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ABSTRACT

A damaging My 7.5 earthquake struck the western coast of Japan along the Noto Peninsula on January 1, 2024.
The initiation of large shallow earthquakes along the Noto Peninsula, particularly above deeper long-duration
patchy seismic swarms, presents an unusual seismic phenomenon that warrants in-depth investigation of their
interactions. The 2024 earthquake nucleated with an initial low average rupture velocity of 0.5-1.0 km s near
the up-dip end of a long-lasting seismic swarm that commenced in November 2020. Analysis of dense seismic,
geodetic, and tsunami observations provides good resolution of large shallow slip in the crust below the
peninsula and extending offshore to the northeast, revealing a heterogeneous slip distribution characterized by
bilateral two-stage rupture expansion during the faulting. Up to 8 m of slip occurred in several patches along
~150 km of the southeastward-dipping thrust fault, which extends to near the seafloor along the northwest side
of the peninsula. Up to 5 m of uplift occurred along the peninsula’s northwestern coast. Up-dip fluid migration
appears to have weakened the shallow fault prior to failure and influenced the initial slow rupture expansion,

highlighting the need to monitor the evolution of worldwide swarms.

1.Introduction

Prolonged earthquake sequences lasting from days to years that lack
a dominant large magnitude (mainshock) event are called earthquake
swarms (Mogi, 1963). Volcanic, rifting and hydrothermal regions of the
crust frequently host earthquake swarms (e.g. Kisslinger, 1975; Yama-
shita, 1999; Vidale et al., 2006; Enescu et al., 2009; Hauksson et al.,
2013; De Barros et al., 2020), and swarms also occur along portions of
subduction zone plate boundaries adjacent to areas that rupture in major
earthquakes (Holtkamp and Brudzinski, 2011; Bedford et al., 2015;
Marsan et al., 2023). However, regions that produce swarms are seldom
directly associated with large mainshock occurrence. Fluid intrusion is
generally invoked to account for distributed fault weakening leading to
the onset of a swarm, with aseismic slip and redistribution of stress also
influencing swarm evolution (Hainzl, 2004; Lohman and McGuire,
2007; Shelly et al., 2016; Yoshida et al., 2017; Ross and Cochran, 2021;
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Cebry and McLaskey, 2021). Migration of event locations during swarms
provides suggestive evidence of fluid intrusion (e.g. Yukutake et al.,
2011; Chen et al., 2012; Shelly et al., 2013; Kosuga, 2014; Okada et al.,
2015; Ross et al., 2017; Dublanchet and De Barros, 2021). Widespread
anthropogenic triggering of seismicity by wastewater injection (Horton,
2012; Ellsworth, 2013) also provides support for the plausible role of
fluids in causing swarm activity.

A long-lasting crustal earthquake swarm located below the north-
eastern end of the Noto Peninsula, Japan, commenced with a rapid in-
crease in seismicity rate around November 2020 and continues to
January 1, 2024 (Fig. 1). >20,000 earthquakes with Japan Meteoro-
logical Agency (JMA) magnitudes M; 1 to 5 have been detected (e.g.
Nakajima, 2022; Amezawa et al., 2023; Yoshida et al., 2023a; Kato,
2024). The swarm activity (mingled with the magenta- and
orange-colored aftershock sequences for larger events in Fig. 1, A to C) is
concentrated in four distinct clusters within a 15 km by 15 km area
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spanning depths from 10 to 18 km (Fig. S1) (e.g. Nakajima, 2022;
Amezawa et al., 2023; Yoshida et al., 2023a). Focal mechanisms are
predominantly 35° to 45° dipping thrust faults with near-horizontal
compression axes-oriented NW-SE. Geodetic measurements resolve
transient deformation with horizontal inflation and uplift of up to 70
mm in the swarm region (Nishimura et al., 2023). The Noto Peninsula
has not had active volcanism for 15 Ma, but does have a high geothermal
gradient (>50 K km™), and high-temperature hot springs are found in
faulted regions, possibly due to meteoric waters circulating to high heat
production granites beneath low conductivity sediments (Umeda et al.,
2009). Swarms have been observed in other regions of paleo-volcanoes
and paleo-calderas in Japan (e.g. Okada et al., 2015; Yoshida and
Hasegawa, 2018; Matsumoto et al., 2021), possibly deriving fluids from
old magma chambers (e.g. Yoshida et al., 2023b).

Prior to, and spatially removed from the swarm, a moment-
magnitude My (moment magnitude) 6.7 thrust earthquake occurred at
the western end of the Noto Peninsula on March 25, 2007 (e.g. Kato
et al., 2008; Kurahashi et al., 2008), and low-level seismic activity was
distributed along a trend to the northeast (Fig. 1A). A fluid-filled
reservoir below the 2007 rupture zone has been inferred from seismic
and magnetotelluric observations and may have influenced the shallow
coseismic slip distribution (e.g. Yoshimura et al., 2008; Kato et al.,
2011). The present-day compressional stress regime in the Noto Penin-
sula is likely associated with crustal shortening along western Honshu
that began in the late Miocene, reactivating steeply dipping graben
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extensional faults that are buried under sediments (Kato et al., 2008;
Ishiyama et al., 2017). The fault ruptured in 2007 appears to extend
along the Noto Peninsula to the swarm region to the northeast, possibly
as a single structure or along several segments.

The largest events originating during and in close spatial proximity
to the swarm, all having thrust faulting mechanisms, have included an
My 5.1 event on June 19, 2022 (Yoshida et al., 2023a), My 6.2 and 5.6
events on May 5, 2023 (Kato, 2024; Yoshida et al., 2023b), and an My
7.5 event on January 1, 2024 (Fig. 1). The My 6.2 and My 7.5 events
both have hypocenters within the depth range of the swarm, but their
ruptures extend up-dip along southeastward dipping thrust faults
extending across the shallow crust, reaching to within a few kilometers
of the surface (Kato, 2024). Fluid-flow up-dip from the swarm region on
a shallow crustal fault has been invoked as the cause of upward earth-
quake migration observed for the 2023 event (e.g. Yoshida et al., 2023a,
2023b; Kato, 2024). The major 2024 mainshock event produced
extensive destruction and loss of life on the Noto Peninsula (Normile,
2024), and its aftershock zone (cyan events in Fig. 1D and E) is much
longer than the swarm dimensions, indicating rupture of a distinct,
through-going fault dipping toward the southeast. The aftershocks
extend southwest to the vicinity of the 2007 event and northeast
offshore of the peninsula. Multiple segments can possibly be defined
along this trend, but the seismicity is overall well-represented with a
single planar fault.

This is a very rare example of a major mainshock earthquake
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Fig. 1. Seismic activity around the Noto Peninsula from January 1, 2006, to February 1, 2024, from the JMA catalog. (A), Seismic activity with M; > 1.0 prior
to the January 1, 2024 My, 7.5 earthquake. Gray circles indicate events before the My, 4.9 event on September 16, 2021. Color symbols highlight events in varying
time intervals during the swarm, some of which are aftershocks of large events in the shallow crust above the swarm region. The black rectangle outlines the Noto
swarm region, enlarged in (B) and (C). The gray dashed rectangle indicates the mainshock fault plane used in this study, with the solid line depicting the shallow
northwestern edge. B. and C. The swarm activity that occurred in 2021, 2022, and 2023, highlighted by the magenta, orange, and blue-colored circles, respectively,
with stars representing the larger events during the seismic swarm. (D), All seismic activity from January 1, 2006, to February 1, 2024. The cyan circles depict 1-
month aftershocks, and the red star represents the 2024 My, 7.5 earthquake epicenter. The black rectangle outlines the region used in Figure S1. (E), Magnitude-time
plot of the JMA catalog events from January 1, 2006, to February 1, 2024, with M; > 1.0. The red line indicates the cumulative number of events. Events following

larger earthquakes during the swarm are color-coded the same as in the maps.
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sequence occurring in close space-time proximity to a deeper long-
duration swarm, raising questions about the role of fluids and stress
changes from the swarm in triggering the damaging shallow earthquake
(Normile, 2024; Shelly, 2024; Ishikawa and Bai, 2024). We determine
the space-time slip distributions for the largest two events by inverting
seismic and geodetic observations and, for the 2024 event, modeling
tsunami recordings, and exploring the possible mode of mainshock
interaction with the swarm activity, as well as the specificity of the
rupture evolution.

