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Abstract. We investigate Bernoulli free boundary problems prescribing infinite jump con-

ditions. The mathematical set-up leads to the analysis of non-differentiable minimization

problems of the form
∫ (

∇u · (A(x)∇u) + φ(x)1{u>0}
)

dx → min, where A(x) is an elliptic

matrix with bounded, measurable coefficients and φ is not necessarily locally bounded.

We prove universal HÈolder continuity of minimizers for the one- and two-phase problems.

Sharp regularity estimates along the free boundary are also obtained. Furthermore, we per-

form a thorough analysis of the geometry of the free boundary around a point ξ of infinite

jump, ξ ∈ φ−1(∞). We show that it is determined by the blow-up rate of φ near ξ and we

obtain an analytical description of such cusp geometries.

MSC(2010): 35B65; 35J60; 35J70.

Contents

1. Introduction 1

1.1. Outline of the proofs and related open questions 5

1.2. Outline 6

2. Preliminaries 6

3. HÈolder continuity 8

4. The borderline case q = d/2 11

5. Improved HÈolder exponent 14

6. Geometry of the free boundary 16

7. An example of a free boundary point with infinite jump 19

References 22

1. Introduction

For a bounded domain Ω ⊂ Rd, d ≥ 2, with Lipschitz boundary, let

Mλ,Λ(Ω) :=
{

A : Ω→ Rd×d, Ai j = A ji, λ|e|2 ≤ Ai j(x)eie j ≤ Λ|e|2 for all x ∈ Ω, e ∈ Rd
}

,

be the space of symmetric d × d matrix-valued functions on Ω with ellipticity constants

0 < λ ≤ Λ. For fixed A ∈ Mλ,Λ(Ω) and φ : Ω → R, we are interested in minimizers of the

energy functional

(1.1) JA,φ(u) :=

∫

Ω

(∇u · (A(x)∇u) + φ(x)1{u>0}
)

dx,

over H1
g(Ω), for some boundary condition g in the trace space H1/2(∂Ω). Hereafter, 1{u>0}

denotes the indicator function of the set {u > 0}, and φ is a nonnegative function that we

will place further conditions on below.

SS was partially supported by NSF grant DMS-2213407 and a Collaboration Grant from the Simons Founda-

tion, Award #855061.
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The energy functional described in (1.1) is part of a large class of free boundary models

describing cavity or jet flows, and is also related to overdetermined Bernoulli-type prob-

lems. The analysis of such free boundary problems was launched by the epoch-marking

works of Alt-Caffarelli [1] and Alt-Caffarelli-Friedman [2], and since then has promoted

major knowledge leverage across pure and applied sciences, viz. [4, 7, 10, 19, 20, 17, 18, 8,

9, 13, 12, 14, 32] to cite a few.

The main key novelty in this work is that the function φ is only required to belong

to a weak Lq space, and thus it may become unbounded. More importantly, the minimal

assumption φ ∈ L
q

weak
(Ω) leads to multiple free boundary geometries. That is, the condition

φ ∈ L
q

weak
sets a maximum blow-up rate near a generic point ξ, viz. |x − ξ|−n/q; however

it is not granted that φ(x) blows up at the same rate for all free boundary points. In turn,

the geometry of the free boundary is modulated by the blow-up rate of φ around a free

boundary point, which may change point-by-point. A decisive new approach we discuss

here concerns precise analytical quantities that allow one to classify such free boundary

geometries; see Theorem 3 below.

The free boundary model investigated in this article should be thought of as the dual of

the Stokes conjecture, as investigated in [33]. By allowing φ(x) to vanish at a precise rate ±

in the case of the Stokes conjecture, φ(x, y) = −y and (0, 0) is a free boundary point ± one

can offer a variational treatment of the Stokes conjecture. See also the series [22, 23, 24]

for a related setting in which φ vanishes in part of the domain. In this article, we treat the

complementary case, when the Bernoulli cost function, φ, is allowed to become infinite.

Heuristically, in the degenerate case, i.e. when the Bernoulli cost function φ vanishes

at a free boundary point, a gain of smoothness is observed; for the Stokes conjecture,

minimizers presents a sharp C3/2 behavior. In our case, the cost function blows up, leading

a loss of regularity, which is precisely quantified by Theorem 1.

We further comment that we do not impose any continuity condition on the coefficients

x 7→ A(x). Our regularity results are of universal nature, and hence applicable to a plethora

of other models, e.g. free transmission problems, homogenization issues, etc.

Recall that weak solutions to the homogeneous elliptic equation

(1.2) ∇ · (A(x)∇u) = 0, x ∈ Ω, A ∈ Mλ,Λ(Ω),

are locally HÈolder continuous, with universal estimates. This is the content of the cele-

brated De Giorgi-Nash-Moser regularity theory, [11, 26, 27]. That is, solutions to equation

(1.2) satisfy the estimate

(1.3) ∥u∥Cα0 (K) ≤ C∥u∥L2(Ω), K ⋐ Ω,

for some maximal HÈolder exponent α0 ∈ (0, 1), depending on d, λ, and Λ, but not on K

or Ω. Hereafter we say a constant is universal if it depends only on d, q, λ, and Λ. The

constant C > 1 in (1.3) depends on universal parameters, K, and Ω, but it is independent

of the solution u.

Let us now discuss the main results proven in this article. The first key observation

is that local minimizers of (1.1) should satisfy an elliptic PDE like (1.2) in each phase,

{u > 0} and {u < 0}. Hence, any (universal) regularity estimate for local minimizers of (1.1)

must conform to the maximum regularity imposed by (1.3). Our first main theorem yields

local regularity estimates for minimizers in the HÈolder space and captures the settlement

described above, in a sharp fashion.
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Theorem 1 (HÈolder estimate). Let u be a minimizer of JA,φ(Ω) over H1
g(Ω), with g ∈

H1/2(∂Ω) and A ∈ Mλ,Λ(Ω). Let α0 be as in (1.3). For any Ω′ ⊆ Ω, if φ ∈ L
q

weak
(Ω′) for

some q > d/2, then for any α satisfying

(1.4) α ∈ (0, 1 − d/(2q)] ∩ (0, α0),

the minimizer u is locally α-HÈolder continuous in Ω′. One also has the estimate

∥u∥Cα(K) ≤ C∥u∥L2(Ω′), K ⊂⊂ Ω′.

The constant C depends only on d, λ, Λ, q, α, ∥φ∥Lq

weak
(Ω′), and K.

Upon extra oscillation control of the function x 7→ A(x), higher regularity estimates for

the homogeneous equation (1.2) become available, and one may take α0 = 1 in (1.4). We

could then take α = 1 − d/(2q) in Theorem 1. In other words, if the coefficient matrix

A is ªcontinuous enoughº as to allow Lipchitz estimates for the homogenous PDE (1.2),

then minimizers display the sharp HÈolder regularity with exponent 1 − d/(2q). See [5] for

optimal conditions yielding Lipschitz regularity of solutions in great generality.

We highlight that Theorem 1 is for the two-phase problem, i.e., it does not carry any

sign restriction on u. Our next main result gives improved regularity for the one-phase

problem. It says that at free boundary points, the sharp HÈolder exponent 1 − d/(2q) is

achieved, regardless of the value of α0 in (1.3).

Theorem 2 (Improved regularity at free boundary points). With u, g, and φ as in The-

orem 1, suppose that the boundary data g, and therefore u, are nonnegative. Let x0 be a

boundary point of {u > 0}, and suppose φ ∈ L
q

weak
(Ω′) for some open Ω′ ⊆ Ω containing

x0. Then u ∈ C1−d/(2q) at x0, in the sense that

|u(x)| ≤ C|x − x0|1−d/(2q)∥u∥L2(Ω),

for a constant C > 0 that depends only on universal parameters, Ω′, and Ω.

