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A B S T R A C T

This paper derives the optimal rate of approximation for Korobov functions with deep neural networks in
the high dimensional hypercube with respect to 𝐿𝑝-norms and 𝐻1-norm. Our approximation bounds are non-
asymptotic in both the width and depth of the networks. The obtained approximation rates demonstrate a
remarkable super-convergence feature, improving the existing convergence rates of neural networks that are
continuous function approximators. Finally, using a VC-dimension argument, we show that the established
rates are near-optimal.
1. Introduction

Deep neural networks (DNNs) (Arora et al., 2016; Glorot et al.,
2011) have become increasingly popular in scientific and engineering
applications, including image classification (He et al., 2015; Krizhevsky
et al., 2017), regularization (Czarnecki et al., 2017), and dynamic
programming (Finlay et al., 2018; Werbos, 1992). In those applications,
deep neural networks are often used to approximate various objects
of interest, ranging from functions, functionals, to operators. Estab-
lishing quantitative universal approximation theorems of deep neural
networks is an important step towards understanding their capabilities
and limitations in practical applications.

Universal approximation properties of neural networks have been
rigorously proved for continuous functions after the 1980s (Barron,
1993; Cybenko, 1989; Hornik et al., 1989). After that, a growing
amount of literature contributed to proving quantitative approxima-
tion rates of DNNs with ReLU and square ReLU activation functions
for functions with various regularity assumptions, including Besov
functions (Suzuki, 2018), Sobolev functions (Gühring et al., 2020;
pschoor et al., 2020; Siegel, 2022; Yang & He, 2024; Yang, Wu,
t al., 2023; Yang, Yang, & Xiang, 2023), and 𝑘-differentiable, Hölder
unctions. Hon and Yang (2022), Mhaskar (1996), Pinkus (1999), Shen
et al. (2022), Yarotsky (2017) and holomorphic functions (Adcock
t al., 2024; Opschoor et al., 2022). However, the approximation
ates of DNNs in these regularity-based functions often suffer from the
urse of dimensionality (CoD). For instance, the approximation rate
f DNNs in Sobolev spaces 𝑊 𝑛,𝑝([0, 1]𝑑 ) with respect to the 𝑊 𝑚,𝑝 for

∗ Corresponding author.
E-mail address: yxy5498@psu.edu (Y. Yang).

𝑚 < 𝑛, 1 ≤ 𝑝 ≤ ∞, and 𝑚, 𝑛 ∈ N is 
(

𝑀− 2(𝑚−𝑛)
𝑑

)

(up to logarith-
mic factors), where 𝑀 is the number of parameters of the network.
Notice that the rate decelerates as the 𝑑 increases. The convergence
rate can be substantially improved if the target function has addi-
tional low-complexity structure. Barron (1993) functions, holomorphic
functions (Opschoor et al., 2022) and Korobov (1959) functions are
three representative classes of functions of this kind. In fact, it has
been shown that the approximation of Barron functions with shallow
networks achieves a dimension-free rate of (𝑁−1∕2) (Barron, 1993; E
et al., 2022; Klusowski & Barron, 2018; Lu, Lu, & Wang, 2021; Siegel
& Xu, 2022). The approximation rate can be further improved when
it comes to DNN-approximation of Holomorphic functions (Opschoor
et al., 2022). The work of Opschoor et al. (2022) establishes a rate
of 

(

exp
(

−𝑏𝑁1∕(𝑑+1))) in 𝑊 1,∞ (

[−1, 1]𝑑
)

for holomorphic functions
in 𝑑 dimensions, where 𝑏 > 0 depends on the size of the region
of holomorphy, and 𝑁 is the size of the DNN. Approximation rates
of Korobov functions with DNNs with respect to the 𝐿∞-norm have
recently been studied in Blanchard and Bennouna (2021), Mao and
Zhou (2022), Montanelli and Du (2019) by leveraging tools from sparse
grid approximation (Bungartz & Griebel, 2004) to overcome the CoD.
In this work, we further contribute to the study along the same line
and establish improved rates of convergence for Koborov functions with
DNNs with respect to both 𝐿𝑝-norm and 𝐻1-norm.

Let us start by giving a description of the Sobolev and Koborov
function spaces. The definition of Sobolev spaces is shown as follows:
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Definition 1 (Sobolev Space Evans, 2022). Let 𝛺 be [0, 1]𝑑 and let 𝐷 be
he operator of the weak derivative of a single variable function and
𝜶 = 𝐷𝛼1

1 𝐷
𝛼2
2 …𝐷𝛼𝑑

𝑑 be the partial derivative where 𝜶 = [𝛼1, 𝛼2,… , 𝛼𝑑 ]𝑇

nd 𝐷𝑖 is the derivative in the 𝑖th variable. Let 𝑛 ∈ N and 1 ≤ 𝑝 ≤ ∞.
hen we define Sobolev spaces
𝑛,𝑝(𝛺) ∶=

{

𝑓 ∈ 𝐿𝑝(𝛺) ∶ 𝐷𝜶𝑓 ∈ 𝐿𝑝(𝛺) for all 𝜶 ∈ N𝑑 with |𝜶| ≤ 𝑛
}

ith a norm

𝑓‖𝑊 𝑛,𝑝(𝛺) ∶=

(

∑

0≤|𝜶|≤𝑛

‖

‖

𝐷𝜶𝑓‖
‖

𝑝
𝐿𝑝(𝛺)

)1∕𝑝

f 𝑝 < ∞, and ‖𝑓‖𝑊 𝑛,∞(𝛺) ∶= max0≤|𝜶|≤𝑛 ‖𝐷𝜶𝑓‖𝐿∞(𝛺). Furthermore, for
= (𝑓1,… , 𝑓𝑑 ), 𝒇 ∈ 𝑊 1,∞(𝛺,R𝑑 ) if and only if 𝑓𝑖 ∈ 𝑊 1,∞(𝛺) for each
= 1, 2,… , 𝑑 and

𝒇‖𝑊 1,∞(𝛺,R𝑑 ) ∶= max
𝑖=1,…,𝑑

{‖𝑓𝑖‖𝑊 1,∞(𝛺)}.

hen 𝑝 = 2, denote 𝑊 𝑛,2(𝛺) as 𝐻𝑛(𝛺) for 𝑛 ∈ N+.

efinition 2 (Korobov Space Bungartz & Griebel, 2004; Korobov, 1959,
963). For 2 ≤ 𝑝 ≤ +∞, the Korobov spaces 𝑋2,𝑝(𝛺) is defined as
2,𝑝(𝛺) =

{

𝑓 ∈ 𝐿𝑝(𝛺) ∣ 𝑓 |𝜕𝛺 = 0, 𝐷𝒌𝑓 ∈ 𝐿𝑝(𝛺), |𝒌|∞ ≤ 2
}

ith |𝒌|∞ = max1≤𝑗≤𝑑 𝑘𝑗 and the norm

𝑓‖𝑋2,𝑝(𝛺) ∶=

(

∑

0≤|𝒌|∞≤2

‖

‖

‖

𝐷𝒌𝑓‖‖
‖

𝑝

𝐿𝑝(𝛺)

)1∕𝑝

.

e also define the seminorm

𝑓 |2,𝑝 ∶=
‖

‖

‖

‖

‖

‖

𝜕2𝑑𝑓
𝜕𝑥21 ⋯ 𝜕𝑥2𝑑

‖

‖

‖

‖

‖

‖𝐿𝑝(𝛺)

(1)

Note the clear difference between Korobov space 𝑋2,𝑝 and the
Sobolev space 𝑊 2,𝑝: functions in the Korobov space 𝑋2,𝑝 have 𝐿𝑝-weak
mixed-derivatives of up to 2𝑑-th order while functions in the Sobolev
space 𝑊 2,𝑝 only allow to 𝐿𝑝-weak derivatives up to the second order.
Conversely, functions in 𝑋2,𝑝 demonstrate significantly lower regularity
compared to those in 𝑊 2𝑑,𝑝 for 𝑑 > 1. This discrepancy arises from the
fact that functions in 𝑋2,𝑝 are only twice-differentiable in individual
directions.

The neural network-approximation of Korobov functions has been
studied recently in Blanchard and Bennouna (2021), Mao and Zhou
2022), Montanelli and Du (2019), Suzuki (2018). In Montanelli and Du
(2019), they established an 𝐿∞-approximation error by ReLU-DNNs for
functions in 𝑋2,∞ with the error bound (𝑀−2) where 𝑀 is the num-
ber of network parameters. In Blanchard and Bennouna (2021), they
roved a similar convergence rate for shallow and deep networks with
mooth activation function and showed that their rate is near-optimal
n the sense that any continuous function approximator (DeVore et al.,
989) has a lower bound which matches up to a logarithmic factor
ith the established upper bound. In Suzuki (2018), the authors ob-

tained a similar rate for mixed-Besov spaces and mixed-Sobolev spaces,
which are the Korobov spaces. In Mao and Zhou (2022), the authors
considered the approximation of 𝑋2,𝑝 using deep convolutional neural
networks and proved an 𝐿𝑝-error bound of the form (𝑀−2+ 1

𝑝 ). When
𝑝 = ∞, the order is the same as that in Blanchard and Bennouna (2021),
Montanelli and Du (2019), Suzuki (2018).

While significant progress has been achieved regarding the approx-
imation of Korobov functions with DNNs, several questions remain
open. Among them, the first fundamental question is to determine
the optimal DNN-approximation rate of Korobov functions beyond the
realm of continuous function approximators. In other words, it remains
to prove whether it is possible to get a better rate for approximating
Korobov functions with discontinuous function approximators. In the

context introduced by DeVore et al. (1989), the term ‘‘continuous

2 
function approximators’’ for the approximation of neural networks
means utilizing a fixed-structure neural network to approximate func-
tions in target spaces. This process can be conceptualized as finding a
mapping from the target space to the parameters in neural networks. If
this mapping is continuous, the approximator of the neural network
is referred to as a continuous function approximator. We formalize
the mathematical definition of continuous function approximators as
follows:

Definition 3 (Blanchard & Bennouna, 2021; DeVore et al., 1989). Con-
sider a subset 𝑋 of a Banach space, a set of neural networks with 𝑁
parameters, and an approximation scheme 𝐺 ∶ 𝑋 → R𝑁 that, given
an input 𝑓 ∈ 𝑋, gives as output the parameters 𝜽𝑓 = 𝐺(𝑓 ) of the
neural network approximating 𝑓 . If 𝐺 is continuous, then we call it
a continuous function approximator.

Furthermore, the role of depth in the previous DNN approximation
results was not carefully examined. In fact, those earlier results only
showed approximation results for DNNs with either (1) or (log(1∕𝜖))
number of layers and with sufficient number of neurons can achieve
an 𝜖-accuracy. However, it remained unclear whether a diminutive
approximation error could be realized by concurrently increasing both
the depth and width of the network in an arbitrary fashion. Lastly, the
earlier results focused on approximation error in the 𝐿𝑝-norm, leaving
the quantification of approximation error in the Sobolev norm unex-
plored. As a matter of fact, Sobolev training (Czarnecki et al., 2017;
Son et al., 2021; Vlassis & Sun, 2021) of DNNs has had a significant
impact on scientific and engineering fields, including solving partial
differential equations (De Ryck & Mishra, 2022; E et al., 2017; Lagaris
et al., 1998; Raissi et al., 2019), operator learning (Liu et al., 2022;
Lu, Jin, et al., 2021), network compression (Sau & Balasubramanian,
2016), distillation (Hinton et al., 2015; Rusu et al., 2015), regular-
ization (Czarnecki et al., 2017), and dynamic programming (Finlay
et al., 2018; Werbos, 1992), etc. In addition, understanding the DNN-
approximation rate for Korobov functions w.r.t the Sobolev norm can
benefit in theoretical understanding of neural approximation of the
solution of many-body electronic Schrödinger problem as it has been
shown that the ground-state of the electronic Schrödinger problem
belongs to the Korobov space (Yserentant, 2004).

