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In this paper we investigate the scattering amplitudes of spin-2 Kaluza-Klein (KK) states in
Randall-Sundrum models with brane-localized curvature terms. We show that the presence of brane-
localized curvature interactions modifies the properties of (4D) scalar fluctuations of the metric,
resulting in scattering amplitudes of the massive spin-2 KK states which grow as O(s?) instead of
O(s). We discuss the constraints on the size of the brane-localized curvature interactions based on the
consistency of the Sturm-Liouville mode systems of the spin-2 and spin-0 metric fluctuations. We
connect the properties of the scattering amplitudes to the diffeomorphism invariance of the
compactified KK theory with brane-localized curvature interactions. We verify that the scattering
amplitudes involving brane-localized external sources (matter) are diffeomorphism-invariant, but show
that those for matter localized at an arbitrary point in the bulk are not. We demonstrate that, in
Feynman gauge, the spin-0 Goldstone bosons corresponding to helicity-0 states of the massive spin-2
KK bosons behave as a tower of Galileons, and that it is their interactions that produce the high-
energy behavior of the scattering amplitudes. We also outline the correspondence between our results
and those in the Dvali-Gabadadze-Porrati model. In an Appendix we discuss the analogous issue in
extra-dimensional gauge theory, and show that the presence of a brane-localized gauge kinetic-energy
term does not change the high-energy behavior of corresponding KK vector boson scattering

amplitudes.
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I. INTRODUCTION

Theories incorporating compact extra-dimensions offer a
possible solution to the Standard Model hierarchy problem,
as well as a viable pathway to solve a large number of other
puzzles including the dark matter and flavor problems.
Since there are no phenomenologically viable UV-complete
extra-dimensional theories, these models must be under-
stood as effective field theories. It is therefore crucial that
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we assess the validity of these theories in terms of the
maximum energy scale (the “UV cutoff” of the effective
theory) to which they provide a useful description of
physics.

The gravitational sector of extra-dimensional theories
includes (in addition to a massless graviton) an inter-
acting tower of massive spin-2 Kaluza-Klein states [1,2].
The tree-level scattering amplitudes of these states grow
potentially as fast as O(s°/A’m%) [3,4], where s is the
center-of-mass scattering energy-squared, mgg is the
mass of the Kaluza-Klein spin-2 states involved, and A
is an intrinsic scale associated with the compactified
gravitational theory [specifically, the Planck mass in a
theory in which the extra-dimension is flat, or that scale
suitably “warped down” in the case of a Randall-
Sundrum model [5,6]]. Scattering amplitudes growing
this quickly would result in a violation of unitarity and
an upper bound on the scale of validity of the theory at
an energy inversely proportional to the mass of the
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Kaluza-Klein states, and much lower than the intrinsic
gravitational scale Al

Recently, through detailed calculations [9-12] [see also
[13]] of the massive spin-2 scattering amplitudes in
compactified five-dimensional gravity, it has been shown
that although the contributions to the scattering ampli-
tudes from individual Feynman diagrams do indeed grow
as fast as O(s° /A?m% ), there are typically cancellations
between different contributions to the scattering ampli-
tudes which reduce the overall rate of growth to
O(s/A*)—the result which would have been naively
expected in consistent four-dimensional gravitational
theories. It has further been shown that the cancellations
observed are the result of “sum rules” [10,13] relating the
masses and couplings of the spin-2 modes, which hold in
both flat and warped extra dimensions, arise from the
underlying diffeomorphism symmetries of the underlying
theory [14—17], and persist in models in which the radion
is massive and the size of the extra dimension is stabilized
via a Goldberger-Wise [18,19] mechanism [12,20,21].
These results have been generalized to consider the
interactions of the compactified gravitational theory with
matter, either in the bulk or localized on the “branes”
bounding the extra dimension [22,23].

In this paper we extend the work described above to
consider the case in which the Randall-Sundrum gravita-
tional theory includes four-dimensional brane-localized
curvature terms in addition to the bulk gravity Einstein-
Hilbert term.” While the addition of the brane-localized
curvature terms does not change the background geometry
(since the branes are Ricci-flat four-dimensional surfaces),
the brane-localized curvature terms modify the properties
of the fluctuations of the metric [24,25].3 The correspond-
ing changes to the wave functions of the massive spin-2
Kaluza-Klein modes (specifically, through modifications in
the boundary conditions) modify the masses of these modes
[24-29] and therefore of the couplings between them.

Our analysis of models with brane-curvature interactions
extends those presented previously in the literature. We
discuss constraints [24,26,30,31] on the size of the brane-
localized curvature interactions based on the consistency of
the Sturm-Liouville mode systems of the spin-2 and spin-0
metric fluctuations. We further show that the spin-2 KK
scattering amplitudes in the presence of brane-localized
curvature interactions no longer display all of the cancel-
lations described above; the overall scattering amplitudes

"This is the expected growth in theories of massive Fierz-Pauli
gravity, where general relativity is modified by adding an explicit
mass term [7,8].

Per usual in Randall-Sundrum models, appropriate bulk and
brane cosmological constants must also be included in order to
arrive at the desired warped background geometry.

3By contrast, these complications do not arise in a extra-
dimensional gauge theory with brane-localized gauge-kinetic
terms, as we show in the Appendix.

instead grow like O(s3/AS), where A; is a scale which
depends on the size of the brane-localized curvature terms
present.

The behavior of the scattering amplitudes of massive
spin-2 states is opaque in unitary gauge, in which the
polarization vectors of the helicity-0 components, the
internal spin-2 massive propagators, and the interaction
vertices all grow like energy-squared at high energies.
Instead, utilizing the diffeomorphism symmetries of the
background geometry [16,32,33], we analyze the theory in
Feynman gauge [14—17] which includes (in addition to the
massive spin-2 states) unphysical Goldstone vector and
scalar states which are degenerate [21,34-36] with the spin-
2 KK modes. In particular, the Feynman gauge scattering
amplitudes for helicity-0 and helicity-1 KK gravitons are
related by a Goldstone boson equivalence theorem [14—17]
to the corresponding amplitudes involving the unphysical
vector and scalar Goldstone modes, which can then be
understood easily by power counting.

In Randall-Sundrum theories without brane-localized
curvature terms, the diffeomorphism symmetries of the
background (the subset of the AdSs diffeomorphism
symmetries which respect the presence of the TeV and
Planck branes bounding the internal space) are simply
related to the transformation properties of the metric
fluctuations [14—17], and the only residual growth in the
amplitudes arises from the energy-squared growth in the
gravitational interactions themselves.

In this work we show that the situation changes once
brane-localized curvature terms are present. While the
diffeomorphism symmetries of the background geometry
are unchanged by the presence of brane-localized curva-
ture, their action on the properly defined metric fluctuation
fields is different. Having properly identified the action
of diffeomorphisms on the metric fluctuations, we can
define and analyze the theory in Feynman gauge. The
change in the properties of the scalar metric fluctuations in
the presence of brane-localized curvature terms requires a
change in how these fluctuations are parametrized [24,25]
and leads to new Galileon interactions [7,8,30,37-39] for
the tower of Goldstone bosons corresponding to the
helicity-0 modes of the massive spin-2 fields. We show
that it is these Galileon interactions that produce the
O(s%/A$) high-energy behavior of the spin-2 KK scatter-
ing amplitudes.

Additionally, following [36], we explicitly verify that the
scattering amplitudes involving brane-localized external
sources (matter) are independent of the gauge chosen in the
gravitational sector and show that this gauge-invariance
relies crucially on the proper identification of the diffeo-
morphism invariance of the theory. We also show that the
scattering amplitudes for matter localized at an arbitrary
point in the bulk are not gauge-invariant. This behavior is
consistent with the anomalous growth of scattering ampli-
tudes of bulk-localized matter found in [23].
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Finally, we also outline the correspondence between
our results and those in the Dvali-Gabadadze-Porrati
(DGP) model [30,37], which also includes both bulk
and brane-localized curvature interactions, but with a
semi-infinite internal space. In the DGP model the semi-
infinite extra dimension leads to a resonance graviton
continuum of states. We show how our analysis of the
model with a finite extra-dimension and a discrete gravity
KK spectrum can be interpreted in the limit in which one
brane is moved to infinity. We recover the results of
[30,37], and show that the interpretation of the high-
energy scattering amplitudes in terms of the Goldstone
boson equivalence theorem reproduces the high-energy
behavior of the scattering amplitudes in the DGP model
described in [30,37].