We also obtain nondegeneracy estimates that say u must grow at least at a certain rate

near free boundary points. The asymptotics of these lower bounds are determined by the

local blowup behavior of φÐmore specifically, if φ satisfies an average lower bound like

|{φ > t} ∩ Br(x0)| ≥ min
(

ct−p, |Br(x0)|) ,

for some c > 0, all t > 0, and sufficiently small r > 0, then u satisfies

(1.5) |u(x)| ≥ c|x − x0|1−d/(2p),

for x near x0 such that u(x) > 0 and |x − x0| = dist(x, {u = 0}). See Lemma 10 for a more

precise (and more general) statement. In particular, this lower bound implies |∇u| → ∞ as

x → x0 from inside {u > 0}. Note that for φ ∈ L
q

weak
, the exponent p ≥ q may be strictly

greater than q, and this causes extra subtleties in our analysis.

Next, we address the geometry of the free boundary ∂{u > 0}. The key point is to

describe how the rate at which φ blows up near a free boundary point impacts the free

boundary configuration.

Theorem 3 (Control on the severity of cusps in the free boundary). Let u be a minimizer

of JA,φ over H1
g(Ω) as above, with g ≥ 0. Let x0 ∈ ∂{u > 0}, and assume that for some
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r0 > 0, q1 > d/2, and q2 ≥ q1,

φ ∈ Lq1 (Br0
(x0)), and

|{φ(x) > t} ∩ Br(x0)| ≥ min
(

c0t−q2 , |Br(x0)|) for all r ∈ (0, r0), t > 0.
(1.6)

Then, with α1 = 1 − d/(2q1), α2 = 1 − d/(2q2), and for any α ∈ (0, α1] ∩ (0, α0), with α0

as in Theorem 1, there exists a constant c > 0 such that for all r ∈ (0, r0),

(1.7)
|{u > 0} ∩ Br(x0)|
|Br(x0)|α2/α

≥ c, and
|{u = 0} ∩ Br(x0)|
|Br(x0)|P(q1,q2)

≥ c,

where

P(q1, q2) =

(

α2

α1

− 1

q2

)

q1

q1 − 1
≥ 1.

In particular, if α0 > α1 (so that we can take α = α1) and φ is such that q1 = q2 in (1.6),

then there exists c ∈ (0, 1) such that

c ≤ |{u > 0} ∩ Br(x0)|
|Br(x0)| ≤ 1 − c,

for all r ∈ (0, r0).

Theorem 3 serves as a sort of cusp classification of the free boundary based on the blow-

up rate of the cost function φ around a given free boundary point x0. More precisely, if φ

blows up at x0 in an uneven (in measure) fashion Ð that is the case when q1 < q2 Ð then

one deduces from the density estimates of Theorem 3 that

c|Br(x0)|
α2−α
α ≤ |{u > 0} ∩ Br(x0)|

|Br(x0)| ≤ 1 − c|Br(x0)|P(q1,q2)−1.

The geometric-measure estimates established in this case limits the regularity of ∂{u > 0}
at x0. Note that, since u solves (1.2) in {u > 0} and is not Lipschitz at a boundary point x0

where (1.5) holds, we conclude that {u > 0} cannot satisfy the exterior sphere condition.

Even further, the exponent 1 − d/(2p) in (1.5) yields an upper limit (depending on d, p, λ,

and Λ) on the aperture of any exterior cone touching the free boundary at x0.

The case when the cost function φ blows-up at a steady rate, i.e. for q1 = q2, then

P(q1, q2) = 1 =
α2

α1

,

and we recover the classical theory. In particular, in this case one obtains the porosity

of the free boundary and the local finiteness of the Hd−σ-Hausdorff measure of the free

boundary, for a universal constant 0 < σ ≤ 1.

Finally, we note that the exponents α2/α and P(q1, q2) in Theorem 3 may eventually not

be sharp, except in the case q1 = q2 and α0 > α1, where both exponents equal 1.

When dealing with free boundary minimization problems involving an L
q

weak
Bernoulli

cost function φ, a natural question would be whether the free boundary eventually meets

the set φ−1(∞). This question is addressed in the last Section 7. We state the conclusion as

a theorem:

Theorem 4. Let u be a minimizer of JA,φ with φ ∈ L
q

weak
. The set of free boundary

points intersecting φ−1(∞) is, in principle, unavoidable. More precisely, for any d ≥ 3 and

q > d/2, there exists φ ∈ L
q

weak
(B1) and a constant m > 0 such that the minimizer u of

JI,φ(B1) over H1
m(B1) satisfies φ−1(∞) ∩ ∂{u > 0} , ∅. Here, B1 is the unit ball in Rd,
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JI,φ is the functional (1.1) with A(x) ≡ I, and H1
m(B1) is the set of H1(B1) functions with

constant trace equal to m on ∂B1.

1.1. Outline of the proofs and related open questions. In this subsection we discuss the

nuances and heuristics of the proofs, leading to a plethora of challenging open questions for

future collaborative endeavors. While unraveling these concepts, we might occasionally

prioritize fluency over strict mathematical precision.

Variational free boundary problems frequently find representation through the mini-

mization of discontinuous functionals, defined over appropriate functional spaces, ex-

pressed as follows:

(1.8) J (Ω, u) =

∫

Ω

F(x,Du)dx +

∫

Ω

f (x, u)dx.

The term F(x,Du) encodes diffusion as well as physical properties of the medium in which

the system takes place. It can be local or nonlocal, linear or nonlinear, with constant or

varying coefficients, etc. Solutions to the corresponding homogeneous Euler-Lagrange

equation, div
(

DpF(x,Du)
)

= 0, are bound to a specific (maximal) regularity theory. When

such regularity estimates are below the expected free boundary geometry, the problem

becomes much more challenging. This is the case of Theorem 1, when α0 ≤ 1 − d/(2q) as

well as of Theorem 2.

The second term, f (x, u), specifies the ruptures along the free interfaces. Typically,

either u 7→ f (x, u) and/or u 7→ ∂ f

∂u
(x, u) are discontinuous functions. In heuristic terms, the

more singular f (x, u) is, the less smooth solutions are along the interfaces. Such a drop in

the smoothness of solutions is captured by their precise geometric behavior across the free

boundary. However, this is often a rather delicate issue.

A way to interpret Theorem 1 is then as follows: if the (maximal) regularity theory

available for A-harmonic functions ªpermitsº (1 − d/(2q))±cones, then minimizers will

attain the level of regularity dictated by their geometric behavior along the free boundary,

viz. locally of class C
0,1− d

2q . In the complementary case, i.e., when A-harmonic functions

are in general less smooth than the expected free boundary geometric behavior, then the

maximal regularity theory available for A-harmonic functions restricts the smoothness of

minimizers. In this case, however, Theorem 1 is an asymptotically optimal result, i.e.

minimizers are almost as regular as A-harmonic functions. Whether or not one can achieve

α = α0 in Theorem 1 (in the case that α0 ≤ 1 − d/(2q)) remains an interesting open

question.

Similarly, one could ask what happens in the case q < d
2
. This is also an interesting

line of investigation, as we expect based on the scaling properties that only some local Lµ

estimate could be available (at least if the boundary datum is not bounded).

The discussion above also serves to highlight the remarkable nature of Theorem 2. In

essence, it asserts that in the one-phase case, the behavior of minimizers along the free

boundary disregards the roughness of the medium. The reason why one can attain an

improved regularity along the free boundary is subtle and we explain it here in heuristic

terms. The proof of both Theorem 1 and Theorem 2 are motivated by the rather powerful

compactness method, originally introduced by Caffarelli, in [6], in the context of fully

nonlinear elliptic equations. In the two-phase problem, the tangential space, i.e. the set

of functions one arrives at after the compactness procedure, are A-harmonic functions.

