ON THE BERNOULLI PROBLEM WITH UNBOUNDED JUMPS
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AssTrACT. We investigate Bernoulli free boundary problems prescribing infinite jump con-
ditions. The mathematical set-up leads to the analysis of non-differentiable minimization
problems of the form f(Vu - (A(xX)Vu) + go(x)l{,po)) dx — min, where A(x) is an elliptic
matrix with bounded, measurable coefficients and ¢ is not necessarily locally bounded.
We prove universal Holder continuity of minimizers for the one- and two-phase problems.
Sharp regularity estimates along the free boundary are also obtained. Furthermore, we per-
form a thorough analysis of the geometry of the free boundary around a point £ of infinite
jump, &€ € ¢! (c0). We show that it is determined by the blow-up rate of ¢ near & and we
obtain an analytical description of such cusp geometries.
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1. INTRODUCTION
For a bounded domain Q c R?, d > 2, with Lipschitz boundary, let
Mia(Q) = {A: Q- R, A = Ay, dlef < Aij(x)eie; < Alef forall x € Q, e € R},

be the space of symmetric d X d matrix-valued functions on Q with ellipticity constants
0 <A< A. Forfixed A € Mya(Q) and ¢: Q — R, we are interested in minimizers of the
energy functional

(1.1) Tapu) = fQ (Vu - (A(x)Vu) + o(x)1(us0;) dx,

over H gl (Q), for some boundary condition g in the trace space H'/>(0Q). Hereafter, Liuso
denotes the indicator function of the set {# > 0}, and ¢ is a nonnegative function that we
will place further conditions on below.

SS was partially supported by NSF grant DMS-2213407 and a Collaboration Grant from the Simons Founda-
tion, Award #855061.
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The energy functional described in (1.1) is part of a large class of free boundary models
describing cavity or jet flows, and is also related to overdetermined Bernoulli-type prob-
lems. The analysis of such free boundary problems was launched by the epoch-marking
works of Alt-Caffarelli [1] and Alt-Caffarelli-Friedman [2], and since then has promoted
major knowledge leverage across pure and applied sciences, viz. [4,7,10,19,20,17,18,8,
9,13,12,14,32] to cite a few.

The main key novelty in this work is that the function ¢ is only required to belong
to a weak L7 space, and thus it may become unbounded. More importantly, the minimal
assumption ¢ € L‘v]veak(Q) leads to multiple free boundary geometries. That is, the condition
Y e Lfveak sets a maximum blow-up rate near a generic point &, viz. |x — £7/%; however
it is not granted that ¢(x) blows up at the same rate for all free boundary points. In turn,
the geometry of the free boundary is modulated by the blow-up rate of ¢ around a free
boundary point, which may change point-by-point. A decisive new approach we discuss
here concerns precise analytical quantities that allow one to classify such free boundary
geometries; see Theorem 3 below.

The free boundary model investigated in this article should be thought of as the dual of
the Stokes conjecture, as investigated in [33]. By allowing ¢(x) to vanish at a precise rate —
in the case of the Stokes conjecture, ¢(x,y) = —y and (0, 0) is a free boundary point — one
can offer a variational treatment of the Stokes conjecture. See also the series [22,23, 24]
for a related setting in which ¢ vanishes in part of the domain. In this article, we treat the
complementary case, when the Bernoulli cost function, ¢, is allowed to become infinite.
Heuristically, in the degenerate case, i.e. when the Bernoulli cost function ¢ vanishes
at a free boundary point, a gain of smoothness is observed; for the Stokes conjecture,
minimizers presents a sharp C3/? behavior. In our case, the cost function blows up, leading
a loss of regularity, which is precisely quantified by Theorem 1.

We further comment that we do not impose any continuity condition on the coefficients
x — A(x). Our regularity results are of universal nature, and hence applicable to a plethora
of other models, e.g. free transmission problems, homogenization issues, etc.

Recall that weak solutions to the homogeneous elliptic equation

(1.2) V-(Ax)Vu) =0, xeQ,A e M\(Q),

are locally Holder continuous, with universal estimates. This is the content of the cele-
brated De Giorgi-Nash-Moser regularity theory, [11,26,27]. That is, solutions to equation
(1.2) satisfy the estimate

(1.3) llullcooxy < Cllull2@) K € Q,

for some maximal Holder exponent ay € (0, 1), depending on d, 4, and A, but not on K
or Q. Hereafter we say a constant is universal if it depends only on d, ¢, 4, and A. The
constant C > 1 in (1.3) depends on universal parameters, K, and €, but it is independent
of the solution u.

Let us now discuss the main results proven in this article. The first key observation
is that local minimizers of (1.1) should satisfy an elliptic PDE like (1.2) in each phase,
{u > 0} and {u < 0}. Hence, any (universal) regularity estimate for local minimizers of (1.1)
must conform to the maximum regularity imposed by (1.3). Our first main theorem yields
local regularity estimates for minimizers in the Holder space and captures the settlement
described above, in a sharp fashion.
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Theorem 1 (Holder estimate). Let u be a minimizer of J4 ,(Q) over H, ;(Q), with g €
H'Y2(0Q) and A € MyA(Q). Let ag be as in (1.3). Forany Q' C Q, ifp € Laeak(Q’)for
some q > d[2, then for any « satisfying

(1.4) a€(0,1-d/2q)] N (0, ap),

the minimizer u is locally a-Holder continuous in Q'. One also has the estimate
llullcexy < Cllulli2y, K cc Q.

The constant C depends only on d, A, A, g, , ||¢l| L@y and K.

Upon extra oscillation control of the function x — A(x), higher regularity estimates for
the homogeneous equation (1.2) become available, and one may take ap = 1 in (1.4). We
could then take @ = 1 — d/(2g) in Theorem 1. In other words, if the coefficient matrix
A is “continuous enough” as to allow Lipchitz estimates for the homogenous PDE (1.2),
then minimizers display the sharp Holder regularity with exponent 1 — d/(2q). See [5] for
optimal conditions yielding Lipschitz regularity of solutions in great generality.

We highlight that Theorem 1 is for the two-phase problem, i.e., it does not carry any
sign restriction on u. Our next main result gives improved regularity for the one-phase
problem. It says that at free boundary points, the sharp Holder exponent 1 — d/(2q) is
achieved, regardless of the value of @ in (1.3).