2. Datasets and methodology
2.1. Teleseismic data

Based on criteria of high signal-to-noise ratio and evenly distributed
azimuthal coverage within teleseismic distances ranging from 30° to
90°, we selected 85 P-wave and 45 SH-wave teleseismic waveforms for
the January 1, 2024 My 7.5 Noto earthquake from the Incorporated
Research Institutions for Seismology (IRIS) data management center
(Fig. 2A). Subsequently, instrument responses were removed to obtain
ground displacements within the frequency passband of 0.005 to 0.5 Hz,
with a duration of 100 s. Finally, we manually aligned all the P and SH
wave initial motions.

2.2. Geodetic data

For the May 5, 2023 My, 6.2 Noto event, we estimated the coseismic
displacements at three GNSS sites (Fig. S3A) sourced from Japan’s GNSS
Earth Observation Network System (GEONET), as reported by the
Geospatial Information Authority of Japan (GSI). For the January 1,
2024 My 7.5 Noto event, we gathered coseismic displacements from 71
GNSS sites (Fig. 2A) within Japan’s GEONET, which were processed by
both the Nevada Geodetic Laboratory and GSI independently.

We collected available SAR images to derive the coseismic dis-
placements produced by the 2023 My, 6.2 and 2024 My, 7.5 Noto events,
and more details are shown in Table S1. For the 2023 event, a
descending pair of C-band Sentinel-1 SAR images was used in this study.
We employed the two-pass differential interference method to derive the
coseismic displacements. Due to heavy decoherence effects caused by
the steep topography and abundant vegetation coverage in the epicen-
tral region I-band ALOS-2 SAR images were utilized for the 2024 event.
These l-band SAR images include two ascending pairs and one
descending pair within Stripmap fine mode. Considering the high spatial
resolution of these 1-band SAR images and the large surface displace-
ment caused by the 2024 event, both the two-pass differential interfer-
ence and the pixel offset tracking (POT) methods were employed to fully
exploit these SAR images for deriving the coseismic deformation (He
et al., 2019). All the SAR data for the 2023 and 2024 events were pro-
cessed based on the Switzerland GAMMA platform (Wegniiller et al.,
2016).

We obtained one interferogram for the 2023 event (Fig. S3B), three
interferograms, and three range offset images for the 2024 event (Fig. 2B
to G), respectively (Table S1). For the 2023 event, the coseismic inter-
ferogram exhibits displacements ranging from —0.9 cm to 16 cm in the
line of sight (LOS) direction. For the 2024 event, the possible iono-
spheric disturbance contribution in these I-band interferograms has been
corrected following previous studies (Chen and Zebker, 2014). Then, we
acquired three interferograms and three range offset images (Fig. 2B to
G). Notably, the range offset observations derived from SAR amplitude
exhibit consistent deformation trends in the line of sight (LOS) as the
interferograms, indicating no systematic errors. It is worth noting that
the range offset observations reveal significantly more near-field
deformation compared to the interferograms. This enhanced detection
is attributed to the ability of range offset observations to overcome
incoherence caused by phase unwrapping between adjacent pixels,
assuming a 2n phase gradient (He et al., 2019). The interferograms and
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range offset observations reveal coseismic displacements ranging from
—46.6 cm to 423.1 cm in the LOS direction.

We have also estimated the uncertainties associated with these
coseismic deformation images by adopting a 1-D covariance function
(Parsons et al., 2006), as summarized in Table S1. The Sentinel-1
interferogram for the 2023 event demonstrates a root mean square
error (RMSE) of 4.2 cm. As for the 2024 event, ALOS-2 interferograms
indicate RMSEs ranging from 8.4 cm to 15 cm. Benefiting from these
stripmap SAR images with a high range pixel resolution of ~1.4 m, the
range offset observations reveal a commendable quality of the in-
terferograms, with uncertainties measuring <15 cm (Table S1). Finally,
these range offset images and interferograms are down-sampled. Spe-
cifically, there are 435 points retained for the 2023 event, and a total of
2416 points for the 2024 event.

2.3. Strong-motion data

We selected three-component strong motion waveforms recorded at
28 stations for the 2023 event and 27 stations for the 2024 event,
respectively, operated by K-NET, KiK-net, and JMA within epicentral
distances of <150 km (Fig. 2A). Near-field strong motion records often
suffer from baseline shifts, which can obscure true ground velocities and
displacements during integration. In this study, we integrated the ac-
celerations to velocity by removing baseline drifts, following the
methodology developed by Wang et al. (2011) and Liu et al. (2023a).
Some nearby strong motion data for the 2024 event were excluded due
to significant sediment reverberations (ISK002) and uncorrectable
baseline drift associated with the 2024 mainshock (ISKHO1). Subse-
quently, the selected data were bandpass filtered between 0.01 Hz and
0.5 Hz for the 2023 event and between 0.01 Hz and 0.3 Hz for the 2024
event, respectively, to eliminate long-period noise and address the
limitations of the theoretical model at higher frequencies.

2.4. Finite fault inversion

An integrated analysis of seismic and geodetic data generally proves
highly effective in unraveling the rupture process of larger earthquakes.
In this study, we employed both data types to investigate the rupture
process of the 2023 My, 6.2 and 2024 My, 7.5 Noto earthquakes, utilizing
a single fault constrained by the distribution of aftershocks and re-
locations (Yoshida et al., 2023b; Kato, 2024). We used a nonlinear finite
fault inversion method (Ji et al., 2002, 2003) to determine the history of
kinematic rupture. The model and inversion parameters for these two
earthquakes are provided in Table S2. All Green’s functions for statics
and waveforms were calculated using a regional 1D velocity model
(Fig. S2; Nakajima, 2022).

Joint inversions always present challenges in assigning relative
weights to different datasets, mainly due to the highly uneven distri-
bution of near-field datasets (Fig. 2 and Fig. S3). In this study, consid-
ering the characteristics of the various datasets, we adopted a trial-and-
error approach to test various weight assignments for different datasets,
guided by independent tsunami simulations (Bai et al., 2022; Liu et al.,
2023b). Ultimately, we allocated a weight of 3/4 to the statics relative to
the seismic waveforms. Moreover, we assigned three times the weight to
the hanging wall recordings for the strong motion data compared to
those surrounding the fault.