The method then seizes the regularity available within the tangential space and imports
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back to the original problem adjusted through the caliber of the tangential path. In the

one-phase case, however, the tangential space is only formed by hyperplanes. This is a

consequence of the Harnack inequality. This is why we are able to bypass the restrictions

arising from the maximal regularity theory of A-harmonic functions. A very interesting,

though, difficult question is whether a similar result can be attained in the two-phase case.

Our impression is that, if no further conditions are imposed (say one-sided control, or

higher medium organization), then minimizers of the two-phase problem will not present

an improved regularity along the free boundary.

1.2. Outline. The rest of the paper is organized as follows. In Section 2 we discuss some

preliminary results needed for the proofs of the main Theorems. In particular we discuss

the scaling feature of the problem and establish a Caccioppoli-type estimate. In Section 3

we prove Theorem 1, by means of a careful approximation analysis. In the intermediary

Section 4 we discuss the limiting case when φ ∈ L
d/2

weak
, and obtain universal BMO esti-

mates. In Section 5 we establish the sharp C1−d/(2q) regularity at one-phase free boundary

points. The interesting feature here is that such an estimate is not limited by the universal

regularity theory of A-harmonic functions. Section 6 is devoted to the geometric analysis

of the free boundary, where we prove Theorem 3. Finally, in Section 7 we prove Theorem

4, which contains an example showing the free boundary may indeed intersect the infinite

points of the Bernoulli function φ in a non-trivial subregion of the domain.

2. Preliminaries

We begin by recalling that for q ≥ 1, a function f lies in the space L
q

weak
(Ω) if

∥ f ∥Lq

weak
(Ω) := sup

t>0

t |{x ∈ Ω : f (x) > t}|1/q < ∞.

Note that existence of minimizers for JA,φ over H1
g(Ω) follows as in [1], so we omit the

details.

Next, let us investigate how the minimization problem for JA,φ transforms under trans-

lation and rescaling around a point. For γ ∈ R, define the more general functional

JA,φ,γ(u) :=

∫

Ω

(

∇u · (A(x)∇u) + φ(x)1{u>γ}
)

dx.

Clearly, JA,φ = JA,φ,0. We suppress the dependence ofJA,φ,γ on the domain Ω, which will

always be clear from context.

Lemma 1. For some domain Ω, φ ∈ L
q

weak
(Ω), and boundary data g ∈ H1/2(∂Ω), let u be

a minimizer of JA,φ over H1
g(Ω). Then, for any x0 ∈ Ω, κ ≥ 0, 0 < r < dist(x0, ∂Ω), and

γ ∈ R, the function

v(x) := κ(u(x0 + rx) − γ)
is a minimizer of JÃ,φ̃,γ̃ over H1

g̃(B1), with

φ̃(x) = κ2r2φ(x0 + rx),

γ̃ = −κγ,
Ã(x) = A(x0 + rx),

g̃(x) = κ(u(x0 + rx) − γ), x ∈ ∂B1.

Proof. Direct calculation. □
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Next, by a standard argument, we can show that minimizers of JA,φ,γ are subsolutions

of the homogeneous equation (1.2):

Lemma 2. Let u be a minimizer of JA,φ,γ over

H1
g(Ω) := {w ∈ H1(Ω), w = g on ∂Ω in trace sense},

for some g ∈ H1/2(∂Ω). Then
∫

Ω

(A(x)∇u) · ∇v ≥ 0, v ∈ C∞0 (Ω), v ≥ 0.

Proof. This lemma follows by noting that JA,φ,γ(u) ≤ JA,φ,γ(u − εv) and 1{u−εv>γ} ≤ 1{u>γ}
for all ε > 0 and all nonnegative v ∈ C∞

0
(Ω). □

From Lemma 2 and the maximum principle, we conclude that minimizers are bounded

whenever g ∈ L∞(∂Ω), with the estimate ∥u∥L∞(Ω) ≤ ∥g∥L∞(∂Ω).

Our next lemma is a Caccioppoli-type estimate that will be needed in our approximation

argument:

Lemma 3. There exists a constant C > 0 depending on d, q, λ, and Λ, such that any

minimizer u of JA,φ,γ over H1
g(B1) satisfies

∫

B1/2

|∇u|2 dx ≤ C

(∫

B1

|u|2 dx + ∥φ∥Lq

weak
(B1)

)

.

Note that u is allowed to change sign in this lemma. If we were concerned only with the

one-phase problem, u would be a nonnegative subsolution of (1.2), and we could apply an

existing Caccioppoli estimate such as [16, Lemma 3.27].

Proof. For any ζ ∈ C∞
0

(B1) with 0 ≤ ζ ≤ 1, we let w = u(1− ζ2) so that w = u on ∂B1. The

minimizing property JA,φ,γ(u) ≤ JA,φ,γ(w) implies

∫

B1

∇u · (A(x)∇u) dx ≤
∫

B1

[

∇w · (A(x)∇w) + φ(x)
(

1{w>γ} − 1{u>γ}
)]

dx.(2.1)

With w = u(1 − ζ2), straightforward calculations imply
∫

B1

∇u · (A(x)∇u)ζ2(2 − ζ2) dx ≤ 4

∫

B1

(

u2ζ2∇ζ · (A(x)∇ζ) − uζ(1 − ζ2)∇ζ · (A(x)∇u)
)

dx

+Cd,q∥φ∥Lq

weak
(B1).

In the last term on the right, we used HÈolder’s inequality together with the fact that ∥φ∥Lr(B1) ≲

∥φ∥Lq

weak
(B1) for 1 < r < q. With 0 ≤ 1 − ζ2 ≤ 1 and Young’s inequality, we have

λ

∫

B1

ζ2|∇u|2 dx ≤ 4Λ

∫

B1

(

u2|∇ζ |2 + |u|ζ |∇ζ ||∇u|
)

dx +Cd,q∥φ∥Lq

weak
(B1)

≤ λ
2

∫

B1

ζ2|∇u|2 dx +
2Λ

λ

∫

B1

u2|∇ζ |2 dx +Cd,q∥φ∥Lq

weak
(B1).

Choosing ζ equal to 1 in B1/2 and 0 outside B3/4, with |∇ζ | bounded by a constant, the proof

is complete. □
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3. HÈolder continuity

In this section, we establish a universal HÈolder estimate for the one- and two-phase

problems. In Section 5, we will further improve such an estimate (at the free boundary) to

the sharp exponent 1 − d/(2q), regardless of the regularity of A-harmonic functions.

The analysis will be based on the following key approximation lemma, which says

minimizers of JA,φ,γ are close to minimizers of
∫

Ω
∇u · (A(x)∇u) dx, if the norm of φ is

sufficiently small in L
q

weak
, c.f. [29, 30, 31] for related analysis employed in ªnon-free

boundaryº PDE models.

Lemma 4. Given τ > 0, there exists ε = ε(d, q, λ,Λ, τ) > 0 such that for any φ ∈ L
q

weak
(B1)

with q ∈ (1,∞) and ∥φ∥Lq

weak
(B1) ≤ ε, any A ∈ Mλ,Λ(B1), any g ∈ H1/2(∂B1), any γ ∈ R, and

any minimizer u of JA,φ,γ over H1
g(B1) such that

>
B1

u2 dx ≤ 1, there holds

∫

B1/2

|u − h|2 dx ≤ τ,

where h ∈ H1(B1/2) satisfies
>

B1/2
h2 dx ≤ 2d+2 and is a weak solution to

(3.1) ∇ · (A(x)∇h) = 0, x ∈ B1/2.

In fact, we can take h to be the A-harmonic lifting of u in B1/2.