The outline of the paper is as follows. In Sec. II we
establish notation, introduce the parametrization used to
describe metric fluctuations, and show how the para-
metrization introduced allows one to derive a convenient
form for the quadratic action for the metric fluctuations.
In Sec. III we introduce the Kaluza-Klein mode expan-
sion appropriate to this situation and describe the hidden
supersymmetric structure of the corresponding Sturm-
Liouville systems. In Sec. IV we investigate the diffeo-
morphism symmetry of the system, and demonstrate
that the action of the diffeomorphisms on the metric
fluctuations differs from the case without brane-localized
curvature interactions. In Sec. V we describe R;
gauge-fixing of the gravitational sector and demonstrate
the gauge-independence of the scattering amplitudes
involving brane-localized external sources. Section VI
presents our primary results for the behavior of the
scattering amplitudes of the massive spin-2 KK states,
demonstrates the O(s?) growth of these amplitudes, and
investigates the relationship between the strong coupling
scales A; and A, and the masses of the spin-2 states. We
also show in this section that the O(s®) growth of the
scattering amplitudes can be understood using the
Goldstone boson equivalence theorem in terms of
Galileon interactions of the tower of spin-0 states present
in “t-Hooft-Feynman gauge. Section VII investigates the
correspondence between our results and the DGP model.
The final section, Sec. VIII, presents our conclusions. In
the Appendix we consider compactified 5-dimensional
gauge theory in the presence of brane gauge kinetic-
energy terms, and show that no change in the high energy
behavior of the scattering amplitudes of the massive spin-
1 modes results from the inclusion of brane-localized
kinetic terms.

II. RANDALL-SUNDRUM MODEL WITH
BRANE-LOCALIZED CURVATURE TERMS

The line element of the Randall-Sundrum model (RS1) is
written, in conformal coordinates (x*,z), as

ds* = 9y, dx'dx” — dz?), (2.1)

where the background 4D Minkowski metric 7, =
diag(+1,—1,—-1,—1) is used to raise and lower Greek
indices, and z lies in the interval z;, = 1/k <7<z, =
ek7"e [k, where k is the AdS curvature and r, is the RS1
“compactification radius,” a measure of the size of the
internal dimension. The warp factor A(z) is given by

A(z) = —In(kz). (2.2)

The 5D gravitational Lagrangian, augmented by the brane-
localized curvature terms on the UV brane (z = z;) and IR
brane (z = z,), is given by [24,25,27-29]

L = MVGRO +8(z -z )y e*/=gRW
+8(z — 23)726"/=gRW] + Lcc + AL + Lar,
(2.3)

where R®) is the 5D Ricci scalar constructed from the 5D

metric Gy, and R® is the brane-localized 4D Ricci
scalar constructed from the induced 4D metric g,, on the

branes. Here we use the notation z* = lim,_+ z & &, M5
is the 5D Planck mass, and y;, are the parameters that
characterize the strength of the brane-localized curvature
terms and have the mass dimension of [mass]™'. Lq¢
include the cosmological constant terms, and AL is a
total derivative term required for a well-defined varia-
tional principle for the action. Lgr is gauge fixing term
that will be specified later in Sec. V. In addition we have
defined the Dirac delta function in the interval picture
such that

2>7 22
/ dz8(z—z]) = / dzé(z—z7)=1. (24)
21

<2y

We parametrize the metric, including fluctuations, as

Gun = e (nyy + kHyy ), (2.5)

with five-dimensional coordinate labels M, N =0, 1,2,3,4.
The metric fluctuations in turn are given by [24,25],

*“In Refs. [24,25] there are three scalar metric fluctuation fields
introduced, which are labeled P,3(x% z). The equations of
motion (Einstein field equations) enforce P; = P,, and the
corresponding single physical field we label here ¢. P3, which
is an unphysical auxiliary field introduced to facilitate the
diagonalizing of the mode fluctuations, is here labeled A. This
form of metric is inspired by cosmological considerations of
brane-world models; see for example [40,41].
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h/w - ﬁ’?yu(é” - A/A/) +
Hyy = o) 4
V2

v

where the Lorentz indices are p = 0, 1,2,3, h,,,

1 €(2)
% d,0,A ﬁAM )

2.6
~\3lo + a7 + 1) 20

(x#, z) is the spin-2 tensor field, A, (x*, z) is the spin-1 vector field, ¢(x*, z)

and A(x*, z) are spin-0 scalar fields, and primes denote derivatives with respect to the internal coordinate z. Here ¢(z) is a

rectangular function,

’

1, z1<z<z
€<Z):{ 1 2

0, z=12z,

which imposes the “straight gauge” conditions [28] that

Gu(z12) =0 (2.8)
at the boundaries of the internal space.

The parametrization of the scalar fluctuations using the
fields @(x*, z) and A(x*, z) given in Eq. (2.6), which was
introduced in [24,25,40,41], may be unfamiliar. At first
sight it would seem that the introduction of the field
A(x*,z) is redundant for two separate reasons. First, A
appears in the bulk metric as a pure gauge degree of
freedom. Under an infinitesimal coordinate transformation,

M XM = M M (2.9)
one can show [see Egs. (4.3)—(4.5)] that the choice
& —LGA and §S—LA’ (2.10)
WA 26 :

would apparently remove the field from the metric entirely,
setting A = 0. Furthermore, the fields ¢ and A should
ultimately describe a single massless physical degree of
freedom, the radion, and thus cannot be mutually
independent.5

However, following [24,25], we constrain A(x¥,z) by
eliminating the brane-localized kinetic-energy mixing
terms that arise between the tensor and scalar fields. In
particular, expanding the Lagrangian to quadratic order we
find the brane mixing terms

Lipia = Z@em(aﬂayh”y —Uh) 2y
i=12

+ (6, — 2A’y;)A'] +non-g, terms,  (2.11)
where §; =68(z—z]), 5, =68(z—2z3), and 6, = =0, = 1.
Note that in the absence of brane-localized curvature,

°In the context of the DGP model [37], the field A is gauge-
equivalent to the strongly coupled Galileon scalar mode [30] IT
found in the fluctuations of ADM [42] “lapse” and “shift,” as we
show directly in Sec. VIIL.

€(z)=68(z—z)-68(z—23),

(2.7)

|
y; =0, we can consistently take A =0. In the presence
of brane-localized curvature, however, the kinetic tensor-
scalar mixing is instead eliminated by choosing

2y,

AN(z = -
(Z 0; — 2A/(Zi)}'i

7)) = (2= z). (2.12)
This condition fixes A’ on the boundaries z = z; in terms of
the value of the field ¢ on the boundary. A(x*,z) is
therefore understood to be an auxiliary field which cannot
be eliminated in analyzing the theory with brane-localized
curvature terms. The condition in Eq. (2.12) does not
constrain the bulk value of A, however, and we will
introduce a convenient choice for the field A(x*,z) in
Sec. VIB.

Once we fix A’ on the boundaries, the quadratic action

can be written as

S2 = /d4x dZ €3A(z) (’Ch—h + Lh—A + 'Ch—(p + LA—A

+Lsy+Lyy). (2.13)

with
1
Lhoh =y, [4 (P00 4 PP PP 4 F D)
1 v 1o} c
—5 (PP o)
1
= P o — 277"”71”")5] hyo <1 +D b, )

1
=3 ("0 +ntn? = 20**n’?)(Dhy,, ) (Dh,,).