2.5. Tsunami modeling

NEOWAVE (Nonhydrostatic Evolution of Ocean WAVE) is built upon
a depth-integrated non-hydrostatic free-surface flow system with the
ability to resolve weakly dispersive waves (Yamazaki et al., 2009, 2011;
Bai and Cheung, 2013; Bai et al., 2018). The embedded vertical mo-
mentum equation enables the modeling of kinematic tsunami generation
from seafloor deformation and tsunami-induced flows over steep con-
tinental slopes. These characteristics allow NEOWAVE to compute
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motion stations, and blue squares indicate GNSS stations used. Black vectors indicate GNSS static horizontal displacements. The inset on the top left shows the
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the ascending and descending paths. (E), (F), and (G) indicate the coseismic unwrapped InSAR LOS displacements along the ascending and descending paths.



C. Liu et al.

initial waveforms in the near field (Wei et al., 2024) and accurately
reproduce tide gauge or pressure sensor records along coastlines (Bai
et al., 2023). The evolution of seafloor deformation at the source is
computed from the earthquake finite-fault model through an elastic
half-space solution (Okada, 1985) and augmented by the horizontal
motion from the seafloor slope (Tanioka and Satake, 1996). The model is
discretized on a staggered finite difference grid in spherical coordinates
with the implementation of a shock-capturing scheme for bore propa-
gation and two-way nested computational layers for data
communications.

A one-level computational domain is set up to model tsunami gen-
eration and propagation in the event. The level-1 grid extends across the
Sea of Japan at 30-arcsec (~925 m) resolution and adequately describes
insular shelves and coastal features along the west coast of Japan. A
combined 0.5-sec time interval yields optimal dispersion properties for
trans-basin tsunami modeling (Li and Cheung, 2019). A Manning coef-
ficient of 0.025 accounts for the sub-grid roughness in the nearshore
region. The 1-min water level records are obtained from ten Ultra-sonic
wave gauges deployed offshore by the Ministry of Land, Infrastructure,
Transport, and Tourism, Japan (Fig. 2A), bandpass filtered to remove
wind wave and swell components. Compared to tide gauge measure-
ments, the recorded signals avoid interferences from complex harbors
and waterways and become ideal for resolving tsunami waves. The
digital elevation data GEBCO is utilized to construct the topography and
bathymetry.

3. Results

3.1. Rupture initiation behavior of large shallow earthquakes along the
Noto peninsula

The occurrence of large shallow crustal faulting above a deeper long-
duration patchy seismic swarm is very unusual and prompts inquiry into
the causal interactions between the processes. We first consider the very
early stage of rupture of the shallow crustal events, including the 2007
My 6.7 rupture at the western end of the peninsula and four large events
from 2021 to 2024 located directly above the swarm (Fig. 3A). The
initial seismic radiation for each event is well-recorded by local strong-
motion stations along the peninsula (Fig. 3A to F). The seismic ground
accelerations have been shifted for travel time move-out to align the first
arrivals on 10 s in each profile.

The 50 s long profiles clearly show substantial, 15 to 20 s delays of
large arrivals for the January 1, 2024 event (Fig. 3F), for which the US
Geological Survey origin time is 07:10:09.48 UTC. The zoomed-in pro-
files spanning 2.5 s indicate that the 2007 event has weak first arrivals in
the first 0.4 to 0.6 s at all distances (Fig. 3B), so a sluggish growth of
rupture may be associated with the ascent of fluids (not directly asso-
ciated with swarm activity) noted in the introduction. The September
16, 2021 event has relatively typical early P wave energy (Fig. 3C) for a
crustal event, whereas the June 19, 2022 rupture has unusually large
low-frequency energy in the first 0.6 s of rupture (Fig. 3D). The May 5,
2023 event has weak arrivals in the first 0.6 s (Fig. 3E) similar to those of
the 2007 event. The January 1, 2024 major event has very weak initial
energy in the first 1 s of rupture (Fig. 3F), suggesting either a gradual
nucleation process or occurrence of one or more immediate small fore-
shocks (the Japan Meteorological Agency catalog lists two small events
about 14 s ahead of a 7.5 event at 07:10:22.57 UTC). For the four events
above the swarm, the temporal evolution of early rupture characteristics
may reflect the accumulation of fluids rising from the source region into
the shallow crustal fault system, with progressive impact on the larger
event nucleation from 2021 to 2024. High-resolution earthquake loca-
tions indicate that the 2022 and 2023 events likely ruptured the same
fault from deeper to shallower (Kato, 2024) (Fig. S1), so the unusual
long-period energy for the 2022 event originated within the swarm re-
gion, and fluid weakening may have affected its nucleation. We proceed
to analyze seismic, geodetic, and tsunami data to determine the
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complete rupture process for the large 2023 and 2024 events.
3.2. Rupture kinematics of the May 5, 2023, M,, 6.2 earthquake

The magnitude 6.2 earthquake on May 5, 2023, initiated up-dip of
the Noto seismic swarm, and was accompanied by numerous shallow
aftershocks (Kato, 2024). The event was well recorded by regional
strong-motion stations, Interferometric Synthetic Aperture Radar
(InSAR), and Global Navigation Satellite System (GNSS) stations
(Fig. S3), providing data to determine the space-time slip distribution.
We constructed a single rectangular fault model with 2 km by 2 km
subfaults, with a strike of 53° and southeastward dip of 42°, as con-
strained by relocated aftershocks (Yoshida et al., 2023b; Kato, 2024)
(Fig. S1E), and set the hypocenter beneath the relocated epicenter
(37.534°N, 137.306°E) at a depth of 12.5 km (Yoshida et al., 2023b).
Employing a simulated annealing-based nonlinear finite fault inversion
method, we jointly inverted geodetic and strong-motion observations,
using the inversion parameters listed in Table S2.

The preferred coseismic slip distribution of the 2023 My, 6.2 event is
displayed in Fig. 4, and the corresponding fits to geodetic displacements
and strong motion waveforms are provided in Fig. 4 and Figures S4 and
S5. The model features a dominant deeper large-slip patch and a weaker
shallow one, distributed up-dip of the hypocenter, contributing to a total
seismic moment of My = 3.6 x 10'® Nm. The main slip zone is confined
within the depth range of 5-14 km, with a peak slip of ~2.8 m, and the
total rupture duration is ~10 s (Fig. 4). While most aftershocks fringe
the large-slip regions, there is moderate overlap with the deeper large-
slip patch (Fig. 4), indicating that the mainshock did not fully release
all the built-up stress in the fault zone. This highlights likely non-
uniformity in fault properties, such as frictional resistance or mechani-
cal strength along the fault plane, which can cause irregular rupture
during the coseismic slip. Alternatively, continuous fluid migrations
along the fault can exacerbate the weakening of the fault zone.

The preferred model produces acceptable fits to both coseismic GNSS
statics and InSAR data (Fig. 4 and Fig. S4), although some detailed
features in the InSAR data do not fit precisely, potentially due to the
presence of noise and artifacts in the measurements. The model accounts
for the dominant portions of the strong motion ground velocity records
well (Fig. S5); however, some high-frequency waveform misfits are
present, reasonably attributable to local 3D site effects that are not
included in our modeling.