Proof. With u as in the statement of the lemma, define h : B1/2 → R as the minimizer of

F(w) :=

∫

B1/2

∇w · (A(x)∇w) dx,

over

{w ∈ H1(B1/2) : w − u ∈ H1
0(B1/2)}.

Let us also define h(x) = u(x) for x ∈ B1 \ B1/2. By standard arguments, this h is the weak

solution to














∇ · (A(x)∇h) = 0, x ∈ B1/2,

h − u ∈ H1
0
(B1/2),

which in particular implies the identity
∫

B1/2
∇(u− h) · (A(x)∇h) dx = 0. Using this identity,

PoincarÂe’s inequality, and the minimizing property of u, we have
∫

B1/2

|u − h|2 dx ≤ C

∫

B1/2

|∇(u − h)|2 dx

≤ C

λ

∫

B1/2

∇(u − h) · (A(x)∇(u − h)) dx

=
C

λ

(∫

B1/2

∇u · (A(x)∇u) dx −
∫

B1/2

∇h · (A(x)∇h) dx

)

≤ C

λ

(∫

B1/2

φ(x)(1{h>γ} − 1{u>γ}) dx

)

≤ C

λ

∫

B1/2

φ dx

≤ C

λ
∥φ∥Lq

weak
(B1) ≤

C

λ
ε,

(3.2)
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for some constant C > 0 depending on q and d. Choosing ε ≤ τλ/C, we have
∫

B1/2

|u − h|2 dx ≤ τ,

as desired. By choosing ε smaller if necessary, depending only on d, C, and λ, we also

ensure that?
B1/2

h2 dx ≤ 2

?
B1/2

(u − h)2 dx + 2

?
B1/2

u2 dx ≤ 2d+1Cε

λωd

+ 2d+1 ≤ 2d+2,

where ωd is the volume of the d-dimensional unit ball, and we have used
>

B1
u2 dx ≤ 1.

This completes the proof. □

Next, we show that when ∥φ∥Lq

weak
is small, since minimizers u are close to solutions h of

the homogeneous equation (3.1), the HÈolder regularity of h implies some local integrability

estimates for u:

Lemma 5. Let α0 = α0(d, λ,Λ) be the exponent from (1.3). For any α ∈ (0, α0), there exist

ε > 0, r0 ∈ (0, 1
4
), K > 0 and C0 > 0, depending only on universal quantities and α, such

that for any minimizer u of JA,φ,γ over H1
g(B1) with ∥φ∥Lq

weak
(B1) ≤ ε, γ ∈ R, A ∈ Mλ,Λ(B1),

and
>

B1
u2 dx ≤ 1, there holds

(3.3)

?
Br0

|u − µ|2 dx ≤ r2α
0 ,

for some constant µ with |µ| ≤ K.

Proof. Let τ > 0 be a constant to be chosen later. With u as in the statement of the lemma,

let h : B→ R be the solution to (3.1) in B1/2 with
∫

B1/2

|u − h|2 dx < τ,

whose existence is granted by Lemma 4. The choice of τwill determine ε. Since
>

B1/2
h2 dx ≤

2d+2, the interior regularity theory of the equation satisfied by h (e.g. [15, Theorem 8.24])

implies there is a C0 > 0 with

|h(x) − h(0)| ≤ C0|x|α0 ,

for any x ∈ B1/4. For any r0 ∈ (0, 1
4
), we then have

?
Br0

|u(x) − h(0)|2 dx ≤ 2















?
Br0

|u(x) − h(x)|2 dx +

?
Br0

|h(x) − h(0)|2 dx















≤ 2ω−1
d r−d

0 τ + 2C0r
2α0

0
.

(3.4)

where ωd is the volume of the d-dimensional unit ball. Choosing

r0 =

(

1

4C0

)1/[2(α0−α)]

, τ =
1

4
ωdrd+2α

0 ,

we have ?
Br0

|u(x) − h(0)|2 dx ≤ r2α
0 .

The estimate (3.3) now follows by choosing µ = h(0). The bound |µ| ≤ K is a result of the

interior L2-to-L∞ estimate satisfied by h [15, Theorem 8.17]. □
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Next, by iterating Lemma 5, we show that under similar conditions, minimizers are

HÈolder continuous at the origin.

Lemma 6. For d
2
< q < ∞, let α > 0 satisfy

α ∈ (0, 1 − d/(2q)] ∩ (0, α0),

where α0 is as in Lemma 5. Then there exist ε,C > 0 and r0 ∈ (0, 1
4
), depending on univer-

sal quantities and α, such that for any minimizer u ofJA,φ over H1
g(B1) with ∥φ∥Lq

weak
(B1) ≤ ε

and
>

B1
u2 dx ≤ 1, there holds

|u(x)| ≤ C and |u(x) − u(0)| ≤ C|x|α, if |x| < r0.

Proof. With α as in the statement of the lemma, let ε and r0 be the corresponding constants

from Lemma 5, and let u be a minimizer of JA,φ over H1
g(B1). Our goal is to show by

induction that

(3.5)

?
B

rk
0

(u − µk)2 dx ≤ r2kα
0 , k = 1, 2, . . . ,

for some convergent sequence µk.

The base case k = 1 follows directly from Lemma 5, for some constant µ1 with |µ1| ≤ K.

Here, K depends only on universal quantities and δ. Now, assume (3.5) holds for some

k ≥ 1 and some constant µk. Define

v(x) =
u(rk

0
x) − µk

rkα
0

, x ∈ B1.

By Lemma 1, v is a minimizer of JAk ,φk ,γk
over H1

gk
(B1), where

φk(x) = r
2k(1−α)

0
φ(rk

0x),

γk = −rkα
0 µk,

Ak(x) = A(rk
0x),

gk(x) = r−kα
0 (u(rk

0x) − µk), x ∈ ∂B1.

The inductive hypothesis (3.5) implies?
B1

v2 dx = r−2kα
0

?
B

rk
0

(u − µk)2 dx ≤ 1.

Our choice of α implies 2 − 2α − d/q ≥ 0, and

∥φk∥Lq

weak
(B1) = r

k(2−2α−d/q)

0
∥φ∥Lq

weak
(B

rk
0

) ≤ ∥φ∥Lq

weak
(B1) < ε.

Therefore, we can apply Lemma 5 to conclude?
Br0

|v − µ|2 dx ≤ r2α
0 ,

for some constant µ with |µ| ≤ K. Translating back to u with the change of variables

x 7→ rk
0
x, the previous inequality becomes?

B
rk+1
0

|u − µk − rkα
0 µ|2 dx ≤ r

2α(k+1)

0
.
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We have established (3.5) with µk+1 = µk + rkα
0
µ. To show that the sequence {µk} is conver-

gent, note that |µk+1 − µk | = |rkα
0
µ| ≤ Krkα

0
, and for any j > k,

(3.6) |µ j − µk | ≤ K(1 − rα0 )−1rkα
0 ,

which demonstrates that {µk} is Cauchy. In fact, letting µ0 = limk→∞ µk, taking j → ∞ in

(3.6) yields |µk − µ0| ≤ K(1 − rα
0
)−1rkα

0
for all k.

Finally, for 0 < r ≤ r0, choose k such that rk+1
0
< r ≤ rk

0
. Then, by (3.5),?

Br

|u − µ0|2 dx ≤ 2

?
Br

|u − µk |2 dx + 2|µk − µ0|2 ≤ r−2α
0













2

rd
0

+ 2K2(1 − rα0 )−2













r2α,

which implies the HÈolder estimate |u(x) − u(0)| ≤ C|x|α, with C as in the statement of the

theorem. Since |u(0)| = |µ0| ≤ K(1 − rα
0
)−1 + K, the triangle inequality implies |u(x)| ≤ C

in Br0
, with C as above. □

We are now ready to prove the main result of this section:

Theorem 5. Let u be a minimizer of JA,φ over H1
g(Ω), with g ∈ H1/2(∂Ω). For any

Ω′ ⊂⊂ Ω, if φ ∈ L
q

weak
(Ω′) with d/2 < q < ∞, then u is HÈolder continuous in Ω′, with

∥u∥Cα(Ω′) ≤ C∥u∥L2(Ω),

where α is as in Lemma 6, and C depends only on universal quantities, α, Ω′, Ω, and

∥φ∥Lq

weak
(Ω).