1.1. Contribution of the paper

We highlight the contributions of the present paper as follows.

• We first establish that a ReLU-DNN with depth (𝐿(log2 𝐿)3𝑑 ) and
width (𝑁(log2𝑁)3𝑑 ) can approximate 𝑓 ∈ 𝑋2,∞ with an 𝐻1-
error of the order (𝑁−1𝐿−1) (see Theorem 1) and an 𝐿𝑝-error of
the order (𝑁−2𝐿−2) (see Corollary 1). Notably, these outcomes
align with earlier findings by Blanchard and Bennouna (2021) in
the realm of continuous function approximators (DeVore et al.,
1989). However, our results enhance their results by accommo-
dating arbitrary choices of depth and width, thereby enhancing
the applicability and flexibility of the established approximations.

• We next extend the study of DNN approximation of Korobov
functions to the realm of discontinuous function approximators.
More precisely, by adapting the bit-extraction technique (Bartlett
et al., 2019, 1998) we improved the aforementioned approxima-
tion estimates to (𝑁−2𝐿−2) and (𝑁−4𝐿−4) in the context of
𝐻1-error and 𝐿𝑝-error respective. See Theorems 2 and 4.

• Based on a VC-dimension argument, we show that the established
bounds are near-optimal; see Theorems 3 and 5. Note that all
bounds presented in the paper are non-asymptotic with respect to
the network size, i.e., the approximation rate holds for all positive
integers 𝑁 (width) and 𝐿 (depth). The results in Lu et al. (2021c),
Shen et al. (2019, 2022), Yang, Yang, and Xiang (2023) are
also non-asymptotic, holding for any network size. This contrasts
with Bartlett et al. (2019, 1998), Cybenko (1989), Hornik (1991),
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Jacot et al. (2018), Yarotsky (2018), which focus on networks
with a large number of parameters or universal approximations.
In Gühring et al. (2020), Gühring and Raslan (2021), Opschoor
et al. (2020, 2022), Siegel (2022), network width is fixed or depth
and width are correlated, with depth often being a logarithmic
function of width. However, the optimality results in this paper
are asymptotic since they rely on the asymptotic behavior of the
VC-dimension of the neural network.

2. Preliminaries

2.1. Notations in deep neural networks

Let us summarize all basic notations used in the DNNs as follows:
1. Assume 𝒏 ∈ N𝑛+, then 𝑓 (𝒏) = (𝑔(𝒏)) means that there exists

positive 𝐶 independent of 𝒏, 𝑓 , 𝑔 such that 𝑓 (𝒏) ≤ 𝐶𝑔(𝒏) when all entries
of 𝒏 go to +∞.

2. Define 𝜎(𝑥) = max{0, 𝑥}. We call the neural networks with
activation function 𝜎 as 𝜎 neural networks (𝜎-NNs). With the abuse

of notations, we define 𝜎 ∶ R𝑑 → R𝑑 as 𝜎(𝒙) =
⎡

⎢

⎢

⎣

𝜎(𝑥1)
⋮

𝜎(𝑥𝑑 )

⎤

⎥

⎥

⎦

for any

𝒙 =
[

𝑥1,… , 𝑥𝑑
]𝑇 ∈ R𝑑 .

3. Define 𝐿,𝑁 ∈ N+, 𝑁0 = 𝑑 and 𝑁𝐿+1 = 1, 𝑁𝑖 ∈ N+ for
𝑖 = 1, 2,… , 𝐿, then a 𝜎-NN 𝜙 with the width 𝑁 and depth 𝐿 can be
described as follows:

𝒙 = 𝒉̃0
𝑾 1 ,𝒃1
⟶ 𝒉1

𝜎
⟶ 𝒉̃1 …

𝑾 𝐿 ,𝒃𝐿
⟶ 𝒉𝐿

𝜎
⟶ 𝒉̃𝐿

𝑾 𝐿+1 ,𝒃𝐿+1
⟶ 𝜙(𝒙) = 𝒉𝐿+1,

where 𝑾 𝑖 ∈ R𝑁𝑖×𝑁𝑖−1 and 𝒃𝑖 ∈ R𝑁𝑖 are the weight matrix and the
bias vector in the 𝑖th linear transform in 𝜙, respectively, i.e., 𝒉𝑖 ∶=
𝑾 𝑖𝒉̃𝑖−1 + 𝒃𝑖, for 𝑖 = 1,… , 𝐿+1 and 𝒉̃𝑖 = 𝜎

(

𝒉𝑖
)

, for 𝑖 = 1,… , 𝐿. In this
paper, an DNN with the width 𝑁 and depth 𝐿, means (a) The maximum
width of this DNN for all hidden layers less than or equal to 𝑁 . (b) The
number of hidden layers of this DNN less than or equal to 𝐿.

2.2. Sparse-grid approximation of Korobov functions

Our approach to establishing the DNN-approximation rates for Ko-
robov functions builds on classical approximation results of the same
class of functions using sparse grids (Bungartz & Griebel, 2004). There-
fore we first recall some relevant results in the sequel. For any 𝑓 ∈
𝑋2,𝑝(𝛺), it takes the following representation:

𝑓 (𝒙) =
∑

𝒍

∑

𝒊∈𝒊𝒍

𝑣𝒍,𝒊𝜙𝒍,𝒊(𝒙),

where

𝒊𝒍 ∶=
{

𝒊 ∈ N𝑑 ∶ 𝟏 ≤ 𝒊 ≤ 2𝒍 − 𝟏, 𝑖𝑗 odd for all 1 ≤ 𝑗 ≤ 𝑑
}

. (2)

The basis function 𝜙𝒍,𝒊(𝒙) is constructed using hat functions and grid
points:

𝒙𝒍,𝒊 = (𝑥𝑙1 ,𝑖1 ,… , 𝑥𝑙𝑑 ,𝑖𝑑 ) ∶= 𝒊⊙ 2−𝒍 =∶ 𝒊⊙ 𝒉𝒍 = 𝒊⊙ (ℎ𝑙1 ,… , ℎ𝑙𝑑 ).

In a piecewise linear setting, the fundamental choice for a 1D basis
function is the standard hat function 𝜙(𝑥), defined as:

𝜙(𝑥) ∶=

{

1 − |𝑥|, if 𝑥 ∈ [−1, 1]
0, otherwise

The standard hat function 𝜙(𝑥) can be utilized to generate any 𝜙𝑙𝑗 ,𝑖𝑗
(

𝑥𝑗
)

with support
[

𝑥𝑙𝑗 ,𝑖𝑗 − ℎ𝑙𝑗 , 𝑥𝑙𝑗 ,𝑖𝑗 + ℎ𝑙𝑗
]

=
[

(

𝑖𝑗 − 1
)

ℎ𝑙𝑗 ,
(

𝑖𝑗+ (1) ℎ𝑙𝑗 ] thro-
ugh dilation and translation:

𝜙𝑙𝑗 ,𝑖𝑗
(

𝑥𝑗
)

∶= 𝜙

(

𝑥𝑗 − 𝑖𝑗 ⋅ ℎ𝑙𝑗
)

.

ℎ𝑙𝑗

3 
The resulting 1D basis functions serve as inputs for the tensor product
construction, yielding a suitable piecewise 𝑑-linear basis function at
each grid point 𝒙𝒍,𝒊

𝜙𝒍,𝒊(𝒙) ∶=
𝑑
∏

𝑗=1
𝜙𝑙𝑗 ,𝑖𝑗

(

𝑥𝑗
)

.

The following two lemmas pertain to the truncation error in the hier-
archical representation of Korobov functions.

Lemma 1 (Bungartz & Griebel, 2004, Lemma 3.3). Let 𝑓 ∈ 𝑋2,∞(𝛺) be
given in its hierarchical representation

𝑓 (𝒙) =
∑

𝒍

∑

𝒊∈𝒊𝒍

𝑣𝒍,𝒊𝜙𝒍,𝒊(𝒙).

Then, the following estimates for the hierarchical coefficients 𝑣𝒍,𝒊 hold:

|

|

𝑣𝒍,𝒊|| ≤ 2−𝑑 ⋅ 2−|𝒍|1 ⋅ |𝑓 |2,∞.

The lemma above characterizes the decay estimates of the expansion
coefficients of the Korobov space under the tensorized basis {𝜙𝒍,𝒊} and
will play a key role in deriving the DNN-approximation rate of the main
theorem.

Lemma 2 (Bungartz & Griebel, 2004, Lemma 3.13). Set 𝑓 (1)
𝑛 (𝒙) =

∑

|𝒍|1≤𝑛+𝑑−1
∑

𝒊∈𝒊𝒍 𝑣𝒍,𝒊𝜙𝒍,𝒊(𝒙), and for any 𝑓 ∈ 𝑋2,∞(𝛺), the approximation
error satisfies
‖

‖

‖

𝑓 − 𝑓 (1)
𝑛

‖

‖

‖𝐿∞(𝛺)
= 

(

𝑀−2
|

|

log2𝑀|

|

3(𝑑−1)
)

,

‖

‖

‖

𝑓 − 𝑓 (1)
𝑛

‖

‖

‖𝐻1(𝛺)
= 

(

𝑀−1
|

|

log2𝑀|

|

(𝑑−1)
)

, (3)

where 𝑀 = (2𝑛𝑛𝑑−1).

Lemma 2 bounds the error between the sparse-grid approximation
𝑓 (1)
𝑛 and 𝑓 ∈ 𝑋2,∞(𝛺). In the rest of the paper, we seek optimal
approximations to 𝑓 (1)

𝑛 by DNNs.

2.3. Bit-extraction technique

Proposition 1 below leverages the bit-extraction technique intro-
duced in Bartlett et al. (2019, 1998) to represent piecewise linear
functions on a fixed regular grid with 𝑀 cells by a 𝜎-NN with only
(

√

𝑀) parameters. Recall that the activation 𝜎 = ReLU.

Proposition 1 (Lu et al., 2021c, Proposition 4.4). Given any 𝑁,𝐿, 𝑠 ∈ N+
nd 𝜉𝑖 ∈ [0, 1] for 𝑖 = 0, 1,… , 𝑁2𝐿2 − 1, there exists a 𝜎-NN 𝜙 with the
width 16𝑠(𝑁 + 1) log2(8𝑁) and depth (5𝐿 + 2) log2(4𝐿) such that

1. |𝜙(𝑖) − 𝜉𝑖| ≤ 𝑁−2𝑠𝐿−2𝑠 for 𝑖 = 0, 1,… , 𝑁2𝐿2 − 1.
2. 0 ≤ 𝜙(𝑥) ≤ 1, 𝑥 ∈ R.

3. Approximation in Korobov spaces with rates in continuous
function approximators

In this section, we aim to establish the approximation of DNNs
with an optimal rate in continuous function approximation theory. Our
approximation error is dependent not only on the width 𝑁 but also
on the depth 𝐿 of the DNNs. The result, measured by 𝐻1 norms, is
presented as follows, and the result measured by 𝐿𝑝 norm is provided
in Corollary 1.