3.3. Rupture kinematics of the January 1, 2024, M,, 7.5 earthquake

The My 7.5 earthquake on January 1, 2024, is the largest event
recorded along the Noto Peninsula, comparable in size to major events
along the eastern edge of the Sea of Japan offshore of Honshu and
Hokkaido to the north with complex rupture (Ishikawa and Bai, 2024;
Fujii and Satake, 2024; Okuwaki et al., 2024; Masuda et al., 2024; Yang
etal., 2024; Ma et al., 2024; Xu et al., 2024). Although it nucleated near
the ongoing Noto swarm, this mainshock rupture is shallower and ex-
tends well beyond the extent of the swarm (Fig. 1D). Ground motion
recordings acquired directly above the rupture zone present a valuable
opportunity to determine the precise slip distribution of the onshore
portion of the event, and many seismic stations, geodetic sensors, and
seafloor pressure sensors along the coast allow the offshore rupture to be
well resolved. Employing a similar approach to that for the My 6.2
earthquake, and guided by the distribution of aftershocks and a
well-determined fault plane (Kato, 2024) (Fig. S1), we construct a single
rectangular fault model with 5 km by 5 km subfaults, with strike of 53°,
southeastward dip of 42°, and hypocenter at a depth of 15.23 km with
the JMA 7.5 mainshock epicentral coordinates of 37.496°N, 137.270°E,
and an origin time 07:10:09 UTC (consistent with teleseismic P arrival
times and the USGS-NEIC origin time, and within +1 s of the JMA
‘nucleation phase’ at 07:10:08.3 and a 5.9 ‘foreshock’ at 07:10:09.54 at
depths of 10.1 km). While some studies have introduced various fault
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Fig. 3. Nearby seismic radiation for larger shallow crustal events beneath the Noto Peninsula. (A), Triangles indicate the locations of strong-motion stations
used to analyze the very early rupture stage. Stars indicate the earthquake epicenters. (B)-(F), Profiles of seismic ground acceleration, shifted for travel time move-out
to align the first P arrivals on the red lines at 10 s. The left panels show 50-80 s time windows, and the right panels show zoomed-in profiles spanning 2.5 s,
highlighted with two vertical blue lines in the left panels.
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Fig. 4. Joint inversion finite-fault model for the May 5, 2023 My 6.2
earthquake. The red and blue stars represent the epicenters of the January 1,
2024 My, 7.5 and May 5, 2023 My, 6.2 earthquakes, respectively. The gray line
indicates the 0.5 m slip contour, and the blue circles mark relocated aftershocks
with a magnitude of M; > 2.5 (Kato, 2024). The blue focal mechanism repre-
sents the moment tensor derived from this study. Active faults are depicted with
black barbed lines, and the inset shows the moment-rate function (MRF) of the
joint slip model. Black and red vectors indicate observed and synthetic
coseismic geodetic displacements, respectively. Fits to InSAR and strong-motion
data are shown in Figures. S4 and S5.

segments with changes in strike and/or dip, the offshore geometry is not
tightly constrained by aftershock locations, and complexity of the fault
system is not resolved. Our model fits the aftershocks quite well (Fig. S1)
and is sufficient to fit teleseismic and regional observations very well, so
we prefer the single plane representation. We believe the rupture pro-
cess commenced significant moment release at about 07:10:09 UTC and
grew rapidly around 07:10:23. Fitting to our model grid adjusts the
depth slightly, but ensures that the mainshock energy originates in the
hypocentral grid. We determine coseismic slip models by separately or
jointly inverting teleseismic waveforms, strong-motion waveforms,
GNSS statics, and InSAR data. Key inversion parameters are listed in
Table S2. The resulting slip models are evaluated through tsunami
modeling, iteratively adjusting data weighting to develop a preferred
joint model. Inversions performed using hypocentral parameters based
on the JMA nucleation phase or the JMA 5.9 foreshock give nearly
identical results. Small variations in precise origin time of 1 s and precise
onset depth of a few kilometers are simply not resolved in the discretized
finite-fault models when the onset of slip is emergent and weak as in this
case. Our slip inversions are robust relative to the chosen parameters.
We initially perform finite-fault inversions separately using tele-
seismic body wave ground displacements or regional strong-motion
ground velocity seismograms (Figs. S6 to S8). These two slip models
indicate bilateral shallow ruptures, with large-slip regions fringed by the
deeper distribution of aftershocks (Fig. S6). The teleseismic model has a
more uniform slip pattern than the strong-motion model, with a peak
slip of approximately 5.5 m (Fig. S6A). The slip distribution of the strong
motion model has higher spatial resolution and indicates notable non-
uniformity, with a peak slip of ~8.5 m, located up-dip of the hypocen-
ter (Fig. S6B). It is important that our inversions for both data sets allow
a wide range of rupture velocities and rise time for each position on the
fault (Table S2) as slow initial rupture expansion (< 1 km s) places
large slip near the hypocenter. Kinematic models for each data set with
imposed higher rupture velocities tend to have little slip near the hy-
pocenter (Ishikawa and Bai, 2024). The total seismic moment estimated
from these slip models is consistently ~2.5 x 10%° Nm, which is about
10 % larger than the USGS W-phase moment tensor solution (2.268 x
10%° Nm) but comparable to the GCMT solution (2.47 x 10%° Nm). The
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estimated rupture duration is about 80 s for both inversions. Both
models effectively capture the primary characteristics of teleseismic and
strong motion waveforms, with the exception of some misfits of
high-frequency signals (Figs. S7 and S8), again likely due to overly
simplified structural models. Next, we combine the data sets in joint
seismic and seismic-geodetic models.

The 2024 Noto earthquake has superb geodetic data sets from GNSS
and InSAR observations (Fig. 2A to G), that provide excellent constraints
on the coseismic slip beneath the peninsula. For ruptures that extend
from below land to offshore, as in this case, unevenly distributed InSAR
and GNSS measurements can potentially introduce bias in slip model
inversions (Liu et al., 2015). To explore this issue, we perform separate
inversions of the combined teleseismic and strong-motion data set or the
combined GNSS and InSAR geodetic data set. The validity of the sepa-
rate slip distributions is then evaluated using modeling of the regional
tsunami recordings at seafloor pressure sensors along the coast (Fig. 2A).
The separately inverted seismic and geodetic slip models are shown in
Fig. 5, and both models can explain the separate sets of observations well
(Figs. S9 and S11). The joint seismic kinematic model exhibits similar
features to the separate teleseismic and strong-motion models (Fig. S6),
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Fig. 5. Finite-fault models from seismic or geodetic data sets for the 2024
My 7.5 earthquake. (A), Seismic slip model determined by inversion of the
joint strong-motion and teleseismic data. The inset shows the moment-rate
function (MRF) of the seismic model. (B), The slip model was inverted using
the geodetic static displacements. The gray contours in each model highlight
the 1 m slip, and white arrows indicate the direction of the slip. The cyan circles
mark 1-month aftershocks with a magnitude of M > 3.0, from the JMA catalog.
The red focal mechanisms represent the moment tensor for the corresponding
finite-fault models. Black barbed lines represent active faults. All seismic
waveform fits are shown in Figures S9 and S10, and geodetic fits are shown
in Figure S11.



C. Liu et al.

with a slightly asymmetric bilateral slip distribution. The geodetic static
slip model has a predominantly unilateral southwestward rupture, with
little slip detected to the northeast, which is a predictable bias from the
data distribution. To provide an assessment of the offshore slip,
Figures S12 and S13 illustrate comparisons between the observed
tsunami waves at the seafloor sensors in Fig. 2A and the predictions of
the two models in Fig. 5, assuming seafloor motions from kinematic
generation for the seismic model and static generation for the geodetic
model. Both models reasonably predict the tsunami signals recorded at
stations 06-10, located southwest of the epicenter (Fig. 2A), but fail to
accurately simulate the onset phase of tsunami waveforms at stations
01-04, positioned northeast of the epicenter (Fig. 2A). This discrepancy
is attributed to insufficient seafloor uplift on the northeast side of the
fault for both models.

