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Abstract

In this paper, we extend the dataset statistics, model benchmarks, and per-
formance analysis for the recently published KABR dataset, an in situ dataset
for ungulate behavior recognition using aerial footage from the Mpala Research
Centre in Kenya. The dataset comprises video footage of reticulated giraffes
(lat. Giraffa reticulata), Plains zebras (lat. Equus quagga), and Grévy’s zebras
(lat. Equus grevyi) captured using a DJI Mavic 2S drone. It includes both spa-
tiotemporal (i.e., mini-scenes) and behavior annotations provided by an expert
behavioral ecologist. In total, KABR has more than 10 hours of annotated video.
We extend the previous work in four key areas by: (i) providing comprehensive
dataset statistics to reveal new insights into the data distribution across behavior
classes and species; (ii) extending the set of existing benchmark models to include
a new state-of-the-art transformer; (iii) investigating weight initialization strate-
gies and exploring whether pretraining on human action recognition datasets is
transferable to in situ animal behavior recognition directly (i.e., zero-shot) or as
initialization for end-to-end model training; and (iv) performing a detailed sta-
tistical analysis of the performance of these models across species, behavior, and
formally defined segments of the long-tailed distribution. The KABR dataset
addresses the limitations of previous datasets sourced from controlled environ-
ments, offering a more authentic representation of natural animal behaviors.
This work marks a significant advancement in the automatic analysis of wildlife
behavior, leveraging drone technology to overcome traditional observational chal-
lenges and enabling a more nuanced understanding of animal interactions in their
natural habitats. The dataset is available at https://kabrdata.xyz.

Keywords: Ungulates Behavior Recognition, Behavior Recognition from Drone
Footage, Zebra Behavior Recognition, Giraffe Behavior Recognition

1 Introduction

Behavior, in the context of animal studies, is broadly defined as the way an animal
acts or reacts in response to certain stimuli or situations [1]. Animal behavior encap-
sulates a wide range of activities and interactions that take place in an animal’s life.
Understanding animal behavior is vital not only for ecological and conservation rea-
sons [2], but also because it provides insights into how different species adapt to their
environment, how they communicate, and how they socialize [3]. These insights into
animal behavior have implications for a variety of fields, from wildlife management
and conservation to agriculture and veterinary medicine.

Studying animal behavior in natural habitats (i.e., in situ) is undeniably impor-
tant yet presents significant challenges [4]. The primary difficulty lies in locating
animals and positioning oneself to observe their behaviors unobscured and clearly.
Traditionally, two manual methods have been employed to observe animal behavior:
focal sampling, which involves recording the behavior of a selected individual for a
fixed period of time, and scan sampling, which entails recording the behavior of mul-
tiple individuals within a time interval as the observer gradually sweeps their line of
sight through a defined field of view, documenting the behaviors [5]. These methods,
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Fig. 1 Examples of the behavior of giraffes, Plains zebras, and Grévy’s zebras from our dataset. The
dataset includes eight distinct categories: “Walk”, “Graze”, “Browse”, “Head-Up”, “Auto-Groom”,
“Trot”, “Run”, and “Occluded”.

however, capture only a limited fraction of the full behavioral repertoire. The dual
challenges of restricted access and limited observations can potentially be mitigated
through remote monitoring methods. Increasingly, ethologists have been experiment-
ing with drone-based monitoring and computer vision-aided techniques to locate and
track individual animals, thereby enhancing the recording of behavior [6].

The development of modern computer vision technologies for studying animal
behavior critically depends on the construction of well-curated datasets. Recently, sev-
eral large-scale datasets have been proposed for animal behavior recognition [7, 8].
These datasets are typically sourced from online platforms such as YouTube, enabling
the collection of a diverse array of species and behaviors. However, there remains a
distinct need for behavior recognition datasets collected in situ (i.e., observed and
recorded directly in the natural habitat of the species) to provide a more natural
representation of behaviors. To improve the applicability of using drones to monitor
animal behavior in the wild, it is important to develop experimental datasets.

This work represents an initial step towards addressing these critical needs. By
introducing a novel dataset collected from drone videos of Kenyan wildlife in their
natural habitats, we aim to enhance the current resources available for the study
of animal behavior. This dataset, meticulously designed to reflect in situ scenarios,
marks a pioneering effort to capture the complexities of real-world animal behavior.
Specifically focused on Kenyan wildlife, it encompasses behaviors of giraffes, Plains
zebras, and Grévy’s zebras, though the methodology is applicable to other species and
environments. The current dataset includes a total of eight categories that describe
various animal behaviors. Examples of selected behaviors are shown in Figure 1.

This paper presents extended dataset statistics, model benchmarks, and perfor-
mance analysis for the KABR [9] dataset. Below, we restate the contributions of the
original dataset and list those offered by this extended work:

1. We introduce a novel technique for building a dataset for behavior recognition from
drone videos; see Figure 2. We detect and track each individual animal in each
high-resolution video and link the results into tracklets. For each tracklet, we create
a separate video, called a mini-scene, by extracting a sub-image centered on each
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detection in a video frame. This allows us to compensate for the movement of the
drone and provides a stable and zoomed-in representation of the animal. This also
preserves fine-grained details of animal behavior, such as auto-grooming.