Theorem 2 (Improved regularity at free boundary points). With u, g, and ¢ as in The-
orem 1, suppose that the boundary data g, and therefore u, are nonnegative. Let xy be a
boundary point of {u > 0}, and suppose ¢ € szeak(Q’)for some open Q' C Q containing
Xo. Then u € C'=C9D gt x,, in the sense that

1-d/2
o)l < Cla = x| 2 ),
for a constant C > 0 that depends only on universal parameters, Q', and Q.

We also obtain nondegeneracy estimates that say u must grow at least at a certain rate
near free boundary points. The asymptotics of these lower bounds are determined by the
local blowup behavior of ¢—more specifically, if ¢ satisfies an average lower bound like

l{e > 1} N B,(x0)| = min (ct™”, |B,(x0)]),
for some ¢ > 0, all # > 0, and sufficiently small r > 0, then u satisfies
(1.5) lu(x)| = clx = xo|' P,

for x near x( such that u(x) > 0 and |x — x| = dist(x, {# = 0}). See Lemma 10 for a more
precise (and more general) statement. In particular, this lower bound implies |[Vu| — oo as
x — xp from inside {# > 0}. Note that for ¢ € Lae A the exponent p > g may be strictly
greater than g, and this causes extra subtleties in our analysis.

Next, we address the geometry of the free boundary d{u > 0}. The key point is to
describe how the rate at which ¢ blows up near a free boundary point impacts the free
boundary configuration.

Theorem 3 (Control on the severity of cusps in the free boundary). Let u be a minimizer
of Ja,, over H;(Q) as above, with g > 0. Let xy € d{u > 0}, and assume that for some
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ro>0,q >d/2, and q; > qi,
¢ € L (B,,(x0)), and

(1.6) {e(x) >t} N By(xo)| = min (cot™ %, |B,(x0)]) forall r € (0,r9),t > 0.

Then, with a; = 1 —d/2qy), az = 1 —d/(2q»), and for any a € (0,a1] N (0, ayp), with ag
as in Theorem 1, there exists a constant ¢ > 0 such that for all r € (0, ry),

[{u > 0} N By(xo)l [{u = 0} N By(xo)l

1.7 >, d
(47 |Br(x0)|(12/a e oan |Br(x0)|P(lll,6]2)

= L

where
a 1
P(q1,92) = (—2 - —) s
a q@)q—1
In particular, if g > a; (so that we can take @ = ay) and ¢ is such that q1 = q, in (1.6),
then there exists ¢ € (0, 1) such that

u> 010 B |
|B,(x0)|
forall r € (0, ry).

Theorem 3 serves as a sort of cusp classification of the free boundary based on the blow-
up rate of the cost function ¢ around a given free boundary point xy. More precisely, if ¢
blows up at xp in an uneven (in measure) fashion — that is the case when ¢g; < g, — then
one deduces from the density estimates of Theorem 3 that

ay-a > 0 N Br -
C|Br(XO)| 2; < W <1- C|Br(xO)|P(q"q2) 1‘
r

The geometric-measure estimates established in this case limits the regularity of d{u > 0}
at xo. Note that, since u solves (1.2) in {# > 0} and is not Lipschitz at a boundary point x
where (1.5) holds, we conclude that {u# > O} cannot satisfy the exterior sphere condition.
Even further, the exponent 1 — d/(2p) in (1.5) yields an upper limit (depending on d, p, 4,
and A) on the aperture of any exterior cone touching the free boundary at xg.

The case when the cost function ¢ blows-up at a steady rate, i.e. for g; = ¢, then

Pgig) =1= 2,

@
and we recover the classical theory. In particular, in this case one obtains the porosity
of the free boundary and the local finiteness of the {47 -Hausdorff measure of the free
boundary, for a universal constant 0 < o < 1.

Finally, we note that the exponents > /@ and P(q;, g2) in Theorem 3 may eventually not
be sharp, except in the case ¢; = ¢» and @ > @, where both exponents equal 1.

When dealing with free boundary minimization problems involving an Lﬁ/eak Bernoulli
cost function ¢, a natural question would be whether the free boundary eventually meets
the set ¢~ !(c0). This question is addressed in the last Section 7. We state the conclusion as
a theorem:

Theorem 4. Let u be a minimizer of Ja, with ¢ € LI The set of free boundary

‘weak®

points intersecting ¢~ () is, in principle, unavoidable. More precisely, for any d > 3 and
q > d/2, there exists ¢ € L&eak(Bl) and a constant m > 0 such that the minimizer u of

J1,(By) over H (B)) satisfies ¢ (c0) N 0{u > 0} # 0. Here, By is the unit ball in RY,
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J1, is the functional (1.1) with A(x) = 1, and H,ln(Bl) is the set of H'(B,) functions with
constant trace equal to m on 0B, .

1.1. Outline of the proofs and related open questions. In this subsection we discuss the
nuances and heuristics of the proofs, leading to a plethora of challenging open questions for
future collaborative endeavors. While unraveling these concepts, we might occasionally
prioritize fluency over strict mathematical precision.

Variational free boundary problems frequently find representation through the mini-
mization of discontinuous functionals, defined over appropriate functional spaces, ex-
pressed as follows:

(1.8) F(Qu) = f F(x, Du)dx + f f(x, u)dx.
Q Q

The term F(x, Du) encodes diffusion as well as physical properties of the medium in which
the system takes place. It can be local or nonlocal, linear or nonlinear, with constant or
varying coefficients, etc. Solutions to the corresponding homogeneous Euler-Lagrange
equation, div (DpF (x, Du)) = 0, are bound to a specific (maximal) regularity theory. When
such regularity estimates are below the expected free boundary geometry, the problem
becomes much more challenging. This is the case of Theorem 1, when ag < 1 —d/(2g) as
well as of Theorem 2.

The second term, f(x,u), specifies the ruptures along the free interfaces. Typically,
either u — f(x,u) and/or u — %(x, u) are discontinuous functions. In heuristic terms, the
more singular f(x, u) is, the less smooth solutions are along the interfaces. Such a drop in
the smoothness of solutions is captured by their precise geometric behavior across the free
boundary. However, this is often a rather delicate issue.

A way to interpret Theorem 1 is then as follows: if the (maximal) regularity theory
available for A-harmonic functions “permits” (1 — d/(2g))—cones, then minimizers will
attain the level of regularity dictated by their geometric behavior along the free boundary,
viz. locally of class CO"_%. In the complementary case, i.e., when A-harmonic functions
are in general less smooth than the expected free boundary geometric behavior, then the
maximal regularity theory available for A-harmonic functions restricts the smoothness of
minimizers. In this case, however, Theorem 1 is an asymptotically optimal result, i.e.
minimizers are almost as regular as A-harmonic functions. Whether or not one can achieve
a = «ap in Theorem 1 (in the case that @y < 1 — d/(2¢)) remains an interesting open
question.