(2.14)
L L o npta
h-A = ==
\/§ (% 1z
1 0 vp v AP
+ (Dhy,) [%(n”’yﬂwa” - ") |A,
+ Y V25,0:h0,A", (2.15)
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1
‘CA—A = A/l |:—§ (0"0” - i’]lw[:l):| Ay (216)
3o
= ¢[V30'DIA, + Y 2V35,0:09,A",  (2.18)
yl i B
Loy = —(ngo( + Z “2Aly, ) + (DY),
(2.19)
where the differential operators are defined as
D =a., D' = —(0, +34),
D=o9,+A, D' = —(0, +24"). (2.20)

Importantly, the quadratic Lagrangian is completely
free of the field A. Therefore, A is not an independent
dynamical field. In fact, as would be expected since A
appears nominally as a gauge degree of freedom, its value
in the bulk is entirely unconstrained! Only its derivative at
the boundaries is constrained by Eq. (2.12). Once we
choose a convenient value of A consistent with the
boundary constraint (in essence choosing a “reference
frame” in which to properly define our metric fluctuations),
this field is determined in terms of the field ¢. The
interactions of A arising from its presence in the metric
in Eq. (2.6), therefore, will give rise to new interactions of
the scalar (¢) degrees of freedom in the gravitational sector.
We will discuss these topics further from the symmetry
point of view in Sec. V and consider the consequences of
the additional interactions arising from the presence of A
for spin-2 scattering amplitudes in Sec. VIB.

III. MODE EXPANSION AND SUPERSYMMETRIC
STRUCTURE

Next we consider decomposing the five-dimensional
metric-fluctuation  fields, 4, (x% z), A,(x*z), and
@(x%, z), into four-dimensional Kaluza-Klein modes and
determine the boundary conditions which must be satisfied
by the corresponding mode functions. These decomposi-
tions, and the Sturm-Liouville systems associated with the
corresponding mode wave functions, are most easily
determined by considering the symmetry properties of
the theory. In particular, the underlying five-dimensional
diffeomorphism invariance of the noncompact gravitational
theory is broken by compactification to an infinite-dimen-
sional Kac-Moody-like symmetry of the four-dimensional
Kaluza-Klein theory, and the infinite tower of these
symmetries is spontaneously broken to the residual four-
dimensional Poincare invariance [32,33]. The Goldstone

bosons of the broken Kac-Moody symmetries are com-
posed of a tower of vector states associated with the
spontaneously broken Kac-Moody symmetries related to
four-dimensional translations, and a tower of scalar states
associated with the spontaneous breaking of translations
along the compact direction [32,33]. These Goldstone
modes, with the exception of the lowest mass spin-0 radion
state which remains in the spectrum, are “eaten” by the
massive spin-2 tower and correspond to the helicity-1 and
helicity-0 of those Kaluza-Klein states.

The relationship between the Kaluza-Klein mode expan-
sion and the underlying five-dimensional diffeomorphism
invariance (as expressed in the infinite Kac-Moody sym-
metries of the four-dimensional Lagrangian) was first
uncovered in the case of flat extra dimensions [32,33],
and subsequently extended to the case of Randall-Sundrum
warped compactifications [16,21,34-36]. In particular, the
authors of [34-36] uncovered two “hidden” N = 2 quan-
tum-mechanical supersymmetries (SUSY)° relating the
Sturm-Liouville systems of the spin-2, spin-1, and spin-0
wave functions. These hidden supersymmetries ensure that
the towers of spin-1 and spin-0 modes are degenerate with
the spin-2 modes,” as they must be if they are the Goldstone
modes of the broken Kac-Moody algebra. As emphasized
in [34-36], the N = 2 SUSY structure relating the modes
also determines the boundary conditions of these modes—
and we generalize that construction here to uncover the
SUSY structure and diffeomorphism invariance of the RS
model with brane-localized curvature terms.

We begin by writing the KK decomposition of the metric
fluctuations as [16,21,34-36]

(x4, 2) = Z hﬂy ) (3.1)

S A (1)) (32)

p(x%,7) = r(x*)k(z) + i 2" (k" (z).  (3.3)
n=1

where the fields h,(,’,ﬁ) and r are the physical four-dimen-

sional spin-2 KK fields and the radion, while A,(,") and 7"
are the corresponding vector and scalar Goldstone fields
respectively. Since the brane-localized curvature terms do
not change the equation of motion in the bulk, the form of
the Sturm-Liouville problems associated with these modes

®For a review, see [43].

This condition is (almost, aside from the identification of
which towers have zero-modes) trivial in the case of a flat extra
dimension where all the mode expansions are ordinary Fourier
series and the corresponding boundary conditions are simply
Neumann or Dirichlet.

095034-5
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will have the same form as in RS1 and can be written in the
form of the quantum-mechanical SUSY relations

{ Df =m,qg ) { Dg(”) = mnk(”)’
D g = m, ) DTk = m, g™,

Here the operators D and D are defined as in Eq. (2.20) and
the masses m,, are the masses of the physical spin-2 fields.®
However, the boundary conditions satisfied by the mode
wave functions are modified by the brane-localized curva-
ture terms. As emphasized by [34-36], the boundary
conditions are determined by ensuring that there are
suitable Hermitian conjugate supercharges built, as we
will see, from the operators in Eq. (2.20), with respect to the
inner product needed to make the kinetic-energy terms of
the fields canonical. From Egs. (2.14), (2.16), and (2.19),
we see that, in order to have orthogonal KK modes, the
mode function inner products now should take the forms,

5m,n = <f(m) |f(n)>f
= /Zz dz &34 fm) (7) F()

21

(3.4)

2) <1 + Zy,ﬁ,), (3.5)

22
Sn = (g™]g"), = / dz MG (g0 (), (3.6)
21

5m,n = <k<m>|k(n)>k

- / ? dz MO )k
21

Note also that, in order for inner products to be positive-
definite and thus for the Sturm-Liouville problem to be
regular, the weight function must be positive definite on the
interval, and hence

yl l
( +Zl —2A'y;0 l)

(3.7)

vi
>0, ——>0. 3.8
7i= 1 - 2470, (3:8)
If these conditions were not satisfied there would exist
states with negative norm, violating unitarity. Therefore,
the parameters for the brane-localized curvature terms must
satisfy

7120, 0<72<%2~ (3.9)

The upper bound in the second of these conditions, which
arises from positivity of the weight function in the scalar
sector, is equivalent to that found in [24,26,30]. The require-
ment that both coefficients must satisfy y; > 0, which arises

$For simplicity, we restrict our attention here to an unstabilized
RS model with a massless radion. The generalization of the
SUSY analysis to a model with brane-localized curvature terms
and stabilized by the Goldberger-Wise [18,19] mechanism could
be constructed in analogy to the analysis given in [21].

from the positivity of the weight function in the spin-2 sector,
was recently independently reported in [31].

To derive the SUSY-compatible boundary conditions
[21,34-36], we consider a SUSY doublet

()

with the inner product defined as

~ 2 ~ Z
<l1'|\y>:/ dze“ff(l—l—Zy,»é,-) +/2dze3A§g.
21 i 71

(3.11)

(3.10)

The supercharges are defined as

-(3 1) e-(3%)
“\D o)’ ~\o o)

In order for the boundary conditions to respect the
supersymmetry as well, the supercharges Q and QF must
be the Hermitian conjugates of each other with respect to
the inner product,

(P|0Y) =

Thus, one can derive the boundary conditions

(3.12)

(07P|¥).

(3.13)

0 and Df(z;)+6;y:D'Df(z;) =
(3.14)

9(z;) +0,7:D"g(z;) =

or
f(z)=0 and D'g(z)=0. (3.15)

Similarly, for the g — k SUSY doublet, one can derive the
following SUSY-compatible boundary conditions,

Vi =
N Doz =
9(z;) 6 — 247, 9(z;) =0 and
- yl - =
Dk(z,) ——2— DDk(z.) = B
k(z:) o247, k(z;) =0 (3.16)
or
k(z;) =0 and Dg(z;) =0. (3.17)

Notice that the boundary conditions for g in Egs. (3.14)
and (3.16) are actually the same,

9(z;) + 0;7:Dg(z;) = (6; = 2A'y;)

Vi =
—__Dy(z)].
Y 9(z:)

(3.18)

x 19(z;) =

Any other choice will not allow for the N =2 SUSY
relations for both the f — g and g — k systems to hold.

095034-6
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Therefore, the unique set of boundary conditions for the
mode expansions of the RS model with brane-localized
curvature terms is

Df(z;)) +0;v:D'Df(z;) =0

9(z;) +0;y:Dg(z;) =0 (3.19)
D'k(z;) = =54 DD"k(z;) = 0.