2. We present a new dataset for animal behavior recognition collected in situ and
from drones, focused specifically on Kenyan wildlife. The dataset, referred to as
Kenyan Animal Behavior Recognition (KABR), comprises annotated mini-scenes
and provides a natural view of animal behavior in the wild, resulting in 10 hours
of annotated image sequences in the Charades [10] format.

3. We provide comprehensive dataset statistics and extensive behavior recognition
baselines using state-of-the-art deep learning models for video classification. The
transformer model, UniformerV2, is benchmarked on the KABR dataset, and the
original models are reevaluated. As part of this, we perform an in-depth analy-
sis of weight initialization strategies, comparing randomly initialized weights to
those pre-trained on human action recognition datasets (i.e., Kinetics-400 [11]) and
investigate model performance in an end-to-end and zero-shot setting. A detailed
examination of model performance across different segments of the data distribu-
tion, including class-wise and species-wise analysis, as well as a formal evaluation
of head and tail classes, is also provided. We report that the best-performing model
demonstrates mean average precision (mAP) of 66.36%, further highlighting the
challenging nature of the KABR dataset.

Our contributions provide a valuable resource for researchers studying animal behav-
ior and ecology, particularly in the context of wildlife conservation efforts in Kenya.
By accurately categorizing and analyzing animal behaviors, we can better under-
stand their natural patterns and inform conservation strategies to protect endangered
animals.

Small Data Statement

Collecting high-quality in situ data for animal behavior recognition presents significant
logistical challenges and requires specialized equipment and expertise. Our dataset,
meticulously gathered over a specific period and geographic area at the Mpala Research
Centre in Kenya is inherently smaller than large-scale datasets sourced from online
platforms. This localized and temporally constrained effort, however, offers detailed,
behavior-specific annotations crucial for in-depth behavioral analysis, contrasting with
the broader but less specific annotations of larger, generalized datasets.

The annotation process for our dataset involved manual labeling of behaviors in
each frame by a team of annotators supervised by an expert behavioral ecologist. This
labor-intensive process ensures high accuracy and reliability but limits the dataset’s
size. To address these limitations, we used state-of-the-art computer vision techniques
to detect and track individual animals in high-resolution drone videos. By creating
mini-scenes centered on each detected animal, we ensured a focused view of the ani-
mal’s behavior, enhancing data quality and usability. We also utilized interpolation
tools to fill in missing detections within tracks, improving continuity and accuracy.
This approach ensures that the extracted mini-scenes are robust and reliable despite
the limited dataset size.
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Fig. 2 A mini-scene is a sub-image cropped from the drone video footage centered on and surround-
ing a single animal. Mini-scenes simulate the camera as well-aligned with each individual animal in
the frame, compensating for the movement of the drone and ignoring everything in the large field of
view but the animal’s immediate surroundings. The KABR dataset consists of mini-scenes and their
frame-by-frame behavior annotation.

2 Related Work

Action classification and action detection are distinct tasks within the field of behav-
ior recognition [12]. Although both tasks involve the analysis and understanding of
actions, they differ significantly in their objectives and methodologies. The primary
goal of action classification is to assign a single category to an entire video, indicating
the action being performed [11, 13, 14]. This task focuses on identifying the overall
action without specifying its temporal extent or precise location within the video. In
contrast, action detection seeks not only to recognize the action category but also to
detect and localize the temporal extent of the action within a video [15]. This task
involves identifying the specific duration and position of the action. Our concept of
mini-scenes integrates both action detection and classification, providing a compre-
hensive approach to behavior recognition by simultaneously recognizing and localizing
actions within a video.

Action recognition datasets, such as Charades [10], UCF [7, 16, 17] and Kinetics [11,
13, 14] have been crucial in advancing the field of behavior recognition. However, these
datasets mainly focus on human actions, and the transferability of these datasets to
the study of animal behavior is relatively unexplored.

Animal Kingdom [8] and MammalNet [18] are both prominent large-scale datasets
for animal behavior recognition. These datasets offer comprehensive collections of
annotated video footage featuring a wide range of animal species over 50 and 539
hours, respectively. These datasets primarily rely on videos sourced from online plat-
forms such as YouTube and, therefore, lack the in situ aspect of data collection where
observations occur directly in animals’ natural habitats. APT-36K [19], also sourced
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from YouTube videos, further pushes to bridge the gap between behavior recognition
and animal detection with a collection of 80 video clips for each of the 30 species rep-
resented. In our paper, we contribute to bridging this gap by introducing a novel in
situ dataset specifically centered around Kenyan wildlife.