Similarly, one could ask what happens in the case ¢ < ‘51 This is also an interesting
line of investigation, as we expect based on the scaling properties that only some local L*
estimate could be available (at least if the boundary datum is not bounded).

The discussion above also serves to highlight the remarkable nature of Theorem 2. In
essence, it asserts that in the one-phase case, the behavior of minimizers along the free
boundary disregards the roughness of the medium. The reason why one can attain an
improved regularity along the free boundary is subtle and we explain it here in heuristic
terms. The proof of both Theorem 1 and Theorem 2 are motivated by the rather powerful
compactness method, originally introduced by Caffarelli, in [6], in the context of fully
nonlinear elliptic equations. In the two-phase problem, the tangential space, i.e. the set
of functions one arrives at after the compactness procedure, are A-harmonic functions.
The method then seizes the regularity available within the tangential space and imports



6 STANLEY SNELSON & EDUARDO V. TEIXEIRA

back to the original problem adjusted through the caliber of the tangential path. In the
one-phase case, however, the tangential space is only formed by hyperplanes. This is a
consequence of the Harnack inequality. This is why we are able to bypass the restrictions
arising from the maximal regularity theory of A-harmonic functions. A very interesting,
though, difficult question is whether a similar result can be attained in the two-phase case.
Our impression is that, if no further conditions are imposed (say one-sided control, or
higher medium organization), then minimizers of the two-phase problem will not present
an improved regularity along the free boundary.

1.2. Outline. The rest of the paper is organized as follows. In Section 2 we discuss some
preliminary results needed for the proofs of the main Theorems. In particular we discuss
the scaling feature of the problem and establish a Caccioppoli-type estimate. In Section 3
we prove Theorem 1, by means of a careful approximation analysis. In the intermediary
Section 4 we discuss the limiting case when ¢ € Lffv/e zak, and obtain universal BMO esti-
mates. In Section 5 we establish the sharp C!'~%/(9) regularity at one-phase free boundary
points. The interesting feature here is that such an estimate is not limited by the universal
regularity theory of A-harmonic functions. Section 6 is devoted to the geometric analysis
of the free boundary, where we prove Theorem 3. Finally, in Section 7 we prove Theorem
4, which contains an example showing the free boundary may indeed intersect the infinite
points of the Bernoulli function ¢ in a non-trivial subregion of the domain.

2. PRELIMINARIES
We begin by recalling that for ¢ > 1, a function f lies in the space Lf’wak(Q) if

1
fllis_y o0 = sup i € @ f(x) > ) < oo,
. >0

Note that existence of minimizers for J4 , over Hg'(Q) follows as in [1], so we omit the
details.

Next, let us investigate how the minimization problem for 74, transforms under trans-
lation and rescaling around a point. For y € R, define the more general functional

Tapy(1) = L (Vu -(A(x)Vu) + ga(x)llu>y}) dx.

Clearly, S, = Ja0- We suppress the dependence of T4 ., on the domain Q, which will
always be clear from context.

Lemma 1. For some domain Q, ¢ € Lieak(ﬂ), and boundary data g € H'>(0Q), let u be
a minimizer of Ja,, over H;(Q). Then, for any xo € Q, k > 0, 0 < r < dist(xg, 0Q), and
v € R, the function
v(x) := k(u(xg + rx) —7y)

is a minimizer ofjg’@,; over Hél (By), with

§(x) = K p(xg + rx),

5/ = —KY,
A(x) = A(xo + rx),
g(x) = k(u(xg + rx) —y), x € OB,.

Proof. Direct calculation. O
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Next, by a standard argument, we can show that minimizers of Jy4 ,, are subsolutions
of the homogeneous equation (1.2):

Lemma 2. Let u be a minimizer of J 4., over
Hgl(Q) ={we HI(Q), w = g on 0Q in trace sense},

for some g € H''*(0Q). Then
L(A(x)Vu) “Vo>0, veCy(Q),v=>0.

Proof. This lemma follows by noting that Ja ¢, (1) < J4 4, (1 — &v) and 1,z < sy
for all £ > 0 and all nonnegative v € C7(€). O

From Lemma 2 and the maximum principle, we conclude that minimizers are bounded
whenever g € L*(0€), with the estimate |[ullz~q) < llgllz=©0)-

Our next lemma is a Caccioppoli-type estimate that will be needed in our approximation
argument:

Lemma 3. There exists a constant C > 0 depending on d, q, A, and A, such that any
minimizer u of Ja o over H; (By) satisfies

f |Vu|2deC( f luf? dx + llell s (s, |-
Bip By

Note that u is allowed to change sign in this lemma. If we were concerned only with the
one-phase problem, u would be a nonnegative subsolution of (1.2), and we could apply an
existing Caccioppoli estimate such as [16, Lemma 3.27].

Proof. Forany £ € C7(By) with0 < ¢ < 1, we letw = u(1 — %) so that w = u on dB;. The
minimizing property Ja ¢, () < J a4, W) implies

2.1) f Vu - (A(x)Vu) dx < f [V (A VW) + 9() (L) = Loy )| dix.
B

B

With w = u(1 — £?), straightforward calculations imply

f Vi AV (2 - ) dx < 4 f (7Y - ANV = ul (1 = PIVE - (AG)Vu) dx
B B
+ Cagliellze  (s,)-

In the last term on the right, we used Holder’s inequality together with the fact that [|¢||-5,) <
lellzs s, for 1 <r<gq. With0 < 1-¢? < 1 and Young’s inequality, we have

A f CIVul dx < 4A f (2 1VZP + 2V V) dx + Cagligllzs s
Bl Bl

P! 2A
<> | ZIVuldx+ = f W IVZP dx + Cagliellzs s
2 B A B, ‘weal

Choosing { equal to 1 in Bj; and O outside B34, with |V/| bounded by a constant, the proof
is complete. O
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3. HOLDER CONTINUITY

In this section, we establish a universal Holder estimate for the one- and two-phase
problems. In Section 5, we will further improve such an estimate (at the free boundary) to
the sharp exponent 1 — d/(2¢), regardless of the regularity of A-harmonic functions.