The difference between seismic and geodetic models in Fig. 5 high-
lights the formidable challenge of accurately constraining the slip model
by simultaneously inverting both types of data. The relative weighting of
the different observations always poses a significant challenge for joint
inversions, and this is exacerbated by the strong bias in the spatial
coverage of the geodetic data. We conduct tests for various weighting
scenarios to determine the optimal choice for each dataset in the joint
inversion, with the prediction of tsunami observations guiding our final
choice. Because tsunami excitation is sensitive to the spatial distribution
of seafloor uplift, it balances the dense on-land sampling of ground
displacement from the geodetic observations, so the full model can be
well resolved. The ultimate slip model is shown in Fig. 6, with details in
Figure S14A. The rupture has asymmetric bilateral propagation domi-
nated by a significant shallow slip concentration of up to ~8 m under the
Noto Peninsula, with large slip in the depth range of 0 to 16 km, and a
total rupture length of ~150 km. The slip distribution exhibits signifi-
cant patchiness, featuring two distinct large-slip asperities located below
the peninsula and smaller patches of up to 3 m slip offshore to the
northeast (Fig. 6). Rake on the fault varies modestly, with the patchiness
and obliquity allowing the solution to account for the strong strike-
parallel component of geodetic surface displacements (Fig. 7). The cu-
mulative seismic moment is 2.5 x 10%° Nm, consistent with the long-
period GCMT point-source solution (2.47 x 102° Nm), and the average
focal mechanism depicted in Fig. 6 closely resembles the best double-
couple solution (with a strike 49°, dip 41°, and rake 102°) derived
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Fig. 6. The final slip model from joint inversion of all data sets for the
2024 My, 7.5 earthquake. The red and blue stars represent the epicenters of
the 2024 My, 7.5 earthquake and 2023 My 6.2 earthquake, respectively. The
gray contour highlights the 1 m slip, while the blue contours delineate the > 0.5
m slip zone of the 2023 My, 6.2 event. White arrows indicate the direction of the
slip, and cyan circles show 1-month aftershocks with a magnitude of M > 3.0
from the JMA catalog. The inset shows the moment-rate function (MRF) of the
final slip model. The red focal mechanism represents the moment tensor
derived from this fault model. Black barbed lines represent active.
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from the long-period moment tensor inversion by the USGS-NEIC.

Snapshots of the space-time slip evolution indicate two-stage rupture
that slip spread slowly at from 0.5 to 1.0 km s up-dip of the hypocenter
during the first 20 s (Fig. S15), then the rupture expanded asymmetri-
cally to the southwest at about 1.3 km s}, with a general decrease in rise
time (Fig. S14B). The very low initial rupture velocity is strongly
influenced by the choice of hypocentral time, and could be misleading if
the initial radiation is from discrete foreshocks some 13 s ahead of the
mainshock, but we infer a gradual rupture growth based on the char-
acter of both the nearby strong-motions (Fig. 3) and the slow growth of
long-period energy in the teleseismic P waves (Fig. 8). After 30 s, the
rupture expanded to the northeast, with a somewhat lower rupture ve-
locity of <1.2 km s, corresponding to a larger slip rate (shorter rise
time) (Fig. S14C). Most of the seismic moment was released within 80 s
(Fig. 6), and the overall average rupture velocity is ~1.2 km s, The
broadband radiated energy estimated for the event is 2.3 x 10> J (IRIS
radiated energy). Utilizing the seismic moment from the preferred slip
model, we calculated a moment-scaled radiated energy (Eg/Mp) of 1.08
x 107>, comparable to the average value of 1.06 x 107> for interplate
thrust events (Ye et al., 2016), and lower than the value of about 3 x
107" found for Japanese inland earthquakes in the magnitude range 5.6
to 7.0 found by Kanamori et al. (2020). We also calculated the radiation
efficiency () of the 2024 Noto earthquake using the expression = 2
(Er/Mo)u/Ac (Ye et al., 2016), obtaining a value of ~0.26. Here, Er/Myp
is the moment-scaled radiated energy as calculated above; u is the shear
modulus (~2.83 x 10* MPa), estimated from the velocity model we used
(Fig. S2; Nakajima, 2022); and Ao is the average static stress drop
(~2.36 MPa), computed from our preferred slip model following using
the relation proposed by Kanamori and Anderson (1975).

The model fits for subsets of the geodetic and seismic data are shown
in Figs. 7 and 8 (all additional data comparisons are shown in Fig. S16).
The preferred slip model satisfactorily matches all observations,
including the tsunami signals in both directions along the coast (Fig. 9).
Comparing Figs. 5 and 6, this is the result of larger shallow slip along the
northeastern portion of the model. The overall fitting to InSAR and GNSS
statics is satisfactory, with the exception of several GNSS stations
southwest of the epicenter, which have large misfits for all models.
These may be attributed to the local influence of early aftershocks, such
as an M; 6.2 event that occurred nearby just 8 min after the mainshock or
possibly site slumping during the mainshock. The strong ground motion
data generally align well in the main phases; however, the high-
frequency signals at several stations remain underestimated, presum-
ably due to local 3D site effects. Overall, the good fits between the
extensive observations and synthetics indicate the reliability of our
coseismic slip model for the 2024 Noto earthquake.

Additionally, to assess the uncertainty in the slip model for the 2024
Noto earthquake, we also performed ten inversions, each using a
different random seed. The results indicate that the large-slip distribu-
tions across the ten models exhibit relatively stable behavior, showing
strong consistency (Fig. S17A). Overall, the standard deviation (STD) for
most fault segments is small, generally <10 % (Fig. S17B). The higher
STD observed in certain parts of the fault model is likely due to the lack
of very near-fault observations in those areas.

Direct inversion of the tsunami signal at Naoetsu indicates large sea
surface displacement of up to 3 m near (just to the southwest) the fault
slip patch in our preferred model (Yamanaka et al., 2024), so slip in the
northeast may be underestimated by our model. Given the uncertainty in
precise fault geometry and velocity models there is ~5-10 km uncer-
tainty in absolute location of the northeastern slip patch.

4. Discussion and conclusions

Many researchers have proposed slip models for the 2024 My, 7.5
Noto earthquake based on seismic data (Okuwaki et al., 2024), geodetic
observations (Yang et al., 2024), tsunami waveforms (Masuda et al.,
2024; Yamanaka et al., 2024), and joint inversion of multiple datasets
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Fig. 7. Comparison of subsets of the observed geodetic data and predictions for the preferred slip model in Fig. 6. (A) and (B). depict the horizontal and
vertical GNSS displacements, respectively, with observed data in black and predictions in red for the preferred slip model shown in Fig. 6. The gray dashed rectangle
indicates the assumed fault model used in this study, with the shallow edge depicted by a solid line. (C), (F), and (I) show the range offset of the descending track
P026 and ascending tracks P121 and P127, respectively. (D), (G), and (J) indicate the corresponding predictions of range offsets derived from the preferred joint slip
model. (E), (H), and (K) show residuals of range offsets along the ascending and descending paths, respectively. The active faults are denoted by black barbed lines,
with the 2024 My, 7.5 earthquake epicenter marked by a red star. InSAR LOS data fits are shown in Figure S16A.
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(Fujii and Satake, 2024; Ma et al., 2024; Xu et al., 2024). These models
have used a variety of different fault system geometries, which are at
best weakly suggested by the locations of offshore aftershocks and are
not clearly justified, as we are able to reconcile all data with a uniform
single fault geometry. Okuwaki et al. (2024) analyzed teleseismic
waveforms and identified four distinct rupture episodes on differently
oriented fault segments. Yang et al. (2024) performed a geodetic
inversion and found two slip patches, with a maximum slip of ~4 m
extending to the trench. Fujii & Satake (2024) inverted tsunami wave-
forms and GNSS data using a coarse fault-segment model, identifying a
peak slip of ~3.5 m located along the northern coast of the Noto
Peninsula. Ma et al. (2024) and Xu et al. (2024) conducted a joint
inversion of seismic and geodetic datasets using three fault segments and

11

incorporated teleseismic back-projection analysis to investigate rupture
velocity.