In the limit y,, — 0, these conditions reduce to those
previously found by imposing the N = 2 SUSY conditions
without brane-localized curvature terms [21,34-36].

Combining the SUSY relations in Eq. (3.4) with these
boundary conditions we can derive the Sturm-Liouville
eigenmode systems associated with the spin-2, spin-1, and
spin-0 fields. For the £(")(z) functions of the spin-2 system,
for example, we find the Sturm-Liouville systems

D'Df"(z) = m,D" (") (z)) = myf"(z),  (3.20)

Df"(z15) +m0y:f " (z12) = 0, (3.21)
where we have used the eigenvalue equation to write the
boundary conditions for each mode in a conventional form.
We see that this spin-2 Sturm-Liouville problem has the
weight implied by the inner product in Eq. (3.5), and
reproduces the spin-2 (unitary gauge) mode equations
derived previously in the literature [24-29]. As we describe
in the following section, the analysis given here allows us to
derive the Sturm-Liouville systems associated with the
spin-1 and spin-0 modes which maintain consistency with
the underlying gravitational diffeomorphism symmetries
[21,34-36].
For the zero modes, the SUSY relations become
DfO(z) = D¢ (z) = DTk (z) = 0. (3.22)
Thus, their boundary conditions are not affected by the
brane-localized curvature terms, and their wave functions
are same as the ones in RS1,

fO(z) = Const, kO (z) = Ne 240,

IV. 5D DIFFEOMORPHISM INVARIANCE OF THE
KALUZA-KLEIN THEORY

In this section we show that the incorporation of the
auxiliary field A(x*,z), subject to the constraint in
Eq. (2.12), reconciles the boundary conditions on the
metric fluctuation mode expansions determined above from
their N =2 SUSY structure with the diffeomorphism
invariance of the RS1 Kaluza-Klein theory background
geometry.

Under an infinitesimal coordinate transformation,

Eq. (2.9), the metric transforms as
Gun = Gy — GyadyE* — Gya0y &t — E40,Gyy. (4.1)

Adding brane-localized curvature terms does not change
the background geometry; therefore, the diffeomorphism
invariances of the model are identical to those in the RS1
model without brane-localized curvature terms [21,34-36],
and satisfy the boundary conditions

azgﬂ(zi) = 55 (Zi> =0,

that is, Neumann boundary conditions for fﬂ and Dirichlet
boundary conditions for &. These transformations respect
the “straight gauge” [28] conditions, since the locations of
the boundaries are fixed and the conditions of Eq. (2.8) are
satisfied.

In the absence of brane-localized curvature terms [the
limit y; , — 0 in Eq. (3.19)], the boundary conditions on
the (f), g") system are also Neumann and Dirichlet,
respectively. In this case we can expand the infinitesimal
diffeomorphism parameters (£,,&°) in the same mode
expansion as we use for the metric fluctuation fields.
Consequently the metric transformations in Eq. (4.1) act
simply on the metric fluctuation fields—allowing one, for
example, to easily identify the spin-1 and spin-0 fields as
unphysical Goldstone bosons and construct Feynman-like
gauge-fixing terms [21,34-36].

However, in the presence of brane-localized curvature
terms, (f,¢") now satisfy the boundary conditions
given in Eq. (3.19). (£,. &) and (£, g")) therefore satisfy
different boundary conditions, and we cannot expand the
allowed infinitesimal coordinate transformations (&,, &)

(4.2)

using the mode eigenfunctions ("), g\*)). The relationship
between the diffeomorphism transformations and the trans-
formation properties of the fields are therefore modified, as
we show below.

At the linearized level, the field transformation in
Eq. (4.1) can be written as

1 m
Shy,, + —=0,0,6A + —"2 (SA" + 3A'5A
( \/6 H 2\/6( )
= _aﬂél/ - al/é;t - ’I;w(az + 3A/)§5’ (43)
edA, = —V20.&, + V20,8, (4.4)
1
Sp + 5 (A" + A'SA") = —V6(0, + A)E,  (4.5)

where we now allow for the auxiliary field A to vary under
a diffeomorphism transformation. While &, and & on the
right hand of the above equations satisfy the Neumann and
Dirichlet boundary conditions, the gravitational field 6h,,,
0A,, and ¢ on the left hand obey the boundary conditions
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given in Eq. (3.19). The auxiliary field A must transform in
a way that makes these compatible.

As we now show, the needed transformation of A
preserves the condition in Eq. (2.12)—demonstrating the
diffeomorphism invariance of the Kaluza-Klein theory in
the presence of brane-curvature terms. Conveniently, we
can rewrite the above transformation as

5h/41/ = _aﬂgl/ - avéy - ’I;w(az + 3A/)Esv
8A, = —V20.8, + V20,8, (4.7)

5 = —V/6(0, + 4B, (4.8)
where the new parameters & are defined as
E,=¢& +La SA 55555+L5A/. (4.9)
N A 276

The auxiliary field A must transform in a way such that Eﬂ
satisfies the boundary condition for f), and & satisfies the

boundary condition for g(”>,
D&, + 6,y;,D'DE, = 0, (4.10)
B +0,y,D'E. =0. (4.11)

Combining Eq. (4.11) and the & condition in Eq. (4.2), one
can derive the following constraint on dA:

2V/6y; 1
SA'(z;) = 3_7217 (0, +A") (55 + 2—\/65&)
2y
= 5. 4.12
024y, 5g (4.12)

Therefore, as promised, Eq. (2.12), which is necessary for
diagonalizing the quadratic Lagrangian, is covariant under
the residual symmetry transformation. For an arbitrary
infinitesimal diffeomorphism transformation (&,, &) con-
sistent with straight gauge, therefore, the metric fluctuation
field transformations are given by Eqs. (4.6)—(4.8) in terms
of (Eﬂ, &) as defined in Eq. (4.9).

Furthermore, 6A is unconstrained in the bulk, and we are
free to choose any function for 6A, as long as it satisfies the
constraint on the boundaries in Eq. (4.12). As a conse-
quence, one can easily see that A is also unconstrained in
the bulk as we argued in the previous section, since any two
different choices of A, denoted as A, and A, are related by
the diffeomorphism transformation,

1

1
=50 AN=——-0 Aa—A s
Z 276 " 276 a 2
1 1
5 — SN = ——— (A, = A)). 4.13
g 2v6 2\@( b) (4.13)

From the form of Eq. (4.9) and the fact that A is arbitrary
in the bulk we see that the auxiliary field can be viewed as a

constrained, ¢-dependent, “brane-bending” mode neces-
sary to appropriately diagonalize the scalar metric fluctua-
tions in the presence of brane-curvature interactions, as
shown in Eqgs. (2.11) and (2.12).

V. GAUGE-FIXING

Once we expand Eﬂ and & using the corresponding mode
eigenfunctions,

B = S E ), (5
n=0
Bang) = S E0@0E),  (52)

the transformations on the individual KK modes defined in
Egs. (3.1)—(3.3) can be written as

ha) e ) = 0,E" = 0,8 + mn, B, (53)
A s A = Nam EY 0,80, (5.4)
7 s 7 —\6m,E, (5.3)

T r. (5.6)

These transformations are identical to those found in RS1
without brane-localized curvature terms [21,34-36], and
gauge-fixing can proceed analogously.

Unitary gauge can be achieved by choosing

0 1 n 1
AR (A},u%—aﬂﬂw), n21, (57)
my ny
N 1
B — W >, (5.8)
Vom,

Alternatively, the gauge redundancy can be removed by
introducing the 5D R; gauge fixing term

3A

Cor = R (14 Zyi&) -RE|. 69

where

F,=- [avh,w —% (2 - %) 9,ht + \%D*A,l] . (5.10)

1 1
Fs=—(=Dn'——a
5 <2 " \/i u

These gauge-fixing terms are a straightforward generali-
zation of the gauge-fixing given in [21,34,36], generalized

Al 4 & %DT(,;). (5.11)
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to account for the modified weight function of the f*) inner
product shown in Eq. (3.5).