Prior research has explored the potential of drone videos in addressing challenges
related to animal behavior recognition. Notably, Koger et al. [20] introduced a deep
learning method focused on reconstructing landscapes from drone videos, enabling
the recognition of animal body postures and the ecological context in which they
reside. In contrast to the proposed approach, our method is focused on recognizing
animal behavior at the individual level rather than understanding the relationship
between animals and their landscapes. Additionally, the authors of [21] employed
drones to study spatial positioning within groups of feral horses, while [22] used drones
to track sharks, unveiling their movement patterns. Furthermore, drone technology
was harnessed by [23] for wildlife detection. These diverse applications underscore the
potential of drone videos in advancing our understanding of animal behaviors and
ecological dynamics.

Several other substantial datasets have been meticulously assembled with a strong
focus on recognizing animals [24–26], estimating their poses from images [27, 28],
or generating new views of images with animals [29]. For instance, the iNaturalist
dataset [30] contains over 859,000 images of more than 5,000 different types of plants
and animals. Similarly, the iWildCam [31] dataset contains 263,528 images from 323
locations of camera traps. These datasets provide a plethora of sample images, but
they are designed to classify species and count individual animals in images rather
than study their behavior.

Some works have proposed targeted solutions for recognizing the behavior of certain
animals. These solutions are often based on specific characteristics of the animal’s
behavior, which may not apply to other species. For instance, a study may focus on
recognizing the behavior of primates [32–35], pigs [36–38], goats [39], cows [40, 41],
meerkats [42], dogs [43], cats [44], or mice [45–48]. Though these specialized solutions
are useful for studying particular animal behaviors, they are typically smaller and
may not generalize well to other species or contexts. Therefore, it is important to
consider the scope and limitations of these targeted approaches when using them to
study animal behavior.

In contrast, our dataset offers a distinctive, valuable contribution to the field of
animal behavior recognition, as it focuses specifically on in situ drone videos of Kenyan
wildlife. Our innovative approach provides significant benefits over traditional video
analysis methods and supplies a valuable resource for researchers studying animal
behavior and ecology, particularly within the critical context of wildlife conservation
efforts in Kenya.

3 Dataset

3.1 Data Collection

The dataset of drone videos utilized in our study was collected by our research team
at the Mpala Research Centre in Kenya. The data collection period extended from
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January 6, 2023, to January 21, 2023. Throughout this period, our team under-
took multiple expeditions to various locations within the research center’s vicinity.
The drone flights were meticulously planned to capture the behaviors of giraffes,
Plains zebras, and Grévy’s zebras. These species were chosen due to their ecological
significance and conservation status in the region.

The dataset consists of 1,139,893 individual frames: 488,638 featuring Grévy’s
zebras, 492,507 of Plains zebras, and 158,748 frames featuring giraffes. In total, there
are 14,764 distinct sets of behaviors. To ensure high-quality footage, our team utilized
DJI Mavic 2S drones equipped with advanced camera capabilities. The videos were
recorded in 5.4K resolution at a speed of 29.97 frames per second, providing a smooth
and accurate representation of the animals’ behaviors. The drones were flown at vary-
ing altitudes and distances from the animals to capture a diverse range of perspectives.
The diversity in recording distances allows us to observe behaviors at different scales
and will eventually allow us to consider social dynamics within animal groups.

During the flights, the pilot carefully maneuvered the drones to capture the ani-
mals’ behaviors. Depending on the specific behavior being recorded, the pilot employed
a variety of flight paths, including vertical ascents and descents, circular orbits, and
linear trajectories. The maneuvers were executed with precision and consideration for
the animals’ well-being, maintaining a safe and non-intrusive distance.

3.2 Data Curation — Mini-Scenes

The raw drone video data typically contains multiple animals in each frame, with
each animal occupying a small fraction of the high-resolution image. In our dataset,
the maximum number of animals visible in a single frame is thirteen. Directly analyz-
ing these frames to extract behavior is impractical. Instead, we extract mini-scenes,
which are sub-videos of the full-resolution footage. Each mini-scene is centered on an
individual animal as it moves through the scene and is cropped to include the animal
and its immediate surroundings. This method allows us to compensate for much of
the drone’s movement and provides a stable, zoomed-in representation of the animal’s
behavior. This approach facilitates accurate tracking of individual animals within a
group. We anticipate that, in future work, this will be particularly useful for studying
social dynamics among animals.

To implement our mini-scenes approach, we utilized YOLOv8 [49] to detect the
animals in each frame and the SORT [50] tracking algorithm to follow their movement.
We then extract a window of size 400 pixels wide and 300 tall, values determined
empirically based on the characteristics of the animals observed and the surrounding
environment and properties of the drone. We pay special attention to ensuring that the
animal fits entirely into the mini-scene based on the dimensions of the bounding box.

We have developed a set of tools to facilitate the data annotation process. One of
the tools we used extensively was the interpolation tool, which filled in any missing
detections within a track, thereby improving the overall tracking quality. The tool
uses a linear interpolation algorithm that estimates an animal’s location based on its
previous movements, helping fill in gaps where automatic detection may have failed.
Our data processing pipeline is illustrated in Figure 3. All mini-scenes must satisfy
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a length criterion; if the total length of the behaviors in a mini-scene is less than 90
frames, we filter it out. The processing code is available at [51].