The analysis will be based on the following key approximation lemma, which says
minimizers of 4, are close to minimizers of fQ Vu - (A(x)Vu) dx, if the norm of ¢ is
sufficiently small in szeak, c.f. [29,30,31] for related analysis employed in “non-free
boundary” PDE models.

Lemmad4. Givent > 0, there exists € = &(d, q, A, A, T) > 0 such that for any ¢ € L\qveak(Bl)
with q € (1, 00) and ||¢l| ¢ (B) S & any A € MyA(By), any g € H'*(0B)), any y € R, and
any minimizer u of Ja . over H;(Bl) such that J%I u? dx < 1, there holds

f lu—hPdx <,
B

where h € H'(Byy) satisfies J%m h* dx < 292 and is a weak solution to
(3.1) V- (A(x)Vh) =0, x€ Byp.
In fact, we can take h to be the A-harmonic lifting of u in B ;.

Proof. With u as in the statement of the lemma, define 4 : By, — R as the minimizer of

F(w) := f Vw - (A(x)Vw) dx,
Bip

over
{we H'(Bip) : w—u € Hy(By ).
Let us also define 2(x) = u(x) for x € By \ B;,. By standard arguments, this % is the weak
solution to
V- (A(x)Vh) =0, xe€ By,
{h —u € Hy(By2),

which in particular implies the identity fBI/Z V(u—h)-(A(x)Vh) dx = 0. Using this identity,
Poincaré’s inequality, and the minimizing property of u, we have

f |u—h|2dxscf [V(u — h)> dx
Bl/z BI/Z

< % V(u—-h)- (A(x)V(u — h)) dx

Bip

- 9( f Vi - (A(X) Vi) dx — f Vh~(A(x)Vh)dx)
(3.2) 1 Bip Bip

C
; (f ¢(x)(1{h>y} - 1[u>y})dx)
Bz

C
- pdx
z B

IA

IA

C < C
;”‘p”Li’veak(Bn) hS 58,
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for some constant C > 0 depending on g and d. Choosing & < 71/C, we have

f lu—hPdx <,
B>

as desired. By choosing € smaller if necessary, depending only on d, C, and A, we also
ensure that

2d+1C8
f Wdx<?2 (u—h)zdx+2JC u?dx < T——= 4 24+ < 042,
Bip2 Bip Bip Awqg

where wy is the volume of the d-dimensional unit ball, and we have used JCBI wrdx < 1.
This completes the proof. O

Next, we show that when ||¢||; . is small, since minimizers u are close to solutions /4 of
the homogeneous equation (3.1), the Holder regularity of 4 implies some local integrability
estimates for u:

Lemma 5. Letr ay = ao(d, A, A) be the exponent from (1.3). For any « € (0, ay), there exist
>0, ry € (0, }T), K > 0 and Cy > 0, depending only on universal quantities and «, such
that for any minimizer u of J a4, over H;(Bl) with ||(,0||L1»/vcak(31) <& vyveR Ae Mya(By),
and ﬁ?l u* dx < 1, there holds

(3.3) JC lu — pf* dx < 137,
By,

for some constant u with |u| < K.

Proof. Let T > 0 be a constant to be chosen later. With u as in the statement of the lemma,
let 4 : B — R be the solution to (3.1) in By, with

f lu—hPdx <7,
B

whose existence is granted by Lemma 4. The choice of T will determine €. Since h?dx <
g Yy B2
2942 the interior regularity theory of the equation satisfied by % (e.g. [15, Theorem 8.24])

implies there is a Cyp > 0 with
|h(x) = h(O)] < ColxI™,

for any x € By4. For any ry € (0, i), we then have

JC lu(x) — h(0)? dx < 2 [ f lu(x) = h(x)]? dx + JC Ih(x) = h(0)? dx]
(34) By, By, B,

0

< 2w, g% + 2Cory™.

where w, is the volume of the d-dimensional unit ball. Choosing
1/[2(a0-)]
1 1 d+2a
ro =|—— , T = —wWgr )
0 (400) 47000
we have

J[ lu(x) — h(O)* dx < r3*.
By,

The estimate (3.3) now follows by choosing u = h(0). The bound |u| < K is a result of the
interior L2-to-L™ estimate satisfied by h [15, Theorem 8.17]. O
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Next, by iterating Lemma 5, we show that under similar conditions, minimizers are
Holder continuous at the origin.

Lemma 6. For 4 < g < oo, let & > 0 satisfy
a €(0,1-4d/2q)]1 N (0, ap),
where ay is as in Lemma 5. Then there exist €,C > 0 and ry € (0, %), depending on univer-

sal quantities and «, such that for any minimizer u of J s, over Hg' (By) with |lelle (B)SE
and ﬁ;l w? dx < 1, there holds

ux)| <C and |u(x)—u()| < Clxl*, iflx| < ro.

Proof. With « as in the statement of the lemma, let £ and ry be the corresponding constants
from Lemma 5, and let u be a minimizer of 4, over Hg1 (By). Our goal is to show by
induction that

(3.5) w-mw)idx<ri, k=12,...,
g
for some convergent sequence fi.

The base case k = 1 follows directly from Lemma 5, for some constant u; with |u;| < K.
Here, K depends only on universal quantities and 6. Now, assume (3.5) holds for some
k > 1 and some constant (. Define

3 u(rgx) — fik

v(x) — X € By.
"o

By Lemma 1, v is a minimizer of 4, ¢, ,, over H(}k (B1), where

2U(1-a)
To

@r(x) = @(rpx),

—r’éauk,

Yk
Ap(x) = A(rgx),
gi(x) = rgka(u(r](jx) — M), Xx€0B.

The inductive hypothesis (3.5) implies

JC v dx = razk"f (u— ) dx < 1.
B By

Our choice of @ implies 2 — 2@ — d/q > 0, and

k(2-2a—-d
lellze oy = 7o Pl

‘weal

) = ell ) < &

‘weak
Therefore, we can apply Lemma 5 to conclude

JC lv— ulz dx < r(z)”,
B

0
for some constant u with || < K. Translating back to u with the change of variables
X r{‘)x, the previous inequality becomes

ka2 Da(k+1)
JC ot — gy — rg pl”dx < 1y .
B,kO-H
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We have established (3.5) with p = iy + rg”,u. To show that the sequence {} is conver-

gent, note that iy — pxl = [r5%u| < Kr®, and for any j > k,

(3.6) Iy -l < K(L = rd)~'rke,
which demonstrates that {;} is Cauchy. In fact, letting yy = limg_c g, taking j — oo in