Theorem 1. For any 𝑁,𝐿 ∈ N+ and 𝑓 (𝒙) ∈ 𝑋2,∞(𝛺), there exists a
continuous function approximator 𝜎-NN 𝜙(𝒙) with the width 𝐶1𝑁(log2𝑁)𝑑

and a depth of 𝐶2𝐿(log2 𝐿)𝑑 such that

‖𝑓 (𝒙) − 𝜙(𝒙)‖ 1 ≤
𝐶3 (4)
𝐻 (𝛺) 𝑁𝐿
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with 𝜙(𝒙)|𝜕𝛺 = 0, where 𝐶1 and 𝐶2 are independent with 𝑁 and 𝐿, and
polynomially dependent on the dimension 𝑑. 𝐶3 is dependent on |𝑓 |2,∞ and
is independent of 𝑁 and 𝐿.1

emark 1. We remark that approximation rates in the main Theo-
ems 1, 2, and the subsequent main results, including Theorem 4 and
orollary 1, are non-asymptotic in the sense that the approximation
rror bounds are valid for all 𝑁 and 𝐿, where 𝑁 is the width of the
eural networks and 𝐿 is the depth of the neural networks. However,
e also note that the approximation lower bounds used to justify the
ptimality of discontinuous approximation (see Theorems 3 and 5) are
symptotic, i.e. requiring the network sizes are large enough.

Before the proof, we need to approximate the grid functions in the
irst.

roposition 2. For any 𝑁,𝐿 ∈ N+ with |𝒍|1 ≤ 𝑛 + 𝑑 − 1, 𝟏 ≤ 𝒊 ≤ 2𝒍 − 𝟏,
here exists a continuous function approximator 𝜎-NN 𝜙̂𝒍,𝒊(𝒙) with the width
(𝑁 + 1) + 4𝑑 − 1 and depth 14𝑑(𝑑 − 1)𝐿 + 1 such that

𝜙̂𝒍,𝒊(𝒙) − 𝜙𝒍,𝒊(𝒙)‖𝑊 1,∞(𝛺) ≤ 10𝑑
5
2 (𝑁 + 1)−7𝑑𝐿 ⋅ 2|𝒍|1 ,

with supp 𝜙̂𝒍,𝒊(𝒙) ⊂ supp 𝜙𝒍,𝒊(𝒙).

Proof. For each hat function 𝜙𝑙𝑗 ,𝑖𝑗 (𝑥𝑗 ), it can be expressed as:

𝜙𝑙𝑗 ,𝑖𝑗 (𝑥𝑗 ) = 𝜎

(

𝑥𝑗 − 𝑖𝑗 ⋅ ℎ𝑙𝑗
ℎ𝑙𝑗

− 1

)

− 2𝜎

(

𝑥𝑗 − 𝑖𝑗 ⋅ ℎ𝑙𝑗
ℎ𝑙𝑗

)

+ 𝜎

(

𝑥𝑗 − 𝑖𝑗 ⋅ ℎ𝑙𝑗
ℎ𝑙𝑗

+ 1

)

.

According to Proposition 7, there exists a 𝜎-NN 𝜙prod with a width of
9(𝑁+1)+𝑑−1 and depth of 14𝑑(𝑑−1)𝐿 such that ‖𝜙prod‖𝑊 1,∞([0,1]𝑑 ) ≤ 18
and
‖

‖

‖

𝜙prod(𝒙) − 𝑦1𝑦2 ⋯ 𝑦𝑑
‖

‖

‖𝑊 1,∞([0,1]𝑑 )
≤ 10(𝑑 − 1)(𝑁 + 1)−7𝑑𝐿.

Hence, we define 𝜙̂𝒍,𝒊(𝒙) = 𝜙prod(𝜙𝑙1 ,𝑖1 (𝑥1),… , 𝜙𝑙𝑑 ,𝑖𝑑 (𝑥𝑑 )), where 𝜙̂𝒍,𝒊(𝒙)
is a 𝜎-NN with a width of 9(𝑁 +1)+4𝑑−1 and depth of 14𝑑(𝑑−1)𝐿+1.
Furthermore, considering Proposition 7 and Lemma 8, we have:

‖𝜙̂𝒍,𝒊(𝒙) − 𝜙𝒍,𝒊(𝒙)‖𝑊 1,∞(𝛺)

= ‖(𝜙prod − 𝑦1𝑦2 ⋯ 𝑦𝑑 )◦(𝜙𝑙1 ,𝑖1 (𝑥1),… , 𝜙𝑙𝑑 ,𝑖𝑑 (𝑥𝑑 ))‖𝑊 1,∞(𝛺).

This leads to:

‖𝜙̂𝒍,𝒊(𝒙) − 𝜙𝒍,𝒊(𝒙)‖𝑊 1,∞(𝛺) ≤ 10𝑑
5
2 (𝑁 + 1)−7𝑑𝐿 ⋅ 2|𝒍|1 .

Furthermore, if 𝜙𝒍,𝒊(𝒙) = 0, there exists 𝜙𝑙𝑗 ,𝑖𝑗 (𝑥𝑗 ) = 0. As per Proposi-
tion 7, we conclude 𝜙̂𝒍,𝒊(𝒙) = 0. □

Proof of Theorem 1. Denote

𝜙(𝒙) =
∑

|𝒍|1≤𝑛+𝑑−1

∑

𝒊∈𝒊𝒍

𝑣𝒍,𝒊𝜙̂𝒍,𝒊(𝒙)

which can be interpreted as a 𝜎-NN with a width of (2𝑛𝑛𝑑−1𝑁) and
depth of (𝐿), with the error given by

‖𝑓 − 𝜙‖𝐻1(𝛺)

≤𝐶
⎡

⎢

⎢

⎣

𝑀−1
|

|

log2𝑀|

|

(𝑑−1) +
∑

|𝒍|1≤𝑛+𝑑−1

‖

‖

‖

‖

‖

‖

∑

𝒊∈𝒊𝒍

(𝑣𝒍,𝒊)(𝜙̂𝒍,𝒊(𝒙) − 𝜙𝒍,𝒊(𝒙))
‖

‖

‖

‖

‖

‖𝐻1(𝛺)

⎤

⎥

⎥

⎦

, (5)

where the constant 𝐶 is polynomially dependent on the dimension 𝑑.2

1 In fact, 𝐶1, 𝐶2 and 𝐶3 can be expressed by 𝑑 with an explicit formula as
we note in the proof of this theorem. However, the formulas may be very
complicated.

2 In this paper, we consistently employ the symbol 𝐶 as a constant
independent of 𝑀 , 𝑁 , and 𝐿, which may vary from line to line.
 e

4 
Due to supp 𝜙̂𝒍,𝒊(𝒙) ⊂ supp 𝜙𝒍,𝒊(𝒙), Proposition 2, and the fact that a
given 𝒙 ∈ 𝛺 belongs to the support of at most one 𝜙𝒍,𝒊(𝒙) because they
have disjoint supports, we have
‖

‖

‖

‖

‖

‖

∑

𝒊∈𝒊𝒍

(𝑣𝒍,𝒊)(𝜙̂𝒍,𝒊(𝒙) − 𝜙𝒍,𝒊(𝒙))
‖

‖

‖

‖

‖

‖𝐻1(𝛺)

≤ 2−𝑑2−|𝒍|1 |𝑓 |2,∞10𝑑
5
2 (𝑁 + 1)−7𝑑𝐿. (6)

Since 2−𝑑
∑

|𝒍|1≤𝑛+𝑑−1 2
−|𝒍|1 < 1

2 ln 2 ≤ 1, we have that

∑

|𝒍|1≤𝑛+𝑑−1

‖

‖

‖

‖

‖

‖

∑

𝒊∈𝒊𝒍

(𝑣𝒍,𝒊)(𝜙̂𝒍,𝒊(𝒙) − 𝜙𝒍,𝒊(𝒙))
‖

‖

‖

‖

‖

‖𝐻1(𝛺)

≤ 𝐶(𝑁 + 1)−7𝑑𝐿, (7)

where 𝐶 is dependent on |𝑓 |2,∞ and is independent of 𝑁 and 𝐿. Setting
𝑛 = ⌊log2 𝑁̃⌋+ ⌊log2 𝐿̃⌋, the neural network 𝜙(𝒙) can be viewed as a 𝜎-
NN with a depth of (𝐿) and a width of (𝑁̃𝐿̃(log2 𝑁̃ log2 𝐿̃)𝑑−1𝑁). It
can also be regarded as the sum of a number of (𝐿̃(log2 𝐿̃)𝑑−1∕ log2 𝑁̃)
neural networks, each with a width of (𝑁̃(log2 𝑁̃)𝑑𝑁) and a depth of
(𝐿). Due to Proposition 9, we know that 𝜙(𝒙) is a 𝜎-NN with a depth
f (𝐿𝐿̃(log2 𝐿̃)𝑑−1∕ log2 𝑁̃) and a width of (𝑁̃(log2 𝑁̃)𝑑𝑁).
Setting 𝑁 = 1 and 𝐿 = ⌊log2 𝑁̃⌋ + ⌊log2 𝐿̃⌋, we have that 𝜙(𝒙) is

a 𝜎-NN with a width of (𝑁̃(log2 𝑁̃)𝑑 ) and a depth of (𝐿̃(log2 𝐿̃)𝑑 ).
urthermore,

∑

|𝒍|1≤𝑛+𝑑−1

‖

‖

‖

‖

‖

‖

∑

𝒊∈𝒊𝒍

(𝑣𝒍,𝒊)(𝜙̂𝒍,𝒊(𝒙) − 𝜙𝒍,𝒊(𝒙))
‖

‖

‖

‖

‖

‖𝐻1(𝛺)

≤𝐶(𝑁 + 1)−7𝑑𝐿 ≤ 𝐶2−7𝑑 log2(𝑁̃𝐿̃) ≤ 𝐶
𝑁̃𝐿̃

. (8)

Finally, due to 𝑀 ≤ 𝐶𝑁̃𝐿̃(log2 𝑁̃𝐿̃)𝑑−1, we obtain that

‖𝑓 − 𝜙‖𝐻1(𝛺) ≤ 𝐶
[

𝑀−1
|

|

log2𝑀|

|

(𝑑−1) + 1
𝑁̃𝐿̃

]

≤ 𝐶
𝑁̃𝐿̃

, (9)

where the constant 𝐶 is polynomially dependent on the dimension 𝑑.
The boundary condition can be directly obtained from supp 𝜙̂𝒍,𝒊(𝒙) ⊂
upp 𝜙𝒍,𝒊(𝒙). □

Following the same idea in the proof, we derive the following
orollary, which describes the approximation of Korobov functions by
eep neural networks measured by 𝐿2 norms:

orollary 1. For any 𝑁,𝐿 ∈ N+ and 𝑓 (𝒙) ∈ 𝑋2,∞(𝛺), there exists a
ontinuous function approximator 𝜎-NN 𝜙(𝒙) with the width 𝐶1𝑁(log2𝑁)3𝑑

and a depth of 𝐶2𝐿(log2 𝐿)3𝑑 such that

‖𝑓 (𝒙) − 𝜙(𝒙)‖𝐿𝑝(𝛺) ≤
𝐶3

𝑁2𝐿2
(10)

with 1 ≤ 𝑝 ≤ ∞ and 𝜙(𝒙)|𝜕𝛺 = 0, where 𝐶1 and 𝐶2 are independent with
𝑁 and 𝐿, and depending on the dimension 𝑑 at most polynomially. The
constant 𝐶3 depends on |𝑓 |2,∞ but does not depend on 𝑁 and 𝐿.

