating f (or rather its
extension) on an element of P(P(A)), we can drop the underline from the notation to avoid
further confusion. In particular, for a bounded measurable function p : A — R, sometimes

we slightly abuse the notation by using (p, 6;) to mean <p, fp( A) 0, (dq)> if 0 is in ® instead

of ®4. Endow ® with the stable topology, which is the weakest topology making the map
0 — [ ¢d0 continuous, for each bounded measurable function ¢ : [0, T] x P(A) — R that
is continuous in the measure variable for each 7. Since A is convex, compact and metrizable,
so is ®. See [38] for details.

The version of objective function (15) for relaxed controls is

T
JW%)=E[g(X?Y,X?ﬂ,r*(u)>+/TTAf(s,XZV,bf,r*<u>, <p,8s>,a>v(da,ds>]
(17)

Notice from (17) and (16) that A-valued controls are naturally embedded in the space of
relaxed controls in the form of strict controls.

3.1.2 Immersion property and lifted environment

In this section, we will also weaken the first requirement in Definition 2.7 and work with
a filtration G that is potentially larger than FZ5-W.D-% ~ Allowing more information into
the system immediately requires extra care to ensure fairness in observing that additional
information. A widely-used procedure is to check that F2-8:W-D-% is immersed in G. This
notion of fairness is also called the (H)-hypothesis, natural extension, or compatibility.

Definition 3.1 A filtration H is said to be immersed in another filtration IF defined on the same
probability space if H C [F and every square integrable F-martingale is a square integrable
H-martingale. An F-adapted cadlag process i = (1,);>0 with values in a Polish space is
compatible with F if its natural filtration F* is immersed in FF.

The following proposition is a useful characterization of this property and explains how
compatibility weakens the adaptedness to a conditional independence requirement, which is
mainly a property of laws. See e.g. [18, Proposition 1.3] for a proof.

Proposition 3.2 On probability space (2, F, P), consider two filtrations H = (H;):c[0,1) C
F = (F)iefo.1)- The following statements are equivalent.
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1. H is immersed in F.
2. 'Hr is conditionally independent from F; given H; for everyt € [0, T].
3. Forany ¢ € L'\(F), E[¢|Hr] = E[¢|H,].

Specifically, the third statement in Proposition 3.2 allows us to eventually recover a strong
control in Sect.4 from a larger filtration. To ensure that we carry enough information in the
smaller filtration for the immersion property to eventually hold, we will work with a lifted
environment [18]. That is, instead of 8 = (u, V), we require the admissible probability
setup to support a random joint probability measure 90U that represents the conditional law
of (X T w, v, Z) given common noise. Let M and MY denote its first and third marginals,
which serves the same purpose of (i, 9) in the objective (17). Now we have all the ingredients
to define a solution with weak control.

Definition 3.3 A weak MFG equilibrium with weak control is an admissible probability setup
(2, F, G, P) that supports a Gr-measurable random variable 01 : Q — P(X* x X'x [ x Rz),
paired with optimal relaxed control ¥ € I' and corresponding state process X Ty satisfying
(16) such that

1. The filtration F%8-W.D-M i immersed in G.

2. ¥ minimizes over II" the relaxed objective J MM defined in (17).

3. 9 is a version of the conditional law of X7V given (B, D, ) under P.
4. MY is a version of the conditional law of ¥ given (B, D, 9) under P.

It is worth noting that both definitions are weak in the probabilistic sense, where the
probability space is part of the solution. They are also both weak in the sense of control
theory, where the equilibrium strategy is not necessarily measurable with respect to the
Brownian motions, but potentially depends on additional randomness.

The usual fixed point argument using compactness no longer applies to these conditional
probability measures as their domain becomes too large. To combat the infinite dimensionality
issue, Carmona et al. [20] discretizes time and space to reduce the common noise to a finite
dimension process and then pass to the limit. We adapt the discretization scheme from [18],
also used in [14]. In this section, our goal is to prove the following intermediate result.

Theorem 3.4 Under Assumptions (2) and (1), there exists a weak MFG equilibrium with
weak control.

3.2 Weak formulation and enlargement of filtration

Since the probability space is part of the solution, it is convenient to work on the canonical
space with the product structure in Sect. 2.2.2. We will also work under the weak formulation
as in [19]. Define

Q=Rx A&, Q=XAxRy, Q:=Q%xQ Q :=Qx][Py,o0)

and let (Ko, W, B, 7, &) be the corresponding identity maps on 2, = R x X' x X x Ry x
[Py, 00). Let Fbe a o -algebra carrying the above random variables. Define the corresponding
probability measures

Qri=vk®W, Q:=WQv, Q:=0;8Q, P:=Q®v),.

Define entry time 7'in a p*-by-p* way on 2. as (11). Lemma 2.3 ensures that we have an
admissible probability setup. Let X 7 denote the uncontrolled state variable on the product
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space [0, T] x Q,:

XT:=Ko/P +0 (W, —Wp fort >T and X! :=0fort € [0, 7). (18)
Given a € A* define
dp“ o ro
P = E(/O o lades)T, W =W, —/(; o Layds. (19)

By Girsanov’s theorem, and square integrability of «, W® is a Brownian motion under P* and
X7 follows the state SDE (12) under P*. Given (i, 9), the cost under the weak formulation
is

T
I (@) == EF [g(XT, X?*(w,r*(u))+/7 f(s,xZ,bf,r*(u),<p,19s>,as)ds](20)
AT

If we fix a price threshold p*, then Q") is defined on £ by dQ(g " in a similar way as P,

d
3.2.1 Progressive enlargement of filtration

We now recall some facts regarding filtration enlargement. Let ' = (F;)¢[0, 7] be a filtration
supporting (W, B, 7) and is independent from t. Let (D;);¢[0, 7] denote the natural filtration
of the exogenous burst time jump process (D;):c[o,7]. Define the progressively enlarged
filtration

G =F Vv D, G = (G)refo,11-

Note that G is the smallest filtration which contains F and such that 7 is a G-stopping time.
Since 7 is independent from IF, Proposition 3.2 implies that F is immersed in G. In particular,
W and B remain (G, P)-Wiener processes.

For any G-predictable process /, Assumption (E2) implies there exists a unique [F-
predictable process f such that i, 1;<;y = filly<¢) (see [27, Page 186 (a)]). Since D
is a G-submartingale, by Doob—Meyer decomposition we can find a unique, F—predictable,
increasing compensator process K with Ky = 0 and such that:

t
M} =D, —/ (1 — Ds_)dKs 21)
0

is a (P, G)-martingale. Under Assumption (E2), we have dK; = k;dt.

Remark 3.5 The random time t is a G-inaccessible stopping time if either of the two following
conditions is satisfied (see e.g. [8, 12]):

1. Every F-martingale is a.s. continuous;
2. T avoids all F-stopping times. That is, P(t = L) = 0 for any F-stopping time L.

For example, if F is just the P-completed Brownian filtration with the initial enlargement of K
and &, by martingale representation theorem (1) would be satisfied. Under the non-atomic
condition in Assumption (E2), if there is independence between t and I, then (2) holds.