(3.6) yields |ux — pol < K(1 — rg)’lr(’;” for all k.
Finally, for 0 < r < ry, choose k such that r{‘)“ <r< ré. Then, by (3.5),

2
Ji o —,uol2 dx < ZJLI; |ut —uklz dx + 2|ug —,uol2 < raz“ (r_d +2K*(1 - r(‘]’)‘2 e
- r 0

which implies the Holder estimate [u(x) — u(0)| < C|x|*, with C as in the statement of the
theorem. Since |u(0)| = |uo| < K(1 — rg’)‘1 + K, the triangle inequality implies |u(x)] < C
in B,,, with C as above. O

We are now ready to prove the main result of this section:

Theorem 5. Let u be a minimizer of Ja, over H;(Q), with g € H'2(6Q). For any
QccQifpel! () with d[2 < q < oo, then u is Holder continuous in €', with

weal
leellce@y < Cllullzz (s
where « is as in Lemma 6, and C depends only on universal quantities, a, Q', Q, and

lellzs -

Proof. Let u be as in the statement, and let xy € Q be arbitrary. To recenter around x, and
ensure the hypotheses of Lemma 6 are satisfied, we define

w(x) := ku(xg + rx), x€ By,

where

| . e | 12
r = min { ~dist(xo, 6Q), (— k= |—
2 lellzs ) ﬁg o) u?dx

and ¢ is the constant from Lemma 5. Then J%] wP dx < 1, and by Lemma 1, w minimizes
jfw over Hgl(Bl), with A(x) = A(xg + rx), §(x) = r*&2@(xy + rx), and §(x) = kg(xy + 7x)
for x € B;. Since ||@|| 1 (B S K2r¥=4la)|g|| 10, @ < & wemay apply Lemma 6 and obtain
|w(x) — w(0)| < C|x|* for |x| < ry. Since C and ry depend only on d, ¢, 4, and A, when we
translate back to u, we conclude that

u(x) — u(xo)| < Cllllzbr = %ol e = xol <7,

with C and r’ depending only on d, ¢, A, A, and dist(xy, 0Q2). The L™ norm of u is also
bounded uniformly in any compact subset of Q, by Lemma 6. O

4. THE BORDERLINE CASE g = d/2

In the limiting case g \, d/2, the corresponding exponent « in the iteration of Lemma
6 becomes zero. As usual, one should not expect to obtain continuity. In this section
we obtain a (sharp) estimate in the space of bounded mean oscillation (BMO) functions.
Recall that a function f on Q is BMO if

IlfllBMo) := sup {N : f|f—f3|dx < N for every ball B C Q} < oo,
B
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where fp is the average of f over the ball B.
First, we need a corresponding version of Lemma 5 for a BMO-type estimate:

Lemma 7. There exist € > 0 and ry € (0, 411) depending only on d, A, and A, such that for
any minimizer u of Ja e, over H](Bl) with ||¢,0||Ld/z (B S <& yeR and JfBl w>dx < 1, there
holds

@.1) JC =P dx < 1,
By,

where u,, = JEB udx.
o

Proof. First, we recall a general inequality: for any u € R and ry > 0,

4.2) f lu - u,,|>dx < 4 JC lu — pf? dx.
By, By,

This inequality follows by Writing

[Ji “‘Ji udx dX] [ |M—ﬂ|2dx]]/2+[£ -

o 0

1/2
[J[ lu — ulzdx] +f |u — | dx
By,
1/2
SZ(J[ Iu—,ulzdx)
B"o

Now, let 7 > 0 be a constant to be chosen later. As in the proof of Lemma 5, let
h : By, — R be the solution of the homogeneous equation (3.1) with

f lu—hPdx <7,
B

given by Lemma 4. As above, we have

Ih(x) = h(0)| < ClxP,

1/2
u dxl2 dx)

S

o 0

for any x € By4, for some C > 0 and 8 € (0,1) depending only on d, A, and A. For
ro € (0, 3), we then have

JC lu(x) — h(0)> dx < 2 [ f lu(x) — h(x)]* dx + JC |h(x) — h(0)? dx]
By, By, By,

4.3)
< 2w;1r5dr + 2Créﬁ.
Choosing
1 \VeP wart
roz(ﬁ) A T
we have

f lu(x) — h(0)P dx < l.
5 4

0
Applying (4.2) with u = h(0), the conclusion of the lemma follows, with £ > 0 determined
from our choice of 7 via Lemma 4. O
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Lemma 8. There exist € > 0, ry € (0, }1) and C > 0, depending only on d, A, and A, such
that if u is a minimizer of J 4, over H;(Bl) with |lpl| a2 By S € and J%] u* dx < 1, then for
‘weak

al

JC e — u,l2 dx<C.
B,

Proof. Let & and rg be the constants from Lemma 7, and let u be a minimizer of J4 , over
H ;(Bl). Our goal is to show by induction that

any r € (0, rol,

4.4) f lu—usPdx <1, k=12,....
By 0

The base case k = 1 follows directly from Lemma 7. Assuming that (4.4) holds for
some k > 1, define

v(x) = u(rgx) —ug, XE€ B;.
By Lemma 1, v is a minimizer of J4, 4.y, Over H;k (By), where
Ar(x) = A(xo + rox),
() = gl plrg),
Vi = Uyt
gi(x) = u(r’éx) Uk, XE 0B,.

The inductive hypothesis (4.4) implies

vazdxzf |u—urk|2de1.
0
B By

With the choice g = d/2, the scaling of |||, ) is as follows:

lpelloz g,y = ”‘p”Lf/ik(Brg) <ligllar g, <&

and we can apply Lemma 7 to conclude

(4.5) JC -, Pdx <1,
B,

0

A quick calculation shows v,, = ket = Uk Therefore, (4.5) implies

JC Iu—urgnlzdxsl,
B,Jﬁn

and we conclude that (4.4) holds for all k.
Now, for 0 < r < rg, choose k such that r§*! < r < r{. By (4.4),

k d
y
lu—usfdx < |2 lu—us?dx < r,
I i 0
B 0 r B 0
r ’ko

and the proof is complete. O

Now we apply a scaled version of Lemma 8 to conclude interior BMO regularity for u:
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Theorem 6. For any ¢ € LY*(Q) and g € H'*(0Q), and any minimizer u of Ja, over
Hgl(Q), there holds for any Q' ccC Q,
llullzmoy) < Cllullizq),
where the constant C depends only on universal constants, ||¢l|; 4 @ and Q.
‘weak
Proof. Letting € be the constant from Lemma 8, for any x; € Q, we define
w(x) := ku(xg + rx),

where

1 1 &
r = min{ =dist(xy, dB), 1}, K= min{ , }
{2 »f?,.(xU) u2 dx ||‘P(x0 + rx)”Li/ezak(Bl)

Then, by Lemma 1, w minimizes 7, ig with A(x) = A(xy + rx), o(x) = rzkzgo(xo + rx),
3631 w? < 1, and ||@|| L2 () < & Applying Lemma 8 and translating back to «, we conclude

that
J[ |t — up, (xp|* dx < Cf u? dx,
B,(xo) Q

for a constant C depending only on universal constants and dist(xp, 992). O

5. ImMPROVED HOLDER EXPONENT

For the one-phase problem, at free boundary points, we are able to improve the Holder
estimate to obtain the sharp exponent @ = 1 — d/(2q), regardless of the regularity theory
available for A-harmonic functions.