Remark 2. Note that the number of parameters is (𝑁2𝐿
(log2 𝐿)3𝑑 (log2𝑁)6𝑑 ), with an error of (𝑁−2𝐿−2). This result is consis-
tent with the findings in Montanelli and Du (2019) when we fix 𝑁 and
onsider depth 𝐿. Our result achieves the optimal approximation rate
or continuous function approximation, as established in DeVore et al.
1989). The main improvement in our findings, compared to Blanchard
nd Bennouna (2021), Mao and Zhou (2022), Montanelli and Du
2019), Suzuki (2018), lies in our consideration of depth flexibility in
NNs and the establishment of the approximation rate measured by the
1 norms.

. Super convergence rates for Korobov functions in 𝑳𝒑-norms

In this section, our primary objective is to establish DNNs as func-
ion approximators within Korobov Spaces with a super-convergence
ate, surpassing existing works. More specifically, for approximating a
arget function in 𝑊 𝑛,𝑝 measured by the norm 𝑊 𝑚,𝑝, we use the bit-
xtraction technique introduced in Barron (1993), Bartlett et al. (2019)
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to approximate piecewise polynomial functions on a fixed regular grid
with 𝑀 cells using only 𝑂(

√

𝑀) parameters. This leads to an approxi-
mation rate of 𝐶𝑀−2(𝑛−𝑚)∕𝑑 in terms of the number of parameters 𝑀 ,
which is significantly faster than traditional methods of approximation.
This phenomenon is known as the super-convergence of deep ReLU
networks.

In this context, we focus solely on error measurement using 𝐿𝑝,
where 1 ≤ 𝑝 ≤ ∞. In the next section, we will extend our error analysis
to include Sobolev norms, specifically the 𝐻1 norm.

Theorem 2. For any 𝑓 ∈ 𝑋2,∞(𝛺) and |𝑓 |2,∞ ≤ 1, 𝑁,𝐿 ∈ N+,
here is a 𝜎-NN 𝑘(𝒙) with 3𝑑 (64𝑑(𝑁 + 3)(log2(8𝑁))𝑑+1) width and (33𝐿 +
)(log2(4𝐿))𝑑+1 + 2𝑑 depth such that

𝑘(𝒙) − 𝑓 (𝒙)‖𝐿𝑝(𝛺) ≤ 𝐶𝑁−4𝐿−4(log2𝑁)𝑑−1(log2 𝐿)𝑑−1, (11)

here 𝐶 is the constant independent with 𝑁,𝐿, and dependent on the
𝑓 |2,∞, 1 ≤ 𝑝 ≤ ∞.

emark 3. Theorem 1 and Corollary 1 established the optimal ap-
proximation rate of Korobov spaces by continuous function approx-
imators (Definition 3), which is also achieved previously in Blan-
chard and Bennouna (2021), Montanelli and Du (2019), Suzuki (2018).
The new results in Theorems 2 and 4 show significant improvements
over Theorem 1 and Corollary 1 due to the bit-extraction technique
(Proposition 1) when the function approximators are allowed to be
discontinuous, which to best of our knowledge is the first result of this
kind for Korobov functions.

We split the proof of Theorem 2 into three parts. First, we prove the
approximation of the Korobov function by DNNs across the entire do-
main 𝛺, excluding a small set. Then, we prove that the Korobov space
consists of continuous functions. Finally, we extend the approximation
to the whole domain with the help of Lemma 3 and Proposition 3.

We initially employ DNNs to approximate functions 𝑓 ∈ 𝑋2,∞(𝛺)
across the entire domain 𝛺, excluding a small set. The domain is
precisely defined as follows:

Definition 4. For any 𝑛 ≥ 1 and |𝒍|1 ≤ 𝑛 + 𝑑 − 1, let 𝛿 = 1
2𝑛+2 , and

𝛺𝒍,𝛿 =
⋃

𝒊∈𝒊𝒍

𝛺𝒍,𝒊,𝛿 , (12)

𝛺𝒍,𝒊,𝛿 =
𝑑
∏

𝑟=1

[

2𝑖𝑟 − 1
2𝐾𝑟

,
2𝑖𝑟 + 1
2𝐾𝑟

− 𝛿 ⋅ 1𝑘<𝐾𝑟−1

]

, 𝐾𝑟 = 2𝑙𝑟−1.

hen we define

𝛿 =
⋂

|𝒍|1≤𝑛+𝑑−1
𝛺𝒍,𝛿 .

roposition 3. For any 𝑓 ∈ 𝑋2,∞(𝛺) with 𝑝 ≥ 1 and |𝑓 |2,∞ ≤ 1,
𝑁,𝐿 ∈ N+, there is a 𝜎-NN 𝑘̃(𝒙) with 64𝑑(𝑁 + 2)(log2(8𝑁))𝑑+1 width and
(33𝐿 + 2)(log2(4𝐿))𝑑+1 depth, such that

‖

‖

𝑘̃(𝒙) − 𝑓 (𝒙)‖
‖𝐿∞(𝛺𝛿 )

≤ 𝐶𝑁−4𝐿−4(log2𝑁)𝑑−1(log2 𝐿)𝑑−1, (13)

where 𝐶 is the constant independent with 𝑁,𝐿, and dependent on the
|𝑓 |2,∞.

Proof. In the proof, our first step involves utilizing DNNs to approxi-
mate ∑

𝒊∈𝒊𝒍∗
𝑣𝒍∗ ,𝒊𝜙𝒍∗ ,𝒊(𝒙) for |𝒍∗|1 ≤ 𝑛+ 𝑑 − 1. Note that ∑𝒊∈𝒊𝒍∗

𝑣𝒍∗ ,𝒊𝜙𝒍∗ ,𝒊(𝒙)
can be reformulated as

𝑔𝒍∗ (𝒙) = 𝑝𝒍∗ (𝒙)𝑞𝒍∗ (𝒙).

Here, 𝑞(𝒙) is a piecewise function on [0, 1]𝑑 defined by

𝑞𝒍∗ (𝒙) = 𝑣𝒍∗ ,𝒊, for 𝒙 ∈
𝑑
∏

[

(𝑖𝑘 − 1) ⋅ 2−𝑙𝑘 , (𝑖𝑘 + 1) ⋅ 2−𝑙𝑘
]

. (14)

𝑘=1

5 
Meanwhile, 𝑝(𝒙) is a piecewise-polynomial defined as

𝑝𝑙𝑘 (𝑥) =
2𝑘−1
∑

𝑠=1
𝜙

(

𝑥𝑗 − (2𝑠 − 1) ⋅ ℎ𝑙𝑗
ℎ𝑙𝑗

)

𝑝𝒍∗ (𝒙) =
𝑑
∏

𝑘=1
𝑝𝑙𝑘 (𝑥𝑘). (15)

Here, 𝑝𝑙𝑘 (𝑥) represents a deformed sawtooth function.
Let 𝑁2

𝑟 𝐿
2
𝑟 ≥ 𝐾𝑟 = 2𝑙𝑟−1. By leveraging Proposition 8, we ascertain

the existence of a 𝜎-NN 𝜙𝑟(𝑥) with a width of 4𝑁𝑟 + 5 and a depth of
4𝐿𝑟 + 4 such that

𝜙𝑟(𝑥) = 𝑘, 𝑥 ∈
[

𝑘
𝐾𝑟
, 𝑘 + 1
𝐾𝑟

− 𝛿 ⋅ 1𝑘<𝐾𝑟−1

]

, 𝑘 = 1,… , 𝐾𝑟 − 1,

with 𝛿 ∈
(

0, 1
3𝐾𝑟

]

. Then define

𝝓2(𝒙) =
[

𝜙1(𝑥1)
𝐾1

,
𝜙2(𝑥2)
𝐾2

,… ,
𝜙𝑑 (𝑥𝑑 )
𝐾𝑑

]𝑇
.

For each 𝑝 = 0, 1,… ,
∏𝑑

𝑟=1 𝐾𝑟 − 1, there is a bijection

𝜼(𝑝) = [𝜂1, 𝜂2,… , 𝜂𝑑 ] ∈
𝑑
∏

𝑟=1
{0,… , 𝐾𝑟 − 1}

such that ∑𝑑
𝑗=1 𝜂𝑗

∏𝑗−1
𝑟=1 𝐾𝑟 = 𝑝. Set 𝐶𝛼,𝒍∗ = 2−𝑑−|𝒍∗|1 |𝑓 |2,∞ ≥ |𝑣𝒍∗ ,𝒊| for all

𝒊, and define

𝜉𝜶,𝒍∗ ,𝒊 =
𝑣𝒍∗ ,𝒊 + 𝐶𝛼,𝒍∗

2𝐶𝛼,𝒍∗
∈ [0, 1]. (16)

Based on Proposition 1, there exists a neural network 𝜙̃𝜶(𝑥) with a
idth of 16𝑠(𝑁̃ + 1) log2(8𝑁̃) and a depth of (5𝐿̃+ 2) log2(4𝐿̃) such that

|

|

|

|

|

|

𝜙̃𝜶

( 𝑑
∑

𝑗=1

𝑖𝑗 − 1
2

𝑗−1
∏

𝑟=1
𝐾𝑟

)

− 𝜉𝜶,𝒍∗ ,𝒊
|

|

|

|

|

|

≤ 𝐿̃−2𝑠𝑁̃−2𝑠

for |𝒍∗|1 ≤ 𝑛 + 𝑑 − 1 and 𝒊 ∈ 𝒊𝒍∗ . Therefore, we define

𝜶(𝒙) ∶= 2𝐶𝛼,𝒍∗ 𝜙̃𝜶

( 𝑑
∑

𝑗=1
𝑥𝑗

𝑗
∏

𝑟=1
𝐾𝑟

)

− 𝐶𝛼,𝒍∗ . (17)

Consequently, we find that

𝜙𝜶(𝝓2(𝒙)) − 𝑞𝒍∗ (𝒙)| =
|

|

|

|

|

|

2𝐶𝛼,𝒍∗ 𝜙̃𝜶

( 𝑑
∑

𝑗=1

𝑖𝑗 − 1
2

𝑗−1
∏

𝑟=1
𝐾𝑟

)

− 𝐶𝛼,𝒍∗ − 𝑣𝒍∗ ,𝒊
|

|

|

|

|

|

≤ 2𝐶𝛼,𝒍∗

|

|

|

|

|

|

𝜙̃𝜶

( 𝑑
∑

𝑗=1

𝑖𝑗 − 1
2

𝑗−1
∏

𝑟=1
𝐾𝑟

)

− 𝜉𝜶,𝒍∗ ,𝒊
|

|

|

|

|

|

≤ 2𝐶𝛼,𝒍∗ 𝐿̃
−2𝑠𝑁̃−2𝑠 (18)

for 𝒙 ∈ 𝛺𝒍∗ ,𝒊,𝛿 =
∏𝑑

𝑟=1

[

𝑖𝑟−1
2𝐾𝑟

, 2𝑖𝑟+12𝐾𝑟
− 𝛿 ⋅ 1𝑘<𝐾𝑟−1

]

.
Since there are at most 2𝑛−1 elements in 𝒊𝒍∗ , we set 𝐿̃

2𝑁̃2 ≥ 2𝑛−1.
bove all, we can let 𝐿 = max{𝐿̃, 𝐿𝑟} = 2𝑛1 and 𝑁 = max{𝐿̃,𝑁𝑟} =
𝑛2 , where 2(𝑛1 + 𝑛2) is the smallest even number larger or equal to
− 1. Then 𝝓2(𝒙) is a 𝜎-NN with 4𝑑𝑁 + 5𝑑 width and 4𝐿 + 4 depth.
𝜶(𝒙) is a 𝜎-NN with the width 16𝑠(𝑁 + 1) log2(8𝑁) and depth (5𝐿 +

2) log2(4𝐿). Above all, 𝜙𝜶(𝝓2(𝒙)) is a 𝜎-NN with 16𝑠𝑑(𝑁 + 1) log2(8𝑁)
and depth (9𝐿 + 2) log2(4𝐿). We denote this 𝜙𝜶(𝝓2(𝒙)) as 𝑠𝒍∗ (𝒙), which
an approximate 𝑞𝒍∗ (𝒙) well on 𝛺𝒍∗ ,𝛿 . Set 𝛿 = 1

2𝑛+2 , we also find 𝑠𝒍∗ (𝒙),
which can approximate 𝑞𝒍∗ (𝒙) well on 𝛺𝒍∗ ,𝛿 for |𝒍∗|1 ≤ 𝑛 + 𝑑 − 1.