3.3 Proof of Theorem 3.4

In this section, we prove the existence of equilibrium with weak controls using backward
stochastic differential equations (BSDE).
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3.3.1 BSDEs with random entry times

We begin by introducing a few notation of spaces and norms. For a filtration H and probability
measure Q on €2, define the following spaces of processes on [s, t] C [0, T']:

o Let S [s t] denote the space of R-valued H-progressively measurable, cadlag pro-
cesses Y on 2 x [s, t] satisfying

1

- 2
||Y||S§H,@ls,tj =E? [ sup |Yu|2:| < o0.

uels,t]

o Let H [s t] denote R-valued H-predictable processes Z on Q X [s, t] satisfying

~ t 3
WZlle iy =E2 [/ |Zu|2du:| < o0.
H.3 R

o Let ’HH 5. D[s, t] denote R-valued H-predictable processes U on 2 X [s, ] satisfying

1
~ t 2
U2 ::EQ[/ U, |2dD] < 0.
HJHI.@.D[S’I] g u u

We drop Q from notation when Q is the probablhty measure. Respectively, for a probability

measure QC on 2., define 52 [s t], H B, [s, t] and H2 @ D[s t] in the same way

for processes on €, x [s,t]. In partlcular when Qc =P, 'H cls 1l denotes R-valued
H-predictable processes Z on Q. x [s, t] satisfying

P ! 2 % :
1Zllhe, 5. =E [/ | Z4 du] =EC [/P )f | Zu(p*)Pduv, (dp* )] < 00.
y Ky 0,00

We drop [s, ] from notation when considering the whole interval [0, T'].
Since we take the weak formulation to MFGs, we can rewrite the objective function (20)
using the solution to a BSDE. Define the Hamiltonian by

H(t,x,b,1,0 2,a) = f(t,x,b,1,0a) +0 'az.

By Remark 2.5 and Assumption (E1), for each (¢, x, m, p,n, o, z), there exists a unique
element in A that minimizes H (¢, x, m, 1, 0, z, -). For our model, the minimizer is a function
of z only, which we denote as a(z). Let h denote the minimized Hamiltonian, that is

h(t’ X, bv n, o, Z) = H(tv X, bs n, 0,2, &(Z)) = K(&(Z)) + ¢x2 - x(b]l{t<n} + Q]l{fZT]})
+ota)z. (22)

Remark 3.6 We point out some properties of a and h that will be utilized later.

(S1) For a general f and g satisfying the properties in Remark 2.5, a is a jointly measurable
function of (t, x, 7) and continuous in z by Berge’s maximum theorem. In our case, the
unique minimizer a(-) only depends on z.

(S2) The minimized Hamiltonian h is Lipschitz in z, and it is jointly continuous in (x, z, 0)
for fixed (t, m, p, ).
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Recall the definition of M in (21). For a given p*, consider a generic type of BSDEs on
the enlarged filtration G solved on [7(p*), T]
T
v, = g7 X ) + / his, X707 b2 T (W), (0, 9s) . Zo)ds
t
(23)

T T T T
_/ ZsdWs _/ 3sdB; _/ UrdMyT _/ dMy, te[T(p*),T].
t t t t

where M is a martingale orthogonal to (W, B, M"). A solution to the BSDE (23) is a process
(Y. Z.3.U. M) € SIT(p*). T1 x G&IT(p*). T1 x HG[T(p*). T1 x Hg plT(p*). T1 x
Sé [Z(p*), T] on the probability space (2, F, G, P). If the pre-enlarged filtration F is gener-
ated by the Brownian motions, then M = 0. Note that the BSDE above is solved on a random
interval even after conditioning on a p*. The following proposition addresses the solvability
of this BSDE. To differentiate the two types of admissibility, we denote a time-admissible
control in A by « and price-admissible control in A* by a”.

Proposition 3.7 Suppose that G = FLW-B-D and fix a G-progressive S = (i, d). Given

p*, for each t* € [0, T, there exists a unique solution (Y’*, Z’*, 3’*, U’*) to the following
BSDE

T

Y, = g(X7, Xie, T8 (W) +/ h(s, X{, by, T (W), (p,9s) , Zy)ds
t

(24)

T T T
—/ Zsd Wy —/ 34d By —/ UgdM;, telt*T].
t t t

wnere * oLlows
here X' foll
X! =1y (Ko/p* + 0 (W — Wps)) .

If we define the process &g* = Il{,z,*}&(Zl’*) € A" for each t*, then @& is time admissible
and induces a price-admissible control &I e A*. Moreover, &T minimizes (20) over A*.

Proof Using Assumption (E2) and (21), we can rewrite (24) as

T
Y = g (X, XE TH ) + [ h(s, XU BT (), (0, 9,) 2 Zs) + Usks L0y <o)
t

T T T
—/ Zd Wy —/ 34d By —/ UgdDs, te€[t* T).
1 ' '

Well-posedness follows from [31, Theorem 53.1]. We need to show that & is jointly
measurable when composing the 7*-by-* solutions. We first show that #* — & is P-almost
surely left-continuous in Hé.

Suppose we have a sequence #,F 1 t* € [0, T], and let o' and " be the corresponding
control processes. Then we have

T
* * t*
e — oIy, = E / oy — o) |2dr]
0

" * T * *
- / o) |2dt:| +E U oy — ! |2dt]
¥ *

r* o T
=K / o) |*dt —HE[/
[ 1*

N T
az"y —az! )l dt].
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The first term goes to 0 by dominated convergence theorem since A is assumed to be bounded.
To show the convergence of the second term, by continuity of a it suffices to show zin "=

Z" in Hé[r*, T]. By the stability of BSDE solutions (e.g. [31, Proposition 54.2]), we have

. T, w12
1zt — 7! e r = E[/ 7y -7, dt]
t*

< CJE“g(X’T,X"

T )—g(Xt ,Xr*,

T*>

o]

T
+CIE[/ his, X2, bE, ©* <p,es>,zg*>]
t

*

s, X§' b T (p, 9), 7)) ds ).
It is easy to check that for any ¢, we have X;: iy Xf*, and by (S2) left-continuity is
proved. The second condition in Lemma A.2 is satisfied, and invoking the lemma yields
time-admissibility.

Therefore, for each p* € [Py, 00), we can solve (23) with random entry time on [Z{p*), T']
and obtain &7(7"). Note that altering p* only affects the initial inventory Ko/ p* and entry time
T(p*).Since Py > 0, and also by Lemma 2.3, the function p* &,T(p *)(a)) is left-continuous
for Q x A-almost every (w, t). Therefore, Lemma A.2 again implies joint measurability and
therefore price-admissibility of ¢7¢).

Observe that (20) can be rewritten as Jw oak (aT) = E»[JH ek (aT| p™)] for each price-

admissible o7, where J wea k( |p*) is the conditional objective given & = p*. That is

T

T T T
weak(a’]"p ) — ]EQ |:g(X r*) X r*) T*(u)) +/I;—( f(s X (p* )’bf’ T*(u)’
POAT

(0, 95) o "))

Then optimality of &7 follows if we show conditional optimality of &Z77") for each p*, which
we fix from this point on. Take any price-admissible strategy 8. We can uniquely solve the
following BSDE

s T T T( p* T(p*
yPr = g(x X0 X700 ¢ (u)>+/ Hs, X7 0P v o). (. 9y) 287", 877
. 25)
—/ zbr dWs_/ 30r dBS—/ ubr am?, tel0,T].

t t t

We can also solve (25) on [0, T'] with @ as input. Then by (22) and uniqueness, the solution
coincides with the solution of (23) on the interval [Z(p*), T']. Comparison principle of (25)

~T ok T %
([62, Proposition 4.3]) implies Y(‘)x < Yf "7 (Q-almost surely. Optional stopping theorem
and Remark 2.5 (C4) imply

4T P—_— N * T(p*) *
78, =58 e ] = s [rir ] < kO [ | = 5" [0

weak(ﬂ |P ).