First, we revisit the approximation argument of Lemma 4, equipped with the extra reg-
ularity provided by Lemma 6.

Lemma9. Given t > 0, there exists € = e(d, A, A\, q, 7) > 0 such that for any g € H'2(8B))
withg > 0, any A € My A(By), any ¢ such that HQOHL'?,“k(B]) < &, and any minimizer u of Ja
over H;(Bl) with JCBI w?dx < 1 and u(0) = 0, there holds
supu < T.
Bijo
Proof. Let h be the A-harmonic lifting of u in By 2, i.e. the weak solution of
V- (A(x)Vh) =0, x€ By,

5.1
G- h—u € Hy(B ).

Let us choose € small enough so that (i) the Holder estimate of Lemma 6 applies, and (ii)
from Lemma 4, the inequality

(5.2) f lu—hPdx <7
By

holds, for some 7’ to be determined below. Recall from Lemma 2 that u is a subsolution of
(5.1). Therefore, the comparison principle and g > 0 imply 0 < u < h in By, and since
h satisfies the Harnack inequality [15, Theorem 8.20] as well as an L>-to-L* estimate
[15, Theorem 8.17], we have for any » € (0, %),

(5.3) supu < sup h < C1h(0) < Cor™||hll 23,

Bijo Bijo
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where C; and C, depend only on d, 4, and A. Next, proceeding in a similar manner to the
proof of Lemma 5, we have

r NG, = @a f h* dx
B,

(5.4) < 2wy (JC lu — h* dx + JC u? dx)
B, B,

< 2% 4+ 2wy JC u? dx,
B

)

by (5.2). For the last term on the right, we use the fact that #(0) = 0 and the Holder estimate

of Lemma 6 to obtain
JC u?dx = JC lu(x) — u(0)f* dx < C*r*?,
B, B,

if r < ry, where C, @, and ry are the constants from Lemma 6. Choosing

1/Qa
.| 1 TZ/() , T\
r=mins —,| —= | = , T=—|=1|,
2 40.)dC2 C2 4 C2

then (5.3) and (5.4) imply supg, , U < T,as desired. O

Now we iterate Lemma 9 to prove Holder regularity at boundary points, with the optimal
exponent:

Proof of Theorem 2. With @ = 1 — d/(2q), take T = 1/10%, and let & be the corresponding
constant from Lemma 9. As in the proof of Theorem 5, we choose « and r such that, after
replacing u with
w(x) := ku(xg + rx),
we can ensure w(0) = 0, JCBI w>dx < 1, and that w minimizes Ja, over H}(B;) with
lellzs (3, <&andg > 0.
Applying Lemma 9, we have

sup w < .
Bijio 10«

Next, assume by induction that for some positive integer &,

(5.5 sup w <

B 10k "

107k

By Lemma 1, the function
we(x) = 10’%(110,{)
minimizes Jy4, o, over H, _;k(Bl) with
() = 102407 D(107 ),
A(x) = A(107%x),
ge(x) = 10F%w(107*x), x € 8B;.
The inductive hypothesis gives

fw,idx:loz’“’f wrdx < 1,
B, B

107k
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and our choice of @ = 1 —d/(2q) gives

= 100 g

||90k||L3mk(Bl) = (By) S &

‘weal

Lemma 9 now implies supg, ~wy < 1/10, or

1

sup w < To%na’

B g-k+1)
and we have established that (5.5) holds forall k = 1,2,....
Now, for any x € Bj0, there is some k such that 107%+D < |x| < 107, By (5.5), there
holds

1
[w(x)| < sup < Tok < 10%]x]|*.

ka —
Big-k 0

After translating from w to u, the proof is complete. O

6. GEOMETRY OF THE FREE BOUNDARY

The following lemma is a nondegeneracy estimate for u near free boundary points.

Lemma 10. Let u be a minimizer of Ja, over H;(Q) with g and u nonnegative. Let
xo € 0{u > 0} be a free boundary point, and for some p > 1 and o € [0,d), assume that
there exist ¢y, ro > 0 such that

(6.1) {e(x) >t} N By(xo)| = min (cor”t 77, |B,(x0)]), forallt>0,r e (0,rp).

Then, for any x € Q with u(x) > 0 such that r := |x — xo| = dist(x, H{u > 0}) < ry/2, the
estimate

u(x) > Clx — xo|! =4~/

holds, with C > 0 depending only on d, p, A, A, and cy.

In (6.1), the case o = 0 corresponds, for example, to an inverse power function ¢(x) =
|x = xo| 747 € Lg (€. In such a case, Lemma 10 gives a lower bound for u with exponent
1-d/(2p), which matches the asymptotics of the Holder estimate of Theorem 2. The cases
with o > 0 include choices such as ¢(x) = dist(x, )" ~9/? for a smooth m-dimensional
submanifold I', with 1 < m < d — 1. This example is also in Lf:/ car ()

Proof of Lemma 10. Let x = x, satisfy u(x,) = & > 0. Our goal is to bound & from below
in terms of the proper power of r.

Since u satisfies the homogeneous equation (1.2) in Bs.a(xs) C {u > 0}, the Harnack
inequality, see for instance [28, Theorem 5], gives a constant Cy > 0, independent of r,
with

u(x) < Cog, x € 0B, p(x,).

Let ¢ be a smooth cutoff function equal to 0 in B,/4(x,) and equal to 1 outside B,/»(x,),
with |VZ| < Cr~!. Define the test function

v(x) := min{u(x), Coel(x)}.
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By construction, v = u on 0B, >(x;), so the minimizing property 4 ,(u) < Ja,(v) implies

1
f @(x) (1yys0y — Lpsoy) dx < > f (Vo - (A(x)Vv) — Vu - (A(x)Vu)) dx
Byja(xe)

B, a(xe)

AC3e? f IVZ? dx
By ja(xe)N{v>u}

< ~ACiewy(r/2)'Cr 2.