Proof. Let u be as in the statement, and let x0 ∈ Ω be arbitrary. To recenter around x0 and

ensure the hypotheses of Lemma 6 are satisfied, we define

w(x) := κu(x0 + rx), x ∈ B1,

where

r = min















1

2
dist(x0, ∂Ω),















ε

∥φ∥Lq

weak
(Ω)















q/(2q−d)












, κ =

















1>
Br(x0)

u2 dx

















1/2

,

and ε is the constant from Lemma 5. Then
>

B1
wp dx ≤ 1, and by Lemma 1, w minimizes

JÃ,φ̃ over H1
g̃(B1), with Ã(x) = A(x0 + rx), φ̃(x) = r2κ2φ(x0 + rx), and g̃(x) = κg(x0 + rx)

for x ∈ ∂B1. Since ∥φ̃∥Lq

weak
(B1) ≤ κ2r2−d/q∥φ∥Lq

weak
(Ω) < ε, we may apply Lemma 6 and obtain

|w(x) − w(0)| ≤ C|x|α for |x| ≤ r0. Since C and r0 depend only on d, q, λ, and Λ, when we

translate back to u, we conclude that

|u(x) − u(x0)| ≤ C∥u∥L2(Ω)|x − x0|α, |x − x0| ≤ r′,

with C and r′ depending only on d, q, λ, Λ, and dist(x0, ∂Ω). The L∞ norm of u is also

bounded uniformly in any compact subset of Ω, by Lemma 6. □

4. The borderline case q = d/2

In the limiting case q ↘ d/2, the corresponding exponent α in the iteration of Lemma

6 becomes zero. As usual, one should not expect to obtain continuity. In this section

we obtain a (sharp) estimate in the space of bounded mean oscillation (BMO) functions.

Recall that a function f on Ω is BMO if

∥ f ∥BMO(Ω) := sup

{

N :

?
B

| f − fB| dx ≤ N for every ball B ⊂ Ω
}

< ∞,
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where fB is the average of f over the ball B.

First, we need a corresponding version of Lemma 5 for a BMO-type estimate:

Lemma 7. There exist ε > 0 and r0 ∈ (0, 1
4
), depending only on d, λ, and Λ, such that for

any minimizer u of JA,φ,γ over H1
g(B1) with ∥φ∥Ld/2

weak
(B1) ≤ ε, γ ∈ R, and

>
B1

u2 dx ≤ 1, there

holds

(4.1)

?
Br0

|u − ur0
|2 dx ≤ 1,

where ur0
=
>

Br0

u dx.

Proof. First, we recall a general inequality: for any µ ∈ R and r0 > 0,

(4.2)

?
Br0

|u − ur0
|2 dx ≤ 4

?
Br0

|u − µ|2 dx.

This inequality follows by writing



















?
Br0

∣

∣

∣

∣

∣

∣

∣

u −
?

Br0

u dx

∣

∣

∣

∣

∣

∣

∣

2

dx



















1/2

≤














?
Br0

|u − µ|2 dx















1/2

+















?
Br0

|µ −
?

Br0

u dx|2 dx















1/2

≤














?
Br0

|u − µ|2 dx















1/2

+

?
Br0

|u − µ| dx

≤ 2















?
Br0

|u − µ|2 dx















1/2

.

Now, let τ > 0 be a constant to be chosen later. As in the proof of Lemma 5, let

h : B1/2 → R be the solution of the homogeneous equation (3.1) with
∫

B1/2

|u − h|2 dx < τ,

given by Lemma 4. As above, we have

|h(x) − h(0)| ≤ C|x|β,

for any x ∈ B1/4, for some C > 0 and β ∈ (0, 1) depending only on d, λ, and Λ. For

r0 ∈ (0, 1
4
), we then have

?
Br0

|u(x) − h(0)|2 dx ≤ 2















?
Br0

|u(x) − h(x)|2 dx +

?
Br0

|h(x) − h(0)|2 dx















≤ 2ω−1
d r−d

0 τ + 2Cr
2β

0
.

(4.3)

Choosing

r0 =

(

1

16C

)1/(2β)

, τ =
ωdrd

0

16
,

we have ?
Br0

|u(x) − h(0)|2 dx ≤ 1

4
.

Applying (4.2) with µ = h(0), the conclusion of the lemma follows, with ε > 0 determined

from our choice of τ via Lemma 4. □
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Lemma 8. There exist ε > 0, r0 ∈ (0, 1
4
) and C > 0, depending only on d, λ, and Λ, such

that if u is a minimizer of JA,φ over H1
g(B1) with ∥φ∥Ld/2

weak
(B1) ≤ ε and

>
B1

u2 dx ≤ 1, then for

any r ∈ (0, r0], ?
Br

|u − ur |2 dx ≤ C.

Proof. Let ε and r0 be the constants from Lemma 7, and let u be a minimizer of JA,φ over

H1
g(B1). Our goal is to show by induction that

(4.4)

?
B

rk
0

|u − urk
0
|2 dx ≤ 1, k = 1, 2, . . . .

The base case k = 1 follows directly from Lemma 7. Assuming that (4.4) holds for

some k ≥ 1, define

v(x) = u(rk
0x) − urk

0
, x ∈ B1.

By Lemma 1, v is a minimizer of JAk ,φk ,γk
over H1

gk
(B1), where

Ak(x) = A(x0 + r0x),

φk(x) = r2k
0 φ(rk

0x),

γk = −urk
0
,

gk(x) = u(rk
0x) − urk

0
, x ∈ ∂B1.

The inductive hypothesis (4.4) implies?
B1

v2 dx =

?
B

rk
0

|u − urk
0
|2 dx ≤ 1.

With the choice q = d/2, the scaling of ∥φk∥Lq

weak
is as follows:

∥φk∥Ld/2

weak
(B1) = ∥φ∥Ld/2

weak
(B

rk
0

) ≤ ∥φ∥Ld/2

weak
(B1) < ε,

and we can apply Lemma 7 to conclude

(4.5)

?
Br0

|v − vr0
|2 dx ≤ 1,

A quick calculation shows vr0
= urk+1

0
− urk

0
. Therefore, (4.5) implies

?
B

rk+1
0

|u − urk+1
0
|2 dx ≤ 1,

and we conclude that (4.4) holds for all k.

Now, for 0 < r ≤ r0, choose k such that rk+1
0
< r ≤ rk

0
. By (4.4),

?
Br

|u − urk
0
|2 dx ≤













rk
0

r













d ?
B

rk
0

|u − urk
0
|2 dx ≤ r−d

0 ,

and the proof is complete. □

Now we apply a scaled version of Lemma 8 to conclude interior BMO regularity for u:
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Theorem 6. For any φ ∈ Ld/2(Ω) and g ∈ H1/2(∂Ω), and any minimizer u of JA,φ over

H1
g(Ω), there holds for any Ω′ ⊂⊂ Ω,

∥u∥BMO(Ω′) ≤ C∥u∥L2(Ω),

where the constant C depends only on universal constants, ∥φ∥Ld/2

weak
(Ω), and Ω′.