To demonstrate that physical results are £-independent,
we consider the example of tree-level correlation functions
between two conserved energy-momentum tensors T(w
residing on the two branes at z = z;, the correlation
functions which determine the gravitational interactions
of brane-localized matter.” The interaction between the
gravitational fields and the external currents in this model
are given by

K . K
—EZ/d4XH”U(Zi)T(1)”U:—EZ/d4x

—0,0 A] TU)W.

1
X |:h;w - 7677/411((/) - A/A,) \/— "

(5.12)
|

Note that one must properly include the couplings of the
auxiliary field A; however, the last term in the bracket does
not contribute since 7 is a conserved current.
Furthermore, the remaining A interactions only depend
on the values of A’(z;,), so we can immediately replace
these with a coupling to the field ¢ using Eq. (2.12): we do
not have to specify the value of A in the bulk for this
calculation. The final form of the gravitational interactions
with the external currents is hence

Tpv

=7

(5.13)

0.
4 i
Z/d [ n””é’ —2a7,”

Following Ref. [36], the gauge dependent part of the
amplitude can be written as

& T (p) T (=p

(35 2) 3 |: n>(zl)f(n)<Z2) +9

L,k( o)
1 —2A%,

n) 72 q(n)
(Zl) 92 _ 214/7/2 k (Z2) ’ (514)

M —
> ;24p

where 71/ is the Fourier transform of the trace of the energy momentum tensor. Note that this contribution has spurious &-
dependent poles which must cancel out for any physical amplitude.
Using the N = 2 SUSY relations in Eq. (3.4) and the definitions of the differential operators in Eq. (2.20), one can write

the scalar wave function k") (n > 0) in terms of f") and g("),
D (=D - A") 24
k>0 (o) = 2 jmioy = T2 TA) ) — gy P (g
(z:) o (z:) p— (z1) = =f"(z) o (z:)
0, — 24y, DA
= —Tyf(")(zi) T (g(")(Zi) +0;7im, ") (z,)), (5.15)

where the last term vanishes on the branes due to the boundary condition in Eq. (3.14). Therefore, the £-dependent part of
the amplitude shown in Eq. (5.14) vanishes as a result of the cancellation between the spin-2 and spin-0 contributions,

F () £ () +

This proof of the gauge-invariance of the energy-
momentum tensor correlation function would fail if we
considered matter localized at an arbitrary point in the bulk,
as we now show. Since the value of A is arbitrary in the
bulk, we can choose it (and its derivatives) to vanish at the
location z # z; where the external field is localized. ' In this
case the couplings of the metric to an external source in the

This problem was examined in [36] in the absence of brane-
localized curvature terms, and we generalize their computation
here.

01 fact, as we show in the next section, there is a convenient
choice of the auxiliary field A as a distribution which vanishes
everywhere in the bulk—see Eq. (6.11).

gk — 22 kn
+ 9] _ ZA/}/l (Z )

0
) =0. 5.16
1 92 _ 214/7/2 (ZZ) ( )

|

bulk [of the form of Eq. (5.12), but localized to a point in
the bulk] yields only a coupling to ¢. The coupling of the
external field would then be proportional to

2A'

my,

k(n>0) (Z) — _f(”) (Z) — g(n) (Z),

(5.17)

and the gauge-dependent parts of the correlation func-
tion in Eq. (5.14) will in general be proportional to
A'(z)g"(z) # 0. In general, therefore, one cannot couple
five-dimensional gravity to matter confined to a brane
at an arbitrary location in the bulk and maintain five-
dimensional diffeomorphism invariance. This result is
consistent with the finding in [23] that couplings of gravity
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to matter localized at an arbitrary point in the bulk have
anomalous O(s?) scattering amplitudes with KK gravitons.

In ’t-Hooft-Feynman gauge, choosing £ = 1, the gauge-
fixed kinetic terms are given by

1

1

5 (0t et — ) (=0 = m3) Iy

X

., 1

5 A o (=0 = mi)AL

1
(-0 - m%)ﬂ(”)} +—r(=0O)r.

- 2

(5.18)

N = DN =

Note that as a consequence of the SUSY conditions all of
the particles at each level n are degenerate and there are no
“spurious” poles at unphysical masses.

VI. SCATTERING AMPLITUDES

In this section, we study the high-energy behavior of the
elastic scattering amplitude of longitudinally polarized
(helicity-0) KK gravitons,

WO = n Y, (6.1)

generalizing the analyses of [9-11] to the model with
brane-localized curvature terms. In the following subsec-
tion we report the results of a direct computation of this
amplitude in unitary gauge, and find that it grows like
O(s?). In the subsequent subsection we show that the spin-
0 Goldstone bosons corresponding to the helicity-0 states
of the massive spin-2 KK bosons behave as a tower of
Galileons [7,8,30,37-39], explaining (via the Goldstone
boson equivalence theorem) the high-energy behavior of
the amplitude. In the last subsection we investigate how the
scale Aj, characterizing the Goldstone boson Galileon
interactions, relates to the other mass scales of the theory.

A. Scattering in unitary gauge and O(s% s*) sum rules

Using the formalism developed above we have per-
formed the analytic and numerical computations of the
scattering amplitudes for Eq. (6.1) in unitary gauge.
Specifically, in this gauge the only physical particles are
the massive spin-2 KK tower and a massless radion. The
spin-2 mass spectrum and mode functions are determined
by the Sturm-Liouville system of Egs. (3.20) and (3.21)
normalized via Eq. (3.5), the wave function of the radion is
given by k(®(z) shown in Eq. (3.23) subject to the
normalization condition in Eq. (3.7), and A(z) must satisfy
the boundary conditions of Eq. (2.12) but is otherwise
arbitrary. Following the analyses in [9-11] we analyze the
energy dependence of the scattering amplitude by expand-
ing the helicity-0 matrix element M as at large energies in
terms of the scattering energy /s and the scattering angle 6,

_ Zﬂ(ﬂ) (0)s72,

ceZ

(6.2)

and examine the “reduced” matrix elements j\v4<6)
At the order of O(s), the reduced amplitude can be
written as

k?(cos 26 + 7)sin 0
B 23041/11 |:Z a”m/ nnnn:| ) (63)

MU0 —

where the couplings are defined as

Appj = <f(n)f(n>f( )>f = /22 dz e3Af(”)(Z)f<n)(Z)f<j)(Z>

21

2
X (1 + Z yié,»), (6.4)
i=1
Apppn = <f(n>f(n)f(n)f(n)>f
= / % dz ) (@) (@) () ()
2
i=1

The form of the expression for M1 agrees with that
found in the RS model without brane-localized curvature
terms [9-11], with the couplings generalized to account for
the revised inner product of Eq. (3.5).

The coupling constant combination appearing in
Eq. (6.3) vanishes precisely as in the model with brane-
localized curvature [10,13]. In particular, the wave func-
tions {fU)} form a complete basis with respect to the
weight function e* (14 Y7, 7:5,),

Fof ’)/l dz et

2
x (1 + Zy,-é,-), for z; <7 < z5. (6.6)
i=1

This eigenfunction expansion is strictly only valid for z; <
7' < z, but not on the boundary 7’ = z, 5, since (f"(z))?
does not satisfy the boundary condition that fU/)(z) does.
However, one can still use the generalized Parseval’s
identity to show that it converges upon integration:

0
E :an] nnnn:0~

Jj=0

(F"(@))* = 1(2)2fV(z)

(6.7)

Similarly, at the order of O(s*), the reduced amplitude can
be written as

() K> (cos260 + 7) - " o
M= 9216m$ Zmﬁ
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FIG. 1. Left: the masses of the first few spin-2 KK states for different AdS “hierarchies” (ratios z,/z;) and brane parameters y;

bounded by Eq. (3.8) Right: the ratio m,/m as a function of z,/z; for values of the brane-localized curvature interaction. Note that the
masses are more sensitive to the value of the IR brane-localized curvature strength y, [26] than that of the UV brane-localized curvature
term, but the ratio of the first two spin-2 KK masses can exceed 2 for y, close to maximal or if the AdS hierarchy is relatively small.