6.2) < !l

N = N

The left-hand side of this inequality can be bounded from below as follows, using our
choice of £:

(6.3) f @(x) (Lis0y — Lps0y) dx > f @(x) dx.
By 2(xe)

By ja(xe)\Bya(xe)
To bound the last expression from below, we choose a suitable ¢ > 0 in the blow-up condi-
tion (6.1) so that ¢ > ¢ in a large percentage of B,,(x(), which must include at least half of
B, /2(x) \ Bra(xc). In more detail, let

— |Br/2(xe) \ Br/4(x£)|
|B2(x0)!

/ld € (O’ 1)7

1 -1/p
k=|—2%ws(1 - pa/2)|
Co
where wy = |By|. Then, since 2r < rg, (6.1) with t = kr'~9/P implies
lip(x) > kr'"DIP} 0 By, (x0)] = cok P! = (1 = 114/2)|Bay(x0)-

Therefore,

N 1
ltg(x) > kr' D7} 0 (B, ja(xe) \ Byja(xe)l = 3 1Br2(e) \ Brya(xo)l,
and )
f @(x)dx > =|B,j2(x:) \ Bra(xo)lkr ™= /P = cylp®1=1prola,
Byya(io)\ By () 2

Note that k depends only on d, p, and c¢y. Combining this with (6.2), we finally have
82 > Cr2—(d—(r)/p’

for a constant C > 0 as in the statement of the lemma, and the proof is complete. O

Next, we have a generalization of Lemma 10 for Bernoulli functions ¢ that are singular
as x — xp only from certain directions. A typical example would be a ¢ that blows up on
one side of a hypersurface but is bounded on the other side, such as ¢(x) = 1 + 1[X1>0]x1_1/ P
We are mainly interested in this generalization so that we can rigorously prove our example
in Section 7 has a free boundary point where |Vu| is infinite.

Lemma 11. Let u be a minimizer of Ja, over H;(Q) with g and u nonnegative. Let
xo € O{u > 0} be a free boundary point, and for some p > 1, o € [0,d), and some cone
= c RY with vertex at xo, assume that there exist cg, ro > 0 such that

(6.4) {e(x) > 1} N B(x0) N E| = min (cor”t P, |B,(xo) NE|), forallt>0,re(0,rp).

Then, for any x € Q N E with u(x) > 0 such that r := |x — xo| = dist(x,H{u > 0}) < ry/2,
the estimate
u(x) > Clx — xo|! =4~/
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holds, with C > 0 depending only on d, p, A, A, ¢y, and E.

Proof. This lemma is proven by the same method as Lemma 10, with the following alter-
ation: to obtain a lower bound for the integral on the right in (6.3), one applies the condition
(6.4) with t = kr=9/P and k chosen depending on Z so that

— —_ 1 =
cok 7 = By (x0) N El = 3 [(Brya(xe) \ Brja(x)) N E].
This implies

_ 1 —
[lpCe) > KDY O (Brya(e) \ Brya(xe)) N E| 2 5 [(Brya(e) \ Brya(xe) N E[,
and the remainder of the argument proceeds as in the proof of Lemma 10. O

Now we are ready to prove our last main result, which allows us to control the severity
of cusps along the free boundary:

Proof of Theorem 3. For a free boundary point xy, let g; and ¢, be as in the statement of
the Theorem, i.e. ¢ € L7 (B,,(xy)) and for r € (0, ),

l{e(x) > t} N B,(xo)l = min (cot™, |B(x0)I),

Then Theorem 2 implies u(x) < C|x — xo|'"#/?9) in B,(x,), and Lemma 10 implies u(x) >
Cqolx — Xo|' 9 in B,(xg).

To keep the notation brief, we define @ = 1 —d/(2q;) and a; = 1 — d/(2¢,). Note that
a; < a.

For fixed r € (0, ry), let x; € 0B,(xg) be such that u(x;) > %r"z. By Theorem 1, u is

Holder continuous of order « at x;. Define p = 7%/%. Fork > 0 and y € B, (x1), we have
c c
u(y) > %r“z —C(kp)* = (% - CK“) r,

which is strictly positive if we choose k = [c,, /(4C)]/*. We conclude that By,(x1) C {u >
0}. A simple geometric argument gives |B,(xp) N By, (x1)| > c(x)p?, which implies

1B.(x0) 1 (1> 0)]
/= " " >c
ydaz/a ’

for a constant ¢ > 0 depending on ¢, and ¢, but independent of r.

In the case oy > a;, we can take @ = a; in (6.5). If in addition ¢; = ¢», we can in fact
take @ = @1 = a», yielding a corner-like estimate.

For the lower bound on |B,(xp)N{u = 0}|, arguing as in [3], we compare u to the function
v defined by

(6.5)

V-(Ax)Vv) =0 in B.(xp),
v—ue€ H(l)(Br(X())).

Since v—u > 0 on dB,(xp), the maximum principle and Lemma 2 imply v > u in the interior
of B,(xp).
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Using the Poincaré inequality, the identity fB‘ o) V(u - v) - (A(x)Vv)dx = 0, and the
minimizing property of u, we have

72

1
— lu—ovfdx<C f [V(u — v)]> dx
B, (x0) B, (xo)

<ca! f [Vu - (A(x)Vu) — Vo - (A(x)Vo)] dx
(6.6) B.(x0)

<cx’! f ()1 =0y dx
B, (x0)
< CA NIl o1 B, (x| B (x0) N e = 0},

As above, let p = r*/®1 The Harnack inequality (applied to v) and the nondegeneracy
of u (Lemma 10) imply, for « € (0, 1) sufficiently small,

v(x) > ¢ sup u>cr”, x € Byyy.
Byja(x0)
Since u(xp) = 0, the Holder continuity of u implies u < C(kp)™' in B,,(xo). We therefore
have
v(x) — u(x) = cr® — C(kp)™ = (c — Ck*")r*? > %r"z,

if we choose k = [¢/(2C)]"/*'. With (6.6), we now have
IBr(-xO) m {I/l - O}|1—1/q1 Z Kr—2+2112pd — Krz(az—l)-#d(lz/al’

or
IB,(x0) N {u = 0}| > Krd@/ai=la)a /(a-1)