Fig. 3 Overview of the pipeline for KABR dataset preparation.

The mini-scenes we extracted using our pipeline are a crucial component of the
manual annotation process for behavior recognition. These mini-scenes provide a
zoomed-in and stable view of individual animals’ behavior, making it easier for human
annotators to accurately identify and label behavior.

3.3 Behaviors and Annotation

Our dataset contains a total of eight behavior categories, including “Walk”, “Graze”,
“Browse”, “Head Up”, “Auto-Groom”, “Trot”, “Run”, and “Occluded” as determined
by our expert behavioral ecologist looking at the properties of the videos. These include
three locomotion behaviors, “Walk”, “Trot” and “Run”, each representing a different
gait. “Run” could have been split into canter and gallop, but these were too infrequent
and indistinguishable. Two of the other behaviors refer to eating: “Graze” refers to the
behavior of an animal when they are eating grass or other vegetation, while “Browse”
describes the behavior of animals feeding on trees and bushes. For the remaining
categories, “Head Up” refers to the behavior of an animal when it lifts its head to look
around or observe its surroundings. Typically, these are different types of vigilance,
and “Auto-Groom” describes the behavior of animals when they groom themselves,
which can include licking, scratching, or rubbing their bodies. Finally, the category of
“Occluded” is used when the animal is not fully visible in the video footage. This can
occur due to obstructions such as trees or other animals blocking the view or due to
technical limitations of the camera or drone.

To ensure accurate behavior annotation in our dataset, we employed a team of 10
individuals, all of whom were trained in the process. The team was led by an expe-
rienced expert behavioral ecologist who oversaw the annotation process. We utilized
CVAT [52], a powerful tool for collaborative video annotation, to enable the team to
work together remotely and efficiently. Once the initial annotations were complete,
we took an additional step to ensure quality control by having all videos manually
reviewed by a designated annotator. Finally, we utilized an automatic filtering pro-
cess to split the annotated videos into convenient training iterations based on their
resulting length. This ensured that the training data was properly organized and could
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be effectively used in the development of deep learning models. Overall, our compre-
hensive annotation process and quality control measures ensure that our dataset is
accurate, reliable, and suitable for a wide range of research applications.
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Fig. 4 Distribution of frames (left) and mini-scenes (right) per action in the KABR dataset.

3.4 Data Split

We provide a train-test split of the mini-scenes for evaluation purposes, with 75% for
train and 25% for testing. No mini-scene was divided by the split. The splits ensured
a stratified representation of giraffes, Plains zebras, and Grévy’s zebras.

3.5 Class Distribution

Our dataset exhibits a long-tailed distribution, signifying a considerable disparity in
the count of samples across the behavior categories. This is expected since certain
behaviors are considerably more frequent in animals’ natural settings compared to
other behaviors. The distribution of classes is shown in Figure 4. Similar imbalances
occur in recent larger datasets [8, 18, 19] scraped from YouTube.

To characterize the imbalance in our dataset, classes are categorized into head and
tail segments as defined in [53, 54]. Specifically, we consider classes that contribute
50% of the training samples as head classes and the rest as tail classes. As shown in
Figure 4, the two head classes, “Walk” and “Graze”, dominate the class distribution,
although “Head Up” also contributes a significant proportion of samples.

9



Plains Zebras Grevy’s Zebras Giraffes
0

2000

4000

N
o
.

o
f

m
in

i-
sc

en
es

Fig. 5 Distribution of mini-scenes per species in the KABR dataset.

3.6 Species Distribution

Figure 5 shows that the dataset is also somewhat imbalanced with respect to species.
While the number of samples for both Zebra species is relatively close, there are sig-
nificantly fewer samples for Giraffes. Additionally, Figure 6 highlights that the classes
are not uniformly distributed across species. For example, the most common and
rare classes for each species are different. Furthermore, examples of each class are not
present for every species; the “Graze”, “Auto-Groom”, “Trot”, and “Occluded” behav-
iors are observed exclusively in the Zebra species, while “Browse” is only observed for
Giraffes.
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4 Experiments

To comprehensively assess the performance of different models on our dataset, we
conducted evaluations using four well-known architectures: I3D [55], SlowFast [56],
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X3D [57], and UniFormerV2 [58]. Models were selected based on SOTA performance
achieved for human action recognition datasets and for comparison with other animal
behavior recognition benchmarks [8, 18, 35]. The key computational and training
details are described in the following section and reported in Table 1.

4.1 Setup

All models were trained for 120 epochs. During training, we used a batch size of 64.
To improve the model’s performance and reduce the risk of overfitting, we applied
data augmentation techniques during training. Specifically, we used horizontal flipping
to randomly mirror the input frames horizontally and color augmentations to ran-
domly modify the brightness, contrast, and saturation of the input frames. To address
the long-tailed class distribution, we employed the EQL [59] loss function described
in Equation 1, which selectively ignores gradients for rare categories, enabling the
learning of rare categories during network parameter updates.

