

# Learning Teaching

*Mathematics Teacher; Learning and Teaching PK-12* is NCTM's newest journal that reflects the current practices of mathematics education, as well as maintains a knowledge base of practice and policy in looking at the future of the field. Content is aimed at preschool to 12th grade with peer-reviewed and invited articles. MTLT is published monthly.

ARTICLE TITLE:

## Inclusive Playground Design

AUTHOR NAMES:

Tate, Holly; Anstett, Samantha; Cooke, Beth; Hrabak, Merrie Joy; and Suh, Jennifer

DIGITAL OBJECT IDENTIFIER

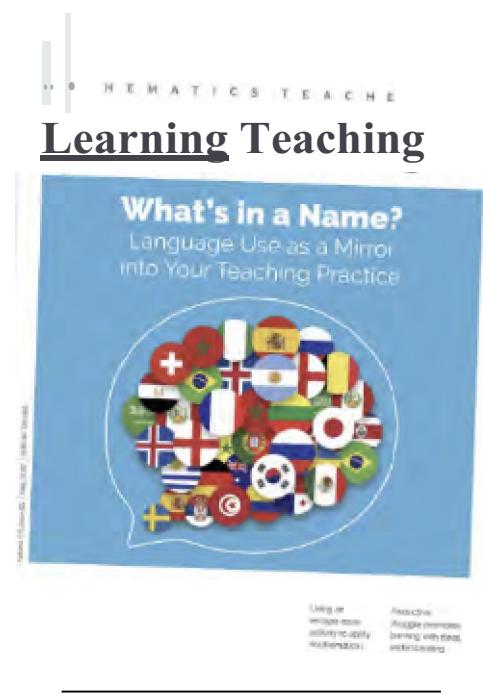
10.5951/MTLT.2023.0285

VOLUME:

1117

ISSUE NUMBER:

8


### Mission Statement

The National Council of Teachers of Mathematics advocates for high quality mathematics teaching and learning for each and every student.

Approved by the NCTM Board of Directors on July 15, 2017.

CONTACT: [ntlt@nctm.org](mailto:ntlt@nctm.org)

THE NATIONAL COUNCIL OF  
**NCTM** TEACHERS OF MATHEMATICS



Access digital content at  
[nctm.org/m1111708g3](https://nctm.org/m1111708g3).



# Inclusive Playground Design

The mathematics of budgeting and space can lead to a justice-oriented experience for elementary students as they design a proposal for an inclusive playground.

Holly Tate, Samantha Anstett, Beth Cooke, Merrie Joy Hrabak, and Jennifer Suh

We begin this article with a quote from a third-grade wheelchair user who sparked a month-long mathematical investigation into ways to advocate for a more inclusive playspace for many students in our school.

"The perfect playground would look like a playground where everyone can play and where everyone can join their friends and play together, and everyone is having fun, not being left out. So everyone has a place to play and a place to have fun."

-Third-Grade Student

Centering students and community in mathematics is essential to authentic and meaningful learning and an ambitious endeavor for teachers as facilitators of children's inquiry. Our work focused on creating the space for elementary children to see the interconnectedness between mathematics and a community's social injustice, lack of inclusive playground access, through community-based mathematical modeling (CBMM). As Bliss and Libertini (2019) describe, mathematical modeling (MM) is a cycle of investigation within relevant contexts that positions students to recognize important quantities, make

assumptions and collaborative decisions, and strategize to solve rigorous mathematics. Leveraging the MMcycle, CBMM emphasizes contextual problems designed within the community and issues of injustice and uniquely creates opportunities for elementary school students to learn deeply about local inequities to take structural action (Aguirre, Suh, et al., 2022; Anhalt et al., 2018; Suh et al., 2023). Figure 1 shows how CBMM intentionally places sense making around the community issue and action for justice within the MMcycle (Suh et al., 2023). We have explicitly connected the National Council of Teachers of Mathematics' (2014) effective mathematics teaching practices (MTPs 2, 3, 4, and 7) to the cycle, illuminated through the story that follows.

This article highlights how third-and fourth-grade teachers, a math coach, and a university professor (also authors of this paper) collaboratively and thoughtfully engaged in the CBMM cycle. We use "we" throughout the article to describe this authorship and collaborative group. The CBMM cycle often starts with "build awareness;" where we began planning. We found that building awareness was not just a necessary part of CBMM for students, but also imperative for educators facilitating this work.

