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Abstract
Motivation: Mendelian randomization (MR) infers causal relationships between exposures and outcomes using genetic variants as instrumen
tal variables. Typically, MR considers only a pair of exposure and outcome at a time, limiting its capability of capturing the entire causal network. 
We overcome this limitation by developing MR.RGM (Mendelian randomization via reciprocal graphical model), a fast R-package that imple
ments the Bayesian reciprocal graphical model and enables practitioners to construct holistic causal networks with possibly cyclic/reciprocal 
causation and proper uncertainty quantifications, offering a comprehensive understanding of complex biological systems and their 
interconnections.
Results: We developed MR.RGM, an open-source R package that applies bidirectional MR using a network-based strategy, enabling the explo
ration of causal relationships among multiple variables in complex biological systems. MR.RGM holds the promise of unveiling intricate interac
tions and advancing our understanding of genetic networks, disease risks, and phenotypic complexities.
Availability and implementation: MR.RGM is available at CRAN (https://CRAN.R-project.org/package=MR.RGM, DOI: 10.32614/CRAN.pack
age.MR.RGM) and https://github.com/bitansa/MR.RGM.

1 Introduction
Mendelian randomization (MR) is a vital tool in genetic and 
epidemiological studies, emulating randomized control trials 
to elucidate causal relationships between exposures and out
comes. MR utilizes genetic variants as instrumental variables 
to mitigate confounding biases in observational studies. 
While traditional MR focuses on individual exposures and 
specific outcomes, the challenge arises in exploring multiface
ted causal relationships involving multiple outcomes in com
plex biological systems.

A comprehensive review of existing R packages for MR 
reveals a range of tools with distinct functionalities. The 
package mr.pivw (Xu 2022) implements the penalized 
inverse-variance weighted (pIVW) estimator, designed to esti
mate causal effects using summary-level data from genome- 
wide association studies. mr.raps (Zhao 2018) utilizes the 
Robust Adjusted Profile Score (RAPS) method for two- 
sample MR, enhancing causal inference through summary 
statistics. PPMR (Yuan and Zhou 2019) excels in efficient 
two-sample MR analysis, addressing issues related to corre
lated instruments and horizontal pleiotropy.

OneSampleMR (Palmer et al. 2023) is tailored for one- 
sample MR and instrumental variable analyses, leveraging 
individual-level data for detailed analyses. MRPC (Badsha 
and Fu 2022) applies principal component analysis within 
the MR framework, facilitating multivariate MR by summa
rizing complex relationships into principal components. 

MendelianRandomization (Burgess and Yavorska 2024) sup
ports both univariate and multivariate approaches using sum
mary data, providing a versatile tool for complex 
MR analyses.

Recent advancements include TwoSampleMR (Hemani 
et al. 2018), designed for robust two-sample MR analyses, 
and MVMR (Sanderson et al. 2021), which efficiently han
dles multivariate MR by modeling multiple outcomes and 
exposures. mrbayes (Uche-Ikonne et al. 2021) provides 
Bayesian implementation of multivariate MR based on either 
the inverse variance weighted model (Thompson 2013) or the 
Egger regression model (Bowden et al. 2015), enabling uncer
tainty quantification through MCMC sampling. MrDAG 
(Bottolo and Zuber 2024, Zuber et al. 2024) uses directed 
acyclic graphs to elucidate causal structures, focusing on 
causal inference within a Bayesian network framework.

Each package contributes significantly to MR research 
with distinct functionalities tailored to different data scenar
ios. However, common limitations include challenges in un
certainty quantification, restrictions to specific data types, 
constraints to bivariate analyses, and limitation in applica
tion to bidirectional MR. For details, refer to Table 1.

This work introduces MR.RGM (Sarkar and Ni 2024) (for 
modeling details, refer to Supplementary Materials, 
Supplementary Section S1), a new package for multivariate 
bidirectional MR based on reciprocal graphical model (Ni et 
al. 2018). MR.RGM uses a Bayesian framework and a 
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network-based strategy, surpassing traditional MR 
approaches. While conventional methods focus on isolated 
variables, MR.RGM constructs comprehensive causal net
works possibly with feedback loops, particularly adept at 
capturing intricate relationships within complex biological 
systems. MR.RGM supports individual-level data and two 
types of summary-level data, leveraging Cþþ for backend 
computations and the Woodbury matrix identity for effi
ciency (refer to Supplementary Materials, Supplementary 
Sections S6 and S7). Its Bayesian nature enables natural un
certainty quantification.

2 Methods
The R package MR.RGM has two key functions: RGM, dedi
cated to building causal graphs and estimating causal effects, 
and NetworkMotif, designed for uncertainty quantification, 
providing posterior probabilities for specific network motifs. 
First, we delve into the functionality of the RGM function, fol
lowed by a discussion of the NetworkMotif function.