Finally, in the case g¢; = ¢», we obtain |B,(xg) N {u = 0} > K4, as in the classical
theory. O

7. AN EXAMPLE OF A FREE BOUNDARY POINT WITH INFINITE JUMP

In this final section, we prove Theorem 4 by constructing an example that shows the
free boundary can indeed intersect the infinite set of .
For d > 3 fixed, let m > 0 be a constant to be chosen later, and define

 m(d-2)
T(}") = m, r e (0, 1)
The function 7 arises in the analysis of radially symmetric harmonic functions, which are
involved in our proof below. The minimum of 7 is achieved at

|\
Te = (dTl) € (0,1),

2 1+r,
and 7(r,) = (mrf’l) . Next, let r* = 2r , and for fixed g > 1, define ¢ : By — (0, +o0]

by

2
(mrf’l) s |x| < 7y,
o(x)={(x|—r) V9, ro<Ix| <,

2
(mrf‘l) s rr<x <1,
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and note that ¢ € LZ/eak(B] ). We consider the minimization problem for

Tre@ = | (Vo + @)1 dx, ve H(By),
B

with g = m on dB; for some constant m. We claim that for m > 0 sufficiently small,
depending only on d and g, there is a minimizer u such that d{u > 0} intersects {¢(x) = co}.

Since ¢ is not a monotonic function of |x|, we cannot apply rearrangement methods to
conclude minimizers of ;, are radially symmetric. In fact, we will show that a non-
symmetric minimizer exists for certain choices of m.

On a technical note, our argument below assumes u is differentiable at free boundary
points where ¢ < oco. This is not always true in the pointwise sense, but by understanding
solutions to the Bernoulli problem in the viscosity sense, our argument (which uses nothing
more than the comparison principle) can be made rigorous (see, for instance, [25, Section
6] for a detailed discussion of the meaning of the free boundary condition [Vul*> = ¢ in
the viscosity sense). We omit the details about this issue because it concerns the boundary
condition at points where ¢ is finite, which is suitably explained by existing theory.

First, we define a useful class of comparison functions: radially symmetric functions
that are zero in B, for some r € (0, 1), and harmonic in B; \ B,, with boundary values equal
to m on 0B . Explicitly, these functions are given by

(7.1) w=1{" b <
. u(x) =
rZ—ZI,l (r2—d - |-x|2_d), |x| 2 r,

and they have energy

2 d 2 2
Tre(uty) = wa f (ﬁp +so(p))p"‘1 dp

mid
d-2
= wd(T w(p)pd tdp|,
red —1 ,
where w, is the measure of $¢~!, and we have written ©(p) = ¢(x]). For any r € (0, 1), the
function u, is admissible for the minimization problem.
Now, let # be a minimizer. We claim that {# = 0} cannot be empty, if m is chosen

sufficiently small. Indeed, if u is positive in all of By, then it is harmonic in B; and must
be identically equal to m. Then J;,(u) = fb’l @ dx. To rule out this case, we would like to

find r € (0, 1) such that u, defined by (7.1) has energy less than fBl ¢ dx, or in other words,

d-2 " _
(7.2) m——— < f e(p)p"" dp.
I -1 0
Choosing r = r*, we see that
fo e(p)p™ " dp > f e(p)p™ ' dp = f (o —r)p" dp.
Therefore, by choosing m > 0 small enough that

2—d
m <Lf (o —r.) Vit dp,

we ensure (7.2) is satisfied when r = r*, so u = m cannot be a minimizer. Note that such m
can be chosen depending only on d and q.
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Now, since {u = 0} is not empty, let x; and x, be the points on d{u = 0} of smallest and
largest magnitude, respectively. Define r; = |xi| and r, = |x5|. Fori = 1,2, let u; := u,
denote the function defined in (7.1) with r = r;.

By our choice of x; and x,, we have u; > u > u; on d{u > 0}. The comparison principle
implies u; > u > u, in all of By, and

(73) C()rul(xl) P ar"t()cl)s ar”Z(xl) < (9,1/{()62),
where 0, is the derivative in the radial direction. These two inequalities will imply useful

bounds on r; and 7.
Starting with r;, the definition of u, implies, with (7.3),
(d-2)m

0,u(xy) > — Qg - 7(r2).
Iy — r2

On the other hand, since u is a minimizer, we have d,u(x;) = 1/¢(x>), so that

(7.4) Ve(xz) = 7(r2).

This implies 7> = |x;| must lie in the part of [0, 1] where /¢ > 7. Choosing m > 0 smaller
if necessary (depending only on d and g) we can ensure that

d-2

lim () = (" —ry s A2 e

rore— = (r*)d—]
Since 7 is increasing on (r,, 1), we also have

7(r*) > 1(r.) = lim ¢(r).
rori+
Therefore, the inequality +/¢(x2) > 7(r,) implies r; € [r., r*].
Regarding r|, we similarly have from (7.3) that
d-2)m
(7.5) T(r) = P > 0,u(xr) = Ve(x1)
1= 5

Since +/e(r) > 7(r) for r € (r,,r"), inequality (7.5) implies r; € [0,r,] U [r., 1]. Since
r| < r by definition and r; € [r,, r*], we in fact have r| € [0, r.] U {r*}.

Next, we would like to rule out the case r; = r, = r*. In this case, the inequalities
uy > u > up imply u; = u = uy, and therefore u is given by (7.1) with r = r*. In particular,
0,u(x») = 7(r*). But in the set {u > 0} = B; \ B, there holds ¢ = (mrf‘l)z, so one should
have 8,u(x;) = mr™! = 7(r,) < 7(r*) for any solution of the Bernoulli problem, which is a
contradiction. We conclude that

r <r.<n.

Since u; > u > uy, we clearly have B, C {u = 0} C B,,, and with r| < r, < 1, this
implies the existence of at least one point xo € d{u > 0} with |xo| = r,, and such that
{p(x) = +oo} = 8B, intersects {u > 0} N B,(xo) for any p > 0, as claimed.

For any xy € 0B, , there is a cone E with vertex at xo and aperture 7 (i.e. Z is a half-
plane), such that

lle(x) > 1} N B, (x0) N El 2 min (cr'™" 77, |B,(x0) N E).

for » > O sufficiently small. From Lemma 11 with p = g and o0 = d — 1, we have
u(x) > C|x — xo|'"""9 for x € Z near x,. We conclude that [Vu(x)| — oo as x approaches
xo from inside Z N {u > 0}.
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