LEQL = −
C∑

j=1

wj log(p̂j) (1)

C is the total number of categories; p̂j is the predicted probability for class j; wj

is the weighting factor applied to the loss of class j, aimed at reducing the negative
gradient contribution from frequent categories for rare categories:

wj = 1− E(r) · Tλ(fj) · (1− yj) (2)

E(r) is an indicator function that equals 1 when the region proposal r belongs to
the foreground, and 0 otherwise; Tλ(fj) is a threshold function based on the frequency
fj of class j, where λ is a frequency threshold distinguishing rare categories; yj is the
ground truth label for class j.

Table 1 The total number of parameters, gigaflops (GFLOPs), choice of optimizer, sample rate
(SR), batch size (BS), and weight initialization (WI) strategy for each model are reported. K-400
indicates Kinetics-400 pre-trained weights and 400M+K710 indicates CLIP-based pretraining on
CLIP-400M [60] followed by post pretraining on Kinetics-710.

Model Optimizer SR BS WI Params (M) GFLOPs

X3D-L [9] SGD 16x5 5 Random 5.35 17.74
I3D SGD 16x5 64 K-400 27.24 116.47
SlowFast SGD 16x5, 4x5 64 K-400 33.57 32.82
X3D-L SGD 16x5 64 K-400 5.35 17.74
UniformerV2-B AdamW 16x5 64 400M+K710 114.25 148.27

I3D and X3D were trained with 16 input frames with a sampling rate of 5. For
SlowFast, the Slow branch was trained with 16 input frames with a sampling rate of
5, and the Fast branch was trained with 4 input frames with a sampling rate of 5.

Models were evaluated using mAP, precision, recall, and F1-score. As described in
Section 3.5, behavior classes were grouped, based on class frequency, into head and tail
segments, and mAP is reported for each segment. Results for each model are reported
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at the best performing epoch (see Figure 7 to compare model performance over all
epochs).

4.2 Results

As shown in Table 2, the X3D model initialized with Kinetics-400 pre-trained weights
outperforms the other models with respect to mAP. It achieves the highest overall
mAP of 66.36%, narrowly surpassing SlowFast at 66.10%. The X3D model also demon-
strates superior results for both head and tail classes, with mAP scores of 96.96% and
56.16%, respectively. The SlowFast model shows strong overall performance, achiev-
ing the highest recall (65.28%) and F1-score (65.82%), while the I3D model achieves
the highest precision (67.17%). The difference in overall mAP between the best (X3D)
and worst (I3D) performing models is approximately 1.5%, indicating that while there
are differences in model performance, they are relatively small. Additionally, all mod-
els perform exceptionally well on head classes (mAP > 95% for all models), but there
is a significant drop in performance for tail classes (mAP ranging from 50.58% to
56.16%). This highlights the ongoing challenge of recognizing less frequent behaviors,
a common issue in long-tailed recognition tasks.

Table 2 Behavior recognition benchmarks. The precision (P), recall (R), and F1 score (F1)
are reported for the I3D, SlowFast, X3D, and UniformerV2 models. Each model is evaluated in an
end-to-end (E2E) and zero-shot (ZS) setting. The batch size (BS) and weight initialization (WI)
strategy are also shown, where K-400 indicates Kinetics-400 pre-trained weights and 400M+K710
indicates CLIP-based pretraining on [60] followed by post-pretraining on Kinetics-710 [58]. The
results from the previous SOTA model are highlighted in gray, and the highest scores across all
metrics are shown in bold for each evaluation setting.

Method BS WI
mAP (%)

P R F1
Overall Head Tail

E2E

X3D-L [9] 5 Random 61.94 96.53 50.40 62.46 61.87 61.53
I3D 64 K-400 65.06 96.81 54.48 67.17 62.94 64.52
SlowFast 64 K-400 66.10 96.72 55.90 67.05 65.28 65.82
X3D-L 64 K-400 66.36 96.96 56.16 66.44 63.65 64.70
UniformerV2-B 64 400M+K710 61.78 95.38 50.58 64.37 54.82 57.41

ZS

I3D 64 K400 15.74 37.45 8.51 14.10 72.72 21.16
SlowFast 64 K400 13.69 36.16 6.19 14.00 26.94 9.03
X3D-L 64 K400 14.50 34.76 7.74 14.81 49.32 19.26
UniformerV2-B 64 400M+K710 12.74 31.93 6.34 11.01 11.39 10.48

ZS

I3D 64 Random 18.41 50.58 7.69 4.66 62.50 7.63
SlowFast 64 Random 11.95 30.13 5.89 11.41 61.81 16.01
X3D-L 64 Random 12.49 32.87 5.70 10.41 65.86 15.66
UniformerV2-B 64 Random 17.80 43.14 9.36 17.17 13.53 8.97

Furthermore, Table 2 shows that all models initialized with Kinetics-400 pre-
trained weights outperform the best-performing baseline reported earlier in [9]. The
same model architecture (i.e., X3D) achieves a ∼ 4% improvement in mAP under
this training setup. Additionally, while performance is comparable for head classes,
significant improvement is observed for tail classes.