## BUILDING TEACHER AWARENESS

Our creation of the inclusive playground task began with brainstorming community issues. We wondered: What are some issues relevant to our students and our

school? FUrther, how does mathematics connect to these issues? We realized that a theme emerged from our earliest discussions centered on issues of **access**, including access to an inclusive playground. Ourschool comprises a unique population of students, specifically in neuroand physical diversity, with approximately 20% of children enrolled in special education services in the 2022-23school year. Among our diverse learners, some children need wheelchairs, walkers, or braces; others are non-verbal or have sensory and/or developmental disabilities that require greater access toadaptive playground equipment, sensory equipment, and other amenities. Housingspecial programs for students with disabilities set our school distinctly apart from many others in the district, with a much larger population unable to access the playground. At the time, our playground was not a welcoming play space for children to playside-by-side; creating an inclusive play space became a critical and vital issue for our teaching team to pursue alongside the school community.

The inclusive playground task became vertical, with collaboration between the third and fourth grades. As an educator team, we felt very passionate about this community issue. Staff and students noticed how, during recess, some students with disabilities lacked access to the playground equipment. This caused some children to sit on the sidelines or orbit around the playground, watching peers play and have fun instead of joining in. We noticed that the uneven

Holly Tate, she/her, htate2,?gmu.edu, is an instructional mathematics coach and a PhD candidate at George Mason University. Her research includes building participatory action-based approaches in learning alongside teachers to cultivate equitable and justice-focused mathem $\lt$ tics spaces for elementary children.

Samantha Anstett is currently a fourth-grade teacher at RotLing Valley Elementary Schoolin West Springfield, VA. Sheis focused on providing experiences for students to deepen their mathematicalunderstanding,make connections, buildtheir mathematical identity, and see mathematics in the worldaround them.

Beth Cooke has been an educator for 32 years in Fairfax County Public Schools. She was not a fan of math in her own schooling, but once she found her math identity as a graduate student she began prioritizing supporting students in finding their math identity and providing safe spaces for productive math struggle and risk-taking.

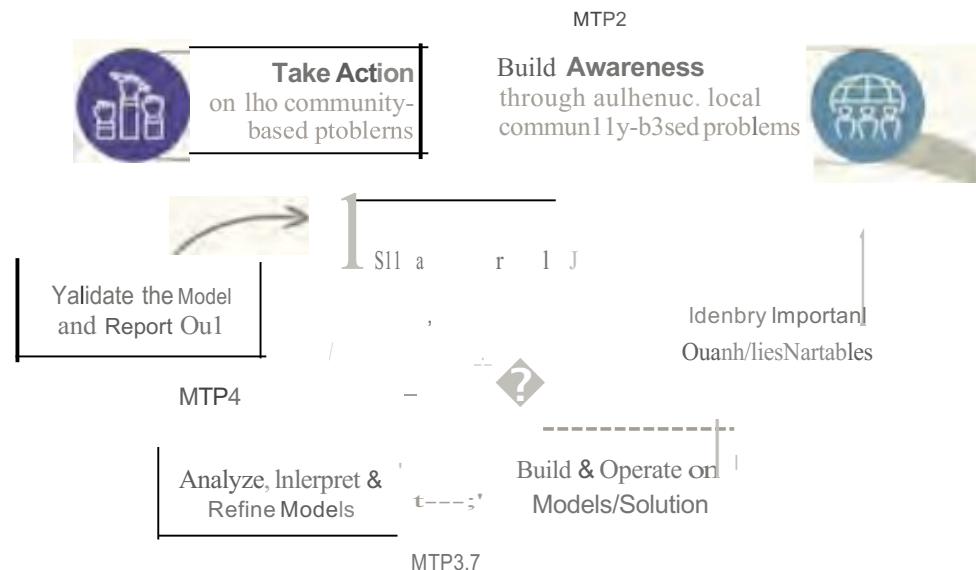
MerrieJoyHrabak is a third-grade teacher at Rolling Valley Elementary School. She co-teaches in an inclusive classroom and spends time mentoring new teachers in Fairfax County.