This expression also agrees with the RS model without
brane-localized curvature terms, and also vanishes once the
mode equations and the completeness are applied [10,13].
While the presence of the brane-localized curvature
terms changes the details of spin-2 KK masses and wave
functions through their effect on the Sturm-Liouville
system in Egs. (3.20) and (3.21), these computations show
that the extra scalar interactions induced by the appearance
of auxiliary field A(x#, z) in the metric [Eq. (2.6)] and its
dependence on the field ¢(x#, z) [from Eq. (2.12)] do not
change the fact that the amplitudes vanish to O(s>, s*).
However, unlike in RS1 without brane-curvature terms,
the reduced amplitude at the order of O(s®), does not

vanish, M@ # 0. We have verified this both numerically
and analytically, and checked that the value of the scattering
amplitude is independent of the value chosen for the
auxiliary field A in the bulk. The form of this reduced
amplitude can be more easily computed and displayed in a
compact manner in 't-Hooft-Feynman gauge, as we show
in the next subsection.

We have also checked explicitly that the O(s®) and
O(s?) coupling-constant sum rules given in Ref. [11] do
not hold in the presence of the brane-localized curvature
terms. One of the immediate consequences of such viola-
tions of these sum rules is that the mass ratio of the second
and first (massive) KK modes is no longer bounded by 2, in
contrast to the situation in RS1 [13]. See Fig. 1.

B. Feynman gauge and Goldstone boson
equivalence theorem

The behavior of the scattering amplitudes of massive spin-2
particles is obscure in unitary gauge. Diagrammatically,
individual contributions to the amplitudes grow as fast as
O(s%) [3,4], but there are substantial cancellations between
the diagrams [9—13]. In the RS model without brane-localized

curvature terms, the analysis is much simpler in ’t-Hooft-
Feynman gauge. In particular, Ward identities related to the
diffeomorphism invariance of the theory relate the amplitudes
of the helicity-0 massive spin-2 states to those of the cor-
responding unphysical spin-0 Goldstone modes [14—17]. The
power-counting of the scattering amplitudes of the spin-0
Goldstone bosons is transparent in this gauge, and all contri-
butions grow no faster than O(s)—leading to an overall
amplitude which grows (no faster than) this rate. In the presence
of the brane-localized curvature terms the power counting in
’t-Hooft-Feynman gauge changes, as we now show.

First we note that, even in the presence of brane-
localized curvature interactions, we are still allowed to
go to 't-Hooft-Feynman gauge (Sec. V), where all the
Goldstone bosons and the KK gravitons have degenerate
spectra. The gauge-fixing terms, when expressed in terms
of the mixing of the individual KK modes, are the same
whether or not brane-localized curvature interactions are
present [leading to the mass-diagonal gauge-fixed kinetic-
energy terms shown in Eq. (5.18)]. Therefore the Ward
identities derived in [16] still hold,

ME @] = M[zM®] - ivVIMAV D) + MR @),
(6.9)

where ® represents an ensemble of particles. A" and /" are

the KK vector Goldstone boson and KK graviton contracted
with the modified vector and tensor polarizations,

m m
& =—"_ (1 _p/pp])~02n),
3 2
and é’i”s\/;égéf)N(’)(’Z;). (6.10)
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However, unlike in the model without brane-localized
curvature, where each scalar vertex from the Einstein-
Hilbert action can contain at most two derivatives d,, in the
presence of the brane-localized curvature terms each vertex
can have more than two derivatives coming from the
auxiliary field 0,0,A terms in the metric, Eq. (2.12). As
we argued, the bulk value of A is unconstrained, and thus
the overall scattering amplitudes of physical states must be
independent of the bulk value of A. Unfortunately, these
new auxiliary field contributions reintroduce anomalous
high-energy growth diagram by diagram even in ’t-Hooft-
Feynman gauge. For example, the individual Feynman
diagram for z("z(") — z(")z(") contributes terms in the
scattering amplitude which grow like O(s’) for generic
choices of the bulk auxiliary field A, and the cancellation of
the O(s3, s*) terms only happens once all the diagrams are
summed together.

Furthermore the last two terms on the right hand side of
Eq. (6.9) also contribute at O(s?) for a generic choice of the
auxiliary field A, and are not subleading relative to the first

|

A—=0 A’:{ 02A"/’Z i
0

71 <21<2p

term after cancellation, rendering the Ward identity ineffec-
tive in isolating the contributions to the scattering amplitude
which grow in energy. In the sense that the leading-order
contributions to the scattering amplitude are not entirely
contained in the scalar Goldstone boson contributions in
Eq. (6.9) we see that the naive Goldstone boson equivalence
theorem (which relates the scattering amplitudes of the
helicity-zero spin-2 states to those of the unphysical scalars)
fails for generic choices of the auxiliary field A.

To avoid the anomalous energy-growth of individual
contributions and restore the Goldstone boson equivalence
theorem, we must eliminate the bulk part of A. We will do
so by separating the boundary point from the bulk and set
A = 0 in the bulk. We must do so carefully, however, since
the derivative d, cannot be defined on the isolated boundary
points. Instead, we can define A and its derivatives on the
interval [zy,z; + €] U [z, — €, 25] where A’ smoothly goes
to zero at z=2z;+¢€ and z, —¢, and set A =0 for
zE [Zl +ée,20— s]. Then, once we take the limit of
e = 07, A becomes the distribution,

9}',

Now that we have eliminated the unphysical contributions arising from the bulk value of A, the energy power counting
becomes transparent again. The 3-point vertices that have the highest order of four-momenta have the form of

/ dz 0(2)(0.0,0,8)(0.0,0,0)A" ~ O(p*),

(6.12)

where Q(z) represents some function of z, and the two derivatives d, come from the Ricci scalar. All the other terms with
four or more 4-derivatives vanish due to Eq. (6.11). Similarly, the 4- and higher-point vertices contribute only at O(p*).

At the order of O(p*

), we find that the cubic Lagrangian is given by

3A

Li—x|d wopre — o) (3,0,A")(,3,A") A" + O(p? 6.13
3=k 124\@(7711 nn’?)(9,0,4")(,0,A") (P’) (6.13)
_3 e (A Y @ 0|+ o) (6.14)

i 6\/6 ei_ZA/yi ! 7=z

2
=S Z KL pa (0 N g | (9, 200)(0000))(Cn)) + O(5%), (6.15)
Vel \oi-24%, =

nynyn3 i= 1

where we have used integration by parts to write the interaction
in the form that commonly appears in the literature for the
Galileon [7,8,30,37-39]. Note that when we integrate over z,
one has to be careful: the identity [ dxf(x)8(x) = f(0)is true
only if f(x) is continuous at x = 0.

Using the interaction given in Eq. (6.15) and the
Goldstone boson equivalence theorem, one can compute
the scattering amplitude of four longitudinally polarized
KK gravitons at the order of O(s?), by computing the
amplitude of four scalar Goldstone bosons,
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M© [h(L")hén) - h(L")h(L")] =M [ﬂ<">ﬂ<”> — 7z

x%sin? 6

£ 288

We have checked numerically that these partial amplitudes
reproduce the results found in unitary gauge in the
computations described in the previous subsection. Note
that these contributions vanish in the limit y, , — 0, as they
must since we know that the amplitudes in that case grow
only as fast as O(s).

Thus we have shown that, in the presence of the brane-
localized curvature terms, the leading contributions to the
scattering amplitudes of helicity-0 massive spin-2 KK
modes can be understood as arising from the Galileon
interactions of the tower of corresponding spin-0 Goldstone
bosons. It is these interactions that are responsible for the
new O(s®) growth of the elastic scattering amplitudes of
helicity-0 massive spin-2 KK modes. This tower of
Galileon interactions for the spin-0 Goldstone modes are
the result of the auxiliary field A, which was required
because of the incompatibility between the straight gauge
condition & =0 and the non-Dirichlet condition of ¢(")
given in Eq. (3.19).

Before ending this subsection, we would like to briefly
comment on the computation of the subleading contribu-
tions. The downside of choosing A to be a distribution in
Eq. (6.11) is that, at subleading orders O(s?), one will
encounter overlap integrals naively of the form

/ dz Q(2)8(z — z;)6(z — z;). (6.17)

One would need to carefully regulate such divergences by
defining the distributions correctly, such as treating them as
the limit of some continuous functions and showing that the
final results were finite in the appropriate limit.