The first rupture phase in our model, characterized by a slow rupture
velocity, is consistent with the findings of Ma et al. (2024) and Xu et al.
(2024). The slip model proposed by Ma et al. (2024) shows a peak uplift
of 5 m on the west coast and shallow slip exceeding 10 m on an offshore
fault. The slip model of Xu et al. (2024), on the other hand, reveals
significant complexity in the early stages of rupture, including a
double-pincer rupture front and an extreme non-uniform slip distribu-
tion. However, neither of these models adequately resolves the slip in
the northeastern part of the fault. Our preferred slip model integrates all
datasets and reveals a heterogeneous slip distribution, with a peak slip of
~8 m and significant slip extending into the northeastern segment of the
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fault. To verify the presence of slip in this region, we modeled the
tsunami waves generated by the slip models of Ma et al. (2024) and Xu
et al. (2024). A key difference is that, despite incorporating complex
fault representations, their models fail to accurately reproduce the
observed tsunami waveforms, particularly at the Naoetsu station
(Fig. S18). By resolving slip in regions previously undetermined,
particularly in the northeast, our study provides a more comprehensive
understanding of the rupture process and its impact on tsunami gener-
ation, emphasizing the importance of capturing subtle but critical var-
iations in slip distribution for realistic tsunami simulations.

The most distinctive features of the January 1, 2024 My 7.5 Noto
earthquake are the slow nucleation within the depth range of the
ongoing Noto swarm, the very low initial rupture expansion at < 1 km s
! during the first 20 s of weak seismic radiation, and the low average
rupture velocity of ~1.2 km s™! for the overall bilateral rupture. The May
5, 2023 My 6.2 event ruptured in the region of the larger event nucle-
ation on either the same fault or on a slightly offset parallel plane
(Fig. 10). Future precise relocation of aftershocks may resolve this
question. That event also had a gradual nucleation process, as was the
case for the 2007 My 6.7 event southwest of the swarm region. The
initiation of the 2024 mainshock occurred at the boundary of the slip
area of the 2023 My, 6.2 Noto earthquake (Fig. 4), suggesting that stress
transfer from the 2023 event may have contributed to triggering the
2024 mainshock. Previous studies (Kato et al., 2011; Amezawa et al.,
2023; Yoshida et al., 2023a, 2023b) have proposed that the long-term
Noto Peninsula seismic swarms and the 2023 earthquake were influ-
enced by fluid pressure migrating upward along a pre-existing fault,
based on detailed spatio-temporal patterns of seismicity. It is plausible
that much of the shallow thrust fault activated in 2024 has been
permeated by fluids from below, both along the swarm region, as sug-
gested in Fig. 10, and along the peninsula. Thus, the 2024 mainshock
likely resulted from a combination of long-term seismic swarms, stress
activation from the 2023 Noto event, and fluid intrusion, highlighting
the complex interaction between tectonic and fluid processes in this
region.

The role of fluids in weakening fault zones by increased pore pressure
reducing effective normal stress is well-established (Cebry and McLas-
key, 2021), but it is less clear to what degree the presence of fluids
control rupture velocity, which is primarily controlled by available
fracture energy, related to the ratio of shear stress to normal stress and
shear stress drop (Dong et al., 2023). Rupture velocity has been exper-
imentally found to increase as the ratio of fluid pressure to normal stress
acting on the fault at the onset of rupture decreases (Passelégue et al.,
2020). Rupture velocities tend to be lower in regions of low effective
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normal stress with near-lithostatic fluid pressure (Rice, 1992; Kato et al.,
2010; Marguin and Simpson, 2023), and this can contribute to the slow
rupture nucleation for the larger events originating close to the swarm,
where low stresses are likely. Slip velocity was also found (Passelégue
et al., 2020) to increase with rupture velocity, which can produce
complex patterns during rupture of heterogeneous fault systems, as
appears to be the case for the 2024 event (Fig. S14). Fluid injection has
been shown to reactive faulting (Passelégue et al., 2018; Maurer et al.,
2020; Cebry and McLaskey, 2021; Gori et al., 2021), with the rate of
injection and the permeability and roughness of the fault influencing the
development of locally undrained conditions where fluid pressure var-
iations can trigger faulting. While up-dip fluid penetration into the
shallow fault system may be widespread along the peninsula, the swarm
activity may have increased fluid injection rates, contributing to the
large events near the swarm and triggering the 2024 event. Weakening
of the shallow fault system overall may account for the relatively low
rupture velocity and low radiation efficiency during the 2024
mainshock.

The extensive damage caused by the January 1, 2024 Noto earth-
quake is directly a result of the large shallow crustal displacements, of up
to 8 m, below the densely populated peninsula, but the rupture itself
appears to have been influenced by fluids rising from the lower crust,
especially in the region of the prolonged swarm near the hypocenter. A
low-velocity anomaly is observed beneath the swarm region (Nakajima,
2022), but the origins of the fluids are not clear; they may source from
ancient volcanic magma chambers from the former rifting environment,
or possibly source from the underlying mantle, which is penetrated by
the subducting Philippine and Pacific plates located 200 to 300 km
below the Noto Peninsula (Miyazaki et al., 2023). This is a very rare
situation in which a compelling case can be made for a crustal swarm
producing favorable conditions (up-dip fluid intrusion) to trigger a
nearby large destructive mainshock rupture. The occurrence of the 2024
My 7.5 Noto earthquake highlights the importance of monitoring the
evolution of other earthquake swarms involving fluid intrusion, espe-
cially if the crust is under a critical stress state.