In the zero-shot setting, performance drops significantly across all models. When
compared to models initialized with either Kinetics-400 or 400M+K710 weights, the
I3D model performs best, achieving the highest mAP scores for overall (15.74%), head
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(37.45%), and tail (8.51%) classes, as well as the best recall (72.72%) and F1 score
(21.16%). Interestingly, when initialized with random weights, the I3D outperforms its
Kinetics pre-trained counterpart, improving on overall (18.41%) and head (50.58%)
mAP scores. This trend is repeated by the UniformerV2-B model, which outperforms
its pre-trained counterpart across all metrics except the F1 score. These results sug-
gest that while pre-training on large-scale human action recognition datasets, such
as Kinetics-400 [11], clearly provide a stronger initialization for end-to-end training,
they may not transfer well directly to animal behavior, as evidenced in the zero-shot
behavior recognition results.

The mAP curves displayed in Figure 7 show that most models maintain mAP above
60% (mAP > 0.60) throughout the training process. Generally, the best performance
is achieved by the X3D and SlowFast models. The SlowFast model achieves consis-
tently higher mAP earlier in training, outperforming other models by approximately
2-3% (mAP=0.02-0.03) on average. However, in the later epochs (epoch > 50), X3D
demonstrates superior performance, exceeding SlowFast by 1-2% mAP. By the final
epoch, X3D achieves the highest mAP, followed by SlowFast, I3D, and UniformerV2,
respectively. This convergence behavior suggests that while SlowFast and X3D have
largely stabilized, I3D may benefit from extended training, and UniformerV2 requires
further optimization to prevent overfitting.
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Fig. 7 A comparison of mAP across 120 training epochs on the validation split for the I3D, SlowFast,
X3D, and UniformerV2 models.

4.3 Species-wise evaluation

While the differences in overall performance are relatively small, class-wise perfor-
mance varies across models and species. As shown in Table 3, the SlowFast model
demonstrates the highest mean performance for Giraffes and Plains zebras at 83.5%
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and 66.3%, respectively, while the I3D model achieves the best results for Grévy’s
zebras at 70.6%.

Table 3 Species-wise action recognition benchmarks. Results for the I3D, SlowFast, X3D,
and UniformerV2 models for Giraffes (G), Plains zebra (ZP), and Grévy’s zebras (ZG) for each
available action class. The actions are ordered as follows: Walk , Graze, Browse, Head up,
Auto-Groom, Trot, Run, Occluded. The head classes, Walk and Graze, are located on the first two
rows of the table. Dashes (-) indicate classes that are not observed for a particular species.

I3D SlowFast X3D UniformerV2
Mean Std

G ZP ZG G ZP ZG G ZP ZG G ZP ZG

96.5 94.0 99.1 96.8 94.3 98.7 97.3 95.3 98.9 92.7 93.9 97.6 96.25 2.0
- 96.6 97.6 - 97.2 95.3 - 96.7 95.6 - 96.4 95.8 96.40 0.7

40.5 - - 55.2 - - 43.1 - - 54.4 - - 48.30 6.5
95.8 93.2 94.0 94.1 92.8 95.0 94.3 93.6 94.6 89.9 93.1 94.3 93.72 1.4
- 16.9 9.1 - 10.5 0.3 - 15.6 7.1 - 15.9 7.3 10.31 5.3
- 23.7 73.7 - 54.0 78.4 - 31.0 76.8 - 43.7 76.7 57.25 20.8

72.5 69.3 89.5 87.8 97.0 89.1 88.6 81.9 91.3 55.9 92.2 82.1 83.10 11.2
- 15.9 31.2 - 18.4 21.9 - 18.7 21.1 - 27.7 23.8 22.33 4.7

76.3 58.5 70.6 83.5 66.3 68.3 83.0 61.8 69.3 73.2 66.1 68.2

For head classes (highlighted in gray), all models perform strongly. For the “Walk”
action, X3D attains the best score for Giraffes (97.3%) and Plains zebras (95.3%), while
I3D performs best for Grévy’s zebras (99.1%). Similarly, the “Graze” action, applicable
only to zebra species, is well-recognized, with SlowFast achieving the highest accuracy
for Plains zebras (97.2%) and I3D for Grévy’s zebras (97.6%). It is worth noting that all
models also perform strongly on the ”Head up” action since, although it is categorized
as a tail class, it has a comparable number of samples to both head classes (see
Figure 4 and Figure 6). However, performance on tail classes (non-highlighted) shows
significant variation. The “Browse” action, exclusive to Giraffes, is best recognized
by the SlowFast model (55.2%). For Plains zebras, I3D and UniformerV2 achieve the
best performance on ”Auto-Groom” (16.9%) and “Occluded” (27.7%), respectively,
while SlowFast achieves the best performance on “Trot” (54.0%). However, for Grévy’s
zebras, a different model achieves the best performance on each of the zebra-specific
actions, with the highest scores for “Auto-Groom”, “Trot”, and “Occluded” being
achieved by I3D (9.1%), SlowFast (78.4%), and UniformerV2 (27.7%), respectively.
The “Run” action, observed across all species, shows high variability across models and
species. X3D achieves the best performance for Giraffes (88.6%) and Grévy’s zebras
(91.3%), while SlowFast leads for Plains zebras (97.0%).