[m}
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For the remainder of this section up until Remark 3.16, we take G = FLW.B.D , so Proposition

3.7 applies. This result implies that for a given (i, 9) we can find &7 by solving the problem
p*-by-p* on , and it is well defined for every p*, not just v, almost every p*. On the other
hand, by uniqueness of the optimizer, we can also obtain &Tby solving the BSDE directly
on the product space 2.

Corollary 3.8 Given (u,9) : Qo — (M, ®) that is FB’D’I-progressive, there exists a unique
solution (Y, Z,3,U) € Sé,c X gé,c X Hé’c X Hé’C’D to the following BSDE on the product
space in the G filtration

T
Fo= g X @0+ [ s XT LTG0, 00, 0. Zods
t
6)

T T T
—/ stws—/ 3sst—/ UdM?, te€[TAT,T].
t t t

Additionally, the process defined by d; := Ly=1a(Z;) € A* isP®dt almost surely identical
to the one constructed in Proposition 3.7 and minimizes (20).

For any price-admissible @ € A*, let X denote the solution of (12) defined on Q2. x [0, T].
Then by Girsanov’s theorem

Po (X% Z,7,W,B) ' =P o (XL, 7,7, W*, B)"\. (27)

Under Assumption (E1), for any p > 0 we have

sup B | sup  IXTPO)P. [ = sup E| sup ||§“T(”)||”X* <o0o. (28)
achA* p*E[Py,00) achA* p*E[Py,00)

3.3.2 Fixed point from discretization

Instead of conditional measure flows given common noise (B, D), we look at a piecewise
constant approximation process. Suppose for N € N, a partition {0 =19 < #; < -+ <
tn—1 <ty =T} on|0, T]and a finite set (some grid on space) Ay C R are given. Define
the A y-valued finite process V" on X by

N
vN@p) = Z Vit (B) Ly, + ov—1(B) L=y}, (29)

i=1

where eachv; : X > Ayisa .7-',? measurable random variable taking values in the finite set,
fori =0,..., N — 1. These knots are meant to approximate the Brownian common noise
By, (B). We also have an additional source of common noise: the external burst time 7, which
requires us to discretize the jump process D.

Let Xp denote the space of processes on [0, T] of the form D;(1) = 1<) for some
n € [0, T]. Equip X'p with the natural metric d(D(m), D(1(')) = [n —7'|. For N € N, define
the Xp valued process on R by:

N
DN ) =Y L=y L) + Lnzoy_ D=1} (30)

i=1

Let Vy := {Ay,---, Apyy} denote the (finite) o-algebra generated by (VN, DN, and
choose v;’s such that P(Ay) > 0 for every k. We now define the input domain for conditional
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laws of the state and control. At this stage, we can work with A-valued controls. However, in
anticipation of taking the limit in the space of relaxed controls, we switch to strict controls
now. For a € A*, call y(«) € IT" its corresponding strict control. Define

My = {21, 2PV ¢ forsome € AT} € P @M (1)
Oy = {(L"“l(y(a)), . £“’|V’V|(y(a))) : for some o € A*} c Wl (32)

where for each o € A* k € 1,2,...,|Vn]|, £%* denotes the conditional law under P¥
given Aj. Equip each coordinate of My with the Wasserstein metric. Denote by m =
(my, ..., mpyy|) an element in M y.

Lemma 3.9 The process t +—> EF [X,TIAk] is Qq-almost surely continuous for each k
for all @« € A*. Consequentially, the mapping My > m > f(uN) is Qg-almost
surely continuous on the closure of My, where for g = (B,1) € Qy = X x Ry,

V,
wV(B.m) == ZL:NJ m g, Dm))ea)-

Proof Take a sequence t, e oo In [0, T']. Note that the event that X g does not converge to
X tTis, up-to a P*-null set, contained in {7 = ¢, }. Then by dominated convergence theorem,
it suffices to show that for all #, P*({7 = t~}|Ax) = O for each Ay, which is implied by
P*(7T = too) = P(7 = t) = 0. This follows from price dynamics (2) and the fact that the
only jump of P is negative by Assumptions (2). Then continuity of mean processes for each
k implies continuity of the endogenous burst mapping (see the proof of [62, Theorem 6.1]).
Taking closure in Wasserstein space preserves the continuity of the mean processes. O

Lemma 3.10 The set My is Wasserstein pre-compact and convex in P(X*)VN! and @y is
Wasserstein compact and convex in ©'VN|,

Proof The statement on © y is immediate given that A is compact and convex. For convexity
of My, take o', @? € A*. It suffices to show that for all A € [0, 1], there is & € A* such
that

ar = Aﬁ + 1 - A)dpa2

dP dpP dp
See [62, Lemma 4.7] for a proof. As for Wasserstein pre-compactness, it suffices to show this
for each marginal k € {1, ..., |Vn|}. One can easily adapt the proof of [62, Lemma 5.9], but

with conditional expectations given Ay instead of regular expectations. Indeed, using the fact
that E[£|Ax] < E[£]/PP(Ag) for any integrable non-negative random variable &, the constant
of the bounds in the proof of [62, Lemma 5.9] is multiplied to an additional term 1/P(Ay),
which is finite for all £ by assumption. We shall skip the details to reduce redundancy. 0O

Suppose we take any m" = (m{v, A m\]Y/NI) € My and @V = (a{v, ce aﬁ’;N‘) € Oy.
Define the inputs to the optimization problem: for each (8,1) = wp € Qo = X' x R4,
Wl Wl
W (@o) == ) m Lyg.pmpean € PLD. 3V (@o) =) o Lg.pmpean) € ©433)
k=1 k=1

Again (1N, V) can be viewed as a F53-P_measurable random process taking values (uzv , 19;\[ )

in P(R) x P(P(A)). By Proposition 3.7 we obtain strict, optimal control &7V e A* with
&tT’N = &(ZIT’N) along with the probability measure PV := P4 on Qc, and WV =
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- f(; o’lésT‘N ds is a Brownian motion under PV . Denote by vV the optimal control
in the strict relaxed form y(&T*N ) = (S&IN dt)cj0,71- Define output conditional measures
1

(EIN’OMI, &N"’”’) € MN X @NZ
mour = BUANIXTED  vowr ) BUAN Y €]
k - PN (A Ck . PN (A ‘
(Ax) (Ar)
We have now defined our fixed point mapping:

N : MN X @N > (ﬁlN, EIN) =g (ﬁiN’out, EN"’”’) (S} MN X ®N-

(34)

Lemma 3.11 For each N € N, the mapping ®V is continuous.

