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A R T I C L E I N F O A B S T R A C T

Editor: P. Brax We present the first fully and inherently relativistic derivation of the thermal Sunyaev-Zel’dovich effect. This work 
uses the formalism historically applied to compute radiation spectra emerging from inverse Thomson/Compton 
sources of x-ray radiation. Comparing our results to the traditional approach based on relativistically-corrected 
classical Kompaneets equation, we find small, but systematic differences. Most notable are the modest (⩽ 10%) 
differences in the crossover frequency where the spectral distortion due to the Sunyaev-Zel’dovich effect vanishes, 
and the quadratic scaling of the energy shift with the electron cloud temperatures.
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 Introduction

When cosmic microwave background (CMB) radiation scatters off 
t intracluster electron gas, it results in a small, yet measurable shift 
 the CMB photons distribution. This effect is called the Sunyaev-
l’dovich effect (SZE) [1,2]. There are two components of the SZE: the 
ermal SZE (tSZE) due to Thomson scattering (special case of Comp-
n scattering when the electron recoil is negligible) of CMB photons 
 hot electrons, and the kinetic SZE due to the cluster moving with re-
ect to the CMB rest frame. The equations describing tSZE were initially 
rived from the Kompaneets equation [3], a kinetic equation based 
 non-relativistic electron distribution. After observing that intraclus-
r gas is extremely hot, with 𝑘𝐵𝑇𝑒 ≲ 15 keV [4–7], it became clear 
at the classical derivation of the formulae quantifying the tSZE had 
 be corrected to capture relativistic effects. Over the years, a number 
 relativistic extensions of the Kompaneets kinetic equation have been 
ported [8–23]. All of these generalizations agree for 𝑘𝐵𝑇𝑒 ≲ 15 keV, 
propriate for galaxy clusters.
Importantly, the SZE can be used to estimate the present value of 
e Hubble parameter 𝐻0, and as such weigh in on one of the most im-
rtant problems currently plaguing cosmology—the Hubble tension. 
results from the fact that measurements of 𝐻0 performed with low-
dshift quantities, e.g., the Type IA supernova [24], consistently yield 
lues larger than measurements from quantities originating at high-
dshift, e.g., fits of CMB radiation [25]. The 5𝜎 discrepancy between 
e two estimates is almost certainly not due to systematic errors in the 
easurements [26,27]. Adding the SZE as yet another precision method 
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for estimating 𝐻0, as was reported in, e.g., Ref. [28–30], may help re-
solve the Hubble tension.

In this Letter, we present the first fully and intrinsically relativistic 
derivation of tSZE, based on computing radiation spectra emerging from 
relativistic Thomson scattering. This approach draws from the consider-
able body of work done in the context of Thomson/Compton sources 
of x-ray radiation (for an overview, see Ref. [31]). Unlike the orig-
inal Kompaneets equation, the new approach works equally well for 
up-Comptonization (or inverse Thomson scattering, when energy trans-
fer is from an electron to a photon) as it does for down-Comptonization 
(or Thomson scattering, when the energy transfer is from a photon to an 
electron). Ultimately, the tSZE is a mixture of both of these effects. We 
compare the results from our new, fully relativistic approach to those 
from the numerical solution of the relativistic Kompaneets equation re-
ported in Ref. [21].

2. Scattering kernel

The tSZE effect on the intensity 𝐼 of the CMB is traditionally quan-
tified by the generalized Kompaneets equation [32]:

Δ𝐼SZE(𝜈) = 𝐼SZE(𝜈) − 𝐼CMB(𝜈) = 𝑔(𝑥)𝐼0𝑦, (1)

where 𝜈 is the photon frequency, 𝐼0 = 2(𝑘𝐵𝑇CMB)3∕(ℎ𝑐)2, 𝑇CMB the tem-
perature of the CMB today, ℎ the Planck constant, 𝑘𝐵 the Boltzmann 
constant, 𝑐 the speed of light and the 𝑔(𝑥) is the frequency dependence 
in terms of 𝑥 ≡ ℎ𝜈∕(𝑘𝐵𝑇CMB):
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𝑥) = 𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
(
𝑥

𝑒𝑥 + 1
𝑒𝑥 − 1

− 4
)

𝐹 (𝑇𝑒, 𝑥)