Proof. Letting ε be the constant from Lemma 8, for any x0 ∈ Ω, we define

w(x) := κu(x0 + rx),

where

r = min

{

1

2
dist(x0, ∂B), 1

}

, κ2 = min















1>
Br(x0)

u2 dx
,

ε

∥φ(x0 + rx)∥Ld/2

weak
(B1)















Then, by Lemma 1, w minimizes JÃ,φ̃ with Ã(x) = A(x0 + rx), φ̃(x) = r2κ2φ(x0 + rx),>
B1
w2 ≤ 1, and ∥φ̃∥Ld/2

weak
(B1) ≤ ε. Applying Lemma 8 and translating back to u, we conclude

that ?
Br(x0)

|u − uBr(x0)|2 dx ≤ C

∫

Ω

u2 dx,

for a constant C depending only on universal constants and dist(x0, ∂Ω). □

5. Improved HÈolder exponent

For the one-phase problem, at free boundary points, we are able to improve the HÈolder

estimate to obtain the sharp exponent α = 1 − d/(2q), regardless of the regularity theory

available for A-harmonic functions.

First, we revisit the approximation argument of Lemma 4, equipped with the extra reg-

ularity provided by Lemma 6.

Lemma 9. Given τ > 0, there exists ε = ε(d, λ,Λ, q, τ) > 0 such that for any g ∈ H1/2(∂B1)

with g ≥ 0, any A ∈ Mλ,Λ(B1), any φ such that ∥φ∥Lq

weak
(B1) < ε, and any minimizer u ofJA,φ

over H1
g(B1) with

>
B1

u2 dx ≤ 1 and u(0) = 0, there holds

sup
B1/10

u ≤ τ.

Proof. Let h be the A-harmonic lifting of u in B1/2, i.e. the weak solution of

∇ · (A(x)∇h) = 0, x ∈ B1/2,

h − u ∈ H1
0(B1/2).

(5.1)

Let us choose ε small enough so that (i) the HÈolder estimate of Lemma 6 applies, and (ii)

from Lemma 4, the inequality

(5.2)

∫

B1/2

|u − h|2 dx ≤ τ′

holds, for some τ′ to be determined below. Recall from Lemma 2 that u is a subsolution of

(5.1). Therefore, the comparison principle and g ≥ 0 imply 0 ≤ u ≤ h in B1/2, and since

h satisfies the Harnack inequality [15, Theorem 8.20] as well as an L2-to-L∞ estimate

[15, Theorem 8.17], we have for any r ∈ (0, 1
2
),

(5.3) sup
B1/10

u ≤ sup
B1/10

h ≤ C1h(0) ≤ C2r−d/2∥h∥L2(Br),
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where C1 and C2 depend only on d, λ, and Λ. Next, proceeding in a similar manner to the

proof of Lemma 5, we have

r−d∥h∥2
L2(Br)

= ωd

?
Br

h2 dx

≤ 2ωd

(?
Br

|u − h|2 dx +

?
Br

u2 dx

)

≤ 2r−dτ′ + 2ωd

?
Br

u2 dx,

(5.4)

by (5.2). For the last term on the right, we use the fact that u(0) = 0 and the HÈolder estimate

of Lemma 6 to obtain ?
Br

u2 dx =

?
Br

|u(x) − u(0)|2 dx ≤ C2r2α,

if r < r0, where C, α, and r0 are the constants from Lemma 6. Choosing

r = min















r0

2
,















1

4ωdC2

(

τ

C2

)2














1/(2α)












, τ′ =
rd

4

(

τ

C2

)2

,

then (5.3) and (5.4) imply supB1/10
u ≤ τ, as desired. □

Now we iterate Lemma 9 to prove HÈolder regularity at boundary points, with the optimal

exponent:

Proof of Theorem 2. With α = 1 − d/(2q), take τ = 1/10α, and let ε be the corresponding

constant from Lemma 9. As in the proof of Theorem 5, we choose κ and r such that, after

replacing u with

w(x) := κu(x0 + rx),

we can ensure w(0) = 0,
>

B1
w2 dx ≤ 1, and that w minimizes JA,φ over H1

g(B1) with

∥φ∥Lq

weak
(B1) ≤ ε and g ≥ 0.

Applying Lemma 9, we have

sup
B1/10

w ≤ 1

10α
.

Next, assume by induction that for some positive integer k,

(5.5) sup
B

10−k

w ≤ 1

10kα
.

By Lemma 1, the function

wk(x) := 10kαw

(

x

10k

)

minimizes JAk ,φk
over H1

gk
(B1) with

φk(x) = 102k(1−α)φ(10−k x),

Ak(x) = A(10−k x),

gk(x) = 10kαw(10−k x), x ∈ ∂B1.

The inductive hypothesis gives?
B1

w2
k dx = 102kα

?
B

10−k

w2 dx ≤ 1,
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and our choice of α = 1 − d/(2q) gives

∥φk∥Lq

weak
(B1) = 102k(1−α)−kd/q∥φ∥Lq

weak
(B

10−k ) ≤ ε.

Lemma 9 now implies supB1/10
wk ≤ 1/10, or

sup
B

10−(k+1)

w ≤ 1

10(k+1)α
,

and we have established that (5.5) holds for all k = 1, 2, . . ..

Now, for any x ∈ B1/10, there is some k such that 10−(k+1) < |x| ≤ 10−k. By (5.5), there

holds

|w(x)| ≤ sup
B

10−k

≤ 1

10kα
≤ 10α|x|α.

After translating from w to u, the proof is complete. □

6. Geometry of the free boundary

The following lemma is a nondegeneracy estimate for u near free boundary points.

Lemma 10. Let u be a minimizer of JA,φ over H1
g(Ω) with g and u nonnegative. Let

x0 ∈ ∂{u > 0} be a free boundary point, and for some p > 1 and σ ∈ [0, d), assume that

there exist c0, r0 > 0 such that

(6.1) |{φ(x) > t} ∩ Br(x0)| ≥ min
(

c0rσt−p, |Br(x0)|) , for all t > 0, r ∈ (0, r0).

Then, for any x ∈ Ω with u(x) > 0 such that r := |x − x0| = dist(x, ∂{u > 0}) ≤ r0/2, the

estimate

u(x) ≥ C|x − x0|1−(d−σ)/(2p).

holds, with C > 0 depending only on d, p, λ, Λ, and c0.

In (6.1), the case σ = 0 corresponds, for example, to an inverse power function φ(x) =

|x− x0|−d/p ∈ L
p

weak
(Ω). In such a case, Lemma 10 gives a lower bound for u with exponent

1−d/(2p), which matches the asymptotics of the HÈolder estimate of Theorem 2. The cases

with σ > 0 include choices such as φ(x) = dist(x,Γ)(m−d)/p for a smooth m-dimensional

submanifold Γ, with 1 ≤ m ≤ d − 1. This example is also in L
p

weak
(Ω).

Proof of Lemma 10. Let x = xε satisfy u(xε) = ε > 0. Our goal is to bound ε from below

in terms of the proper power of r.

Since u satisfies the homogeneous equation (1.2) in B3r/4(xε) ⊂ {u > 0}, the Harnack

inequality, see for instance [28, Theorem 5], gives a constant C0 > 0, independent of r,

with

u(x) ≤ C0ε, x ∈ ∂Br/2(xε).

Let ζ be a smooth cutoff function equal to 0 in Br/4(xε) and equal to 1 outside Br/2(xε),

with |∇ζ | ≤ Cr−1. Define the test function

v(x) := min{u(x),C0εζ(x)}.
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By construction, v = u on ∂Br/2(xε), so the minimizing property JA,φ(u) ≤ JA,φ(v) implies
∫

Br/2(xε)

φ(x)
(

1{u>0} − 1{v>0}
)

dx ≤ 1

2

∫

Br/2(xε)

(∇v · (A(x)∇v) − ∇u · (A(x)∇u)) dx

≤ 1

2
ΛC2

0ε
2

∫

Br/2(xε)∩{v>u}
|∇ζ |2 dx

≤ 1

2
ΛC2

0ε
2ωd(r/2)dCr−2.