5 Discussion

The benchmark results using state-of-the-art video classification algorithms indicate
that the dataset is both interesting and challenging. Though it is necessarily smaller
than recent Animal Kingdom [8] and MammalNet [18] datasets and captures a more
focused set of behaviors, it represents an important step in the evolution of animal
behavior data collection and analysis because the videos were collected in situ and from
drones. As such, it is closer to, and more representative of, how behavioral analysis
can be carried out in the field in the future.
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Fig. 8 Grad-CAM visualization for different behaviors in the dataset.

One limitation of the dataset, as it currently exists, is that some rare behaviors
are captured infrequently or not at all. The complete set of tools for KABR that we
have developed and shared openly form a powerful framework to support searching for
examples of these behaviors. The mini-scenes approach provides a means of rapidly
processing high-resolution videos into a form that can be analyzed for individual
behaviors. The next step would be to augment the behavior classification approaches
to facilitate anomaly detection. An interesting question is the potential integration of
KABR with MammalNet or Animal Kingdom for exactly this purpose.

The proposed pipeline has several important advantages. By applying detection
and tracking algorithms, we can extract zoomed-in footage that is stabilized on the
animal of interest. Consequently, the animal remains consistently centered in the frame
throughout the mini-scene, enhancing the accuracy of subsequent analysis. This is
unlike typical action recognition, where the animal could be moving across a fixed
frame. Consequently, if an object moves from one side of the frame to the opposite side,
the resulting bounding box may fail to accurately reflect the object’s actual position.
In contrast, our approach avoids this issue by maintaining the animal of interest at
the center of the frame throughout the extracted mini-scene, allowing for more precise
localization of the moving object over a longer period of time.

Another important future step is using the mini-scenes approach to analyze com-
plex social behaviors, such as dominance, aggression, mating, and grooming. Behaviors
can be analyzed in isolation within each mini-scene, in the overlap between the bound-
ing regions of mini-scenes, and in a graphical representation of a neighborhood of
mini-scenes.
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A final justification of the efficacy of the mini-scenes approach can be seen in
a Grad-CAM [61] analysis of the mini-scene classification activation, as shown in
Figure 8. This demonstrates that the neural network indeed prioritizes the region
covered by the animal in the center of the frame and even the body part. In the
case of the Occluded category, where the animal is not visible within the frame, the
network shifts its attention to focus on other objects present. In the case of Run, the
background changes very rapidly, especially in the region that is being newly occluded
in each frame as the animal moves. This allows the network to identify it as Run.

6 Conclusion

KABR is an in situ dataset designed for animal behavior recognition from drone
videos, focusing on Kenyan wildlife, including giraffes, Plains zebras, and Grévy’s
zebras. It encompasses eight categories that describe various animal behaviors, offering
a comprehensive view of animal behavior in their natural habitat. In this paper, we
present extended dataset statistics, model benchmarks, and performance analysis. We
also revisit our dataset construction technique, which compensates for drone movement
and enables the capture of fine-grained details of animal behavior. The benchmark
models demonstrate the dataset’s effectiveness for training conventional deep-learning
models for animal behavior recognition from drone footage. Our contributions provide
a valuable resource for researchers studying animal behavior and ecology, particularly
within the context of wildlife conservation efforts in Kenya. This work represents a
significant advancement in the field of animal behavior recognition and establishes a
solid foundation for future research.

Declarations

Funding and/or Conflicts of interests/Competing interests: We declare no
competing interests. This work is supported by the National Science Foundation under
Award No. 2118240 and Award No. 2112606 and the UKRI CDT in Interactive AI
under grant EP/S022937/1.
Availability of data and materials: The KABR dataset official webpage can be
found at https://kabrdata.xyz. The dataset is publicly available on Hugging Face
under CC0 1.0 Universal license — https://doi.org/10.57967/hf/1010. The data pro-
cessing scripts are available at https://github.com/Imageomics/kabr-tools.
Consent for publication: All authors consent that the publisher has the author’s
permission to publish research findings.
Ethical considerations: Two important categories of ethical considerations were
addressed in our work. First, no humans appeared in the videos, and all partici-
pants were faculty, students, or employees of the Mpala Research Centre. Second,
our research was conducted under the authority of a Nacosti Research License (No.
NACOSTI/P/22/18214). This license confirms our adherence to the regulations in
place and allows us to collect drone footage of animals in their natural habitats. We fol-
lowed a data collection protocol that strictly complies with the guidelines set forth by
the Institutional Animal Care and Use Committee (No. IACUC 1835F). These guide-
lines are designed to ensure the ethical and humane treatment of animals involved