≡ 𝑔0(𝑥)𝐹 (𝑇𝑒, 𝑥), (2)

here the function 𝐹 (𝑇𝑒, 𝑥) is the relativistic correction which is either 
ven as a asymptotic expansion in 𝑥, e.g. [17],

(𝑇𝑒, 𝑥) = 1 + 𝛿SZE(𝑥,𝑇𝑒), (3)

 as a numerically evaluated generalized relativistic Kompaneets equa-
n [20,21]. Non-relativistic Kompaneets equation corresponds to 
(𝑇𝑒, 𝑥) = 1. Here 𝑇𝑒 is the temperature of the electron gas, and 𝑦 is 
e Compton parameter:

≡ 𝜎T
𝑚𝑒𝑐

2

𝑙

∫
0

𝑛𝑒(𝑥)𝑘𝐵𝑇𝑒(𝑥)𝑑𝑥, (4)

here 𝑚𝑒 is the mass of the electron, and 𝜎T is the Thomson cross-
ction. For a constant density and temperature (𝑛𝑒 = 𝑐𝑜𝑛𝑠𝑡. ≡ 𝑛𝑒,0, 
= 𝑐𝑜𝑛𝑠𝑡.) spherical intracluster electron gas cloud of diameter 𝑙, the 
mpton parameter is

≈
𝑘𝐵𝑇𝑒

𝑚𝑒𝑐
2 𝑛𝑒,0𝜎T𝑙. (5)

The CMB photon number density, and the corresponding energy 
nsity and intensity (not including anisotropies) are described by the 
anck distribution:

MB(𝜈) =
8𝜋
𝑐3

𝜈2

𝑒ℎ𝜈∕(𝑘𝐵𝑇CMB) − 1
,

MB(𝜈) ≡ 𝑐

4𝜋
ℎ𝜈𝑛CMB(𝜈). (6)

hen integrated over the frequencies 𝜈, Eqs. (1) and (6) provide the 
tal intensity difference due to the tSZE and the total intensity of the 
B, respectively:

𝐼SZE,tot =
4𝜋𝐼0𝑦𝑘𝐵𝑇CMB

ℎ𝑐 ∫ 𝑔(𝑥)𝑑𝑥,

CMB,tot =
8𝜋5(𝑘𝐵𝑇CMB)4

15(ℎ𝑐)3
. (7)

erefore, the relative energy shift due to the tSZE is

≡ Δ𝐼SZE,tot

𝐼CMB,tot
. (8)

t the lowest order, with relativistic effects 𝛿SZE neglected, ∫ ∞
0 𝑔(𝑥)𝑑𝑥 =

∞
𝑔0(𝑥)𝑑𝑥 = 4𝜋4∕15, leading to 𝑠 = 4𝑦. Without relativistic effects, 

is model explicitly conserves the total number of photons because 
∞

𝑔0(𝑥)∕𝑥𝑑𝑥 = 0. However, with relativistic corrections 𝛿SZE included 
 an asymptotic expansion like in Ref. [17], each new order correction 
ust separately ensure conservation of photons.
The intracluster medium (ICM) primarily consists of diffused, ionized 
drogen, with trace amount of heavier elements [33]. It has tradition-
ly been modeled as an isothermal sphere of electrons, simplifying the 
rivation of mass-temperature relationships. However, recent observa-
ns and simulations show ICM to be neither isothermal nor perfectly 
herical [34]. Here we model ICM as hot, relativistic gas of electrons. 
e number density of the relativistic electron gas is given by the dis-
ibution:

(𝑝)𝑑3𝑝 ≡ 𝑛𝑒,0𝑛̃𝑒(𝑣)𝑑3𝑝 =
𝑛𝑒,0

4𝜋𝜃𝑒𝐾2(1∕𝜃𝑒)
𝑒
− 𝛾

𝜃𝑒 𝑑(cos 𝜃̄)𝑑𝜙̄𝛾5𝛽2𝑑𝛽, (9)

here 𝑝 ≡ 𝑚𝑒𝑐𝛾𝛽, 𝑑𝑝 = 𝑚𝑒𝑐𝛾
3𝑑𝛽; 𝛽 = 𝑣∕𝑐 and 𝛾 = 1∕

√
1 − 𝛽2 are the 

ual relativistic quantities, (𝜃, 𝜙̄) are the angles of the electron motion, 
d 𝜃𝑒 = 𝑘𝐵𝑇𝑒∕(𝑚𝑒𝑐

