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Abstract

Motivation: Mendelian randomization (MR) infers causal relationships between exposures and outcomes using genetic variants as instrumen-
tal variables. Typically, MR considers only a pair of exposure and outcome at a time, limiting its capability of capturing the entire causal network.
We overcome this limitation by developing MR.RGM (Mendelian randomization via reciprocal graphical model), a fast R-package that imple-
ments the Bayesian reciprocal graphical model and enables practitioners to construct holistic causal networks with possibly cyclic/reciprocal
causation and proper uncertainty quantifications, offering a comprehensive understanding of complex biological systems and their
interconnections.

Results: We developed MR.RGM, an open-source R package that applies bidirectional MR using a network-based strategy, enabling the explo-
ration of causal relationships among multiple variables in complex biological systems. MR.RGM holds the promise of unveiling intricate interac-
tions and advancing our understanding of genetic networks, disease risks, and phenotypic complexities.

Availability and implementation: MR.RGM is available at CRAN (https://CRAN.R-project.org/package=MR.RGM, DOI: 10.32614/CRAN.pack-

age.MR.RGM) and https://github.com/bitansa/MR.RGM.

1 Introduction

Mendelian randomization (MR) is a vital tool in genetic and
epidemiological studies, emulating randomized control trials
to elucidate causal relationships between exposures and out-
comes. MR utilizes genetic variants as instrumental variables
to mitigate confounding biases in observational studies.
While traditional MR focuses on individual exposures and
specific outcomes, the challenge arises in exploring multiface-
ted causal relationships involving multiple outcomes in com-
plex biological systems.

A comprehensive review of existing R packages for MR
reveals a range of tools with distinct functionalities. The
package mr.pivw (Xu 2022) implements the penalized
inverse-variance weighted (pIVW) estimator, designed to esti-
mate causal effects using summary-level data from genome-
wide association studies. mr.raps (Zhao 2018) utilizes the
Robust Adjusted Profile Score (RAPS) method for two-
sample MR, enhancing causal inference through summary
statistics. PPMR (Yuan and Zhou 2019) excels in efficient
two-sample MR analysis, addressing issues related to corre-
lated instruments and horizontal pleiotropy.

OneSampleMR (Palmer et al. 2023) is tailored for one-
sample MR and instrumental variable analyses, leveraging
individual-level data for detailed analyses. MRPC (Badsha
and Fu 2022) applies principal component analysis within
the MR framework, facilitating multivariate MR by summa-
rizing complex relationships into principal components.

MendelianRandomization (Burgess and Yavorska 2024) sup-
ports both univariate and multivariate approaches using sum-
mary data, providing a versatile tool for complex
MR analyses.

Recent advancements include TwoSampleMR (Hemani
et al. 2018), designed for robust two-sample MR analyses,
and MVMR (Sanderson et al. 2021), which efficiently han-
dles multivariate MR by modeling multiple outcomes and
exposures. mrbayes (Uche-Ikonne et al. 2021) provides
Bayesian implementation of multivariate MR based on either
the inverse variance weighted model (Thompson 2013) or the
Egger regression model (Bowden ez al. 2015), enabling uncer-
tainty quantification through MCMC sampling. MrDAG
(Bottolo and Zuber 2024, Zuber et al. 2024) uses directed
acyclic graphs to elucidate causal structures, focusing on
causal inference within a Bayesian network framework.

Each package contributes significantly to MR research
with distinct functionalities tailored to different data scenar-
ios. However, common limitations include challenges in un-
certainty quantification, restrictions to specific data types,
constraints to bivariate analyses, and limitation in applica-
tion to bidirectional MR. For details, refer to Table 1.

This work introduces MR.RGM (Sarkar and Ni 2024) (for
modeling details, refer to Supplementary Materials,
Supplementary Section S1), a new package for multivariate
bidirectional MR based on reciprocal graphical model (Ni et
al. 2018). MR.RGM uses a Bayesian framework and a
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Table 1. v " indicates that a package is capable of performing a specific Sutask, while “X" denotes that the package is not equipped to handle the task.?

R package Multivariate MR Summary level data Uncertainty quantification Bidirectionality
mr.pivw X v v X
mr.raps v/ v v X
PPMR v v v X
MRPC v/ v v X
OneSampleMR X X v X
Mendelian randomization v v v X
TwoSampleMR v v v X
MVMR v v v X
mrbayes v v v X
MrDAG v v v X
MR.RGM v v v v

? Note that even if a package is not designed specifically for bidirectional M

directional causation.

network-based  strategy, surpassing traditional MR
approaches. While conventional methods focus on isolated
variables, MR.RGM constructs comprehensive causal net-
works possibly with feedback loops, particularly adept at
capturing intricate relationships within complex biological
systems. MR.RGM supports individual-level data and two
types of summary-level data, leveraging C++ for backend
computations and the Woodbury matrix identity for effi-
ciency (refer to Supplementary Materials, Supplementary
Sections S6 and S7). Its Bayesian nature enables natural un-
certainty quantification.