Proof We shall fix N and drop the notation to avoid confusion with the proof steps for
sequential continuity. Recall a7 is obtained by solving the optimization problem p*-by-p*.
Let P¥ wn denote the conditional probability measure on Q from Girsanov transform for a
given p* € [Py, 00). Take a sequence of vectors (", @) "—> (m™,d®) € My x Oy in
the sense that each coordinate converges in Wasserstein distance, and deﬁne correspondingly
(", 9™ forn € NU{oo}. Then Qg almost surely, 1" converges to u> in M and 9" converges
to 9 in ®. For n € N U {oo} define the discretized conditional probability measures " and
9" as in (33), and let Z7P)" pe part of the unique solution to the BSDE (23) with M = 0

and input (p*, 9"). Let ozT(p wn &(ZtT(p*)’n) be the optimal control given &2 = p*.
n—>00 A

We first show that 7P 257 §7(P").00 jp ’Hé for every p* € [Py, 00). Recall that
optimal controls are continuous in Z7?") so it suffices to show zZ7#"):n "5 25 TN .00
Hé. Using the stability property of BSDE solutions [31, Proposition 54.2], convergence of

ZT(r)m is immediately implied if we show

T
lim E[|Ang|2+f |Anhs|2ds] =0,
n—o0 7—(11*)

where Ayg = g (X7, XT00 o) — g (X707, XTI 70 (1) ) and
Anhs 1= h(s, XTP7 P o). (0. 97), 207 — (s, X7V P o (1), (p. 9).
71,

By continuity of g we know that A,g converges to 0 in probability if both v*(u") gty
T (U™) and Xox(um T x r*(uoe) in probability. Lemma 3.9 gives us convergence in
burst time. Also, the inventory is continuous everywhere except at entry 7(p*). Therefore,
X¢+(uny does not converge in probability to X+ only if 7(p*) = v*(u°°), which also
has probability 0. Therefore,

2 n—>oo

P{lAngl” — 0D = 1 =P ({T(p") = T*(u*)}) = 1

By dominated convergence theorem, we have E[|A,, g| ] 0.
Now let I, denote the random interval [t*(W") A T*(1*), T*(W") Vv t*(1*°)]. Observe
that

2 2
[Tosr<eruny = Losrerrqueon | = 1= Tpzesquny = 1+ Tpzesuoon|” = Tyrey.
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Define I,{’* = I, N [Z(p*), T]. Remark 2.5 (C1) implies

T T
IE[/ |Anhx|2ds} <E [/
T(p*) T(p*)
T
Sl
T(p*)

<E [/ |fo (s, XJ %bf)\zds} +2E [/ e, X707, <p,e§°)>\2ds}
Iy In

T
+2IE|:/
T(p*)

Lemma 3.9 implies 1 "

2
T T
o (s, X & ),bf)ﬂ{ogra*(w)) — fo(s, X @ ),bf)ﬂwgra*(uoon‘ ds}

T T 2
T (0 DN ez requmy — fels. X777 (ﬂ»'f’?o))]l«xzr*mxn‘ ds]

T Tip* 2
Fols, X797 (p 90D — fuls, XTP ),(P,B?))’ 1(szr*<w);dS]

e i 1=+ (puoe)y almost surely. Under Assumption (E1) and

Remark 2.5 (C1), all terms converge to 0 by dominated convergence theorem and Fubini’s
theorem. Therefore, for all p* € [Po oo) GTWwn "2 {7700 4y H2 Since A is assumed

to be bounded, this implies that &" "% 4 in the HG.C sense on the product space 2.

Foreachn € NU{oo}, denote by P"* := P the probability measure on 2. from Girsanov
transformation. By construction, P" « P for all n and

dP" ST
P> :£</0 R )dW’)T'

Therefore, by boundedness of A we can calculate the relative entropy

o0 dP" oo [ [T
HE®|P") = —EF |1 —— / -2
=P [Og de} > A o

Pinsker’s inequality implies that P" converges to P°”" in total variation. By triangular
inequality and the convergence in Hé . of controls, we have

&t — & dt] =0,

P" o (&;‘)_1 T Ppxo (&,"O)_] in dt-measure.

1 n—)oo

P* o (y(@*))~! in the stable

topology. Since P(Ay) > 0 for each k, this implies convergence of a} ' "= ;" as well.

Bounded convergence theorem yields P” o (y(&"))~

f’l*) . e
Boundedness of A ensures Wasserstein convergence as well. P — P in total variation

t n—>0o0 0, t .
also implies weak convergence of m;"”" "— m; > for each k. To show Wasserstein

convergence, it suffices to show umform integrability (see e.g. [63, Theorem 6.9]).

R—>00 n—c0 ke(l,...[Vnl}

lim limsup  sup / [l e (dx)
{llx |+ >R}

< lim sup sup

]P’Ol [||XT|| ]1 ] _ 0
Xt X7 rR|=
R—00 yep* kell,..., [y} P(Ak) {1 X7 4+ >R}

which follows from (28). Therefore, since |Vy| is finite:
V@, @) "= oM (™, ) in My x Oy,
and continuity of ®" holds for all N. O

Proposition 3.12 The mapping ®V admits a fixed point (@Y ,a") € My x Oy for all
N el
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Proof Let My denote the closure of My, which by Lemma 3.10 is convex and compact.
Note that the input (uN SN ) to the BSDE is still well-defined for mV e My, except that
9 might not be the law of a strict control anymore. Therefore, we can define ®V on the
larger domain My x ©y. Moreover, the Wasserstein closure preserves the continuity of
the mean process. This implies that 7*(-) is still continuous on My (see the proof of [62,
Theorem 6.1]), so continuity of ®¥ still holds. Applying Brouwer’s fixed point theorem (e.g.
[4, Corollary 17.56]) yields a fixed point (ﬁiN, @) of ®V. However, the range of ®V is still
strictly in My x @ since allowing p to take values in M y does not affect how we construct
the optimal control and its corresponding state process. Then @Y, a") e My x Oy isalso
a fixed point of ® had we not enlarged the domain. O

For each N, let o € A* be the equilibrium strategy from a fixed point (m", d") from
Proposition 3.12 and PV = P*" . Define the corresponding random laws (1, 9V) as in

N e uN SN . %«
minimizes J, ., defined in (20) over A™.

(33). Then by construction, «

Remark 3.13 For each N € N, we work with the same filtration FLW.B.D Iy fact, by the
argument in [62, Proposition A.10], &V also minimizes (20) had we allowed for a larger
filtration F D TF LW.B.D e provide a proof to keep the paper self-contained.

Proof We fix N € N and recall that the uncontrolled state process is defined by
XtT:= Ko/P +o0(W, — Wp) fort > 7 and X,T:= 0 fort € [0, 7).

Recall from Remark 3.6 that a(-) is a continuous function that minimizes the Hamiltonian.
For each B € A* defined on the probability space (2, F, P, ), by [31, Theorem 53.1] there
exists a unique solution (YR, ZP, 3P UP NP) c S% X Q%_ X H% X H%_ p X S% to the following
BSDE ’

T
Yo = g(XT. XL ) T (1Y) +/ Hs, XTBE o), (0, 0). 2y, Bo)ds
t
(35)

T T T T
—/ ZgdWs — 3,dBs —/ UsdM; —/ dN;, tel0,T].
t t t t
Remark 3.6 (S2) also implies well-posedness for the following BSDE solved on (2, F, P, ]F):

v, =g(x], X *(HN),r*mN)H/ Lienhts, XL 6E (), (0, 9Y)., Zo)ds

T T T T
_/ stWv _/ Bsst _/ UvdM; _/ de» re [0’ T]
t t t t

whose unique solution we denote by ()A’ s VA s 3 U s N ). However, since (MN LoV ) are F5.D
measurable, uniqueness of the solution implies that N is PV ® dt almost surely zero, and
(1?, Z , 3, U ) coincides with the solution of (26) on [7Z, T']. Recall from Corollary 3.8 and the
constructipn of the fixed point mapping ®V that PN ® dr almost surely, we must also have
oV =a(Z)lysm.