2). The modified Bessel function 𝐾2 is needed to 
rmalize the momentum distribution function. The expression above 
mplifies to the classical Maxwell-Boltzmann distribution in the limit 
2

 small temperatures 𝑇𝑒 (small electron velocities 𝑣): cl
Physics Letters B 859 (2024) 139119

g. 1. Comparison of the two electron distributions at different temperatures: 
lativistic (solid lines, Eq. (9)) and the Maxwell-Boltzmann (dashed lines, 
. (10)). Relativistic 𝛽 = 𝑣∕𝑐 is on the 𝑥-axis. The parameters are 𝑙 = 2.5 Mpc, 

,0 = 1000 m−3. At each temperature, the two distributions are normalized to 
(0) of the Maxwell-Boltzmann distribution.

(𝑣)𝑑3𝑣 ≡ 𝑛𝑒,0𝑛̃𝑒(𝑣)𝑑3𝑣 =
𝑛𝑒,0(

2𝜋𝜃𝑒

) 3
2

𝑒
− 𝛽2

2𝜃𝑒 𝑑(cos 𝜃̄)𝑑𝜙̄𝛽2𝑑𝛽, (10)

 may be found by taking the asymptotic value for 𝐾2 . The differences 
tween the relativistic electron distribution in Eq. (9) and the Maxwell-
ltzmann distribution in Eq. (10) at various temperatures are shown 
 Fig. 1.
We derive our fully relativistic results by first considering the details 

 Thomson scattering of a single CMB photon with a single hot electron 
 enforcing conservation of their relativistic 4-momenta. Let us define 
e angle that photons make with that line of sight as (Θ, Φ). An elec-
on has a velocity 𝑣 and angles (𝜃̄, 𝜙̄). Then, before the collision, the 
omenta of the electron and the photon are, respectively:

= 𝑚𝑒𝛾𝑐(1, 𝛽 sin 𝜃̄ cos 𝜙̄, 𝛽 sin 𝜃̄ sin 𝜙̄, 𝛽 cos 𝜃̄),

= ℎ𝜈

𝑐
(1, sinΘcosΦ, sinΘsinΦ, cosΘ). (11)

e collision scatters a photon into angles (𝜃, 𝜙), so:

= 𝑚𝑒𝛾
′(𝑐, 𝑝′

𝑥
, 𝑝′

𝑦
, 𝑝′

𝑧
), (12)

≡
(

ℎ𝜈′

𝑐
,𝒌′

)
= ℎ𝜈′

𝑐
(1, sin𝜃 cos𝜙, sin𝜃 sin𝜙, cos𝜃).

e conservation of 4-momentum, p+ k = p′ + k′, relates the incoming 
d scattered photon frequencies:

(𝜈;𝑣, 𝜃̄, 𝜙̄,Θ,Φ, 𝜃,𝜙)

= 𝜈
1 − 𝛽(sin 𝜃̄ cos 𝜙̄ sinΘcosΦ + sin 𝜃̄ sin 𝜙̄ sinΘsinΦ + cos 𝜃̄ cosΘ)
1 − 𝛽(sin 𝜃̄ cos 𝜙̄ sin𝜃 cos𝜙+ sin 𝜃̄ sin 𝜙̄ sin𝜃 sin𝜙+ cos 𝜃̄ cos𝜃)

≡ 𝜈𝑆(𝑣, 𝜃̄, 𝜙̄,Θ,Φ, 𝜃,𝜙). (13)

is the scattering kernel which captures the dependence of the scattered 
oton energy change on the collision kinematics and geometry. There 

 no nonlinear ℎ𝜈∕(𝛾𝑚𝑒𝑐
2) term in the denominator because electron 

coil is neglected in Thomson scattering. To make explicit contact with 
rlier work, in the special case of back-scattering typical for Thomson 
urces of x-ray radiation, 𝜃̄ = 0, Θ = 𝜋, Eq. (13) reduces to the familiar 
1]