Jennifer Suh, she/her, jsuh4, gmu.edu, is a professor of mathematics education at George Mason University. She uses lesson study to collaborate with teachers and connect culture and community contexts with mathematics modeling. Her research examines how mathematical modeling can be a vehicle for advancing equity and attending to social justice issues.

sidewalk and the mulch were challenging for students in wheelchairs, walkers, or braces to navigate. Students left out of opportunities to play missed opportunities to socialize, learn, and grow together. Fortunately, our school playground was in the queue for redesign in the upcoming school years, and we seized this moment to take action in designing an inclusive playground with playspaces for students of all abilities to enjoy.

In the following sections, we detail the parts of the CBMM cycle that led to students collaborating toward an in-depth understanding of the community issue of access to play and the crucial mathematics that comes into play when considering the design of a new playground.

### BUILDING STUDENT AWARENESS


To make sense of the problem of playground accessibility, we situated this significant community issue locally and unpacked it with our students. First, we engaged third- and fourth-grade students in a series of Mathematizing the World routines (Aguirre, Tamei, et al., 2022) (CBMM cycle step: making sense of the situation or problem) in Morning Meeting and as a part of the numeracy routine for the math block. Students considered images of their current playground and

other inclusive playgrounds and noticed, wondered, and asked mathematical questions about them. Figure 2 shows some example images we used and anchor charts that made student thinking visible during these routines as they considered who could and could not enjoy the playgrounds. More teacher moves and student ideas are seen in Video 1 as a teacher asks several students to share their noticing, wonderings, and mathematics questions with the class.

Next, we planned a playdate for third and fourth graders to visit a local two-acre inclusive playground constructed for children of all abilities as another way to make sense of the problem. As children played together in this unique space, we noticed its bad ramps, high-back swings, non-slip and porous surfaces, flat pathways, and wider equipment. For the first time, many of them could play alongside a peer who was a wheelchair user, as seen in Figure 3, opening their eyes to the joy of such an authentic experience.

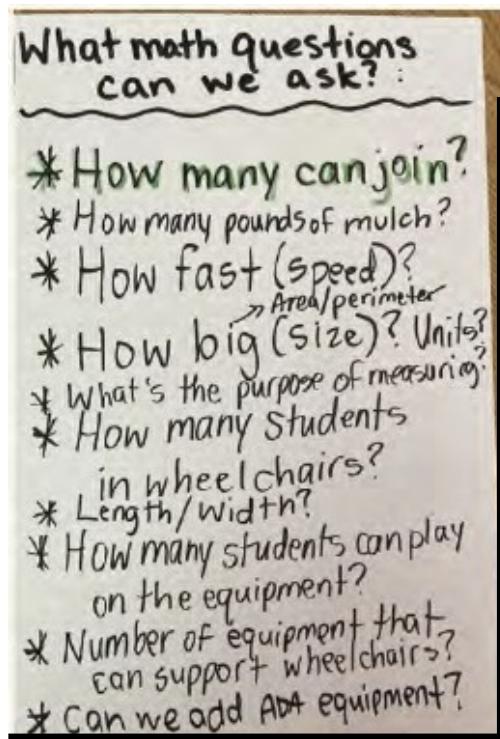
It was important for the children to become familiar with our school data, primarily to hear the voices of their peers with disabilities who might not have been in the third- or fourth-grade classrooms. Thus, we conducted a school-wide survey for K-5 students to give their opinions on how accessible

Figure 1 The Community-Based Mathematical Modeling Cycle



Notes. Source: SUhni et al., 2023.

the current playground equipment was and their wants and needs in a fun playground space. Children also worked in collaborative teams to inventory our current playground for accessibility using a Playground Planning Checklist (see Figure 4), adapted from an organization of child development and inclusMty experts (PlayPower, Inc., 2019). These data sets informed the mathematics across our vertical classrooms to evaluate our current playground and determine our school's needs.


Using our inclusive playground inventory data (see examples in Table 1), we generated graphs that would inform students' decisions in their playground planning process.