Recall

𝛺𝛿 =
⋂

|𝒍∗|1≤𝑛+𝑑−1
𝛺𝒍∗ ,𝛿 ,

then 𝑠𝒍∗ (𝒙), which can approximate 𝑞𝒍∗ (𝒙) well on 𝛺𝛿 for |𝒍∗|1 ≤ 𝑛+𝑑−1.
Next, we aim to approximate 𝑝𝒍∗ (𝒙) =

∏𝑑
𝑘=1 𝑝𝑙𝑘 (𝑥𝑘). The proof relies

on leveraging the periodicity of each 𝑝𝑙𝑘 (𝑥𝑘). We first define
−𝑛+1+𝑛1
𝜓1(𝑥) = 𝑝𝑙𝑘 (𝑥), 𝑥 ∈ [0, 2 ], otherwise is0.
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Fig. 1. The sawtooth functions 𝜓1.
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hen, 𝜓1(𝑥) is a neural network (NN) with 4𝑁 width and 1 depth (see
ig. 1).
Next, we define 𝜓𝑖 for 𝑖 = 2, 3, 4 based on the symmetry and

periodicity of 𝑔𝑖.

• 𝜓2 is a function with period
2

𝑁𝐿2 over the interval
[

0, 1
𝐿2

]

, where
each period is represented by a hat function with a gradient of 1.

• 𝜓3 is a function with period
2
𝐿2 over the interval

[

0, 1
𝐿

]

, charac-
terized by hat functions with a gradient of 1 for each period.

• 𝜓4 is a function with period
2
𝐿 over the interval [0, 1], with each

period being a hat function having a gradient of 1.

Similar to 𝜓1, 𝜓2 is a network with a width of 4𝑁 and a single layer.
Drawing from Proposition 9, we infer that both 𝜓3 and 𝜓4 are networks
with a width of 7 and a depth of 𝐿 + 1.

Finally, by Proposition 7, there exists a 𝜎-NN 𝑤𝒍∗ (𝒙) with 4(𝑁 + 𝑑 +
3) + 𝑠′ − 1 width and 16𝑠′(𝑠′ − 1)𝐿 depth, such that

‖𝑤𝒍∗ (𝒙) − 𝑝𝒍∗ (𝒙)‖𝐿∞(𝛺) ≤ 10(𝑠′ − 1)(𝑁 + 1)−7𝑠
′𝐿. (19)

Based on Proposition 6, since |𝑣𝒍∗ ,𝒊| ≤ 1, there exists 𝜙̂ with a width
f 15𝑁 and a depth of 24𝐿 such that

𝜙̂(𝑥, 𝑦) − 𝑥𝑦‖‖
‖𝐿∞([−1,1]2)

≤ 6𝑁−8𝐿. (20)

herefore, we have

‖𝜙̂(𝑠𝒍∗ (𝒙), 𝑤𝒍∗ (𝒙)) − 𝑝𝒍∗ (𝒙)𝑞𝒍∗ (𝒙)‖𝐿∞(𝛺𝛿 )

‖𝜙̂(𝑠𝒍∗ (𝒙), 𝑤𝒍∗ (𝒙)) − 𝑠𝒍∗ (𝒙)𝑤𝒍∗ (𝒙)‖𝐿∞(𝛺𝛿 )

+ ‖𝑠𝒍∗ (𝒙)𝑤𝒍∗ (𝒙) − 𝑠𝒍∗ (𝒙)𝑝𝒍∗ (𝒙)‖𝐿∞(𝛺𝛿 )

+ ‖𝑠𝒍∗ (𝒙)𝑝𝒍∗ (𝒙) − 𝑝𝒍∗ (𝒙)𝑞𝒍∗ (𝒙)‖𝐿∞(𝛺𝛿 )

6𝑁−12𝐿 + 20(𝑠′ − 1)(𝑁 + 1)−7𝑠
′𝐿 + 4𝐶𝛼,𝒍∗𝐿

−2𝑠𝑁−2𝑠. (21)

etting 𝑠′ = 𝑠 = 2, we notice that

0(𝑠′ − 1)(𝑁 + 1)−7𝑠
′𝐿 = 20(𝑁 + 1)−14𝐿 ≤ 20(𝑁 + 1)−4(𝐿+1) ≤ 20𝑁−4𝐿−4

6𝑁−8𝐿 = 6𝑁4𝐿 ⋅𝑁−4(𝐿+1) ≤ 6𝑁−4𝐿−4. (22)

Above all, we have that there exists a 𝜎-NN 𝜓𝒍∗ with 64𝑑(𝑁 +
) log2(8𝑁) width and (33𝐿 + 2) log2(4𝐿) depth such that

𝜓𝒍∗ (𝒙) −
∑

𝒊∈𝒊𝒍∗

𝑣𝒍∗ ,𝒊𝜙𝒍∗ ,𝒊(𝒙)
‖

‖

‖

‖

‖

‖𝐿∞(𝛺𝛿 )

≤ (26 + 4𝐶𝛼,𝒍∗ )𝑁
−4𝐿−4. (23)

Similarly, we can find 𝜎-NNs {𝜓𝒍(𝒙)}|𝒍|1≤𝑛+𝑑−1 for other
∑

𝒊∈𝒊𝒍 𝑣𝒍,𝒊𝜙𝒍,𝒊
(𝒙) for other 𝒍. Since there are at most 𝑛𝑑 = (2 log2(𝑁𝐿) + 1)𝑑 satisfied
|𝒍|1 ≤ 𝑛 + 𝑑 − 1, we can have a 𝜎-NN 𝑘̃(𝒙) with

idth 32𝑑(𝑁 + 1) log2(8𝑁)(2 log2(𝑁𝐿) + 1)𝑑 (24)

and

depth (33𝐿 + 2) log2(4𝐿) (25)

such that
‖

‖𝑘̃(𝒙) − 𝑓 (𝑛)(𝒙)‖‖ ≤ (52 + 8𝐶 )𝑁−4𝐿−4. (26)

‖

1
‖𝐿∞(𝛺𝛿 )

𝛼,𝒍∗

6 
Thanks to Proposition 9, 𝑘̃(𝒙) can be expressed as

32𝑑(𝑁 + 1) log2(8𝑁)(2 log2(𝑁𝐿) + 1)𝑑

(log2 𝐿)𝑑
≤ 64𝑑(𝑁 + 2)(log2(8𝑁))𝑑+1 (27)

width and (33𝐿 + 2)(log2(4𝐿))𝑑+1 depth.
Finally, combining with Lemma 2 and 𝑛 = 2 log2(𝑁𝐿) + 1, we have

that

‖

‖

𝑘̃(𝒙) − 𝑓 (𝒙)‖
‖𝐿∞(𝛺𝛿 )

≤(52 + 8𝐶𝛼,𝒍∗ )𝑁
−4𝐿−4

+ 𝐶𝑁−4𝐿−4 (2 log2(𝑁𝐿) + 1)3(𝑑−1)

(2 log2(𝑁𝐿) + 1)2(𝑑−1)

≤𝐶𝑁−4𝐿−4(log2𝑁)𝑑−1(log2 𝐿)𝑑−1. □ (28)

Next, the following lemma establishes a connection between the
pproximation on 𝛺𝛿 and that in the whole domain.

emma 3 (Lu et al., 2021c; Shen et al., 2022). Given any 𝜀 > 0, 𝑁,𝐿,𝐾 ∈
+, and 𝛿 ∈

(

0, 1
3𝐾

]

, assume 𝑓 is a continuous function in 𝐶
(

[0, 1]𝑑
)

and
̃ can be implemented by a ReLU network with width 𝑁 and depth 𝐿. If

|𝑓 (𝒙) − 𝜙(𝒙)| ≤ 𝜀, for any 𝒙 ∈ 𝛺𝛿 ,

then there exists a function 𝜙 implemented by a new ReLU network with
width 3𝑑 (𝑁 + 4) and depth 𝐿 + 2𝑑 such that

|𝑓 (𝒙) − 𝜙(𝒙)| ≤ 𝜀 + 𝑑 ⋅ 𝜔𝑓 (𝛿), for any 𝒙 ∈ [0, 1]𝑑 ,

here

𝑓 (𝑟) ∶= sup
{

|𝑓 (𝒙) − 𝑓 (𝒚)| ∶ 𝒙, 𝒚 ∈ [0, 1]𝑑 , ‖𝒙 − 𝒚‖2 ≤ 𝑟
}

, for any 𝑟 ≥ 0.

(29)

Now, by leveraging Propositions 3, the Sobolev embedding theorem,
nd Lemma 3, we can derive an approximation of Korobov functions
ith a super-convergence rate.

roof of Theorem 2. Based on Propositions 3, the continuity of
orobov functions, and Lemma 3, for given 𝑁 , 𝐿, and 𝑑, we set 𝛿 to be
ufficiently small to ensure

⋅ 𝜔𝑓 (𝛿) ≤ 𝑁−4𝐿−4(log2𝑁)𝑑−1(log2 𝐿)𝑑−1.

Then, there exists a 𝜎-NN 𝑘(𝒙) with 3𝑑 (64𝑑(𝑁 + 3)(log2(8𝑁))𝑑+1)
idth and 2𝑑 + (33𝐿 + 2)(log2(4𝐿))𝑑+1 depth such that

𝑘(𝒙) − 𝑓 (𝒙)‖𝐿∞(𝛺) ≤ 𝐶𝑁−4𝐿−4(log2𝑁)𝑑−1(log2 𝐿)𝑑−1, (30)

here 𝐶 is a constant independent of 𝑁 and 𝐿, and polynomially
ependent on the dimension 𝑑. Furthermore, we have

𝑘(𝒙) − 𝑓 (𝒙)‖𝐿𝑝(𝛺) ≤ 𝐶𝑁−4𝐿−4(log2𝑁)𝑑−1(log2 𝐿)𝑑−1, (31)

or any 𝑝 ∈ [1,∞]. □

The approximation rate in Theorem 2 is significantly superior to
that in Corollary 1. This error outperforms the results in Blanchard and
Bennouna (2021), Mao and Zhou (2022), Montanelli and Du (2019).

Furthermore, our result is nearly optimal based on the following
heorem in the 𝑋2,∞ case.
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Theorem 3. Given any 𝜌, 𝐶1, 𝐶2, 𝐶3, 𝐽0 > 0 and 𝑛, 𝑑 ∈ N+, there exist
, 𝐿 ∈ N with 𝑁𝐿 ≥ 𝐽0 and 𝑓 ∈ 𝑋2,∞ with |𝑓 |2,∞ ≤ 1, such that

inf
∈

‖𝜙 − 𝑓‖𝐿∞(𝛺) > 𝐶3𝐿
−4−𝜌𝑁−4−𝜌, (32)

where

 ∶= {𝜎-NNs in R𝑑 with width 𝐶1𝑁(log2𝑁)𝑑+1

and depth 𝐶2𝐿(log2 𝐿)𝑑+1}.