(6.2)

The left-hand side of this inequality can be bounded from below as follows, using our

choice of ζ:

(6.3)

∫

Br/2(xε)

φ(x)
(

1{u>0} − 1{v>0}
)

dx ≥
∫

Br/2(xε)\Br/4(xε)

φ(x) dx.

To bound the last expression from below, we choose a suitable t > 0 in the blow-up condi-

tion (6.1) so that φ > t in a large percentage of B2r(x0), which must include at least half of

Br/2(xε) \ Br/4(xε). In more detail, let

µd =
|Br/2(xε) \ Br/4(xε)|

|B2r(x0)| ∈ (0, 1),

k =

[

1

c0

2dωd(1 − µd/2)

]−1/p

,

where ωd = |B1|. Then, since 2r ≤ r0, (6.1) with t = kr(σ−d)/p implies

|{φ(x) > kr(σ−d)/p} ∩ B2r(x0)| ≥ c0k−prd = (1 − µd/2)|B2r(x0)|.
Therefore,

|{φ(x) > kr(σ−d)/p} ∩ (Br/2(xε) \ Br/4(xε))| ≥
1

2
|Br/2(xε) \ Br/4(xε)|,

and
∫

Br/2(xε)\Br/4(xε)

φ(x) dx ≥ 1

2
|Br/2(xε) \ Br/4(xε)|kr(σ−d)/p = cdkrd(1−1/p)+σ/q.

Note that k depends only on d, p, and c0. Combining this with (6.2), we finally have

ε2 ≥ Cr2−(d−σ)/p,

for a constant C > 0 as in the statement of the lemma, and the proof is complete. □

Next, we have a generalization of Lemma 10 for Bernoulli functions φ that are singular

as x → x0 only from certain directions. A typical example would be a φ that blows up on

one side of a hypersurface but is bounded on the other side, such as φ(x) = 1+ 1{x1>0}x
−1/p

1
.

We are mainly interested in this generalization so that we can rigorously prove our example

in Section 7 has a free boundary point where |∇u| is infinite.

Lemma 11. Let u be a minimizer of JA,φ over H1
g(Ω) with g and u nonnegative. Let

x0 ∈ ∂{u > 0} be a free boundary point, and for some p > 1, σ ∈ [0, d), and some cone

Ξ ⊂ Rd with vertex at x0, assume that there exist c0, r0 > 0 such that

(6.4) |{φ(x) > t} ∩ Br(x0) ∩ Ξ| ≥ min
(

c0rσt−p, |Br(x0) ∩ Ξ|) , for all t > 0, r ∈ (0, r0).

Then, for any x ∈ Ω ∩ Ξ with u(x) > 0 such that r := |x − x0| = dist(x, ∂{u > 0}) ≤ r0/2,

the estimate

u(x) ≥ C|x − x0|1−(d−σ)/(2p).



18 STANLEY SNELSON & EDUARDO V. TEIXEIRA

holds, with C > 0 depending only on d, p, λ, Λ, c0, and Ξ.

Proof. This lemma is proven by the same method as Lemma 10, with the following alter-

ation: to obtain a lower bound for the integral on the right in (6.3), one applies the condition

(6.4) with t = kr(σ−d)/p and k chosen depending on Ξ so that

c0k−prd = |B2r(x0) ∩ Ξ| − 1

2

∣

∣

∣(Br/2(xε) \ Br/4(xε)) ∩ Ξ
∣

∣

∣ .

This implies

∣

∣

∣{φ(x) > kr(σ−d)/p} ∩ (Br/2(xε) \ Br/4(xε)) ∩ Ξ
∣

∣

∣ ≥ 1

2

∣

∣

∣(Br/2(xε) \ Br/4(xε)) ∩ Ξ
∣

∣

∣ ,

and the remainder of the argument proceeds as in the proof of Lemma 10. □

Now we are ready to prove our last main result, which allows us to control the severity

of cusps along the free boundary:

Proof of Theorem 3. For a free boundary point x0, let q1 and q2 be as in the statement of

the Theorem, i.e. φ ∈ Lq1 (Br0
(x0)) and for r ∈ (0, r0),

|{φ(x) > t} ∩ Br(x0)| ≥ min
(

c0t−q2 , |Br(x0)|),

Then Theorem 2 implies u(x) ≤ C|x − x0|1−d/(2q1) in Br(x0), and Lemma 10 implies u(x) ≥
cq2
|x − x0|1−d/(2q2) in Br(x0).

To keep the notation brief, we define α1 = 1 − d/(2q1) and α2 = 1 − d/(2q2). Note that

α1 ≤ α2.

For fixed r ∈ (0, r0), let x1 ∈ ∂Br(x0) be such that u(x1) ≥
cq2

2
rα2 . By Theorem 1, u is

HÈolder continuous of order α at x1. Define ρ = rα2/α. For κ > 0 and y ∈ Bκρ(x1), we have

u(y) ≥
cq2

2
rα2 −C(κρ)α =

(cq2

2
−Cκα

)

rα2 ,

which is strictly positive if we choose κ = [cq2
/(4C)]1/α. We conclude that Bκρ(x1) ⊂ {u >

0}. A simple geometric argument gives |Br(x0) ∩ Bκρ(x1)| ≥ c(κ)ρd, which implies

(6.5)
|Br(x0) ∩ {u > 0}|

rdα2/α
≥ c,

for a constant c > 0 depending on q2 and q1 but independent of r.

In the case α0 > α1, we can take α = α1 in (6.5). If in addition q1 = q2, we can in fact

take α = α1 = α2, yielding a corner-like estimate.

For the lower bound on |Br(x0)∩{u = 0}|, arguing as in [3], we compare u to the function

v defined by














∇ · (A(x)∇v) = 0 in Br(x0),

v − u ∈ H1
0
(Br(x0)).

Since v−u ≥ 0 on ∂Br(x0), the maximum principle and Lemma 2 imply v ≥ u in the interior

of Br(x0).
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Using the PoincarÂe inequality, the identity
∫

Br(x0)
∇(u − v) · (A(x)∇v) dx = 0, and the

minimizing property of u, we have

1

r2

∫

Br(x0)

|u − v|2 dx ≤ C

∫

Br(x0)

|∇(u − v)|2 dx

≤ Cλ−1

∫

Br(x0)

[∇u · (A(x)∇u) − ∇v · (A(x)∇v)] dx

≤ Cλ−1

∫

Br(x0)

φ(x)1{u=0} dx

≤ Cλ−1∥φ∥Lq1 (Br(x0))|Br(x0) ∩ {u = 0}|1−1/q1 .

(6.6)

As above, let ρ = rα2/α1 . The Harnack inequality (applied to v) and the nondegeneracy

of u (Lemma 10) imply, for κ ∈ (0, 1) sufficiently small,

v(x) ≥ c sup
Br/2(x0)

u ≥ crα2 , x ∈ Bκρ(x0).

Since u(x0) = 0, the HÈolder continuity of u implies u ≤ C(κρ)α1 in Bκρ(x0). We therefore

have

v(x) − u(x) ≥ crα2 −C(κρ)α1 = (c −Cκα1 )rα2 ≥ c

2
rα2 ,

if we choose κ = [c/(2C)]1/α1 . With (6.6), we now have

|Br(x0) ∩ {u = 0}|1−1/q1 ≥ Kr−2+2α2ρd = Kr2(α2−1)+dα2/α1 ,

or

|Br(x0) ∩ {u = 0}| ≥ Krd(α2/α1−1/q2)q1/(q1−1).

Finally, in the case q1 = q2, we obtain |Br(x0) ∩ {u = 0}| ≥ Krd, as in the classical

theory. □

7. An example of a free boundary point with infinite jump

In this final section, we prove Theorem 4 by constructing an example that shows the

free boundary can indeed intersect the infinite set of φ.