For detailed implementation and usage examples, see 
Supplementary Section S5 of the Supplementary Materials.

2.1 Function 1: RGM
2.1.1 Three input formats
RGM supports three input formats, catering to various data 
availability scenarios.

2.1.2 Individual-level data input
Researchers input X and Y matrices. X signifies the instrument 
data matrix, where columns represent instruments (e.g. SNPs), 
and rows represent observations. Y denotes the response data 
matrix, with columns representing response variables (e.g. pro
tein, gene, or phenotype), and rows corresponding to 
observations.

2.1.3 Summary-level data input
Recognizing that individual-level data, especially SNPs or dis
ease status, can be sensitive and not always readily available, 
RGM provides support for two types of summary-level data 
input. The first type involves specifying Syy, Syx, and Sxx 
matrices. Syy represents the covariance matrix of the re
sponse variables, Syx signifies the covariance matrix between 
the responses and instruments, and Sxx denotes the covari
ance matrix of the instrument variables. RGM would output 
the exact same solution as that based on individual-level 

data. For the calculation of the likelihood using summary- 
level data, refer to Supplementary Materials, Supplementary 
Section S9.

2.1.4 Handling difficult cross-correlations
In situations where obtaining cross-correlations among re
sponse variables (Syy) is challenging, for instance, when two 
response variables were never measured in the same dataset, 
RGM can still be used and will output an approximate solu
tion. In this scenario, researchers can specify Sxx, Beta, and 
SigmaHat matrices as input. Beta and SigmaHat matrices re
spectively contain regression coefficients and mean square 
errors for the regression of a response variable on its corre
sponding instrument, where the regression is performed with
out including an intercept term. Each row of Beta and 
SigmaHat matrices corresponds to a response variable, and 
each column corresponds to an instrument. For the detailed 
derivation, please refer to Supplementary Sections S10 and 
S11 of the Supplementary Materials.

2.1.5 Essential input parameters
Users need to specify two input parameters: D and n. The ma
trix D is binary with dimensions p × k, where p is the number 
of response variables and k is the number of instrumental 
variables. Each row represents a response variable, and each 
column represents an instrumental variable. A 1 in D[i, j] 
indicates that instrumental variable j affects response variable 
i. For identifiability (refer to Supplementary Materials, 
Supplementary Section S4), each response must be influenced 
by at least one instrumental variable that affects only that re
sponse, meaning there must be at least one unique entry of 1 
in each row, where the corresponding column contains 0 in 
all other rows. If this condition is violated, the algorithm will 
throw an error when using Syy, Beta, and SigmHat, but will 
issue a warning and proceed when using X, Y, or Syy, Syx, 
Sxx. The parameter n is the sample size (only needed for 
summary-level data).

2.1.6 Customizable parameters
RGM offers customizable analysis through user-defined 
parameters. Users can specify the number of MCMC sam
pling iterations (nIter) with a default of 10 000, set the num
ber of discarded samples (nBurnin) with a default of 2000, 
and define the thinning of posterior samples using the Thin 
parameter (default value: 1). Additionally, users can choose 
between two graph structure priors: Spike and Slab or 

Table 1. “✓” indicates that a package is capable of performing a specific Sutask, while “✗” denotes that the package is not equipped to handle the task.a

R package Multivariate MR Summary level data Uncertainty quantification Bidirectionality

mr.pivw ✗ ✓ ✓ ✗

mr.raps ✓ ✓ ✓ ✗

PPMR ✓ ✓ ✓ ✗

MRPC ✓ ✓ ✓ ✗

OneSampleMR ✗ ✗ ✓ ✗

Mendelian randomization ✓ ✓ ✓ ✗

TwoSampleMR ✓ ✓ ✓ ✗

MVMR ✓ ✓ ✓ ✗

mrbayes ✓ ✓ ✓ ✗

MrDAG ✓ ✓ ✓ ✗

MR.RGM ✓ ✓ ✓ ✓

a Note that even if a package is not designed specifically for bidirectional MR (indicated by “✗”), it can be in principle repeatedly applied to infer bi- 
directional causation.
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Threshold, with the default being Spike and Slab. For details 
of these priors, refer to Supplementary Materials, 
Supplementary Section S2.

Users also have the option to customize the model hyper
parameters aRho, bRho, nu1, aPsi, bPsi, nu2, aSigma, 
bSigma, PropVarA and PropVarB, although relatively robust 
default values are provided for ease of use. For details, see 
Supplementary Section S3 of the Supplementary Materials.