Data Availability

All teleseismic body wave records can be obtained from the Feder-
ation of Digital Seismic Networks (FDSN: https://doi.org/10.7
914/SN/CI, https://doi.org/10.18715/GEOSCOPE.G, https://doi:10
.14470/TR560404,  https://doi.org/10.7914/SN/IU,  https://doi.
org/10.7914/SN/11, https://doi.org/10.7914/SN/IC), and accessed
through the IRIS data management center (http://ds.iris.edu/w
ilber3/find_stations/11786236). The estimated far-field broadband
radiated elastic energy was reported at IRIS: The estimated far-field
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Fig. 10. Schematic diagrams of the earthquake swarm evolution beneath the Noto Peninsula. (A) and (B), illustrate the swarm evolution before and after the
2024 My, 7.5 earthquake. Magenta, orange, and blue-colored stars indicate the aftershock sequences of the 2021, 2022, and 2023 swarm activities, respectively. Blue-
and red-filled stars represent the locations of the 2023 My, 6.2 earthquake and the 2024 My, 7.5 earthquake, respectively. Blue arrows denote possible fluid migration
pathways, while the potential fluid-recharge regions are indicated by light green shading. These diagrams are based on the work of Kato (Horton, 2012).
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broadband radiated elastic energy was reported at IRIS: http://ds.iris.
edu/spud/eqenergy/18152286; The strong-motion data can be ob-
tained from K-net, Kik-net and JMA (https://www.data.jma.go.
jp/eqev/data/kyoshin/jishin/index.html; https://www.kyoshin.bosai.
g0.jp/kyoshin/docs/overview _kyoshin_en.shtml); The coseismic GNSS
displacements for the 2023 and 2024 earthquakes are available from
Nevada Geodetic Laboratory (http://geodesy.unr.edu/index.php) and
GSI (https://www.gsi.go.jp/syoukai.html); The JAM catalog are avail-
able from https://hinetwww11.bosai.go.jp/auth/JMA/jmalist.php?
LANG=en; The 1-min water level records are obtained from the Minis-
try of Land, Infrastructure, Transport, and Tourism, Japan (MLIT,
https://www.mlit.go.jp/en/).
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Fig. S1. Map and cross-sections depicting the distribution of seismic swarm and shallower
crustal activity along the northeast Noto Peninsula. (A), The swarm region as highlighted in
Figure 1A, showing the relocated catalog from 2003/03/08 to 2023/07/10 (28) and JMA activity
from 2024/01/01 to 2024/02/01. Stars indicate hypocenters of larger earthquakes. (B), Depth
distribution of seismic activity along profile AB (marked in A) preceding the My 4.9 event on
September 16, 2021. Swarm activity is located from 10 to 18 km deep. Later time intervals are
shown in (C)-(E) with magenta, orange, and blue circles, sized proportionally to magnitude,
denoting relocated aftershocks with magnitudes greater than 1.0, or each of the larger events
(colored stars) at the start of labeled time intervals. The red stars denote the mainshock hypocenter.
(F), Cyan circles indicate the 1-month aftershocks of the 2024 mainshock event from the JMA
catalog. Gray lines in (B)-(F) represent the fault position and dip direction for the 2023 My 6.2
event (depicted with a short line) and the 2024 My 7.5 event (depicted with a long line).
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Fig. S3. Near-field data used in the finite-fault inversion for the 2023 My 6.2 earthquake. (A),
Green inverted triangles indicate the location of strong-motion stations, and black vectors indicate
coseismic GPS horizontal displacements. The blue star is the epicenter of the 2023 My 6.2 event.

(B), The down-sampled unwrapped InSAR LOS displacements.
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Fig. S4. InSAR fits for the finite-fault joint inversion model of the 2023 My 6.2 event shown
in Figure 4. (A), (B), and (C) show the observed, prediction, and residuals of the InSAR LOS

displacements, respectively.
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Fig. SS. Three-component strong-motion ground velocity fits for the finite-fault joint
inversion model of the 2023 My 6.2 earthquake in Figure 4. Data (black) and synthetics (red)
are aligned on the first P arrivals. The station name is listed on the left of each row. The azimuth
(above) and epicentral distance (below) in degrees are shown at the beginning of each record. The
numbers at the upper right of each waveform comparison indicate the maximum observed ground
velocity in cm/s.
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Fig. S6. Finite-fault models from separate seismic data sets for the 2024 My 7.5 earthquake.
(A), The slip model inverted using only teleseismic P and SH wave data. (B), The slip model
inverted using only strong-motion data. Gray contours in each model highlight the 1 m slip
contour, and white arrows indicate the direction of the slip. The cyan circles represent 1-month
aftershocks with a magnitude of M = 3.0 from the JMA catalog. The red focal mechanism is the
moment tensor derived from the slip model. Black barbed lines represent active faults. The insets
show the moment-rate functions (MRF) of each seismic model.
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Fig. S7TA. Comparison of observed (black) and synthetic (red) teleseismic P-wave ground
displacements for the teleseismic-based model shown in Figure S6A. Data and synthetic
seismograms are manually aligned on the first arrivals. Station names and phase types are indicated
on the left of each comparison. The azimuth (above) and epicentral distance (below) in degrees
are shown at the beginning of each record. The number above the right portion of each comparison
is the peak amplitude of the observed ground displacement in um.
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71  Fig. STB. The same as figure S7A, but for SH-waves.
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Fig. S8. Comparisons of three-component strong motion ground velocity observations
(black) and synthetic seismograms (red) for the strong-motion-based model shown in Figure
S6B. Data and synthetics are aligned on the first P arrivals. The station name is listed on the left
of each row. The azimuth (above) and epicentral distance (below) in degrees are shown at the
beginning of each record. The numbers at the upper right of each waveform comparison indicate
the maximum observed ground velocity in cm/s.

10



79

80
81
82
83
84
85

E-W N-S U-D
jor0 729 : a51 : 256
TYMO10 ——m&M“WﬂW ——W ———«-WMWW
1083 ! : :
4 7.88 ! 9.65 ¥ 7.16
1817 : :
TYM0O7 ﬁ_—wp%aw@% ‘_%mj\jﬂ%% ————«W«%«
o1 v :
180.4 17.72 H 24.85 3 7.34
TYMOO5 —-——MW%&M —.—-m,%%m gl %)'Dﬂ“"“ﬂt\’w
819 ! : :
159.9 ) 537 v 4.22 ¥ 2.67
TYMOO4 " sty M"\W — ) MMW ——at) mw
140 ! ' :
1880+ 6.99 : 7.42 : 2.89
763 ! § !
1800 | 2521 { 2422 : 5.68
TYMOO2 A—MWW —'——"“WQMWW\‘M el MMMW‘W"‘
784 : :
1325 | 284 i 406 ! 288
NIGH17 ——V*WMWW&)‘“ ——-'“WMW ——WWMM%%
103.4 f .
1331 ¢ 474 : 5.39 ! 2.29
NIGD27 ﬁwwwv% e, ,Mﬁghm = %m Mﬁ‘*ﬁ]ﬂ‘”
754 1 ! !
! 345 [ 5.01 : 3.44
1034 ! H !
1124 1 5.83 H 7.26 H 3.77
NIGO25 WWf __MWMMWWW *%WW
943 L Y
1103 ¢ 445 : 4.03 ! 3.02
NIGD24 —.—«WW _.__MMMMJ _.__Wwﬁwﬂwﬂvt
139 1 ’
3 7.53 H 5.51 i 2.58
ar9 ! : :
NIGO19 ﬁ—A«-@mAWN — P MWMWW@M
1405 ! £ L
917 ! 478 i 4.36 i 2.54
NIGO17 ﬁéawwwqu ﬁ—«mﬂfwﬂaﬂﬁpw WW
17 : :
822 41 : 4.27 ! 232
NIGD16 ___-\MMM _'_‘“””%W ——MWNA&U%Q
136.4 | ! !
Wm0 510 : 4.41 : 3.45
NIGOOS -—Wwwpwu _,_.«.»A\/\{W "—"‘“"""VW““WW
1206 H !
678 | 646 : 6.58 ! 3.16
NIGO04 ﬁ——«fhf\ﬁf\mﬂxw W&m ‘r—.vwwﬁw
086 | ) !
85 11.83 : 283 ! 5.91
NIGOO3 ——*\W%WW —'—‘VJWWW ——“"HWM”
110.7 [ )
505 390 : 3.59 ‘ 3.39
NIGDOA ‘—WWW\”W ﬁ———w}w"wﬁm W
1350 H :
H 6.93 H 3.7 i 3.52
ISKHO8 205‘% ﬁ——ﬂrww%mﬂw ﬁﬁwymw.%
925 ! L 1
217.8 1 1544 i 14.99 :
ISKHO6 ' ‘:.Mj-ﬁ,‘ : " : W
611 ! b ; Ay :
S 2675 ! \ 3157 ! 1879
: P :
ISKHO4 " Jg‘, — : J\A%w,"_
H 5.4 H 18.17 H 16.58
2322 ! B I
ISKHOZ ——Wmv———-— ‘_Ww& __AJ\WMWW.._
225 ' ¢
2255 | 2262 : 22.14 : 8.25
ISKo15 ﬁﬁyw%,u_.,»____.. ﬁﬁmwwmﬂ_ ﬁ«JMWMM..
15 ! :
2071 ! 7.42 1 6.15 ; 3.12
ISKO10 * " gy Mw — ey MM\NW% A “\MWW
117.8 ! !
2062 17.37 : 19.36 ' 5.89
ISK007 —.—ww—-—w——_— —.—ovaM-o-s—__ ——AWWMA&-»——
552 E L
2502 2911 42.16 LA 52.75
ISKOO3 ==y ’NW\{* : 1?““-“4‘”‘“"*’*— i
S 50,91 : 32.02 : 26.47
Iskoot _ W WW""""_- W«*—_—_