For d ≥ 3 fixed, let m > 0 be a constant to be chosen later, and define

τ(r) :=
m(d − 2)

r − rd−1
, r ∈ (0, 1).

The function τ arises in the analysis of radially symmetric harmonic functions, which are

involved in our proof below. The minimum of τ is achieved at

r∗ =

(

1

d − 1

)
1

d−2

∈ (0, 1),

and τ(r∗) =
(

mrd−1
∗

)2
. Next, let r∗ =

1 + r∗
2

, and for fixed q > 1, define φ : B1 → (0,+∞]

by

φ(x) =































(

mrd−1
∗

)2
, |x| < r∗,

(|x| − r∗)
−1/q , r∗ ≤ |x| < r∗,

(

mrd−1
∗

)2
, r∗ ≤ |x| ≤ 1,
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and note that φ ∈ L
q

weak
(B1). We consider the minimization problem for

JI,φ(v) =

∫

B1

(|∇v|2 + φ(x)1{v>0}) dx, v ∈ H1
g(B1),

with g ≡ m on ∂B1 for some constant m. We claim that for m > 0 sufficiently small,

depending only on d and q, there is a minimizer u such that ∂{u > 0} intersects {φ(x) = ∞}.
Since φ is not a monotonic function of |x|, we cannot apply rearrangement methods to

conclude minimizers of JI,φ are radially symmetric. In fact, we will show that a non-

symmetric minimizer exists for certain choices of m.

On a technical note, our argument below assumes u is differentiable at free boundary

points where φ < ∞. This is not always true in the pointwise sense, but by understanding

solutions to the Bernoulli problem in the viscosity sense, our argument (which uses nothing

more than the comparison principle) can be made rigorous (see, for instance, [25, Section

6] for a detailed discussion of the meaning of the free boundary condition |∇u|2 = φ in

the viscosity sense). We omit the details about this issue because it concerns the boundary

condition at points where φ is finite, which is suitably explained by existing theory.

First, we define a useful class of comparison functions: radially symmetric functions

that are zero in Br for some r ∈ (0, 1), and harmonic in B1 \Br, with boundary values equal

to m on ∂B1. Explicitly, these functions are given by

(7.1) ur(x) =















0, |x| < r,

m
r2−d−1

(r2−d − |x|2−d), |x| ≥ r,

and they have energy

JI,φ(ur) = ωd

∫ 1

r

(

m2(d − 2)2

(r2−d − 1)2
ρ2−2d + φ(ρ)

)

ρd−1 dρ

= ωd

(

m2(d − 2)

r2−d − 1
+

∫ 1

r

φ(ρ)ρd−1 dρ

)

,

where ωd is the measure of Sd−1, and we have written φ(ρ) = φ(|x|). For any r ∈ (0, 1), the

function ur is admissible for the minimization problem.

Now, let u be a minimizer. We claim that {u = 0} cannot be empty, if m is chosen

sufficiently small. Indeed, if u is positive in all of B1, then it is harmonic in B1 and must

be identically equal to m. Then JI,φ(u) =
∫

B1
φ dx. To rule out this case, we would like to

find r ∈ (0, 1) such that ur defined by (7.1) has energy less than
∫

B1
φ dx, or in other words,

(7.2) m2 d − 2

r2−d − 1
<

∫ r

0

φ(ρ)ρd−1 dρ.

Choosing r = r∗, we see that
∫ r∗

0

φ(ρ)ρd−1 dρ ≥
∫ r∗

r∗

φ(ρ)ρd−1 dρ =

∫ r∗

r∗

(ρ − r∗)
−1/qρd−1 dρ.

Therefore, by choosing m > 0 small enough that

m2 <
(r∗)2−d − 1

d − 2

∫ r∗

r∗

(ρ − r∗)
−1/qρd−1 dρ,

we ensure (7.2) is satisfied when r = r∗, so u ≡ m cannot be a minimizer. Note that such m

can be chosen depending only on d and q.



ON THE BERNOULLI PROBLEM WITH UNBOUNDED JUMPS 21

Now, since {u = 0} is not empty, let x1 and x2 be the points on ∂{u = 0} of smallest and

largest magnitude, respectively. Define r1 = |x1| and r2 = |x2|. For i = 1, 2, let ui := uri

denote the function defined in (7.1) with r = ri.

By our choice of x1 and x2, we have u1 ≥ u ≥ u2 on ∂{u > 0}. The comparison principle

implies u1 ≥ u ≥ u2 in all of B1, and

(7.3) ∂ru1(x1) ≥ ∂ru(x1), ∂ru2(x2) ≤ ∂ru(x2),

where ∂r is the derivative in the radial direction. These two inequalities will imply useful

bounds on r1 and r2.

Starting with r2, the definition of u2 implies, with (7.3),

∂ru(x2) ≥ (d − 2)m

r2 − rd−1
2

= τ(r2).

On the other hand, since u is a minimizer, we have ∂ru(x2) =
√

φ(x2), so that

(7.4)
√

φ(x2) ≥ τ(r2).

This implies r2 = |x2| must lie in the part of [0, 1] where
√
φ ≥ τ. Choosing m > 0 smaller

if necessary (depending only on d and q) we can ensure that

lim
r→r∗−

φ(r) = (r∗ − r∗)
−1/q >

(d − 2)m

r∗ − (r∗)d−1
= τ(r∗).

Since τ is increasing on (r∗, 1), we also have

τ(r∗) > τ(r∗) = lim
r→r∗+

φ(r).

Therefore, the inequality
√

φ(x2) ≥ τ(r2) implies r2 ∈ [r∗, r
∗].

Regarding r1, we similarly have from (7.3) that

(7.5) τ(r1) =
(d − 2)m

r1 − rd−1
1

≥ ∂ru(x1) =
√

φ(x1)

Since
√

φ(r) > τ(r) for r ∈ (r∗, r
∗), inequality (7.5) implies r1 ∈ [0, r∗] ∪ [r∗, 1]. Since

r1 ≤ r2 by definition and r2 ∈ [r∗, r
∗], we in fact have r1 ∈ [0, r∗] ∪ {r∗}.

Next, we would like to rule out the case r1 = r2 = r∗. In this case, the inequalities

u1 ≥ u ≥ u2 imply u1 = u = u2, and therefore u is given by (7.1) with r = r∗. In particular,

∂ru(x2) = τ(r∗). But in the set {u > 0} = B1 \ Br∗ , there holds φ ≡
(

mrd−1
∗

)2
, so one should

have ∂ru(x2) = mrd−1
∗ = τ(r∗) < τ(r

∗) for any solution of the Bernoulli problem, which is a

contradiction. We conclude that

r1 ≤ r∗ ≤ r2.

Since u1 ≥ u ≥ u2, we clearly have Br1
⊂ {u = 0} ⊂ Br2

, and with r1 ≤ r∗ ≤ r2, this

implies the existence of at least one point x0 ∈ ∂{u > 0} with |x0| = r∗, and such that

{φ(x) = +∞} = ∂Br∗ intersects {u > 0} ∩ Bρ(x0) for any ρ > 0, as claimed.

For any x0 ∈ ∂Br∗ , there is a cone Ξ with vertex at x0 and aperture π (i.e. Ξ is a half-

plane), such that

|{φ(x) > t} ∩ Br(x0) ∩ Ξ| ≥ min
(

crd−1t−q, |Br(x0) ∩ Ξ|
)

,

for r > 0 sufficiently small. From Lemma 11 with p = q and σ = d − 1, we have

u(x) ≥ C|x − x0|1−1/(2q) for x ∈ Ξ near x0. We conclude that |∇u(x)| → ∞ as x approaches

x0 from inside Ξ ∩ {u > 0}.
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