= 𝜈
1 + 𝛽

1 − 𝛽 cos𝜃
. (14)

is important to note that the scattering which occurs as the tSZE in-

udes both up- and down-Comptonization. Which of the two takes place 
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g. 2. Normalized distribution of values for the scattering kernel 𝑆 , Eq. (13). 
ay region shows the Thomson scattering of photons, when 𝜈′ < 𝜈 (energy 
nsfers from photons to electrons), while the light region is for the inverse 
omson scattering of photons, when 𝜈′ > 𝜈 (energy transfers from electrons 
 photons). The parameters are 𝑙 = 2.5 Mpc, 𝑛𝑒,0 = 1000 m−3 and 𝑇𝑒 = 5 keV 
in lines), 𝑇𝑒 = 10 keV (medium lines), and 𝑇𝑒 = 15 keV (thick lines), with 20 
illion random samples of the 7-dimensional domain of 𝑆(𝑣, ̄𝜃, 𝜙̄, Θ, Φ, 𝜃, 𝜙), 
nned on 1000 grids. The inset shows the same plot on log-log scale, revealing 
e power-law tails of the function.

pends on kinematics and geometry, as quantified by 𝑆 . Fig. 2 shows a 
stribution of values for 𝑆 . A different description of scattering kernels 
 all regimes of photon/electron interaction is reported in Ref. [35]. 
e linear Thomson scattering kernel, appropriate for the tSZE, which 
e use here, is recovered in their limit 𝜔0 ≡ ℎ𝜈∕(𝑚𝑒𝑐

2) → 0. This is ev-
ent when comparing the two cases for 𝑇𝑒 = 5 keV: the thin curve in 
e inset of our Fig. 2 and the solid black curve for 𝜔0 = 0.05 in their 
g. 6a. In the limit 𝜔0 → 0, the scattering kernels in Ref. [35] converge 
 the same shape. For tSZE, where on average 𝜔0 ≈ 4.6 × 10−10, each 
B photon has the same scattering kernel (𝜔0 → 0). Overall, the net ef-

ct is energy increase, as numerically confirmed by the mean expected 
lue of the scattering kernel defined in Eq. (13), ⟨𝑆⟩ > 1.
The polarization-averaged number density of photons scattered by 

 electron cloud is

(𝜈′) =

𝑙

∫
0

∫ ∫ ∫ ∫ 𝑛CMB(𝜈(𝜈′))
𝑑𝜎

𝑑Ω
𝑛𝑒(𝑣)𝑑Ω𝐤𝑑Ω𝑠𝑑

3𝑣𝑑𝜃̂𝑑𝑥

𝑙𝑛𝑒,0 ∫ ∫ ∫ ∫ ∫ 𝑛CMB(𝜈′∕𝑆) 𝑑𝜎

𝑑Ω
𝑣2𝑛̃𝑒(𝑣)𝑑Ω𝐤𝑑Ω𝑠𝑑Ω𝐩𝑑𝑣𝑑𝜃̂, (15)

here 𝑑Ω𝐤, 𝑑Ω𝐩 and 𝑑Ω𝑠 are elements of solid angle for the photon 
fore scattering, electron before scattering and photon after scattering, 
spectively, and

𝜎

Ω
=

𝑟2
𝑒

𝛾2(1 − 𝜷 ⋅ 𝒌̂
′)2

[
1 −

𝑚2
𝑒
𝑐2

(𝐩 ⋅ 𝐤′)2

(
𝐤′ ⋅ 𝜖 − 𝐩 ⋅ 𝜖

𝐩 ⋅ 𝐤
𝐤 ⋅ 𝐤′

)2
]

, (16)

 the Klein-Nishina cross-section [36], 𝑟𝑒 is the classical electron ra-
us, 𝒌̂′ = 𝒌′∕|𝒌′|, and 𝜖 = (0, cos 𝜃̂, sin 𝜃̂, 0) is the polarization 4-vector 
 the incoming photon. The only term in the integrand in Eq. (15) which 
pends on polarization is the Klein-Nishina cross-section, so one can 
alytically compute its polarization-averaged expression, thereby re-
cing the dimensionality of the integral. Since the Klein-Nishina cross-
ction in Eq. (16) describes a collision in the reference frame in which 
e electron cloud is at rest its distribution isotropic. This obviates the 
gmentation of the cross-section with the Møller factor, as is done for 
e Kompaneets equation [21,37]. One can show by computing the dot 
3

oducts in Eq. (16) that the dependence on 𝜈 and 𝜈′ stemming from 𝜉
Physics Letters B 859 (2024) 139119

e 𝑘 and 𝑘′ terms cancels out—the Klein-Nishina cross-section is inde-
ndent of the photon energy, which holds only in the special case of 
ear Thomson scattering. This means that the probability 𝑝 of a photon 
attering by the intracluster electron cloud is frequency-independent—
e same proportion of CMB photons at all frequencies are scattered by 
e tSZE. After the tSZE, the total number density of the CMB photons 
comes:

ZE(𝜈) = (1 − 𝑝)𝑛CMB(𝜈) + 𝑛𝑠(𝜈). (17)

uation (15) is in the format which is standard for computing scat-
ring spectra from the inverse Thomson/Compton sources: an integral 
er the duration of the photon/electron interaction, governed by the 
ein-Nishina interaction cross-section. The argument of the photon dis-
ibution, 𝜈(𝜈′) = 𝜈′∕𝑆 , captures the redistribution of the photons via the 
attering kernel 𝑆 . Scattering emerging from inverse Thomson/Comp-
n sources is a special case of this formalism, with these restrictions: (i) 
e two species of particles are counter-propagating; (ii) the photons are 
early) back-scattered; and (iii) photon distribution 𝑛CMB is replaced 
 the electric field corresponding to the laser pulse.

 Results

Computing the number density of the photons scattered by the tSZE 
om Eq. (15) requires 8-dimensional numerical integration. We cross-
eck our Monte Carlo-based implementation with the results from 
state-of-the-art deterministic multidimensional integration code PA-
ANI, which is optimized for efficiency and accuracy on a massively 
rallel GPU platform [38].
To make contact with the previous work, e.g. [17,20,21], we multi-
y Eq. (17) by 𝑐ℎ𝜈∕(4𝜋)

ZE(𝜈) = (1 − 𝑝)𝐼CMB(𝜈) + 𝐼𝑠(𝜈),

𝐼𝑠(𝜈) =
𝑐

4𝜋
ℎ𝜈𝑛𝑠(𝜈), (18)

d

𝐼SZE(𝜈) = 𝐼SZE(𝜈) − 𝐼CMB(𝜈) = 𝐼𝑠(𝜈) − 𝑝𝐼CMB(𝜈). (19)

The tSZE scatters photons to nearby energies. This redistribution con-
rves the total number of photons

𝑛SZE(𝜈′)𝑑𝜈′ = (1 − 𝑝)∫ 𝑛CMB(𝜈)𝑑𝜈 + ∫ 𝑛𝑠(𝜈′)𝑑𝜈′

= ∫ 𝑛CMB(𝜈)𝑑𝜈 ≡ 𝑛CMB,0, (20)

hich implies that the probability of a CMB photon scattering by the 
ZE is

≡ ∫ 𝑛𝑠(𝜈′)𝑑𝜈′

∫ 𝑛CMB(𝜈)𝑑𝜈
=

𝑛s
𝑛CMB,0

, (21)

here 𝑛𝑠 ≡ ∫ 𝑛𝑠(𝜈′)𝑑𝜈′. Defining the scattering probability 𝑝 as in 
. (21) ensures explicit photon conservation. Fig. 3 shows the tSZE 
r the numerically computed Kompaneets equation using SZPack code 
ported in Ref. [21,22], and the new relativistic approach presented 
re.

The total intensity after accounting for the tSZE comes from the scat-
red photons and (1 − 𝑝) original photons:

ZE,tot = (1 − 𝑝)𝐼CMB,tot + 𝐼𝑠,tot , (22)

here

,tot =
𝑐

4𝜋 ∫ ℎ𝜈𝑛𝑠(𝜈)𝑑𝜈. (23)

e corresponding total energy shift for the new approach is then

𝐼SZE,tot − 𝐼CMB,tot 𝐼𝑠,tot
≡
𝐼CMB,tot

=
𝐼CMB,tot

− 𝑝, (24)
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g. 3. Comparison of the two calculations for the tSZE: the traditional approach 
ith the numerically computed relativistic Kompaneets equation [21] (dashed 
e), and the fully relativistic approach proposed here (solid line). Number den-
y 𝑛 is shown on the top and the intensity 𝐼 on the bottom. In order to show 
e relative magnitude of the SZE, the total number density and intensity of the 
scattered CMB are shown in dotted lines. The latter is to be compared to Fig. 2 
 Ref. [32]. The parameters are 𝑙 = 2.5 Mpc, 𝑛𝑒,0 = 1000 m−3 and 𝑇𝑒 = 10 keV.