Recall from Remark 2.5 (C4) that for any admissible control, the Hamiltonian is O before
entry. Then the generator of (35) is P ® dr-almost surely greater than the generator of (36),
and they are equal when we take 8 = V. If a comparison principle for the general BSDE
(35) holds, then Remark 3.13 follows from the argument in the proof of Proposition 3.7. To
ease some notation, for ¢ € [0, T'] we denote

(36)

Ay BNy = He X E W, (p.07), ZE g = H XTP 7). (o, 97 ), i o).
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Due to the presence of compensated martingale M* and orthogonal martingale N, addi-
tional conditions are required for comparison principle to hold. In light of [23], a sufficient
condition is the existence of an equivalent measure [P to IP such that

T T It T N
S = —/ AHS(ﬂ,aN)ds—i—/ (zf - z¢ )dW5+/ (3% — 3% )d B
t t t (37)
T It T T N
+/ wf -ue )dM;+/ de—/ dN*", t€l[0,T]
t t t

is a martingale under P. This probability can be constructed by defining

dP CAH (B, )
dP '_E</o zf -z Lizp 2 )W .

Since H is Lipschitz in z, we can apply Girsanov’s theorem and conclude by [23, Theorem 2]
that comparison principle holds. Denote again by P? the probability measure corresponding
to B, which is defined as in (19). Recall that PN, P? and P all agree at time ¢t = 0 and
the Hamiltonian is O for any admissible strategy before 7. Using comparison principle and
applying optional stopping theorem yield

Tt @) =B [ [ == [ | = [ | < 27 ] =57 [7]] = 0" o)

weak weak

The inequality holds for all F-admissible 8. O

Remark 3.14 Since the state variable is linearly controlled, for eachy € T' we can define
an A-valued control o = f 4 avi(da) in A* that corresponds to the same state process.
Moreover, Remark 2.5 (C3) and Jensen’s inequality imply that this control « is at least as
good asy in terms of minimizing the objective value. See [34, Theorem A.9] and [43, Theorem
4.11] for more rigorous arguments on existence of strict controls achieving the same value
and regarding the weak formulation of the problem. In other words, given inputs (W, ®), the
optimal A-valued control is also optimal over relaxed controls for the relaxed objective (17).

3.3.3 Solutions as weak limit points

Before taking N — oo, we shall “lift” the marginal laws of Alandytoa joint law in order to
carry more information along the way. Let vV = y(a"") be the strict control corresponding to
the equilibrium strategy o’V from the fixed point mapping. Recall that 7 = (Ko, ), taking
values in R x [p*, oo) denotes the initial wealth and entry threshold. Define on €2 the lifted
random law MY € P(X* x X x I' x R?) by

VN |

N
MY (@0) = Y Lipmean £ (XL WY AN D), oo =B me.  (8)
k=1

Recall the notation from Definition 3.3 that 9"* and 9™Y denote the first and third
marginals of 9", which are the conditional law of (X 7 vy under (VV, DV).

Lemma 3.15 The sequence PV o (B, 1, om, XT, wN, yN, Z)_l is tight.

Proof Assumption (E1) implies that

E | sup X7 | <C
t€(0,T]
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for some C > 0 that does not depend on N. Let s be a G stopping time and § > 0. Then
PN T T, PN s+ ~N N N 1/2
B [1x7,s - X7| <E 6N 1di + oW — W | < s
N

for a possibly different C. These two conditions are sufficient for Aldous’ criterion for
tightness of PN o (X T)_l. For each N, (WN , B) remain independent Brownian motions
under PV, and (z, 7) also retain the same law throughout by independence. Compactness of
A implies the tightness of P o (yV)~1.

Now tightness of PV o (M")~! in the weak topology follows from the tightness of
PN o (XT, wN, yN, Z)_l (see the proof of [18, Lemma 3.16]). As suggested by Lemma 3.9,
we will need to equip P(X* x X'x T x R?) with the Wasserstein metric in order to guarantee
continuity of T, where the product space is equipped with the /; metric. By [17, Corollary
5.6] and boundedness of A, the proof of [18, Lemma 3.16] implies that it suffices to show
uniform square-integrability of || X T|| ¢ + IWV ||l so. Since W¥ is a Brownian motion under
PV, we only need to show that

N
I B [1X 701 | <oe.
RLmoolf/l;% X N Ly x7) umry | < 0

which is implied by (28). Finally, tightness of the marginals implies that of the joint law. O

Remark 3.16 LetP := P®o (B, r, M>®, XTI, W™, v®, D) bea limit point in Lemma 3.15.
Since we work with a weak limit, we only care about the law, not the processes themselves.
Therefore, without loss of generality, we can take Qo := Ry x X x Pi(X* x X x T x
R?), Qp := X* x X x T x R~ Then let (z, B, M), (X, W, vy, ) be the respective
canonical processes on Q := Qo x 1, and P a probability measure on Q. For each N, define
also on Q the law PN :=PN o (B, t, mV, x7, wN, yN, )~ We can obviously drop the
oo from the notation (or even N, since we can always work on the canonical space), but we
keep it to avoid confusion.

Define the jump process D, price process P and entry time 7, thanks to the strong
solvability from Proposition A.1. Take G to be the P-completed natural filtration gener-
ated by (B, D, M*, X T wee, v°, ), which is again the progressively enlarged version
of FEIXW=y*1 by D; = 1<z, so t is a G-inaccessible stopping time. Let
F = Gr V o(1). Weak convergence of YV to y* implies that X7 with entry time 7 sat-
isfies the relaxed state SDE (16) on (2, F, P, G).

Note that the existence of fixed points of the discretized problem and tightness result both
hold for arbitrary choice of discretized process V¥ . Now we need to specify the time and space
grids to ensure V" approximates B well enough. We will prove Theorem 3.4 by verifying
that 9> defined on (2, F, P, G) satisfies the three required conditions in Definition 3.3,
namely consistency, compatibility and optimality.

3.3.4 Consistency

Under a slight abuse of notation of re-indexing N, we take the same processes used in [14,
18] where time is discretized to the dyadic mesh and space projected to a more refined
grid. Specifically, for a fixed N € N, lett; = ;—ﬁ fori = 0,...,27. Set vop = 0 and
vi =vi_1 + H(N)(B,l. — B;,_,), where the projection map O™ : R — R is defined as

4=N 14N <4V
™o =1 'L x] x| < .
4% sign(x) |x| >4
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Then on the event Ey := {||Bllco < 4" — 1} the process V' satisfies

1

52—1\,, VN € N

vN - B,

and so we always have
1

N
IVY = Bl < 55

+ sup |By — By|.

s5,t€[0,T]: |s—t|<2—N

The right hand side converges to 0 in P probability. Since B remains a Brownian motion
under each PV, PN (Ey) converges to 1. Therefore, for all ¢ > 0 we have

lim PV (||vN — Bl < s) —1. (39)
N—o0

It is also obvious from the definition of DV that

lim PV (d(DN D) < g) =1 (40)
N—oo
With this choice of V¥, we have the following consistency property in the limit.

Lemma 3.17 For all bounded, uniformly continuous functions O Xx P(€2) x Xp - R
and h' : X* x X x T x R? = R, we have

£ [hO(B,EmO", Dyr'(x7, W°°,y°°,1)] —E [hO(B,SUI"o, D)/_ B (e, w, g, )dIM>P (x, w,q,t)].
Q

Proof This equality holds at the discretization level by (38), namely
ENRO(vN, oV, DMyt (x T wN N, D))

=EN [hO(VN, mv, DN)/S; ' x,w, g, 0dMN (x, w, g, L)] .
1

It is obvious that for all ¢ > 0:

By (39) and (40), uniform continuity of the function 4° allows us to swap (VV, DV)
with (B, D) on both sides of the equality above without changing the limits, if they exist.
Boundedness of &g, 1 and weak convergence enable us to take N — oo and retain equality
in the limit. O

Lemma 3.17 says that 9 is a version of conditional distribution of (X7, W, y>, T)

given (B, MM, D), which implies the consistency of marginals 91°>* and 91°>Y. We want
to carry the conditional joint laws because of the compatibility condition.

