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rates are near-optimal.

This paper derives the optimal rate of approximation for Korobov functions with deep neural networks in
the high dimensional hypercube with respect to L?-norms and H'-norm. Our approximation bounds are non-
asymptotic in both the width and depth of the networks. The obtained approximation rates demonstrate a
remarkable super-convergence feature, improving the existing convergence rates of neural networks that are
continuous function approximators. Finally, using a VC-dimension argument, we show that the established

1. Introduction

Deep neural networks (DNNs) (Arora et al., 2016; Glorot et al.,
2011) have become increasingly popular in scientific and engineering
applications, including image classification (He et al., 2015; Krizhevsky
et al., 2017), regularization (Czarnecki et al., 2017), and dynamic
programming (Finlay et al., 2018; Werbos, 1992). In those applications,
deep neural networks are often used to approximate various objects
of interest, ranging from functions, functionals, to operators. Estab-
lishing quantitative universal approximation theorems of deep neural
networks is an important step towards understanding their capabilities
and limitations in practical applications.

Universal approximation properties of neural networks have been
rigorously proved for continuous functions after the 1980s (Barron,
1993; Cybenko, 1989; Hornik et al., 1989). After that, a growing
amount of literature contributed to proving quantitative approxima-
tion rates of DNNs with ReLU and square ReLU activation functions
for functions with various regularity assumptions, including Besov
functions (Suzuki, 2018), Sobolev functions (Giihring et al., 2020;
Opschoor et al., 2020; Siegel, 2022; Yang & He, 2024; Yang, Wu,
et al., 2023; Yang, Yang, & Xiang, 2023), and k-differentiable, Holder
functions. Hon and Yang (2022), Mhaskar (1996), Pinkus (1999), Shen
et al. (2022), Yarotsky (2017) and holomorphic functions (Adcock
et al,, 2024; Opschoor et al.,, 2022). However, the approximation
rates of DNNs in these regularity-based functions often suffer from the
curse of dimensionality (CoD). For instance, the approximation rate
of DNNs in Sobolev spaces W"™?([0,1]¢) with respect to the W™ for
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) (up to logarith-
mic factors), where M is the number of parameters of the network.
Notice that the rate decelerates as the d increases. The convergence
rate can be substantially improved if the target function has addi-
tional low-complexity structure. Barron (1993) functions, holomorphic
functions (Opschoor et al., 2022) and Korobov (1959) functions are
three representative classes of functions of this kind. In fact, it has
been shown that the approximation of Barron functions with shallow
networks achieves a dimension-free rate of O(N~1/2) (Barron, 1993; E
et al., 2022; Klusowski & Barron, 2018; Lu, Lu, & Wang, 2021; Siegel
& Xu, 2022). The approximation rate can be further improved when
it comes to DNN-approximation of Holomorphic functions (Opschoor
et al., 2022). The work of Opschoor et al. (2022) establishes a rate
of O (exp (~bN'/@+D)) in W' ([-1,1]¢) for holomorphic functions
in d dimensions, where » > 0 depends on the size of the region
of holomorphy, and N is the size of the DNN. Approximation rates
of Korobov functions with DNNs with respect to the L®-norm have
recently been studied in Blanchard and Bennouna (2021), Mao and
Zhou (2022), Montanelli and Du (2019) by leveraging tools from sparse
grid approximation (Bungartz & Griebel, 2004) to overcome the CoD.
In this work, we further contribute to the study along the same line
and establish improved rates of convergence for Koborov functions with
DNNs with respect to both L”-norm and H'-norm.

Let us start by giving a description of the Sobolev and Koborov
function spaces. The definition of Sobolev spaces is shown as follows:
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Definition 1 (Sobolev Space Evans, 2022). Let 2 be [0,1]¢ and let D be
the operator of the weak derivative of a single variable function and
D* = D(f‘ Dgz DZ" be the partial derivative where @ = [a;, ay, ..., a,]"
and D, is the derivative in the ith variable. Let n € Nand 1 < p < oo.
Then we define Sobolev spaces

WP(Q) :={f € LP(Q) : D*f € L"(Q) for all « € N’ with |a| < n}

with a norm

1/p
1 f lwnpcq) = < Z ||Daf||111n(g)>

0<l|a|<n

if p < oo, and || fllyneo () = Maxggiq<p D% fll Lo (o). Furthermore, for
£ =1 fa), £ €WH(Q,RY) if and only if f; € W!®(Q) for each
i=1,2,...,d and

When p =2, denote W"2(Q) as H"(2) for n € N,.