As seen in Figure 5, students worked in small groups to consider and interpret the data. As we considered the voices of students across the school, it was apparent that more than 1 in 10 students acknowledged that they, in fact, could not play on the playground by themselves as it was. Additionally, students noticed

Figure 2 Images and Anchor Chart From Mathematizing the World Routine



Sample Anchor Chart Showing Student Thinking  
(CBMMcycle step: identifying important variables and quantities)



that our playground area was not easily accessible by wheelchairs. They further discovered that not all activities and areas appealed to students' senses, including manipulative and sensory play, varied levels of challenge, desire for shade or comfort, and opportunity to access all equipment. Classes had rich discussions about what equipment would best meet the wants and needs of the students based on the data from the whole school. Individual preferences could not determine design choices. Instead, everything went back to what the school's data showed. For example, the K-3 grade-level survey and the grades 4-6 survey results showed that the most crucial part

of a playground is having things to climb on (34.8% and 29.9%, respectively). Another consistent noticing was that all grades prioritized swings (23% and 29.9%, respectively). With this data analysis, children were more informed and intentional when looking through catalogs of accessible equipment, selecting pieces that met most students' wants to climb or swing while allowing those with limited mobility to access the same equipment.

Students joined as a class to further explore and discuss the mathematics questions they identified as potential problems. We, as teachers, helped to hone in on the problem posing that related to two content areas: decimal computation and measurement. For example, children asked about the playground's length and width, which helped us recognize the need to visualize space in playground construction. Students also wondered about the possibility of adding American Disabilities Act (ADA)-compliant equipment, leading to further questions about cost and budgetary constraints. These questions in problem posing helped us, as facilitators, frame the tasks that the third and fourth graders would later tackle and helped the children make sense of the complex connections between reimagining our accessible playground and mathematics.

### Video 1 Students Notice, Wonder, and Ask Mathematics Questions



④ Watch the video on line!

Figure 3 Students Play Together at a Locally Inclusive Playground



### BUILDING AND OPERATING ON MATHEMATICAL MODELS

After establishing accessibility to inclusive playground structures as an issue, we moved on to the work of doing mathematics. In both third and fourth grade, students considered what they knew and needed to know to develop solutions and identified assumptions/decisions to make in groups (CBMM cycle step: identifying important quantities and variables). These whole-group routines inspired children to draw on the ways they had made sense of the problem in previous lessons:

*Torenzo: We need something everyone can use.*

*Grace: Yeah. We know that people with wheelchairs can, really get in the playground because of the mulch; the terrain is really bumpy.*

*Andre: I think we need to decide on if we need more things that spin. I've been hearing that a big group of people are bored at recess.*

*Ms. T: Is that a decision we can make? What equipment?*

*Andre: Yes.*

*Grace:* But, todo that we need to know how much space is in the playground; if we got a huge thing we would not have enough space.

*Torenzo:* We also know what people like...like what's the vote of what people like? What equipment is the favorite?

Figure 6 shows the ideas students had when considering these prompts and their connections to Common Core State Standards (National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010). Both third and fourth graders brought up the monetary and space constraints they had to work within and the survey data from the school surveys. As a class, engaging in U1 is routine helped us clarify points of assumptions, such as the size of our playground space staying the same. Additionally, we were able to explore some more exciting and flexible points of mathematics. For example, in fourth grade, children asked about the budget. As teacher facilitators, we provided students data with the range of a possible budget provided by our school district (\$75,000-\$150,000), while acknowledging that groups may go beyond that price point.

Budgeting for our new inclusive playground elicited notable mathematics sense making as fourth graders

planned how to spend money on equipment. Third-grade students, on the other hand, considered the playground area and were tasked to budget for the space and size of the equipment they chose while using the school-wide data to justify their choices. Reasoning included two essential considerations of space: the area of the land the playground would sit on, and the area of the pieces of equipment they wanted to use (called the "usable space"). Students made representations of the equipment using grid paper and based their final decisions on the dimensions that best fit and whether all students could enjoy it.

To help students consider the mathematics, we encouraged children to outline the usable space for each piece of equipment based on its length and width on grid paper. Dimensions for each item included measurements in feet, resulting in rectangular space. Using the grid paper, a common strategy that we observed, especially for smaller equipment, was counting the number of square units, as described by the third grader in Figure 7.