3.3.5 Optimality
For each N € N U {00}, define ‘I3N = (uV, V) = VX MN-Y) to be the first and third

marginals of IV . Define the state process corresponding to relaxed control any y € II" as in
(16) but in the environment PV using W¥, namely

t
xNY = n{,ZﬂKO/@Jr/ fay(ds,da)Jra(W,’XT— wh), telo,T].
0 JA
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Then in particular, X NV xT Recalling (17) the objective function for relaxed controls,
we now define for each N the objective under the environment P":

T
pN N N,
TN =BT (XY X T ) + F XY 60 i), (o, 0)).
(G INT JA
a)y(da,ds)].
Lemma3.18 limy_ o0 J¥N(vY) = J® (™).
Proof Since the convergence in Lemma 3.15 is weak, we need to uniformly approximate f, g
by bounded functions. For k € N and x € R, denote by x; the projection of x on [—k, k].

DeﬁnefkZ[O,T]XRXRXRX[O,T]XRXA—)RaHngQXRXRX[O,T]—)R
by:

e x6m,0,0) = k(@) + ¢xf — x; (0 Ljr<ny + 0Lzn)) s 1)
g“ (e, v ) = cxi + Buyn,, - (42)

Recall that y here is the bubble component defined in (4). Since we only care about y at the
burst time, we can equivalently take y; = fot bSP ds. Since the price impact functions x and
p are continuous, compactness of A implies that for each k € N, there exists some C; > 0
such that

ST XT, vy )| + ‘/ T/ s XL 8 ), (0. 9Y) ayv(da, ds)| < G

For N € NU {oo} and k € N, define the approximated objective JV-* on I by

INK) = EPY |:gk(XT,X N),r*(uN))-i-f / X, XT P, r*(uN),<p,19£v>,a)y(da,dx)i|.

T
(1

Then weak convergence implies that limpy_, oo |JV k Ny — Jook(y%)| = 0. To shorten
the notation, let T := t*(u™). Using (28), we have

NeN t€(0,T]

2
supIEPN sup ‘XT X ‘
NeN 1€[0,T]

N 2
sup EP |:sup ‘|XtT|—k‘ ]1{|X,T|>k}:|

k—o00

N
sup EF |:||XT||%W]1{”XTHX*>I(}:| )
NeN

IA

Recall that P has the same law under PV for each N. Then similarly, Assumption (2) and
Proposition A.1 together imply

N 1 1 k—o00
sup EF [ sup |bf —iklz} =E" [ sup b/ —bszlz} <E° [||bp||ooﬂ{nb"um>k}] — 0.
NeN t€[0,T] 1€[0,T] *

N 1 1
sup B [sup m—mz} =E" [ sup |y — v, } <E" (71301 k]
NeN t€[0,T] tel0,T]

k—o00

1
<E [T||bP||o<>]l{T||bPuoo>k}] — 0.
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These uniform integrability properties, along with Assumption (2) and the separability
condition in Remark 2.5 (C1), imply that there exists C > 0 such that

N N 2
sup B¥" [1g — (X7, X7y, e = € sup BF" [|xD)? - (x|

NeN NeN
. (43)
—
+C\/supE [yen = ven, |2]+c\/sup EF"[1X7, - X% P =30,
NeN NeN
and also

sup 7" [ / f|f 741, X700 7 o, 9) .y (da. ds) |
TIAT

NeN

! PN 7,2 7,2 ! PN T T, |?
< C/ sup E H(Xs — 7 Hds+c/ sup E Ux —(xTy ‘ ]ds (44)
0 NeN —k 0 NeN —k

+c/ \/supIEP [lbP — bF |2]+\/supEP [1x7— X7 "1 ds 2.
NeN —k NeN

Therefore, for any fixed k € N,
NN = 12| = [TV M) = VRGN VRN — ek
+ |7k ) — 12|
Taking limit N — oo gives
Jim [Ny = )] < sup [N M) = IO [ [k — a2 0|
Taking k — oo on the right hand side and using (43) and (44) give the result. O

Let B € I" be another G-admissible relaxed strategy. Following the proof of Lemma 3.18,

we also have JN(8) — Nogo J(B). Remarks 3.13 and 3.14 together imply that NN <
JN(B) foreach N. Taking N — oo on both sides we have J®(y™®) < J®(B) forall g € I,
so optimality is proved.

Now recall that for an A-valued control « € A*, we denote by y(«) its corresponding
strict control in the space of relaxed controls, where each time marginal is the Dirac measure
at ;. Using the optimality lemma above, we can in fact show that y®>° must be a strict control.

T
Lemma 3.19 There is a version of Y*° that is F&X ’Wm’I’D—progressively measurable that
is a strict control taking the form y*>° = y (@) for some @*>° € A*.

Proof Define o/ := fA ayX®(da) fort € [0,T] and ¥ := y(«®). Then «® € A* and
¥ € I is a strict control. It is obvious that ¥ and y*° both give rise to the same state process
X7 according to (16). Using strict convexity of f in a and Jensen’s inequality, we have

Jw(?)zli[g(X% XT, o ) + / / s, XT b0 7 <u°°),<p,19§’°>,aw(da,ds)]
=1'E[g(x$, xg(um),r*(uW)Hf fes, X pP, o* (u°°),(p,9§°),a§°)ds]
TINT
_ T
sE[g(X%, X7 ooy THU™)) + f / fe. xIpl o (u°°),(p,ﬁi"’),a)v‘”(da,dS)]
TIAT J A

=J=).
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The inequality is strict (which contradicts with optimality of y°°) unless y*° = y(a®).
Lebesgue differentiation theorem allows us to define @*° € A* by

oo lim,,— 0o 12 f(ttil/nH alds  if the limit exists

! 0 otherwise.

Then P ® dr almost surely, 8 = a™. Note that @ shares the same measurability with
fo' a’ds, which by (12) is IFXT’WOO’B’I’D measurable. O

A consequence of the lemma above is that we can drop either y*° or X 7 from the definition
. . T

of G and simply consider G = FBIZXLWELD — B0 y*.W=LD Noreover, both

optimality and consistency still hold for y*° = y(a°°). In fact, this is the case for every limit

point of the sequence in Lemma 3.15.

3.3.6 Compatibility

Following Definition 3.3, we need to show that F = FEMW=.B.D s immersed in G =
(G1)iefo,1] defined above. We need to keep in mind that while 7 is Gp-measurable, it is not

T . .
]—'é( -measurable due to random entry, which is why we need to treat 7 separately.

Lemma 3.20 The filtration G is compatible with (Z, N>, W, B, D).