2.1.7 Outputs
The main outputs of RGM encompass causal effect estimates 
(AEst and BEst) among response variables and between instru
ments and responses. Additionally, RGM outputs binary adja
cency matrices (zAEst and zBEst) that depict graph structures, 
derived by thresholding the posterior probability matrices 
(GammaEst and PhiEst respectively) at 0.5. The thresholding 
process may result in some entries of zAEst being zero even 
when the corresponding entries in AEst are non-zero. This dis
crepancy arises because AEst represents the posterior mean of 
causal effects, while zAEst reflects whether the inclusion proba
bility for an edge exceeds the threshold (0.5). For practical use, 
multiplying AEst by zAEst elementwise can help account for 
edge inclusion probabilities, effectively making causal effects 
zero where inclusion probabilities are very small. RGM return 
an output Graph, which is a graph object that incorporates 
these ideas, encoding both causal directions and causal effect 
sizes. Plotting this graph provides a clear visualization of the 
causal network among responses. RGM further provides poste
rior samples of the adjacency matrix between response variables 
(GammaPst), an input for the NetworkMotif function to quan
tify uncertainty for a specific network motif. Other outputs 

comprise of A0Est, B0Est, GammaEst, TauEst, RhoEst, PhiEst, 
EtaEst, PsiEst, tAEst, tBEst, SigmaEst, AccptA, AccptB, 
AccpttA, AccpttB, and LLPst. All these outputs represent poste
rior means except LLPst, which consists of posterior samples; 
see Supplementary Section S3 of the Supplementary Materials 
for details. Next, we will describe the NetworkMotif function.

2.2 Function 2: NetworkMotif
2.2.1 Inputs
The NetworkMotif function requires two input variables: 
Gamma and GammaPst. Gamma represents a specific adja
cency matrix corresponding to the network motif of the re
sponse variables for which uncertainty quantification is 
desired. GammaPst consists of the posterior samples of the 
adjacency matrix obtained from the RGM function.

2.2.2 Output
The output of the NetworkMotif function includes the uncer
tainty quantification (i.e. posterior probability) of the speci
fied network motif. For details, please refer to Supplementary 
Section S3 of the Supplementary Materials.

3 Simulation results
Utilizing the mathematical model y ¼ Ay þ Bx þ e, we con
ducted a comprehensive assessment of our algorithm's perfor
mance. By generating x and e from a normal distribution, we 
simulated various scenarios to gauge the effectiveness of our ap
proach. We compared our package with OneSampleMR, a re
cent and advanced R package for MR, based on true positive 
rate (TPR), false positive rate (FPR), false discovery rate (FDR), 

Figure 1. Figure 1.1 represents the true graph. Figure 1.2 illustrates the causal network estimated by MR.RGM with the Spike and Slab prior. Figure 1.3,  
1.4, and 1.5 depict the causal graph estimated by OneSampleMR with different alpha values. Figure 1.6 displays the heatmap of the causal graph 
created by MR.RGM. In the heatmap, each entry corresponds to node i in the horizontal row and node j in the vertical row, indicating the posterior 
probability of the causal effect of node j on node i. Lighter colors signify lower probabilities of any causal effect.
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Matthew's correlation coefficient (MCC), and area under the 
receiver operating characteristic curve (AUC) at different sample 
sizes (10k, 30k, 50k), network sizes (5, 10), sparsity of A (25%, 
50%), and effect sizes (0.1, −0.1). We adjust the standard devi
ation of the noise to achieve different variance explained levels 
(1%, 3%, 5%, and 10%). B is set to be the identity matrix. The 
detailed results are presented in the Supplementary Materials, 
Supplementary Section S12 and Supplementary Tables S2–S5. 
Notably, our approach consistently yielded equivalent results 
when applied to both individual-level data and summary-level 
data, validating its versatility and reliability across different data 
availability scenarios. As an example of comparison (Fig. 1), it 
is evident that the networks produced by our method, exhibit a 
substantial improvement in accuracy compared to those gener
ated by the package OneSampleMR. For further details on the 
selection of instrumental variables in real-world data and the 
application of these methods to GTEx (GTEx Consortium 
2020) V7 data, please refer to Supplementary Materials, 
Supplementary Section S13. In addition, we evaluated MR. 
RGM's sensitivity to the assumption of normal errors by com
paring performance across various error distributions, including 
normal, t-distributions, and Laplace. The results, indicating that 
MR.RGM is not sensitive to the normal error assumption, are 
detailed in Supplementary Materials, Supplementary Section S8 
and Supplementary Table S1.

4 Conclusion
This paper introduces MR.RGM, an R package for exploring 
causal relationships in complex biological systems. MR. 
RGM constructs comprehensive causal graphs possibly with 
feedback loops, accommodating both individual and 
summary-level data. Its versatility, adaptability to diverse 
data formats, and network-based strategy enhance causal in
ference. MR.RGM's Bayesian approach enables uncertainty 
quantification and holds the promise to advance genetics and 
epidemiology research by uncovering complex biologi
cal phenomena.
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