2 Methods

The R package MR.RGM has two key functions: RGM, dedi-
cated to building causal graphs and estimating causal effects,
and NetworkMotif, designed for uncertainty quantification,
providing posterior probabilities for specific network motifs.
First, we delve into the functionality of the RGM function, fol-
lowed by a discussion of the NetworkMotif function.

For detailed implementation and usage examples, see
Supplementary Section S5 of the Supplementary Materials.

2.1 Function 1: RGM

2.1.1 Three input formats

RGM supports three input formats, catering to various data
availability scenarios.

2.1.2 Individual-level data input

Researchers input X and Y matrices. X signifies the instrument
data matrix, where columns represent instruments (e.g. SNPs),
and rows represent observations. Y denotes the response data
matrix, with columns representing response variables (e.g. pro-
tein, gene, or phenotype), and rows corresponding to
observations.

2.1.3 Summary-level data input

Recognizing that individual-level data, especially SNPs or dis-
ease status, can be sensitive and not always readily available,
RGM provides support for two types of summary-level data
input. The first type involves specifying Syy, Syx, and Sxx
matrices. Syy represents the covariance matrix of the re-
sponse variables, Syx signifies the covariance matrix between
the responses and instruments, and Sxx denotes the covari-
ance matrix of the instrument variables. RGM would output
the exact same solution as that based on individual-level

=

(indicated by “X”), it can be in principle repeatedly applied to infer bi-

data. For the calculation of the likelihood using summary-
level data, refer to Supplementary Materials, Supplementary
Section §9.

2.1.4 Handling difficult cross-correlations

In situations where obtaining cross-correlations among re-
sponse variables (Syy) is challenging, for instance, when two
response variables were never measured in the same dataset,
RGM can still be used and will output an approximate solu-
tion. In this scenario, researchers can specify Sxx, Beta, and
SigmaHat matrices as input. Beta and SigmaHat matrices re-
spectively contain regression coefficients and mean square
errors for the regression of a response variable on its corre-
sponding instrument, where the regression is performed with-
out including an intercept term. Each row of Beta and
SigmaHat matrices corresponds to a response variable, and
each column corresponds to an instrument. For the detailed
derivation, please refer to Supplementary Sections S10 and
S11 of the Supplementary Materials.

2.1.5 Essential input parameters

Users need to specify two input parameters: D and 7. The ma-
trix D is binary with dimensions p X k, where p is the number
of response variables and k is the number of instrumental
variables. Each row represents a response variable, and each
column represents an instrumental variable. A 1 in D[i, j]
indicates that instrumental variable j affects response variable
i. For identifiability (refer to Supplementary Materials,
Supplementary Section S4), each response must be influenced
by at least one instrumental variable that affects only that re-
sponse, meaning there must be at least one unique entry of 1
in each row, where the corresponding column contains 0 in
all other rows. If this condition is violated, the algorithm will
throw an error when using Syy, Beta, and SigmHat, but will
issue a warning and proceed when using X, Y, or Syy, Syx,
Sxx. The parameter n is the sample size (only needed for
summary-level data).

2.1.6 Customizable parameters

RGM offers customizable analysis through user-defined
parameters. Users can specify the number of MCMC sam-
pling iterations (nlter) with a default of 10 000, set the num-
ber of discarded samples (nBurnin) with a default of 2000,
and define the thinning of posterior samples using the Thin
parameter (default value: 1). Additionally, users can choose
between two graph structure priors: Spike and Slab or
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Threshold, with the default being Spike and Slab. For details
of these priors, refer to Supplementary Materials,
Supplementary Section S2.

Users also have the option to customize the model hyper-
parameters aRbo, bRho, nul, aPsi, bPsi, nu2, aSigma,
bSigma, PropVarA and PropVarB, although relatively robust
default values are provided for ease of use. For details, see
Supplementary Section S3 of the Supplementary Materials.