Proof By Proposition 3.2, it suffices to show that for all ¢ € [0, T], .7-"tx ’ is conditionally

FLIMF. W™ B.D — LI W®.B.D
T =

independent from Fr = given F, : . We follow the proof

of [20, Lemma 3.7]. .
Lemma 3.17 implies that W is a P-Brownian motion independent from (B, ?ﬁm, D).
Fix t € [0, T]. Consider three bounded functions ¢;", ¢;*, and ¢,] where ¢ : P1(221) = R

is }J;moo measurable, ¢/, : X — Riso(Wy—W,; : s € [t, T]) measurable, and ¢t1 Q>R

T
is th,x W™ measurable. By Lemma 3.17 and property of Brownian motion we have

E [W(imm) /Q ¢}d9ﬁ°°} E o1, )] = E [of" )8 (XT, W,y Dty (W) |
1

E {«p;"(mw)fﬂ OB (W), (x, w, g, DAM™ (x, w,q,o]
1

Since this holds for all ¢;", P almost surely we have
E [0 (W) EP (¢} (X7, v, 7, W) = E™ [9 (W) (X7, v, T, W™)](45)

where by E™ (¢ (X7, y>®, Z, W*®)] we mean the integral fQ GdIM™ for ¢ : Q1 — R. Note
- T ywoo
that this expectation is JF;-measurable if ¢ is ]:,I’X W™ _measurable.
Additionally, consider bounded functions ¢‘, ¢}, ¢;, o7 where ¢* : R? — R is Borel

measurable, ¢ : X* — Ris .EX ’ measurable, ¢, and g7 are functions from Xx P; (Q1) x Xp
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toRthatare}'Bm D d]-'BSm D

we have

measurable, respectively. Using (45) and Lemma 3.17,

EL; (XDr (B, I, D) D (W)} (W) (B, MM, D)]
197 (XD Dl (W) (W) N(gr - @) (B, 90, D) |

E[E™ 147 (X1 @@y W))(gr - 90 (B, %, D) | Elg . (W)

g
[ 07 XD D! W)IF | (o7 - 90 (B, M=, D)}E[cp (W™)]
[ 97 (XD Dy (W™)IF, | @i (B, M, D)E [or (B, M, D)|f,]]E[¢,+(W°°)]

Elgf (XDIFIE [or (B. 9%, D)F ] o1 (B, 2%, D' Dy (W), (W) .
(46)

where the last equality follows from the independence of ¢;% (W) and F;. Since ¢* and
¢, are arbitrary, we can replace them with bounded ¢* - ¢* and ¢,” - ¢,*, each with the same
corresponding measurability requirements. Then by definition of conditional expectation we
have

E[¢f<x7>¢T<B M, D) D (W)t (W) F;]
= E [¢7 XDIF | E [or (B, ™, D)o D (W) (W) F]

We conclude by noting that .7-";'/ “is generated by ¢, (W°)¢;” (W) with arbitrary ¢/, and
o o

We have then finished the proof of Theorem 3.4.

4 Strong control and Proof of Theorem 2.8

Recall from Lemma 3.19 that the weak control found in the previous section is in fact
a strict control y(«¢®), and a® is B X7 WM. 1.D progressive. In order to obtain an
equilibrium with strong control, we will show that o> is F8 WEP*LD measurable after
bringing the lifted environment 91 back to the “original” environment B> = (U, H°) =

(ON* 9M°>Y). We now begin the proof of Theorem 2.8.

Proof of Theorem 2.8 We split the proof into three steps. First we show that the original
environment 3°° carries enough information for the equilibrium. Then we adopt the proof
of [19, Proposition 4.4] to recover an A-valued control. Lastly, we end the proof by arguing
that 7 remains a totally inaccessible stopping time.

Step 1: Back to original environment

The reason for lifting the environment is solely for the proof of the compatibility lemma
3.20, in particular the first and third equality in (46). Recall from (38) that we took mV to
be the joint conditional law of (XT, wh, yN, 7) given (B, D) under PN . We did this to ease
the notation in the consistency and compatibility lemmas. Notice that we did not need the
full fledged joint law in deriving (46), but only the product of the marginals. This implies
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that for fixed N € N, we could alternatively define for each (8,1) € X' x R:

VNl

~N N N N N

M B =Y Lgpmeanl” *XNH e L Fwh)ye £ * () @ £ (D).
k=1

This version still carries the necessary inputs 8" to the BSDE (26) as its first and third
marginals, and tightness of PV o (ﬁIN)*l follows immediately from that of PN o (MV)~!
in Lemma 3.15. Then we take a limit pointﬂ_” =P%®o (B, 1, £m°°, X7 we, yoo,l)_l and
follow the same argument in Remark 3.16 to work on the canonical space. In particular,
9N is the canonical process on P €QD. Following the argument in Lemma 3.17, the fixed
point property for each N € N now leads to a weaker consistency in the limit. Namely, for
all bounded, uniformly continuous, R-valued functions Ko, hl hllu, h%,, hl1 with respective

Jhy,
domains X x P1(Q) x Xp, X*, X, T, R, we have

E[hO(B,zﬁt‘”,D) / hL (x)dMm™ (x) / R (w)dM™ (w) / h (g)dM™ (q) / h}(z)dffnm(t)]
X X r R?
= E[h°(B, ™, DYAL(X D)k}, (W), (y*)h! (D]

=E [hO(B, m>, D)/_ Y)Y, () (@)h! (DA™ (x, w. q, L)], (47
Q)
which results from taking N — oo of the following equalities by construction

E[h“(vN,sﬁtN,DN> f Rt 0asit” () / hby (w)d" (w) / n (@at” (q) / h)(z)dsﬁtNa)]
X* X r R?
= E vV Y, DMynlx Dk, WMyl vV yn! @)1

-y [h"(VN,iﬁzN, DN)ﬁ LR )kl (@)h! ©asit” (x, w,q,t):|.
Q)

__ This is also sufficient for the consistency requirement in Definition 3.3. Similarly, with
M the equality (45) holds only for qbtl taking the form of a product, separable in each
coordinate. This weaker property, however, is sufficient for (46) and hence the compatibility
requirement. Since the optimality property only depends on the marginals and thus is not
influenced, we can replace 9> with m> El the final filtration G = F5-X LW M LD .

Note from (47) that P almost surely, M is a product measure of its four marginals
by uniqueness of measures on the product space. More importantly, its second and fourth
are almost surely the Wiener measure and (v ® v)), respectively, since for each N € N,
(WN ., Z, B, D) are mutually independent u{lder PV, Being complete, the filtration F*™ in
the original environment coincides with ]FEmoc from the lifted environment. Therefore, we
can equivalently take G = F58 XTWe . 1.D , and the compatibility condition reads that
F:=FBWS37LD i immersed in G.

Step 2: Strong control via optional projection

To further strengthen the measurability property of y from G to I, we follow the proof of
[20, Proposition 4.4]. Recall that the state equation (12) with W as the Brownian motion
is satisfied by X Tand . By optional projection we can find I_F-optional processes X T and

a such that for any finite F-stopping time p:

XT= EIX]|F,1. @, = E[&°|F,l. as. (48)
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Since F is immersed in G, Proposition 3.2 implies that foreach0 < s <t < T,
XT= Elx1|F), a, = E[@®|F], as. (49)

Using Fubini’s theorem for conditional expectation along with (49) on (12), we can replace
X Tby a modification such that P almost surely

t

0

Notice that given P> = (ﬁtoo’x, ﬁ?m’y) = (u°°, 9°°), the bubble burst time 7*(u>) is
a F-stopping time, and the bubble component Vrr(uoe) 18 ‘7-}*(”00) measurable. Recall also
from Remark 2.5 (C1) that the running cost f depends on 7*(u°°) only through D, which is
IF‘-adapted. Then by conditional Jensen’s inequality, Remark 2.5 (C3) and (48),

T
@) =E| [ fG XTI bP T* (™), (0. 95°) ., &y)ds + c(XT)* + ﬁr*(uw))/r*mw)xg(um)}
L N

00 §oo

JH

rrT
| [ E[f(s,XXT,bf,r*(uw),(p,ﬁfo),&x)lff]dS]
LJTIAT

+cE [E[IXTPVFr || + B [Beruorvee o B [ X o | Fere |

T
=E| | f(s,XST,bSP,r*(uoo),(pﬁ?o),&s)ds+C(X;)2+ﬂr*(uw>)/r*(w>xr7*(uoo)}
LJTAT
:Juooyﬁao

().