Most students connected finding the area to other math strategies and began to see how they could use multiplicative reasoning to consider larger spaces. It no longer made sense to count every square because

Figure 4 The Adapted Playground Planning Checklist

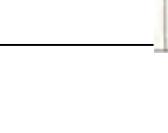
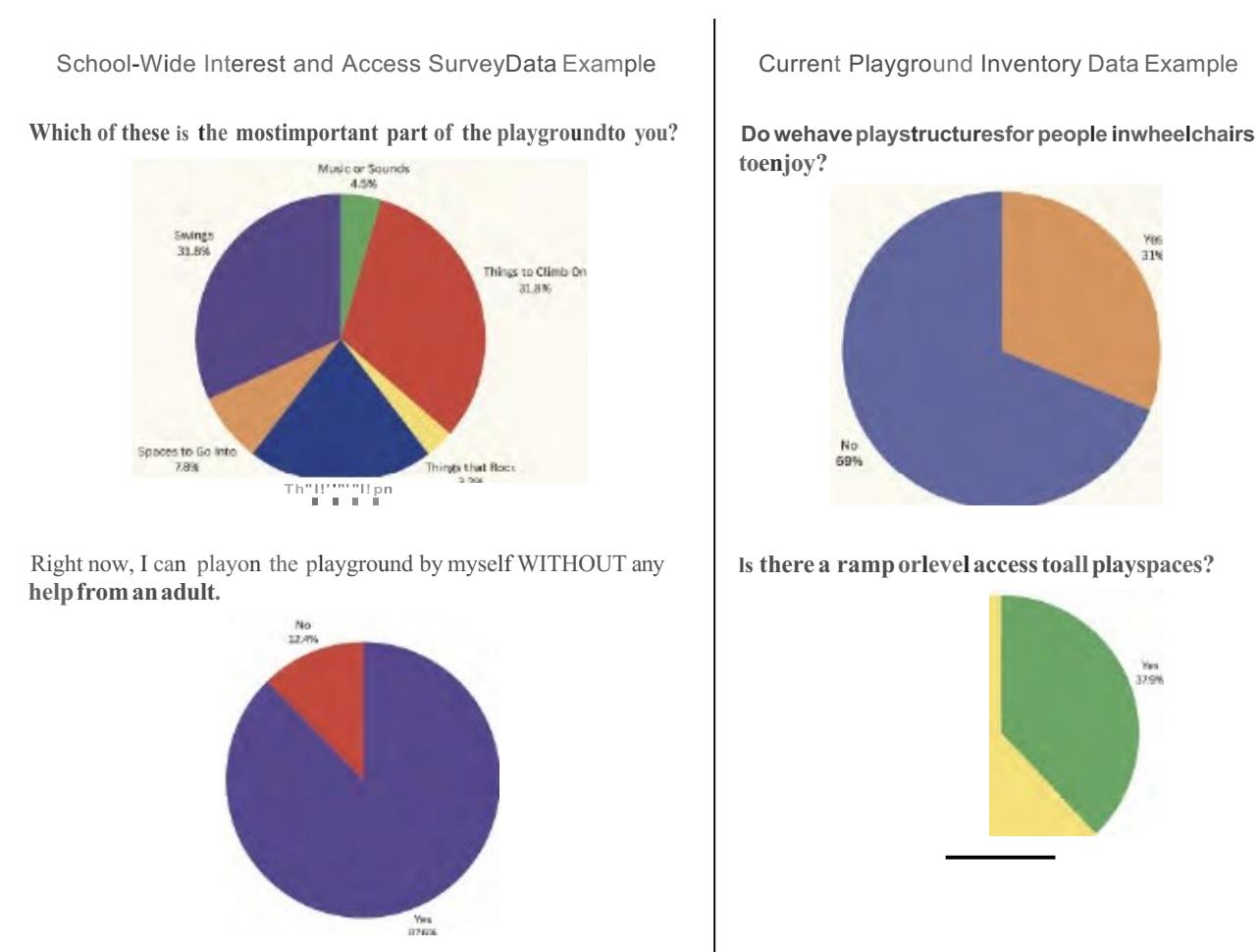


| Playground Planning Checklist                                                                          |                                                                                                   |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| ...akla1-<br>klhll!It□rOC(stkl<br>llht□\$11U1                                                          | Y □ W: S: NO                                                                                      |
|                     | Y E, S: O                                                                                         |
| kl 11,eff11orX:e fretol□                                                                               | Y U o, NO                                                                                         |
|                     |                                                                                                   |
| isiller9o l'O'(p.or!IMI<br>□t>tOolJlo;□'?                                                              | V'U: e,f,{0                                                                                       |
|                     |                                                                                                   |
| ...o... oct.v"l,e,b C"<br>lvwls of d'la □'ord!fotn<br>□!&.o.□ oll!CrdgllOH.<br>t-ig;,orid monl.e-;b:n8 | 'P'tS o, KO                                                                                       |
|                     |                                                                                                   |
| Nelhweinc!!:p!c7,<<br>□!11 eslike.,or,d,□<br>paINSI{JI□                                                | <br>.....    |
| Ale!Nnocl□1G'w,<br>\$..... It,D flin9t10□h<br>□ o, □ s                                                 | <br>V U H O  |
|                    |                                                                                                   |
| □ NtUIOOytHot'Ot"lt?                                                                                   | ves -                                                                                             |
| o-1-o□ciolav□11..,clo,-<br>□ n11oheekt-oh -o                                                           | <br>'TII wNO |
|                    |                                                                                                   |