LT IR T T 1 T LT | | UL L T T Chl Ere Leg B

o] 40 80 120 0 40 80 120 0 40 80 120

Time (s) Time (s) Time (s)

Fig. S9. Comparisons of three-component strong motion ground velocity observations
(black) and synthetic seismograms (red) for the joint seismic model shown in Figure SA. Data
and synthetics are aligned on the first P arrivals. The station name is listed on the left of each row.
The azimuth (above) and epicentral distance (below) in degrees are shown at the beginning of each
record. The numbers at the upper right of each waveform comparison indicate the maximum
observed ground velocity in cm/s.
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Fig. S10A. Comparison of observed (black) and synthetic (red) teleseismic P-wave ground
displacements for the joint seismic model shown in Figure SA. Data and synthetic seismograms
are manually aligned on the first arrivals. Station names and phase types are indicated on the left
of each comparison. The azimuth (above) and epicentral distance (below) in degrees are shown at
the beginning of each record. The number above the right portion of each comparison is the peak
amplitude of the observed ground displacement in pm.
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Fig. S11B. InSAR range offset fitting for the static model of the 2024 My 7.5 earthquake
shown in Figure 5B. (A), (D), and (G), show the range offset of the descending track P026,
ascending tracks P121 and P127, respectively. (B), (E), and (H), indicate the prediction of range
offsets derived from the static slip model. (C), (F), and (I), represent residuals of range offsets
along the ascending and descending paths, respectively. The active faults are denoted by black
barbed lines, with the epicenter of the 2024 My 7.5 earthquake marked by a red star.
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Fig. S12. Tsunami predictions for the joint seismic model in Figure SA. (A), Vertical seafloor
and land surface deformation computed for the joint seismic model. (B), Comparison of tsunami
waveforms and predictions at the seafloor pressure stations shown in Figure 2A. Black lines
represent observed time series (left) and amplitude spectra (right), while red lines indicate the
predictions.
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Fig. S14. Details of the preferred slip model for the 2024 My 7.5 earthquake. (A), The inverted
slip distribution. The red star indicates the hypocenter. Black contours indicate the position of
rupture initiation time in seconds. White arrows illustrate the variable direction of slip. The color
bar indicates the scale for slip amplitude. (B) and (C), represent the distribution of rise time and
slip rate of the preferred slip model, respectively. Subfaults with slip magnitudes less than 1 m are
excluded. The slip rate is the ratio of fault slip to rise time.
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Fig. S16A. Fits to the InSAR LOS displacements for the preferred rupture model in Figure
6. (A), (D), and (G) show the LOS displacements of the descending track P026 and ascending
tracks P121 and P127, respectively. (B), (E), and (H) indicate the corresponding predictions of
range offsets derived from the preferred joint slip model. (C), (F), and (I) show residuals of range
offsets along the ascending and descending paths, respectively. The active faults are denoted by
black barbed lines, with the 2024 My 7.5 earthquake epicenter marked by a red star.
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Fig. S16B. Comparisons of three-component strong-motion ground velocity observations
(black) and synthetic seismograms (red) for the preferred joint model shown in Figure 6 and
Figure S14A. Data and synthetics are aligned on the first P arrivals. The station name is listed on
the left of each row. The azimuth (above) and epicentral distance (below) in degrees are shown at
the beginning of each record. The numbers at the upper right of each waveform comparison
indicate the maximum observed ground velocity in cm/s.
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Fig. S16C. Comparison of observed (black) and synthetic (red) teleseismic P-wave ground
displacements for the preferred model shown in Figure 6 and Figure S14A. Data and synthetic
seismograms are manually aligned on the first arrivals. Station names and phase types are indicated
on the left of each comparison. The azimuth (above) and epicentral distance (below) in degrees
are shown at the beginning of each record. The number above the right portion of each comparison
is the peak amplitude of the observed ground displacement in um.
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Fig. S16D. The same as Figure S16C, but for SH-waves.
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157  Fig. S17. The average slip distribution (A) and standard deviation (STD) estimates (B) of
158  ten models with different random seeds for the 2024 My 7.5 earthquake.
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Fig. S18. Tsunami predictions for the slip models of Ma et al. (2024) (red lines) and Xu et
al. (2024) (blue lines). (A) and (B),Vertical seafloor and land surface deformation computed for
the models of Ma et al. (2024) and Xu et al. (2024), respectively. (C), Comparison of tsunami
waveforms and predictions at the seafloor pressure stations shown in Figure 2A. Black lines
represent observed time series (left) and amplitude spectra (right), while the predictions are
indicated by colored lines.
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166  Table S1. Dataset used for the 2024 My 7.5 and 2023 My 6.2 Japan earthquakes in this
167  study.

. Range
) Reference  Secondary Temporal Perpendicu LOS offset
Events Satellite Track® image image Baseline  lar Baseline
Sensor o a o
yyyymmdd  yyyymmdd days m cm km cm
P121A 20220926 20240101 462 -141 15 41 14.3
20240101 Qig:la?) P127A 20231206 20240103 28 282 8.4 6.6 5.6
P026D 20230606 20240102 210 124 13 34 9.5
20230505  Sentinel-1  TO17D 20230504 20230516 12 18 4.2 62 -

168  *A and D indicate ascending and descending, respectively. For the LOS displacements, & is the
169  standard deviation calculated with all points in the nondeforming area, and « is the e-folding
170  correlation length scale of the 1D covariance function. For the range offset, the uncertainties are

171  calculated using all points in the nondeforming area with a window of 100 x 100 pixels.
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172 Table S2. Ranges of the source parameters allowed for each subfault during the joint
173 inversion.

The My 6.2 event The My 7.5 event
Subfault size (km?) 2.0x2.0 5.0x5.0
Slip (m) (0.0, 5.0) (0.0, 15.0)
Rake (°) (39, 159) (48, 168)
Rise time (s) 04,4 (1.4,14)
Velocity (kim/s) (0.25,2.5) (0.25, 2.25)

174

28



	Shallow crustal rupture in a major MW 7.5 earthquake above a deep crustal seismic swarm along the Noto Peninsula in western ...
	1.Introduction
	2 Datasets and methodology
	2.1 Teleseismic data
	2.2 Geodetic data
	2.3 Strong-motion data
	2.4 Finite fault inversion
	2.5 Tsunami modeling

	3 Results
	3.1 Rupture initiation behavior of large shallow earthquakes along the Noto peninsula
	3.2 Rupture kinematics of the May 5, 2023, Mw 6.2 earthquake
	3.3 Rupture kinematics of the January 1, 2024, Mw 7.5 earthquake

	4 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Supplementary materials
	datalink5
	References