By strict convexity of f in (x, a), the inequality is strict unless @ and X7 are both
already [F adapted. Strict inequality would lead to a contradiction to optimality of &> among
G-progressive controls, since « is I_F-optional, hence also G-progressive.

Step 3: Exogenous burst time as totally inaccessible stopping time

The section above implies that we can take G = F = FL8 WEDFE 4o begin with.
This concludes the proof for the existence statement of Theorem 2.8. It remains to show
that the exogenous burst time 7 is a FZ-8.W®.D. B> -totally inaccessible stopping time. In
light of Remark 3.5 and Assumption (E2), it suffices to remark that 7 is independent from
(Z, B, W, 3°°), which follows from the independence between t and (Z, B, wN, ’BN ) for
each N. Therefore, we have found an equilibrium with strong control as defined in Definition
2.7, concluding the proof of Theorem 2.8. O

5 Concluding remarks

In this paper we proposed a more realistic extension of the bubble riding game introduced
in [62]. In contrast to [62] where agents were assumed to enter the game at independent and
identically distributed times on an awareness window [0, n], here we allow players to enter
the game when the price trajectory of the bubble asset reaches a given threshold. We also
allow the initial inventory to depend on the initial (cash) investment and the price level at
time of entry. Due to these improvements on the model, the resulting MFG in the N — oo
limit is one with common noise in addition to non-standard features such as random entry
times, interaction through the controls and possible jump of the state processes. Because the
coefficients of the game do not satisfy the usual monotonicity conditions assumed in common
noise MFG theory, we have to settle for existence of equilibria in a suitable weak form (see
Definition 2.7). In short, the weaker, more realistic model assumptions made in the present
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paper result in weak, abstract equilibrium strategies whereas the stronger model assumptions
made in [62] result in stronger equilibrium strategies that can be numerically simulated thus
providing interesting economical insights.

Appendix A Two auxiliary results

For a cadlag process Y, denote by MtY = SUpPy<,<; Y5 its running maximum. Recall from
(1) and the price dynamics of the N-player gamé that the bubble trend function b naturally
depends on F, ,,(M}D ), which is not Lipschitz in M*. In general, the dynamics of asset price
in the bubble phase is not well-posed. However, as the bubble is fueled by players’ entry, b
should be increasing in F p(MtP ), hence also increasing in M,P at each time ¢t € [0, T'] since
F, is a CDF. This monotonicity property of the path-dependent SDE (2) restores unique
solvability.

Proposition A.1 The following path-dependent SDE
t
X, =x+ / b(s, M¥, X;)ds + oo B, (50)
0

has a unique strong solution satisfying E[||X||§o] < oo if for each fixed t € [0, T]:

(1) There exists C > 0 such that for all x € C([0, T]; R):

‘E ([, Mix,x[)

<C (1 + M,"") :
(2) b(t,-, ) is increasing (not necessarily strictly) in each argument.

Proof We adapt the proof of [11, Theorem 4.1]. The first condition guarantees a weak solution
satisfying the integrability condition that is unique in law (see [42, Proposition 5.3.6 and
Remark 5.3.8]). By the well-known result of Yamada and Watanabe [64], we only need to
show pathwise uniqueness. Suppose X and Y are two solutions on the same probability space
with respect to the same Brownian motion B. Observing that X — Y is absolutely continuous,
by Tanaka’s formula we get

t

X vY =Y +(X; — Yz)+ =Y, +/ Lix,>v)d(Xs — Yy)
0

t t
=x+aoB,+/ ]l{XPY‘,]b(s,MSX,Xs)ds—i-/ T(x,<y,b(s, MY, Y5)ds.(51)
0 0

t t

Y,V X, =x+o00B; + /0 Tyy,=xb(s, M), Y)ds + /0 Ty, <x,b(s, MX, X;)ds.
We can equate the above expressions for all ¢, implying that for almost every ¢ we have
Tix,=v,) (B(r, MY, v, — b, M¥, X,)) =0. (52)
We now show that if X; > Y, then MX > MY . Define
so :=sup{u € [0, s] : X, =Y, }.

The case is trivial if 59 = 0.

@ Springer



Mathematics and Financial Economics (2024) 18:275-312 309

On the event {so > 0}, continuity of X and Y implies that X, > Y; for all 1 € (sp, s].
Suppose M;X < Mf, then there must exist s* € [0, sg) where Y+ = MsY > MJX > Xgx.
Then define

51 1= inf{u € [s*, s0] : Xu = Yu).

By continuity again, ¥; > X, for all r € [s*, s1). By definition of s*, we must also have

MIY > M,X for all ¢ € [s*, s1). Monotonicity of b leads to a contradiction

S1 - -
0> Xy — Y :/ b(t, MY, Y,) —b(r, MX, X,)dt > 0.
S

5

Therefore, MX > MY and in particular, MXVY = MX. We can then rewrite (51) as
t ~

X, VY =x+0yB; +/ b(s, MXVY | X v Yy)ds

0
t ~ ~
+/ Lix,—v,) (b(s, MY, Yy — b(s, MXVY X, v Y_Y)> ds
0

t

=x +00B; +f b(s, MXVY | X5 v Yy)ds
0

t
+ / Ly xomra X)) (b(s, MY .Yy —b(s, MXVY X, v YS)> ds.
; :

where the last line vanishes by (52). Therefore, X Vv Y also satisfies (50). Similarly, one
can show X A Y is also a solution. Then by uniqueness of law, we have E[|X — Y|] =
E[X VY — X A Y] = 0 which leads to pathwise-uniqueness and completes the proof. The
integrability property easily follows from Gronwall’s inequality. O

The following measure theoretic result is probably well known. We give a proof since we
could not find a directly citable reference.

LemmaA.2 Let (S, Z, i) be a complete measurable space. A function f : S x R — R is
Jjointly measurable if for all x € R:

(1) f(,x) is measurable.
(2) f(, xp) converges to f (-, x) in u-measure for any increasing sequence x, 1 x.

Proof First let E C R be any closed set and let X = {x,,},,>1 be a countable, dense subset
of R. For ¢ > 0, denote by O(E) the open set {x € R : inf,cg |[x — ¢| < €}. We claim that
for p-almost every s € S and any x € R, f (s, x) € E if and only if for each n € N, there
isx, € XN(kx— %, x] such that f (s, x,,) € O1(FE). Note that we can always approximate
any x € R by an increasing sequence {x,, }kzlnwith elements in X such that the functions
f (-, xm, ) converge p-almost everywhere to f(-, x). The claim follows almost immediately.
Denoting by f~! the preimage of f, joint measurability is proved by writing

. B 00 o0 . i
s (E)_ﬂU{seS.f(s,xm)e(’)nl(E)}x|:xm,xm+n).

n=1m=1

[m}
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