Table 1 Students Used School-Wide Data to Make Mathematical Decisions



Figures Groups Worked to Interpret Data, Then Class Listed Their Findings



students were getting lost in the large number of boxes or just wanted to find a more efficient way. For example, one group recognized that the dimensions of 20 ft. by 17 ft. could be found by skip-counting by 20 17 times until they reached 340. Another group calculated  $15 \times 4$  by adding  $15+15=30$  twice and then adding  $30+30=60$ . As the dimensions got even more extensive, several students organically began using the distributive property, breaking apart the area into smaller sections, finding the area of those, and putting all the pieces back together. Using grid paper, we tried the partial-product multiplication strategy with two-digit by two-digit multiplication to see how

the abstracted area model connected to the individual square units in their models. Figure 8 depicts how a student created a drawing of area abstracted from the original model on grid paper. The student writes the total for each partial product (400, 140, 140, 49), then shows the total of 140 and 49 as "189" in the area model.

We overheard group members recounting squares on the grid paper to confirm their mathematical thinking, making estimates, and deciding if an answer was within reason (CBMM cycle step: analyzing, interpreting, and refining models). For example, one student tried to break apart  $27 \times 27$  by multiplying  $20 \times 20$  to get 400 and  $7 \times 7$  to get 49, then adding the

Fig 11rc 6 Know/Need to Know/Decide Routine

## USTQUANTITIES AND A88UMPTION8

### How would you design a new playground for RVES?

| Know                                                                                                                                                                                                                                                                                                                                                               | Need to Know                                                                                                                                                                                                                                                                                 | Decide/assume                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"> <li>Need to change the playground to give more access to people in wheelchairs</li> <li>More items for ALL people, with and without wheelchairs</li> <li>Mulch/terrain is bumpy</li> <li>We have more swings than are not inclusive (1 swing is accessible)</li> <li>Length around each side of the playground fence</li> </ul> | <ul style="list-style-type: none"> <li>Area and perimeter of the playground</li> <li>How much space is in the playground</li> <li>What equipment is the most favorite</li> <li>What equipment do most people want?</li> <li>Can we add buckles to swings and swings and equipment</li> </ul> | <ul style="list-style-type: none"> <li>What equipment to pick</li> <li>What equipment is most used and by whom?</li> <li>Who can use what equipment</li> <li>Can we add more safety features to help more people</li> <li>Variety of options</li> </ul> <p>Assume the fence and size will stay the same as it is now. We only have this space for equipment.</p> |

| Grade 3 CCSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Grade 4 CCSS                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>Students recognize area as an attribute of two-dimensional regions. They measure the area of a shape by finding the total number of square units required to cover the shape without gaps or overlaps, a square with sides of unit length being the standard unit for measuring area. Students understand that rectangular arrays can be decomposed into identical rows or into identical columns. By decomposing rectangles into rectangular arrays of squares, students connect area to multiplication, and justify using multiplication to determine the area of a rectangle.</p> | <p>Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.</p> |

sums to total 449 square units. A group member said it could not be that small because an older section that was  $30 \times 30$  had an area of 900, and another section's area measuring  $20 \times 20$  was 400 square units. He noted to his group that 27 was closer to 30 than 20, so their product should be closer to 900 than 400. This resulted in one member breaking up the array in different ways, another counting squares, and another student informally learning about the distributive property with a classmate as they discovered unaccounted-for parts of the area. The area model in Figure 9 helps to highlight the distributive property and how, in breaking apart the factors, there were four sections of area to consider instead of just two sections ( $20 \times 20$  and  $7 \times 7$ ).