2.1.7 Outputs

The main outputs of RGM encompass causal effect estimates
(AEst and BEst) among response variables and between instru-
ments and responses. Additionally, RGM outputs binary adja-
cency matrices (AEst and zBEst) that depict graph structures,
derived by thresholding the posterior probability matrices
(GammakEst and PhiEst respectively) at 0.5. The thresholding
process may result in some entries of zAEst being zero even
when the corresponding entries in AEst are non-zero. This dis-
crepancy arises because AEst represents the posterior mean of
causal effects, while zAEst reflects whether the inclusion proba-
bility for an edge exceeds the threshold (0.5). For practical use,
multiplying AEst by zAEst elementwise can help account for
edge inclusion probabilities, effectively making causal effects
zero where inclusion probabilities are very small. RGM return
an output Graph, which is a graph object that incorporates
these ideas, encoding both causal directions and causal effect
sizes. Plotting this graph provides a clear visualization of the
causal network among responses. RGM further provides poste-
rior samples of the adjacency matrix between response variables
(GammaPst), an input for the NetworkMotif function to quan-
tify uncertainty for a specific network motif. Other outputs

comprise of AOEst, BOEst, GammakEst, TauEst, RhoEst, PhiEst,
EtaEst, PsiEst, tAEst, tBEst, SigmaEst, AccptA, AccptB,
AccpttA, AccpttB, and LLPst. All these outputs represent poste-
rior means except LLPst, which consists of posterior samples;
see Supplementary Section S3 of the Supplementary Materials
for details. Next, we will describe the NetworkMotif function.

2.2 Function 2: NetworkMotif
2.2.1 Inputs

The NetworkMotif function requires two input variables:
Gamma and GammaPst. Gamma represents a specific adja-
cency matrix corresponding to the network motif of the re-
sponse variables for which uncertainty quantification is
desired. GammaPst consists of the posterior samples of the
adjacency matrix obtained from the RGM function.

2.2.2 Output

The output of the NetworkMotif function includes the uncer-
tainty quantification (i.e. posterior probability) of the speci-
fied network motif. For details, please refer to Supplementary
Section S3 of the Supplementary Materials.

3 Simulation results

Utilizing the mathematical model y = Ay + Bx + e, we con-
ducted a comprehensive assessment of our algorithm's perfor-
mance. By generating x and e from a normal distribution, we
simulated various scenarios to gauge the effectiveness of our ap-
proach. We compared our package with OneSampleMR, a re-
cent and advanced R package for MR, based on true positive
rate (TPR), false positive rate (FPR), false discovery rate (FDR),
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Figure 1. Figure 1.1 represents the true graph. Figure 1.2 illustrates the causal network estimated by MR.RGM with the Spike and Slab prior. Figure 1.3,
1.4, and 1.5 depict the causal graph estimated by OneSampleMR with different alpha values. Figure 1.6 displays the heatmap of the causal graph
created by MR.RGM. In the heatmap, each entry corresponds to node /in the horizontal row and node jin the vertical row, indicating the posterior
probability of the causal effect of node jon node i. Lighter colors signify lower probabilities of any causal effect.
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Matthew's correlation coefficient (MCC), and area under the
receiver operating characteristic curve (AUC) at different sample
sizes (10k, 30k, 50k), network sizes (5, 10), sparsity of A (25%,
50%), and effect sizes (0.1, —0.1). We adjust the standard devi-
ation of the noise to achieve different variance explained levels
(1%, 3%, 5%, and 10%). B is set to be the identity matrix. The
detailed results are presented in the Supplementary Materials,
Supplementary Section S12 and Supplementary Tables S2-S5.
Notably, our approach consistently yielded equivalent results
when applied to both individual-level data and summary-level
data, validating its versatility and reliability across different data
availability scenarios. As an example of comparison (Fig. 1), it
is evident that the networks produced by our method, exhibit a
substantial improvement in accuracy compared to those gener-
ated by the package OneSampleMR. For further details on the
selection of instrumental variables in real-world data and the
application of these methods to GTEx (GTEx Consortium
2020) V7 data, please refer to Supplementary Materials,
Supplementary Section S13. In addition, we evaluated MR.
RGM's sensitivity to the assumption of normal errors by com-
paring performance across various error distributions, including
normal, t-distributions, and Laplace. The results, indicating that
MR.RGM is not sensitive to the normal error assumption, are
detailed in Supplementary Materials, Supplementary Section S8
and Supplementary Table S1.

4 Conclusion

This paper introduces MR.RGM, an R package for exploring
causal relationships in complex biological systems. MR.
RGM constructs comprehensive causal graphs possibly with
feedback loops, accommodating both individual and
summary-level data. Its versatility, adaptability to diverse
data formats, and network-based strategy enhance causal in-
ference. MR.RGM's Bayesian approach enables uncertainty
quantification and holds the promise to advance genetics and
epidemiology research by uncovering complex biologi-
cal phenomena.
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