C. The strong coupling scale A;

In the presence of brane-localized curvature interactions,
the O(s*) high-energy behavior of the scattering ampli-
tudes implies the presence of a new scale, A;, which
characterizes when the corresponding partial amplitude
saturates unitarity. In this subsection we describe how this
new parameter compares to other dimensionful scales in the
theory.

In general, we define the scale associated with a partial
amplitude which grows with energy as the scale at which its
|

2 (2 3 2\ -1/6
lyl j
A E k) () () .
3T (1728;; { 1 [e <9 —2A’y,> .

3A i k() (n) () )
{; |: < - 2A/71> :| z=z,}

(6.16)

|
contribution to the (properly normalized) scattering ampli-
tude would saturate the unitarity bound. For the 2-to-2
scattering with helicities (1;,4,) — (43, 44), one can derive
the partial wave amplitudes

- / dcos0dgD] _, , _, (6,6)M(s.0,¢),

a
3272
(6.18)
where D’/ . L(0.¢) is the Wigner D function with the
normalization
/dcos9d¢|D (O.p) =" (6.19)
AXAT 2J+1° '
The unitarity bounds at large s are derived by
1
[Re(a’)| < 3 (6.20)

Absent brane-localized curvature terms the RS model is
specified by three parameters: the Planck mass Mp,, the
hierarchy z,/z, = €, and the mass of the lowest massive
spin-2 KK meson m;. For fixed Mp; and m;, we define the
“RS” scale in terms of the unitarity bound on the scattering

process AR = B n" | and find [11,16]

Ags = (g—z / ? dz e3A[k(”)(z)]4>_l/2, (6.21)

2

where the relation between k and the 4D Planck scale Mp, is
given by

KM, = % [1 - @] . (6.22)

This scale is typically of order the Planck scale “warped
down” by a factor of z,/z, = e ¥,

In the presence of brane-localized curvature terms, the

unitarity bound on the partial amplitude M©) defines a
new scale

(6.23)
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FIG. 2. The unitarity scales derived for the scattering of the KK modes h,{l)hg)
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for the purposes of illustration, we take m; = 1 TeV and with Mp = 10* TeV. The three energy scales plotted are A;, Ags, and the
mass of the second spin-2 KK state m,. Since y; has little numerical impact on the scales shown, it is taken to be zero in both graphs. The
variation of the scales is shown as a function of y, /z, over the allowed region. In both graphs we see that A; < Agg and m,/m, exceeds

two for larger values of y,/z,. Left: z,/z, = 10*. Right: z,/z, =

where the relation between k and the 4D Planck scale Mp, is
given by

2 1
KM == |1 ———+2yk+
Pl k (kZ2)2 71

2y,
) (6.24)

A comparison of the scales Ay and Agg is shown in
Fig. 2. In both cases we see that the effect of the brane-
localized curvature interactions is, as expected, enhanced as
v2/z5 grows. In particular, as the brane-localized curvature
interaction becomes larger, A; drops below Arg—and
therefore sets the range of validity of the effective KK
theory. We also see again that the ratio m,/m, of the second

spin-2 KK resonance mass to the first grows and is larger
than 2.

VII. DGP MODEL AND THE A; SCALE

The Dvali-Gabadadze-Porrati model [37] is an extra-
dimensional model which has received considerable atten-
tion as an alternative description of our accelerating
universe. It is also one of the first ghost-free examples
of the localization of gravity on a 4D brane in a semi-
infinite transverse space. In this section, we show how the
continuum of massive gravitons and the strong interaction
scale in the DGP model [30] can be derived using our
formalism.""

The DGP model has only one brane embedded in a flat
fifth dimension, and contains 5D gravity in the bulk and 4D
gravity localized on the brane. In our formalism, the DGP
model can be realized by taking the second brane to infinity
and setting the warp factor to zero,

"For a review in the context of massive gravity, see [7,8].

103.

A(z) =0, 71=0, zZ >0, 7=y, rn=0 (71)
where we also set z; = 0 for convenience. Since the fifth
dimension is semi-infinite, there is no KK decomposition
into discrete modes. Instead, we impose the boundary
conditions Hy(z,) = 0 as z, — oo, and the spectrum of
the massive gravitons become a continuum.

Using the metric decomposition in Eq. (2.6) and setting
A(z) = 0, the gauge-fixed quadratic terms in the 't Hooft-
Feynman gauge © become [see Eqgs. (2.13)-(2.19) and

(5.9)-(5.11)]

& 1
S = / d4x/ dZ{Z (nﬂpnyo' + ’1/,1(7]111/) _ ]1;411]1/)0)
21

_hml:lhpa(l + yé(z)) - (aShuu)(OShpa)]

X

—

+5 (=) [-ALA (1 +75(2)) — (054,)(054,)]

+ (7.2)

N = N =

[~oOp(1 +y8(z)) - (0540)2]}-

Since the bulk equations (z > 0) of all of the fields are of
form

(O-)® =0, (7.3)

where ® =5, A,, and @, we follow the usual analysis
[7,8,30,37-39] and write the generic solutions (subject to
the boundary condition H,;y — 0 as z — oo) in terms of

nonlocal wave functions,

“The gauge-fixing terms chosen in [30] correspond to this
gauge.
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1 -

®(x,7) = —e VI 4

(x.2) e (x). (7.4)
where the normalization factor is taken for convenience.
Defining the bulk fields in terms of their boundary values is
the analog of the Kaluza-Klein expansion in Egs. (3.1)—
(3.3). Plugging this form into the action and (formally)
performing the integration over z we obtain action in terms
of the boundary-value fields:

1
S = / d4x{z ("™ + o — o)
Y
L[ L a)a
o (=) A U -- VDA,

4

+%[€0<—D—%\/ﬁ>¢]}.

Having performed the integral over the extra dimension the
kinetic-energy terms come from the brane-localized cur-
vature interactions and, in the 't Hooft-Feynman gauge, all
the fields have the same continuous spectrum. Here the

nonlocal \/ﬁ operator is to be understood via its Fourier
transform [7,8,30,37-39], and the corresponding propaga-
tor has a “soft mass” proportional to 1/y.

We may now directly apply our analysis of the leading
interactions of the scalar fields ¢, which we have seen also
come from the brane-curvature terms. In particular, the
cubic interaction in Eq. (6.14) becomes

(7.5)

£, =" (3.2)@9) 0 ) 6)
= 7 7 D). 7.
3 6\/6(,490)( 7 (
Translating into the notation in Ref. [30],
V2 M7 (7.7)
K=—7=, =—, .
m Mg

we recover the effective Galileon interaction among the
scalar Goldstone bosons and the DGP strong interaction
scale [30]

1

L; = 2,0)(0"®)(Lp),
3 6\/51\%(,4(0)( @)(Uo)
3/2\ —-1/3 M?2
. _[KY M5
with A3<\/§) = (7.8)

VIII. CONCLUSION

In this paper we have presented an investigation of the
properties of the scattering amplitudes of the massive

spin-2 Kaluza-Klein states of extra-dimensional theories
of gravity in the presence of brane-localized curvature
interactions. We have shown that the presence of these new
interactions modifies the high-energy behavior of these
amplitudes from O(s) to O(s?), spoiling some of the “sum-
rule” relationships between the masses and couplings of the
massive spin-2 states which are present in theories without
these interactions. We have explained how the scale Aj
related to the O(s?) growth is related to the intrinsic
gravitational scale A and the spectrum of spin-2 Kaluza-
Klein states, in terms of the parameters defining the theory.
Using the diffeomorphism invariance of the theory, and the
hidden supersymmetric structure of the Sturm-Liouville
systems associated with the Kaluza-Klein mode systems,
we have demonstrated that the there are Galileon inter-
actions of the scalar modes of the massive spin-2 tower
which explain the behavior of the high-energy scattering
amplitudes. We have studied the gauge-invariance of the
theory, and shown that gauge-invariance depends crucially
on identifying how diffeomorphism transformations act on
the metric fluctuations of the compactified theory. We have
described what happens to our results for a finite extra
dimension in the limit in which we move the UV brane to
infinity, giving a natural and gauge-invariant explanation of
the properties of scattering in the DGP model.