Because this was students' first year with area included in state standards, it struck us as mathematically important that third graders were making sense of the connection between dimensions and the space that some might take up. Some groups began to understand that as the dimensions of the space available for use decreased, so did the dimensions of the total playground. The piece of equipment would need on the total play space. One group, whose finished product is shown in Figure 10, talked through their decision to "save space" as they were planning:

*Pria:* We need to avoid this space. We still have a really big play space we need to figure out.

Figure 7 A Student Describes Finding Area by Counting Each Square

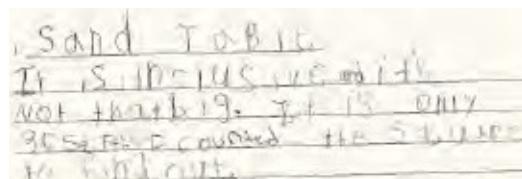
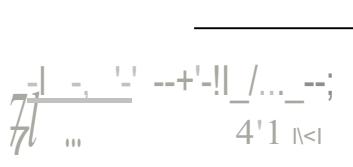




Figure 8 Student Drawing of Area



*Ms. T:* Pria said we are avoiding (11.isspace because it's where the main playground will go but we haven't picked that yet. Is the group going to pick that? Would that be the next thing?

*PriJ:* Well, what we are trying to do is get all of the little stuff out of the way so we can see how much room for the big thing we have left.

*Ms. T:* Oh, I see. So, by putting in the smaller stuff first, you will be able to see how big your larger equipment can be?

*Pria:* Yep!

### REPORTING OUT AND TAKING ACTION

Crucial to the CBMM cycle, third and fourth graders leveraged their decisions and math representations to take action on the issue of playground access. "Taking action" can come in various forms through the CBMM process, including reporting findings and advocating to the larger community or decisionmakers. Our action-seeking process started with a collaboration with third and fourth graders, who shared their decisions about space and budgets with one another to reach a consensus on a co-creative playground design (CBMM cycle step: analyzing, interpreting, and refining models). Because each vertical group had a different goal when picking equipment (e.g., fitting within the area or staying within a budget), they hinged their final decisions on what the data indicated most students preferred and which equipment could be used by the greatest variety of abilities. Students were very invested in their choices, so it was compelling to observe them engage in collaborative processes to uplift every child's voice.

One fourth-grade group argued that the least expensive, yet biggest piece of equipment was imperative to the playground design until their third-grade partners explained that the equipment took up too much space and did not leave enough open space, which data showed students liked. The fourth graders explained that some of the smaller pieces were not economical because they did not allow more students to enjoy the space, and they narrowed down which pieces could benefit both sides. The vertical team of students asked one another why they felt the chosen equipment best represented the school's needs and fit the playground's given area. When they came together to communicate their mathematical ideas, they had to evaluate and connect ideas and compromise on what equipment best represented all requirements.

The students' work culminated in a poster presentation to a panel of local and community stakeholders in the playground-building process. The panel included the senior landscape architect in the county, a local blogger on playgrounds, a special education teacher, and a local university professor. It was essential to involve various stakeholders with unique perspectives on playground design and accessibility so that children could gain valuable feedback on their playground design from experts in the field, as well as elevate the issue and advocate for change. As panel members visited each group to ask questions about their process and planning, students clearly articulated the mathematics behind their projects and their investment in improving the school playground. We provided the panel with a feedback form so that they could write to student groups and could share their final thoughts at the end of the presentation. For example, the playground blogger wrote, "When I asked you 'why questions; like *why* did you do this, why did you include this, you had reasons for why a friend could play with you..... You were really thinking about physical inclusivity and also emotional inclusivity, and I thought that was really cool: 'While we leveraged this space as a forum for feedback and protest, we acknowledge that this small group of stakeholders does not speak for all the community, most notably those with disabilities. As we continue to seek justice in playground inclusivity,

we must focus on gaining the perspectives of community members more closely connected to the lived experiences of our students with disabilities.

It was vital for us, as educators and alongside our students, to recognize that structural change and a project as large as redesigning a playground takes time and is an ongoing process. Action in the form of community awareness and sending the message of needing change is critical in the transformation process. In temporary closure to this CBMM cycle, we shared the entirety of the projects and panel presentations with administrators, who took the call to action very seriously. Since this project, administrators have acted in their positions of power to center the students' voices in making the playground a more inclusive space as they plan for our playground rebuild with district officials. Additionally, because of the protest of a wheelchair user and his family, our school moved up the building of a new playground in its list of future projects.