16

https://kabrdata.xyz
https://doi.org/10.57967/hf/1010
https://github.com/Imageomics/kabr-tools


in research activities. We also followed the guidelines laid out in [62]. One particular
instance of this is that we consistently approached the animals from downwind, allow-
ing the noise to dissipate before reaching the animals.
Author contributions: M. Kholiavchenko, J. Kline, M. Kukushkin, and O. Brookes
are responsible for the methodology and evaluation; C. Stewart, T. Berger-Wolf, D.
Rubenstein, T. Burghardt, and M. Mirmehdi, T. Schmid are responsible for the super-
vision of the research and project administration; J. Kline, S. Stevens, D. Rubenstein,
I. Duporge, and J. Miliko are responsible for data collection; M. Kholiavchenko, J.
Kline, A. Sheets, R. Babu, N. Banerj, N. Tiel, and E. Bessa are responsible for
data annotation; D. Rubenstein is responsible for the supervision of the data anno-
tation team; E. Campolongo and M. Thompson are responsible for data hosting and
maintenance.

Appendix A Learning rate analysis
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Fig. A1 Training history for I3D, SlowFast, X3D, UniformerV2 and using selected learning rates.

As shown in Table A1, the performance of various action recognition models is
significantly influenced by the choice of learning rate. Across all models, the highest
overall mAP is observed with the largest learning rate, with the exception of Uni-
formerV2. SlowFast achieves a mAP score of 34.61% with a learning rate of 3.75×10−4

which increases significantly to 66.07% when the learning rate is increased by a factor
of 100 to 3.75× 10−2. In contrast, I3D and X3D show less variability across learning
rates. The mAP for I3D improves from 53.10% to 64.33%, while X3D increases from
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56.39% to 66.36% as the learning rate rises. UniformerV2 achieves an mAP of 60.30%
with a learning rate of 2× 10−6, which increases to 64.57% when the learning rate is
raised to 2× 10−5. In all models, with the exception of SlowFast, the performance of
head classes is not significantly impacted, whereas a consistent decrease in tail class
performance is observed.

I3D and SlowFast achieve the best overall, head, and tail class performance at
the highest tested learning rate. The X3D model follows a similar trend, except the
head class performance peaks at a lower learning rate of 5 × 10−3 (97.12%). The
UniformerV2 model shows a slight deviation from this pattern. The highest overall
(64.57%) and tail (54.69%) mAP is achieved with a learning rate of 2 × 10−5, while
the best head class performance (50.37%) is observed at the higher rate of 2 × 10−4.

Table A1 Learning rate analysis. Results of (a) I3D, (b) SlowFast, (c) X3D, and (d)
UniformerV2 using various learning rates.

(a) I3D (b) SlowFast

Learning rate
mAP (%)

Learning rate
mAP (%)

Overall Head Tail Overall Head Tail

1× 10−1 64.33 96.58 53.58 3.75× 10−2 66.07 96.74 55.85
1× 10−2 62.92 96.42 51.75 3.75× 10−3 50.56 95.69 35.52
1× 10−3 53.10 96.42 38.66 3.75× 10−4 34.61 84.84 17.87

(c) X3D (d) UniformerV2

5× 10−2 66.36 96.91 56.17 2× 10−4 61.85 95.35 50.68
5× 10−3 64.46 97.12 53.58 2× 10−5 64.57 94.21 54.69
5× 10−4 61.75 95.12 50.62 2× 10−6 60.30 94.70 48.83

As shown in Figure A1 the most significant fluctuations in model performance are
observed for UniformerV2 and I3D models, particularly at the highest learning rates
of 2 × 10−4 and 1 × 10−1, respectively. In contrast, computationally smaller models
like X3D and SlowFast exhibit less pronounced fluctuations.

Appendix B Dataset format

The proposed KABR dataset adopts the dataset format introduced by [10] in the
Charades dataset. It is structured into two main directories: “images” and “anno-
tation”. The “images” directory contains subdirectories for each video. Each video
subdirectory stores the individual frames of the video as sequentially numbered image
files. For example, ”video 1” includes files such as “image 1.jpg”, “image 2.jpg”, ...,
“image n.jpg”. This structure is repeated for all videos, where each video is stored
in its subdirectory (“video 2”, ..., “video n”), allowing for easy access to the frames
of each video individually. The “annotation” directory contains metadata and anno-
tations necessary for training and evaluating models. The file “classes.json” lists the
behavior classes to be recognized in the dataset. The annotations for the training
and validation sets are stored in “train.csv” and “val.csv” respectively, which link the

18



image sequences to the corresponding class labels. Following this format, KABR main-
tains a clear and scalable organization of the video data and annotations, consistent
with the Charades dataset format.
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M., Kälviäinen, H.: Sealid: Saimaa ringed seal re-identification dataset. Sensors
22(19), 7602 (2022)

[26] Nepovinnykh, E., Chelak, I., Eerola, T., Immonen, V., Kälviäinen, H., Kholi-
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