Next, we briefly comment on the extension of our results
to a model [24] in which the size of the extra dimension is
stabilized, and in which the radion is no longer massless,
via the incorporation of a Goldberger-Wise (GW) mecha-
nism [18,19]. While a detailed analysis of the properties of
a GW-stabilized RS model in the presence of brane-
localized curvature interactions is beyond the scope of this
work, we expect that the extension of the results given here
to that case should be straightforward. In particular, it has
previously been shown that the modified boundary con-
ditions of the GW model (which mix metric and bulk scalar
fluctuations) without brane-localized curvature interactions
do still allow for the definition of a SUSY structure for the
mode eigensystems and a corresponding understanding of
diffeomorphism invariance [21]—resulting in scattering
amplitudes which grow only as fast as O(s). The new
ingredient in the presence of brane-localized curvature
interactions is the necessity of the auxiliary field.
However, as pointed out in Ref. [24], the boundary
constraints on the auxiliary field A in Eq. (2.12) used here
are unchanged by the GW stabilizing interactions them-
selves. Therefore we expect that it is possible to generalize
the results of [21] to include brane-localized curvature
terms, and we believe that the high-energy behavior of the
massive spin-2 scattering amplitudes will continue to be of
order O(s?).

The phenomenological implications of the results
obtained here are potentially wide-ranging. Since we are
ignorant of the UV gravity dynamics, it is quite plausible
that brane-localized curvature terms are produced generi-
cally in many such theories. The resulting O(s®) growth,
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the corresponding A5 cutoff, has consequences in a variety
of phenomenological scenarios, including electroweak
phase transitions in the early Universe [44], flavor physics
[45], electroweak symmetry breaking [46], gravitational
wave probes [47] as well as gravity mediated supersym-
metry breaking [48] to name a few. In subsequent work, we
will analyze the phenomenological consequences of our
finding.
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APPENDIX: GAUGE THEORY WITH BRANE-
LOCALIZED KINETIC TERMS IN THE
RANDALL-SUNDRUM BACKGROUND

In this appendix we describe how to gauge-fix a
compactified 5-dimensional gauge theory in the presence
of brane gauge kinetic-energy terms and preserve the N =
2 SUSY structure which ensures (a subset of) five-dimen-
sional gauge-invariance. We show how the presence of
brane-localized gauge kinetic-energy interactions does
modify the form of the gauge-transformations of the
compactified gauge theory. This material generalizes the
construction given in [34,35].

Consider a gauge theory in the bulk with brane-localized

kinetic terms,
V(=)

ZZJ . (A1)

We discuss an Abelian gauge theory here explicitly for convenience, but the mode equations and the N =2 SUSY
properties of an non-Abelian theory are identical. The quadratic terms in the Lagrangian can be written as

1
Lvy =
vw=5

21

We expand the KK modes as [34]

=> Vi) (),
ZV n) fv5

To make the KK Lagrangian kinetic terms canonical, we
require that the wave functions satisfy

22 m n
([Faeorran )

9|

+Z}/ieA(Z) (m)

(A3)

(A4)

= 5mn > (AS)

Z
/ " dzer D0, (2)0. £ (2) = md By (A6)
21

/ P dzedOf (D) = Sy (AT)
21

+/ dz e*)(0.V,0.V* = V50,0"Vs +2vsaﬂazw)}.

—{ U dz e*@VH(3,,0,0° — 9,0, vv] + Zy, DVE(1,,0,0 — 0,0,)V"| _
21

(A2)
[
The SUSY relations are as usual [23,34,35],
(n) (n)
D f =m nf
Lo e
D;r/fv5 =my,fy
where
Dy =9, D, =-0,-A2). (A9)

The only twist is the additional change in the definition of
the inner product in a manner analogous to Egs. (3.5)—(3.7),

m n @ m n
U&W&D—(/ @erW@vV@Q
+ Zyl_eA(z) (m)

Y@ . (AL0)

I=Z;

<f(vf)|f<v'?>=</:dze W) (i)
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To construct the SUSY algebra, we define

o

) = ([ aerury) + S ret Tl

and the inner product

21

Now we can define the supercharges Q and QF,

_(O 0)
o=(, o)

fv
fvs

) (A12)

N (/Zz dZeA}‘/st:s)' (A13)

i

(A14)

(020
¢ (oo'

In order for the boundary conditions to respect the supersymmetry as well, the supercharges Q and Q' must be the
Hermitian conjugates of each other with respect to the inner product,

0

<@|QT>—<]‘V fv5><DV 0

<QT§‘|LP> = (/Z2 dz eAva;}w) + Z}’ieAvaJ\(/J?VS

_ ( / % 4o o' Py Dy fv) -y,

=2

Thus, by requiring

(Plo¥) = (0"¥|¥), (A17)
one can derive the boundary conditions'
fv, —7’1D€/fv5|z=z1 = fvs JFJQD:/fVJZ:Z2 =0. (AlB)

Note that the Hermiticity requirement does not put con-
strains on fy, and thus the above boundary conditions do
not conflict with the SUSY relation. And instead, the SUSY
relation,

vaE/") = mv,nfg?, (A19)

leads us to the boundary conditions for fy,

PThere exist other solutions that contain either f v(z;) =0or
fv(z2) = 0. They are less interesting because they would lead to
vanishing brane kinetic terms at either z = z; or z,. Also, at least
in the case of y; = y, = 0, these solutions lead to scenarios where
either V,, has no massless mode or Vs has a physical massless
mode.

) <J{‘Z) N /:2 dz eA]NCVsDVfV,

=z

- eAfv}v:-,

(A15)

(A16)

=+ }’1eAvaI/J~[v5 + 72€Ava:/}v5 .
=7 =7 =2

|
Dyfy —y1D'Dyfy|.—, = Dyfy +r.D'Dyfy|._,, =0.
(A20)

When written in terms of a specific mode function,
analogous to the form shown in Egs. (3.20) and (3.21),
the second derivatives can be recast in terms of the mass
eigenvalues m2 and interpreted as a Sturm-Liouville system
with respect to the weight function of Eq. (AS).

In terms of these modes we find the subset of gauge
transformations respected by the compactified theory have
parameters that may be written'*

O, 2) = > 0 ()1} (2). (A21)
Under these gauge transformations we find [34]
Vu(x*,2) = Vi (x*.2) + 0yO(x", 2),  (A22)
Vi () = VI ) 4+ 9,00 (x7),  (A23)
VI (x) = VI (x%) + m, 00 (x9).  (A24)

““We write the transformation here for a U(1) gauge theory.
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The R; gauge-fixing terms are then given by

215 d4x{ [/ Cdzeh o,V - ‘fDWS)Z}

Sk = =57
21
z=z; }

While the expressions given here are for an Abelian theory,
the generalization to a non-Abelian theory are straightfor-
ward by introducing gauge-field components, gauge param-
eters, and gauge-fixing functions for each generator, and
introducing appropriate homogeneous transformation terms
in Egs. (A22)-(A24). The usual Goldstone boson equiv-
alence theorem relationships in ’t-Hooft-Feynman gauge
(¢ = 1) between the scattering amplitudes of the longitudinal
massive spin-1 KK states and the corresponding Goldstone

+ > 1€ (9, V¥ — ED}Vs)? (A25)

bosons (V<5"> (x%)) then follow from the discussion above, and
result in the high-energy behavior for the scattering ampli-
tudes found previously [49].

Note that in the case of gauge theory there are no
background fields, and therefore no auxiliary field is
required to define the theory. Hence the presence of
brane-localized gauge-kinetic terms does not change the
energy dependence of the Goldstone-boson interactions,
and massive spin-1 KK scattering amplitudes continue to
grow like a constant at high energies [49]. This is unlike the
case of compactified gravity where, due to the presence of a
background metric, brane-localized curvature creates a
conflict between the modifications of diffeomorphism
invariance and the straight gauge conditions of Eq. (2.8)
requiring the inclusion of the auxiliary field and modifying
the behavior of the scalar metric fluctuations.
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