In order to prove this theorem, we need a definition called the
Vapnik–Chervonenkis (VC) dimension (Abu-Mostafa, 1989), which de-
scribes the richness of the space. If the VC dimension of the space is
large, it means that the space has greater approximating ability:

Definition 5 (VC-dimension Abu-Mostafa, 1989). Let 𝐻 denote a class
of functions from  to {0, 1}. For any non-negative integer 𝑚, define
the growth function of 𝐻 as

𝛱𝐻 (𝑚) ∶= max
𝑥1 ,𝑥2 ,…,𝑥𝑚∈

|

|

|

{
(

ℎ(𝑥1), ℎ(𝑥2),… , ℎ(𝑥𝑚)
)

∶ ℎ ∈ 𝐻}||
|

.

The VC dimension of 𝐻 , denoted by VCdim(𝐻), is the largest 𝑚
such that 𝛱𝐻 (𝑚) = 2𝑚. For a class  of real-valued functions, define
VCdim() ∶= VCdim(sgn()), where sgn() ∶= {sgn(𝑓 ) ∶ 𝑓 ∈ } and
sgn(𝑥) = 1[𝑥 > 0].

Lemma 4 (Bartlett et al., 2019). For any 𝑁,𝐿, 𝑑 ∈ N+, there exists a
constant 𝐶̄ independent with 𝑁,𝐿 such that

VCdim(𝛷) ≤ 𝐶̄𝑁2𝐿2 log2 𝐿 log2𝑁, (33)

𝛷 ∶=
{

𝜙 ∶ 𝜙 𝑖𝑠 𝑎 𝜎 −𝑁𝑁 𝑖𝑛 R𝑑 𝑤𝑖𝑡ℎ 𝑤𝑖𝑑𝑡ℎ ≤ 𝑁 𝑎𝑛𝑑 𝑑𝑒𝑝𝑡ℎ ≤ 𝐿
}

.

The above lemma shows an upper bound on the VC dimension of
fixed-width and fixed-depth neural networks, highlighting the limita-
tions of such networks. This is applied in Lemma 5, which we can use
to prove the optimality of Theorem 2, i.e., Theorem 3.

Lemma 5 (Siegel, 2022). Let 𝛺 = [0, 1]𝑑 and suppose that 𝐾 is a
translation invariant class of functions whose VC-dimension is at most 𝑛.
By translation invariant we mean that 𝑓 ∈ 𝐾 implies that 𝑓 (⋅ − 𝑣) ∈ 𝐾 for
any fixed vector 𝑣 ∈ R𝑑 . Then there exists an 𝑓 ∈ 𝑊 𝑠,∞(𝛺) such that

inf
𝑔∈𝐾

‖𝑓 − 𝑔‖𝐿𝑝(𝛺) ≥ 𝐶(𝑑, 𝑝)𝑛−
𝑠
𝑑
‖𝑓‖𝑊 𝑠,∞(𝛺).

Proof of Theorem 3. Define

̃ ∶= {𝜎-NNs in R with width 𝐶1𝑁(log2𝑁)𝑑+1

and depth 𝐶2𝐿(log2 𝐿)𝑑+1}.

Due to Lemma 4, we know that

VCdim(̃) ≤ 𝐶𝑁2𝐿2(log2 𝐿)2𝑑+3(log2𝑁)2𝑑+3.

Based on Lemma 5, there exists a 𝑓 ∈ 𝑊 2,∞([0, 1]) with ‖𝑓‖𝑊 2,∞ ≤ 1
such that

inf
𝑔∈

‖𝑓 − 𝑔‖𝐿𝑝([0,1]) ≥ 𝐶(𝑑, 𝑝)𝑁−4𝐿−4(log2 𝐿)−4𝑑−6

× (log2𝑁)−4𝑑−6‖𝑓‖𝑊 2,∞([0,1]).

Now we can define 𝑓 (𝒙) = 𝑓 (𝑥1) which belongs to 𝑋2,∞. Then we know
that for any 𝜌, 𝐶3, 𝐽0 > 0, there is an 𝑓 ∈ 𝑋2,∞(𝛺) with |𝑓 |2,∞ ≤ 1, and
𝑁,𝐿 with 𝑁𝐿 ≥ 𝐽0 such that

inf
𝜙∈

‖𝑓 − 𝜙‖𝐿∞(𝛺)

≥ inf
𝜙∈

‖𝑓 (𝑥1) − 𝜙(𝑥1,… , 𝑥𝑑 )‖𝐿∞(𝛺) ≥ inf
𝜙∈̃

‖𝑓 (𝑥1) − 𝜙(𝑥1)‖𝐿∞([0,1])

≥ 𝐶(𝑑, 𝑝)𝑁−4𝐿−4(log2 𝐿)−4𝑑−6(log2𝑁)−4𝑑−6 > 𝐶3𝐿
−4−𝜌𝑁−4−𝜌. (34)

The second inequality is due to the fact that for any fixed 𝑥2, 𝑥3,… , 𝑥𝑑 ,
̃
𝜙(𝑥1,… , 𝑥𝑑 ) belongs to  with respect to 𝑥1. □
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5. Super convergence rates for Korobov functions in 𝑯𝟏-norm

In this section, we will extend our analysis from Section 4 to the
case of 𝐻1 norms. This extension ensures that our DNNs can approxi-
mate functions in Korobov spaces with minimal discrepancies in both
magnitude and derivative, achieving optimality and demonstrating the
super-convergence rate.

Theorem 4. For any 𝑓 ∈ 𝑋2,∞(𝛺) and |𝑓 |2,∞ ≤ 1, ‖𝑓‖𝑊 1,∞(𝛺) ≤ 1,
𝑁,𝐿 ∈ N+, there is a 𝜎-NN 𝑘(𝒙) with 2𝑑+6𝑑(𝑁 + 2)(log2(8𝑁))𝑑+1 width
and (47𝐿 + 2)(log2(4𝐿))𝑑+1 depth such that

‖𝑓 (𝒙) − 𝑘(𝒙)‖𝐻1([0,1]𝑑 ) ≤ 𝐶𝑁−2𝐿−2(log2𝑁)𝑑−1(log2 𝐿)𝑑−1,

where 𝐶 is the constant independent with 𝑁,𝐿 and dependent on the |𝑓 |2,∞.

Remark 4. The proof of Theorem 4 is different from that of Theorem 2.
The reason is that the derivative in 𝛺∖𝛺𝛿 is very large and cannot be
estimated well by Lemma 3. Therefore, the proof of Theorem 4 can be
divided into three parts. The first part involves dividing the domain
𝛺 into several parts and finding a neural network to approximate the
target function in each part as in Theorem 2. Then, we establish a
partition of unity and use DNNs to approximate them (Yang, Yang, &
Xiang, 2023). Finally, we combine the neural networks from the first
two steps to establish a neural network that approximates the target
function in the whole domain with 𝐻1-norms.

First of all, define a sequence of subsets of 𝛺:

Definition 6. Given 𝐾, 𝑑 ∈ N+, and for any 𝒎 = (𝑚1, 𝑚2,… , 𝑚𝑑 ) ∈
{1, 2}𝑑 , we define 𝛺𝒎 ∶=

∏𝑑
𝑗=1𝛺𝑚𝑗 , where 𝛺1 ∶=

⋃𝐾−1
𝑖=0

[

𝑖
𝐾 ,

𝑖
𝐾 + 3

4𝐾

]

,

𝛺2 ∶=
⋃𝐾
𝑖=0

[

𝑖
𝐾 − 1

2𝐾 ,
𝑖
𝐾 + 1

4𝐾

]

∩ [0, 1].

Note that 𝛺𝟏 = 𝛺𝛿 when 𝐾 = 1
2𝑛 , where 𝑛 and 𝛺𝛿 are defined in

Definition 4.
Next, we are going to establish neural networks on each 𝛺𝒎 to

pproximate the Korobov functions in the 𝐻1-norm.

roposition 4. For any 𝑓 ∈ 𝑋2,∞(𝛺) with 𝑝 ≥ 1 and |𝑓 |2,∞ ≤ 1,
, 𝐿 ∈ N+, there is a 𝜎-NN 𝑘̃𝒎(𝒙) for any 𝒎 ∈ {1, 2}𝑑 with 64𝑑(𝑁 +
)(log2(8𝑁))𝑑+1 width and (33𝐿 + 2)(log2(4𝐿))𝑑+1 depth, such that

𝑘̃𝒎(𝒙) − 𝑓 (𝒙)‖‖𝐻1(𝛺𝒎)
≤ 𝐶𝑁−2𝐿−2. (35)

here 𝐶 is the constant independent with 𝑁,𝐿, and dependent on the
𝑓 |2,∞.

roof. The proof is similar to that of Proposition 3. We consider 𝒎 = 𝟏,
.e., 𝛺𝒎∗

= 𝛺𝛿 . For other 𝒎 ∈ {1, 2}𝑑 , the proof can be carried out in
similar way. For any |𝒍| ≤ 𝑛 + 𝑑 − 1, there exists a 𝜎-NN 𝜓𝒍 with
4𝑑(𝑁 + 1) log2(8𝑁) width and (33𝐿 + 2) log2(4𝐿) depth such that

𝜓𝒍(𝒙) −
∑

𝒊∈𝒊𝒍

𝑣𝒍,𝒊𝜙𝒍,𝒊(𝒙)
‖

‖

‖

‖

‖

‖𝑊 1,∞(𝛺𝒎∗ )

≤ (26 + 4𝐶𝛼,𝒍∗ )𝑁
−4𝐿−4. (36)

he proof follows a similar structure to that in Proposition 3. This
imilarity arises from the fact that ∑𝒊∈𝒊𝒍 𝑣𝒍,𝒊𝜙𝒍,𝒊(𝒙) = 𝑝𝒍(𝒙)𝑞𝒍(𝒙) and 𝑝𝒍
is a piece-wise constant function with a weak derivative always equal
to zero. The approximation of 𝑝𝒍(𝒙) has already been measured by the
norm 𝑊 1,∞ in Proposition 3. Due to 𝑊 1,∞(𝛺) ⊂ 𝐻1(𝛺), we can have a
𝜎-NN 𝑘̃𝒎∗

(𝒙) with width 32𝑑(𝑁 +1) log2(8𝑁)(2 log2(𝑁𝐿)+1)𝑑 and depth
(33𝐿 + 2) log2(4𝐿) such that
‖

‖

‖

𝑘̃𝒎∗
(𝒙) − 𝑓 (𝑛)

1 (𝒙)‖‖
‖𝐻1(𝛺𝒎∗ )

≤ (52 + 8𝐶𝛼,𝒍∗ )𝑁
−4𝐿−4. (37)

Combine with Lemma 2, we have
‖

‖

‖

𝑘̃𝒎∗
(𝒙) − 𝑓 (𝒙)‖‖

‖𝐻1(𝛺𝒎∗ )
≤ (52 + 8𝐶𝛼,𝒍∗ )𝑁

−4𝐿−4 + 𝐶𝑁−2𝐿−2

≤ 𝐶𝑁−2𝐿−2. □ (38)
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Fig. 2. The schematic diagram of 𝑔𝑖 for 𝑖 = 1, 2.
≤

=

w
w

‖

‖

A

≤

≤

‖

Then we define a partition of unity {𝑔𝒎}𝒎∈{1,2}𝑑 on [0, 1]𝑑 with
upp 𝑔𝒎 ∩ [0, 1]𝑑 ⊂ 𝛺𝒎 for each 𝒎 ∈ {1, 2}𝑑 :

efinition 7. Given 𝐾, 𝑑 ∈ N+, we define

1(𝑥) ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, 𝑥 ∈
[

𝑖
𝐾 + 1

4𝐾 ,
𝑖
𝐾 + 1

2𝐾

]

0, 𝑥 ∈
[

𝑖
𝐾 + 3

4𝐾 ,
𝑖+1
𝐾

]

4𝐾
(

𝑥 − 𝑖
𝐾

)

, 𝑥 ∈
[

𝑖
𝐾 ,

𝑖
𝐾 + 1

4𝐾

]

−4𝐾
(

𝑥 − 𝑖
𝐾 − 3

4𝐾

)

, 𝑥 ∈
[

𝑖
𝐾 + 1

2𝐾 ,
𝑖
𝐾 + 3

4𝐾

]

2(𝑥) ∶= 𝑔1
(

𝑥 + 1
2𝐾

)

, (39)

or 𝑖 ∈ Z, (see Fig. 2). For any 𝒎 = (𝑚1, 𝑚2,… , 𝑚𝑑 ) ∈ {1, 2}𝑑 , define
𝒎(𝒙) =

∏𝑑
𝑗=1 𝑔𝑚𝑗 (𝑥𝑗 ), 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑑 ).

Then we use the following proposition to approximate {𝑔𝒎}𝒎∈{1,2}𝑑

by 𝜎-NNs and construct a sequence of 𝜎-NNs {𝜙𝒎}𝒎∈{1,2}𝑑 . The proof
shown in the Yang, Yang, and Xiang (2023).

Proposition 5 (Yang, Yang, & Xiang, 2023). Given any 𝑁,𝐿, 𝑛 ∈ N+ for
𝐾 = 𝑁2𝐿2, then for any

𝒎 = (𝑚1, 𝑚2,… , 𝑚𝑑 ) ∈ {1, 2}𝑑 ,

there is a 𝜎-NN with the width smaller than (9+𝑑)(𝑁 +1)+𝑑−1 and depth
smaller than 15𝑑(𝑑 − 1)𝑛𝐿 such as

‖𝜙𝒎(𝒙) − 𝑔𝒎(𝒙)‖𝑊 1,∞([0,1]𝑑 ) ≤ 50𝑑
5
2 (𝑁 + 1)−4𝑑𝑛𝐿.

Now we combine {𝑘̂𝒎(𝒙)}𝒎∈{1,2}𝑑 and {𝜙𝒎(𝒙)}𝒎∈{1,2}𝑑 in Proposi-
ion 5 to extend the approximation into the whole domain 𝛺. Before
oing so, we require the following lemma. This lemma demonstrates
hat 𝜙𝒎(𝒙) in Proposition 5 attains 0 to 0 behavior in the Sobolev norms.

emma 6 (Yang, Yang, & Xiang, 2023). For any 𝜆 ∈ 𝐻1([0, 1]𝑑 ), we have

‖𝜙𝒎 ⋅ 𝜆‖𝐻1([0,1]𝑑 ) =‖𝜙𝒎 ⋅ 𝜆‖𝐻1([0,1]𝑑 )

‖𝜙𝒎 ⋅ 𝜆 − 𝜙(𝜙𝒎, 𝜆)‖𝐻1([0,1]𝑑 ) =‖𝜙𝒎 ⋅ 𝜆 − 𝜙(𝜙𝒎, 𝜆)‖𝐻1([0,1]𝑑 ) (40)

for any 𝒎 ∈ {1, 2}𝑑 , where 𝜙𝒎 and 𝛺𝒎 is defined in Proposition 5 and
Definition 6, and 𝜙 is from Proposition 6 (choosing 𝑎 = 1 in the proposition)
(see Fig. 2).

Proof of Theorem 4. Based on Propositions 3 and 4, there is a
sequence of the neural network {𝑘̃𝒎(𝒙)}𝒎∈{1,2}𝑑 such that

‖

‖

𝑘̃𝒎(𝒙) − 𝑓 (𝒙)‖‖𝐻1(𝛺𝒎)
≤ 𝐶𝑁−2𝐿−2,

‖

‖

𝑘̃𝒎(𝒙) − 𝑓 (𝒙)‖‖𝐿2(𝛺) ≤ 𝐶𝑁−4𝐿−4(log2𝑁)𝑑−1(log2 𝐿)𝑑−1, (41)

where 𝐶 is independent with 𝑁 and 𝐿, and each 𝑘̃𝒎(𝒙) for any 𝒎 ∈
{1, 2}𝑑 is a 𝜎-NN with 64𝑑(𝑁 + 2)(log2(8𝑁))𝑑+1 width and (33𝐿 +
2)(log2(4𝐿))𝑑+1 depth. According to Proposition 5, there is a sequence
of the neural network {𝜙𝒎(𝒙)}𝒎∈{1,2}𝑑 such that

≤ 50𝑑
5
2 (𝑁 + 1)−4𝑑𝐿,
‖𝜙𝒎(𝒙) − 𝑔𝒎(𝒙)‖𝑊 1,∞([0,1]𝑑 )
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where {𝑔𝒎}𝒎∈{1,2}𝑑 is defined in Definition 7 with
∑

𝒎∈{1,2}𝑑 𝑔𝒎(𝒙) = 1
and supp 𝑔𝒎 ∩ [0, 1]𝑑 = 𝛺𝒎. For each 𝜙𝒎, it is a neural network with
the width smaller than (9 + 𝑑)(𝑁 + 1) + 𝑑 − 1 and depth smaller than
15𝑑(𝑑 − 1)𝐿.

Due to Proposition 6, there is a neural network 𝛷̃ with the width
15(𝑁 + 1) and depth 14𝐿 such that ‖𝜙‖𝑊 1,∞[−1,1]2 ≤ 12 and
‖

‖

‖

𝛷̃(𝑥, 𝑦) − 𝑥𝑦‖‖
‖𝑊 1,∞[−1,1]2

≤ 6(𝑁 + 1)−7(𝐿+1). (42)

Now we define

𝑘(𝒙) =
∑

𝒎∈{1,2}𝑑
𝜙(𝜙𝒎(𝒙), 𝑘̃𝒎(𝒙)). (43)

Note that

 ∶=‖𝑓 (𝒙) − 𝜙(𝒙)‖𝐻1([0,1]𝑑 ) =
‖

‖

‖

‖

‖

‖

∑

𝒎∈{1,2}𝑑
𝑔𝒎 ⋅ 𝑓 (𝒙) − 𝜙(𝒙)

‖

‖

‖

‖

‖

‖𝐻1([0,1]𝑑 )

≤
‖

‖

‖

‖

‖

‖

∑

𝒎∈{1,2}𝑑

[

𝑔𝒎 ⋅ 𝑓 (𝒙) − 𝜙𝒎(𝒙) ⋅ 𝜓𝒎(𝒙)
]

‖

‖

‖

‖

‖

‖𝐻1([0,1]𝑑 )

+
‖

‖

‖

‖

‖

‖

∑

𝒎∈{1,2}𝑑

[

𝜙𝒎(𝒙) ⋅ 𝜓𝒎(𝒙) − 𝛷̃(𝜙𝒎(𝒙), 𝜓𝒎(𝒙))
]

‖

‖

‖

‖

‖

‖𝐻1([0,1]𝑑 )

. (44)

As for the first part,
‖

‖

‖

‖

‖

‖

∑

𝒎∈{1,2}𝑑

[

𝑔𝒎 ⋅ 𝑓 (𝒙) − 𝜙𝒎(𝒙) ⋅ 𝜓𝒎(𝒙)
]

‖

‖

‖

‖

‖

‖𝐻1([0,1]𝑑 )

≤
∑

𝒎∈{1,2}𝑑

‖

‖

𝑔𝒎 ⋅ 𝑓 (𝒙) − 𝜙𝒎(𝒙) ⋅ 𝜓𝒎(𝒙)‖‖𝐻1([0,1]𝑑 )

∑

𝒎∈{1,2}𝑑

[

‖

‖

(𝑔𝒎 − 𝜙𝒎(𝒙)) ⋅ 𝑓 (𝒙)‖‖𝐻1([0,1]𝑑 ) + ‖

‖

(𝑓𝒎 − 𝜓𝒎(𝒙)) ⋅ 𝜙𝒎(𝒙)‖‖𝐻1([0,1]𝑑 )

]

∑

𝒎∈{1,2}𝑑

[

‖

‖

(𝑔𝒎 − 𝜙𝒎(𝒙)) ⋅ 𝑓 (𝒙)‖‖𝐻1([0,1]𝑑 ) + ‖

‖

(𝑓𝒎 − 𝜓𝒎(𝒙)) ⋅ 𝜙𝒎(𝒙)‖‖𝐻1([0,1]𝑑 )

]

,

(45)

here the last equality is due to Lemma 6. Based on ‖𝑓‖𝑊 1,∞([0,1]𝑑 ) ≤ 1,
e have

(𝑔𝒎 − 𝜙𝒎(𝒙)) ⋅ 𝑓 (𝒙)‖‖𝐻1([0,1]𝑑 ) ≤ ‖

‖

(𝑔𝒎 − 𝜙𝒎(𝒙))‖‖𝐻1([0,1]𝑑 )

≤ 50𝑑
5
2 (𝑁 + 1)−4𝑑𝑛𝐿. (46)

nd

‖

‖

(𝑓𝒎 − 𝜓𝒎(𝒙)) ⋅ 𝜙𝒎(𝒙)‖‖𝐻1([0,1]𝑑 )
‖

‖

(𝑓𝒎 − 𝜓𝒎)‖‖𝐻1([0,1]𝑑 ) ⋅ ‖𝜙𝒎‖𝐿∞(𝛺𝒎) +
‖

‖

(𝑓𝒎 − 𝜓𝒎)‖‖𝐿2(𝛺𝒎)
⋅ ‖𝜙𝒎‖𝑊 1,∞(𝛺𝒎)

𝐶𝑁−2𝐿−2 ⋅
(

1 + 50𝑑
5
2
)

+ 𝐶𝑁−4𝐿−4 ⋅ 54𝑑
5
2𝑁2𝐿2(log2𝑁)𝑑−1(log2 𝐿)𝑑−1

≤𝐶𝑁−2𝐿−2(log2𝑁)𝑑−1(log2 𝐿)𝑑−1, (47)

where the second inequality is due to

‖𝜙𝒎‖𝐿∞(𝛺𝒎) ≤ ‖𝜙𝒎‖𝐿∞([0,1]𝑑 ) ≤ ‖𝑔𝒎‖𝐿∞([0,1]𝑑 ) + ‖𝜙𝒎 − 𝑔𝒎‖𝐿∞([0,1]𝑑 ) ≤ 1 + 50𝑑
5
2

𝜙𝒎‖𝑊 1,∞(𝛺𝒎) ≤ ‖𝜙𝒎‖𝑊 1,∞([0,1]𝑑 ) ≤ ‖𝑔𝒎‖𝑊 1,∞([0,1]𝑑 ) + ‖𝜙𝒎 − 𝑔𝒎‖𝑊 1,∞([0,1]𝑑 )

≤ 4𝑁2𝐿2 + 50𝑑
5
2 . (48)
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Therefore
‖

‖

‖

‖

‖

‖

∑

𝒎∈{1,2}𝑑

[

𝑔𝒎 ⋅ 𝑓 (𝒙) − 𝜙𝒎(𝒙) ⋅ 𝜓𝒎(𝒙)
]