## IMPACT ON STUDENTS AND WHAT IT MEANS TO DO MATHEMATICS

This CBMM task leveraged mathematics as a vehicle for social justice and inclusion. We recognized a new lens for children in viewing mathematics connected with a relevant and authentic issue in their lives, an issue

Figure 9 How Dimensions on Grid Paper Fit the Total Playground Space



they were incredibly passionate about and invested in. Eight- and nine-year-olds noticed and named injustices. They wondered about, mathematically solved, and communicated the changes they wanted for a more inclusive playground design. Students had the opportunity to improve their community by collaborating, problem solving, and making decisions for playspaces that meet various needs and interests so that all students could grow side by side.

Students found through this experience that they have the power to take action and work toward fixing problems they notice in their school. They built on their understanding of the area and explored different computation and data analysis strategies through various strategies that maintained high rigor and support. They collaborated to try new ideas and were eager to learn more advanced concepts because the task was necessary and important.

Children engaged in the inclusive playground task saw their ability to make a change for their community and explored mathematical reasoning in their own way. Hearing students say things like, "Everyone should be treated the way they want to be treated;" "We can't use words like normal or regular when we name equipment just like we don't have normal or

regular people because everyone *is* unique; or "It just doesn't feel right if everyone can't use the same stuff so let's make something with no obstacles so no one is left out" shows that mathematics can act as a vessel for building empathy. We end with a quote from the same student we began with, reflecting on what this project meant to him. He describes the impact on not only him as a wheelchair user but also on others in the years to come:

I think[the playground rebuild is] great because later in the other years, people are going to be able to use the playground that we are going to design so everyone can use it. Everybody will play with their friends, everyone will have fun, everyone will enjoy recess, everyone will like recess, and everyone will enjoy their break.

We invite teachers to use their positions as change agents to facilitate experiences that help students see that they can take on challenges and build a more just society. Children can challenge the injustices they notice in the world to make a better future when they realize that they are advocates for themselves and others.

Figure 10 A Second Student Group Imagines the Playground Differently



## REFERENCES

Aguirre, J. M., Suh, J., Tate, H., Carlson, M. A., Fulton, E., & Turner, E. E. (2022). Leveraging equity and civic empathy through community-based mathematical modeling. In A. E. Lischka, B. B. Dyer, R. S. Jones, J. N. Lovett, J. Straye, & S. Drown (Eds.), *Proceedings of the 44th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education*. Middle Tennessee State University.

Aguirre, J. M., Turner, E., McVicar, E., McDuffie, A., Foote, M. Q., & Carl, E. (2022). Mathematizing the world routine: Leveraging children's multiple mathematical knowledge bases and curiosities in the elementary classroom. Manuscript submitted for publication. School of Education, University of Washington Tacoma.

Anhalt, C. O., Staats, S., Cortez, R., & Civil, M. (2018). Mathematical modeling and culturally relevant pedagogy. In Y. J. Dori, Z. R. Mevarech, & D. R. Baker (Eds.), *Cognition, metacognition, and culture in STEAM education: Innovation in science and technology* (Vol. 24, pp. 307-330). Springer.

Bliss, K., & Libertini, J. (2019). What is mathematical modeling? In S. Garfunkel & M. Montgomery (Eds.), *GAIMME: Guidelines for assessment and instruction in mathematical modeling* (2nd ed., pp. 7-22). Consortium for Mathematics and Science Applications & Society for Industrial and Applied Mathematics.

National Council of Teachers of Mathematics. (2014). *Principles to action: Ensuring mathematical success for all*.

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). *Common core state standards for mathematics*. <https://www.corestandards.org/math>

PlayPower, Inc. (2019). Inclusive play design guide. *Play...world*. <https://playworld.com/inclusiveplay/>

Suh, J. M., Tate, H., Rossbach, M., Green, S., Matson, K., Aguirre, J., Seshaiyer, P., & Steen, S. (2023). Dilemmas and design principles in planning for justice-oriented community-based mathematical modeling lessons. *Mathematics Teacher Educator*, 11(3), 210-230. <https://doi.org/10.5951/MTE.2022-0025>

## ACKNOWLEDGMENTS

This project was funded by NSF Awards #2010269, #2008997, #2010202, and #2010178

Collaborative Research: Advancing Equity and Strengthening Teaching with Elementary Mathematical Modeling