hich can be compared to that from the numerically computed Kom-
neets equation using SZPack [21,22]. The comparison is shown in 
g. 4. While close at lower electron cloud temperatures (𝑘𝐵𝑇𝑒 ⩽ 18
V), the two estimates differ noticeably at larger temperatures. The 
nge of possible values spanned by the scattering kernel is 𝑆 ∈
−2(1 + 𝛽)−2, 𝛾2(1 + 𝛽)2

]
, obtained from Eq. (15). From this, we expect 

e energy shift to scale ∝ (𝑘𝐵𝑇𝑒)2, consistent with the spectra emerging 
om inverse Thomson/Compton sources of x-ray radiation. We indeed 
serve the quadratic dependence on 𝑘𝐵𝑇𝑒 for our 𝜉, while for the tra-
tional estimates it scales linearly with 𝑘𝐵𝑇𝑒. We obtained essentially 
e same plot when using fifth order asymptotic expansion as reported 
 Ref. [17] instead of the numerically computed Kompaneets equation 
om Ref. [21]. Our result agrees well with early N-body simulations of 
e tSZE, that found that for high temperature clusters (𝑘𝐵𝑇𝑒 ≳ 15 keV) 
lativistic corrections based on a fifth order expansion of the extended 
mpaneets equation seriously underestimate the SZE at high frequen-
es, with discrepancies in intensity as large as 5%, likely leading to 
10% error in estimating the Hubble parameter [18].
Finally, we study the crossover frequency, normalized as 𝑋0 =

0∕(𝑘𝐵𝑇CMB), at which the spectral intensity distortion vanishes. In 
non-relativistic model based on traditional Kompaneets equation, the 
4

ossover frequency is 218 GHz, independent of electron temperature, Ko
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g. 4. Comparison of the shift predicted in the fully relativistic case (solid cir-
es line, Eq. (24)), and the numerically computed relativistic Kompaneets equa-
n (solid squares, Ref. [21]). The parameters are 𝑙 = 2.5 Mpc, 𝑛𝑒,0 = 1000 m−3, 
 the electron cloud temperature 𝑇𝑒 is varied.

g. 5. Comparison of the normalized crossover frequency 𝑋0 predicted by the 
w calculation (solid circles), and the numerically computed relativistic Kom-
neets equation (solid line, as given in Ref. [21]) (compare with Fig. 6 from 
f. [17]). The parameters are 𝑙 = 2.5 Mpc, 𝑛𝑒,0 = 1000 m−3, as the electron 
oud temperature 𝑇𝑒 is varied. Dashed line denotes the crossover frequency of 
e non-relativistic Kompaneets equation, 218 GHz, which is independent of the 
ectron gas temperature.

tical depth, and all other parameters. Accurate determination of the 
0 values is crucial for the study of the SZE [10]. In Fig. 5, we plot the 
rmalized crossover frequency 𝑋0 as a function of 𝑘𝐵𝑇𝑒.

 Conclusion

In this Letter, we presented the derivation of the first fully and intrin-
cally relativistic description of the Thomson scattering process which 
ives the tSZE. Whereas the present state of the art approach to model-
g the tSZE, based on the generalized Kompaneets equation is relativistic 
 correction, our new derivation is relativistic by construction: it is based 
 conservation of relativistic 4-momenta and relativistic electron distri-
tion. Also by construction, the new calculation ensures photon conser-
tion. At the topmost level, the new approach computes the properties 
 a single CMB photon relativistically scattered off a single hot elec-
on (a well-understood fundamental process), and then it averages it 
er the distributions of the two colliding species; Lorentz-transformed 
ein-Nishina scattering cross-section controls the likelihood of scatter-
g. Upon comparing our new result to that based on the generalized 

mpaneets equation, we find that the two approaches exhibit non-
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gligible differences in the shapes of the scattered spectra, the nature 
 the dependence of the energy shift on the electron cloud temperature 
d the crossover frequency where the spectral intensity distortion van-
hes. Further studies, beyond the scope of the present work, are needed 
 fully realize the importance of the new results. Detailed comparison 
 the new approach to the observations can only be done after carefully 
counting for the kinetic SZE, systematics, contamination and confu-
on from astronomical sources.
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