‖

‖

‖

‖

‖

‖𝑊 1,∞([0,1]𝑑 )

≤𝐶𝑁−2𝐿−2(log2𝑁)𝑑−1(log2 𝐿)𝑑−1, (49)

due to (𝑁 + 1)−4𝑑𝑛𝐿 ≤ 𝑁−2𝑛𝐿−2𝑛.
For the second part, due to Lemma 6, we have

‖

‖

‖

‖

‖

‖

∑

𝒎∈{1,2}𝑑

[

𝜙𝒎(𝒙) ⋅ 𝜓𝒎(𝒙) − 𝛷̃(𝜙𝒎(𝒙), 𝜓𝒎(𝒙))
]

‖

‖

‖

‖

‖

‖𝐻1([0,1]𝑑 )

≤
∑

𝒎∈{1,2}𝑑

‖

‖

‖

𝜙𝒎(𝒙) ⋅ 𝜓𝒎(𝒙) − 𝛷̃(𝜙𝒎(𝒙), 𝜓𝒎(𝒙))
‖

‖

‖𝐻1([0,1]𝑑 )

=
∑

𝒎∈{1,2}𝑑

‖

‖

‖

𝜙𝒎(𝒙) ⋅ 𝜓𝒎(𝒙) − 𝛷̃(𝜙𝒎(𝒙), 𝜓𝒎(𝒙))
‖

‖

‖𝐻1(𝛺𝒎)
. (50)

Due to Lemma 8, we have that
‖

‖

‖

𝜙𝒎(𝒙) ⋅ 𝜓𝒎(𝒙) − 𝛷̃(𝜙𝒎(𝒙), 𝜓𝒎(𝒙))
‖

‖

‖𝐻1(𝛺𝒎)

≤ 𝐶𝑁−2𝐿−2(log2𝑁)𝑑−1(log2 𝐿)𝑑−1. (51)

Combining (49) and (51), we have that there is a 𝜎-NN with (47𝐿+
2)(log2(4𝐿))𝑑+1 depth and 2𝑑+6𝑑(𝑁 + 2)(log2(8𝑁))𝑑+1 width such that

‖𝑓 (𝒙) − 𝑘(𝒙)‖𝐻1([0,1]𝑑 ) ≤ 𝐶𝑁−2𝐿−2(log2𝑁)𝑑−1(log2 𝐿)𝑑−1,

where 𝐶 is the constant independent with 𝑁,𝐿. □

Remark 5. The approximation rate for Korobov functions provided in
Theorem 4 falls short of achieving the nearly optimal approximation
rate observed in function spaces 𝑊 2𝑑,𝑝, as measured by the norm
containing the first derivative (Yang, Yang, & Xiang, 2023). In the latter
case, the optimal rate is ((𝑁𝐿)−

4𝑑−2
𝑑 ). The limitation in achieving this

ptimal rate for Korobov functions is rooted in the sensitivity of these
unctions to derivatives. For instance, consider a finite expansion of
in Korobov spaces denoted as 𝑓 (1)

𝑛 (𝒙) =
∑

|𝒍|1≤𝑛+𝑑−1
∑

𝒊∈𝒊𝒍 𝑣𝒍,𝒊𝜙𝒍,𝒊(𝒙).
In this expansion, there exists a spline function 𝜙𝒍,𝒊(𝒙) for which 𝒍 =
(𝑛, 1, 1, 1,… , 1), and its partial derivative with respect to 𝑥1 can be very
large, on the order of 2𝑛.

The way to prove the optimality of the 𝐻1 case is similar to
Theorem 3 and combined with the following lemma:

Lemma 7 (Yang, Yang, & Xiang, 2023, Theorem 1). For any𝑁,𝐿, 𝑑 ∈ N+,
there exists a constant 𝐶̄ independent with 𝑁,𝐿 such that

VCdim(𝐷𝛷) ≤ 𝐶̄𝑁2𝐿2 log2 𝐿 log2𝑁,

for

𝐷𝛷 ∶=
{

𝜓 = 𝐷𝑖𝜙 ∶ 𝜙 ∈ 𝛷, 𝑖 = 1, 2,… , 𝑑
}

, (52)

where 𝛷 ∶=
{

𝜙 ∶ 𝜙 𝑖𝑠 𝑎 𝜎 −𝑁𝑁 𝑖𝑛 R𝑑 𝑤𝑖𝑡ℎ 𝑤𝑖𝑑𝑡ℎ ≤ 𝑁 𝑎𝑛𝑑 𝑑𝑒𝑝𝑡ℎ ≤ 𝐿
}

and 𝐷𝑖 is the weak derivative in the 𝑖th variable.

Theorem 5. Given any 𝜌, 𝐶1, 𝐶2, 𝐶3, 𝐽0 > 0 and 𝑛, 𝑑 ∈ N+, there exist
𝑁,𝐿 ∈ N with 𝑁𝐿 ≥ 𝐽0 and 𝑓 ∈ 𝑋2,∞ with |𝑓 |2,∞ ≤ 1, such that

inf
𝜙∈

‖𝜙 − 𝑓‖𝐻1(𝛺) > 𝐶3𝐿
−2−𝜌𝑁−2−𝜌, (53)

where

 ∶= {𝜎-NNs in R𝑑 with width 𝐶1𝑁(log2𝑁)𝑑+1

and depth 𝐶2𝐿(log2 𝐿)𝑑+1}.

Proof. The proof is similar to Theorem 3 and combined with
Lemma 7. □
 d
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Comparing the results in Theorem 1 and Corollary 1 with Theo-
ems 2 and 4, we observe that the results in Theorems 2 and 4 are
significantly better than those in Theorem 1 and Corollary 1. The con-
stants in Theorem 1 and Corollary 1 are superior to those in Theorems 2
nd 4, which exponentially depend on the dimension 𝑑. This leaves an
pen question for future research to explore alternative approaches for
ddressing the challenge of incorporating the dependence on 𝑑 in the
ower bounds while maintaining a super-convergence rate.

. Conclusion

This paper establishes the approximation of DNNs for Korobov
unctions, not only in 𝐿𝑝 norms for 2 ≤ 𝑝 ≤ ∞ but also in 𝐻1

orms, effectively avoiding the curse of dimensionality. For both types
f errors, we establish a super-convergence rate and prove the optimality
f each approximation.
In our exploration of deep neural networks for approximating Ko-

obov functions, we note that prior work, such as Blanchard and
ennouna (2021), has focused on two-hidden layer neural networks
or shallow approximations. The establishment of the potential of one-
idden layer neural networks for approximating functions in Korobov
paces is considered as future work. Moreover, in this paper, we delve
nto proving the optimality of our results. The proof strategy relies on
he fact that the approximation rate in 𝑋2,∞([0, 1]𝑑 ) achieves a nearly
ptimal approximation rate for𝑊 2,∞([0, 1]). However, when combining
ur work with the estimates provided in Mao and Zhou (2022), it be-
omes evident that the super-convergence rate for 𝑋2,𝑝 can only achieve
(

𝑁−4+ 2
𝑝 𝐿−4+ 2

𝑝

)

(up to logarithmic factors). Determining whether
this rate is nearly optimal and establishing a proof for it remains an
open question.
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Appendix. Preliminary results on ReLU-DNN approximation

In this section, we collect several lemmas and propositions related
to DNNs. The following two propositions concern the approximation of
product operators in the 𝑊 1,∞ sense. These will be used in the proof to
epresent the sparse grid and combine the neural network in the whole

omain, excluding small sets and the partition of unity.
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Proposition 6 (Yang, Yang, & Xiang, 2023). For any 𝑁,𝐿 ∈ N+ and
𝑎 > 0, there is a 𝜎-NN 𝜙 with the width 15𝑁 and depth 2𝐿 such that
‖𝜙‖𝑊 1,∞((−𝑎,𝑎)2) ≤ 12𝑎2 and

‖𝜙(𝑥, 𝑦) − 𝑥𝑦‖𝑊 1,∞((−𝑎,𝑎)2) ≤ 6𝑎2𝑁−𝐿. (A.1)

Furthermore,

𝜙(0, 𝑦) =
𝜕𝜙(0, 𝑦)
𝜕𝑦

= 0, 𝑦 ∈ (−𝑎, 𝑎). (A.2)

Proposition 7 (Yang, Yang, & Xiang, 2023). For any 𝑁,𝐿, 𝑠 ∈ N+with
𝑠 ≥ 2, there exists a 𝜎-NN 𝜙 with the width 9(𝑁 + 1) + 𝑠 − 1 and depth
14𝑠(𝑠 − 1)𝐿 such that ‖𝜙‖𝑊 1,∞((0,1)𝑠) ≤ 18 and

‖

‖

𝜙(𝒙) − 𝑥1𝑥2 ⋯ 𝑥𝑠‖‖𝑊 1,∞((0,1)𝑠) ≤ 10(𝑠 − 1)(𝑁 + 1)−7𝑠𝐿. (A.3)

Furthermore, for any 𝑖 = 1, 2,… , 𝑠, if 𝑥𝑖 = 0, we will have

𝜙(𝑥1, 𝑥2,… , 𝑥𝑖−1, 0, 𝑥𝑖+1,… , 𝑥𝑠) =
𝜕𝜙(𝑥1, 𝑥2,… , 𝑥𝑖−1, 0, 𝑥𝑖+1,… , 𝑥𝑠)

𝜕𝑥𝑗
= 0,

(A.4)

for 𝑖 ≠ 𝑗.

In the paper, we will use a lemma concerning the composition of
functions in Sobolev spaces:

Lemma 8 (Gühring et al., 2020, Corollary B.5). Let 𝑑, 𝑚 ∈ N+ and
1 ⊂ R𝑑 and 𝛺2 ⊂ R𝑚 both be open, bounded, and convex. Then for
∈ 𝑊 1,∞(𝛺1, 𝛺2) and 𝑔 ∈ 𝑊 1,∞(𝛺2), we have

𝑔◦𝒇‖𝑊 1,∞(𝛺2) ≤
√

𝑑𝑚max{‖𝑔‖𝐿∞(𝛺2), ‖𝑔‖𝑊 1,∞(𝛺2)‖𝒇‖𝑊 1,∞(𝛺1 ,R𝑚)}.

The following proposition, combined with the bit extraction tech-
nique, can be applied to approximate the piecewise linear function well
in the whole domain, excluding a small set.

Proposition 8 (Lu et al., 2021c, Proposition 4.3). Given any 𝑁,𝐿 ∈ N+
and 𝛿 ∈

(

0, 1
3𝐾

]

for 𝐾 ≤ 𝑁2𝐿2, there exists a 𝜎-NN 𝜙 with the width
𝑁 + 5 and depth 4𝐿 + 4 such that

(𝑥) = 𝑘, 𝑥 ∈
[ 𝑘
𝐾
, 𝑘 + 1
𝐾

− 𝛿 ⋅ 1𝑘<𝐾−1

]

, 𝑘 = 0, 1,… , 𝐾 − 1.

The following lemma is used to restructure a wide neural network
ith a wide last layer into a deep neural network with less width, which
an effectively prune the neural network and make its structure match
ur desired specifications.

roposition 9 (Siegel, 2022, Proposition 1). Given a sequence of the neural
etwork {𝑝𝑖}𝑀𝑖=1, and each 𝑝𝑖 is a 𝜎-NN from R𝑑 → R with the width 𝑁
nd depth 𝐿𝑖, then

∑𝑀
𝑖=1 𝑝𝑖 is a 𝜎-NN with the width 𝑁 + 2𝑑 + 2 and depth

𝑀
𝑖=1 𝐿𝑖.
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