Definition 2 (Korobov Space Bungartz & Griebel, 2004; Korobov, 1959,
1963). For 2 < p < 40, the Korobov spaces X*>?() is defined as

X22(Q) = {f € L"(Q) | flyo = 0.D*f € LV(Q). k|, <2}

with |k|,, = max,;., k; and the norm

1/p
. k p
1/ x20 ) -=( Z ”Df LP(Q)> '
0< k| <2

We also define the seminorm

a2df
0x% 6x§

[flpyp = D)

Lr(Q)

Note the clear difference between Korobov space X>” and the
Sobolev space W2?: functions in the Korobov space X%? have LP-weak
mixed-derivatives of up to 2d-th order while functions in the Sobolev
space W?2P only allow to LP-weak derivatives up to the second order.
Conversely, functions in X>? demonstrate significantly lower regularity
compared to those in W?2?? for d > 1. This discrepancy arises from the
fact that functions in X2? are only twice-differentiable in individual
directions.

The neural network-approximation of Korobov functions has been
studied recently in Blanchard and Bennouna (2021), Mao and Zhou
(2022), Montanelli and Du (2019), Suzuki (2018). In Montanelli and Du
(2019), they established an L*-approximation error by ReLU-DNNs for
functions in X% with the error bound @(M~2) where M is the num-
ber of network parameters. In Blanchard and Bennouna (2021), they
proved a similar convergence rate for shallow and deep networks with
smooth activation function and showed that their rate is near-optimal
in the sense that any continuous function approximator (DeVore et al.,
1989) has a lower bound which matches up to a logarithmic factor
with the established upper bound. In Suzuki (2018), the authors ob-
tained a similar rate for mixed-Besov spaces and mixed-Sobolev spaces,
which are the Korobov spaces. In Mao and Zhou (2022), the authors
considered the approximation of X% using deep convolutional neural

networks and proved an L?-error bound of the form O(M 72+%). When
p = oo, the order is the same as that in Blanchard and Bennouna (2021),
Montanelli and Du (2019), Suzuki (2018).

While significant progress has been achieved regarding the approx-
imation of Korobov functions with DNNs, several questions remain
open. Among them, the first fundamental question is to determine
the optimal DNN-approximation rate of Korobov functions beyond the
realm of continuous function approximators. In other words, it remains
to prove whether it is possible to get a better rate for approximating
Korobov functions with discontinuous function approximators. In the
context introduced by DeVore et al. (1989), the term “continuous
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function approximators” for the approximation of neural networks
means utilizing a fixed-structure neural network to approximate func-
tions in target spaces. This process can be conceptualized as finding a
mapping from the target space to the parameters in neural networks. If
this mapping is continuous, the approximator of the neural network
is referred to as a continuous function approximator. We formalize
the mathematical definition of continuous function approximators as
follows:

Definition 3 (Blanchard & Bennouna, 2021; DeVore et al., 1989). Con-
sider a subset X of a Banach space, a set of neural networks with N
parameters, and an approximation scheme G : X — RY that, given
an input f € X, gives as output the parameters 0, = G(f) of the
neural network approximating f. If G is continuous, then we call it
a continuous function approximator.

Furthermore, the role of depth in the previous DNN approximation
results was not carefully examined. In fact, those earlier results only
showed approximation results for DNNs with either O(1) or O(log(1/¢))
number of layers and with sufficient number of neurons can achieve
an e-accuracy. However, it remained unclear whether a diminutive
approximation error could be realized by concurrently increasing both
the depth and width of the network in an arbitrary fashion. Lastly, the
earlier results focused on approximation error in the L”-norm, leaving
the quantification of approximation error in the Sobolev norm unex-
plored. As a matter of fact, Sobolev training (Czarnecki et al., 2017;
Son et al., 2021; Vlassis & Sun, 2021) of DNNs has had a significant
impact on scientific and engineering fields, including solving partial
differential equations (De Ryck & Mishra, 2022; E et al., 2017; Lagaris
et al., 1998; Raissi et al., 2019), operator learning (Liu et al., 2022;
Lu, Jin, et al., 2021), network compression (Sau & Balasubramanian,
2016), distillation (Hinton et al., 2015; Rusu et al., 2015), regular-
ization (Czarnecki et al.,, 2017), and dynamic programming (Finlay
et al., 2018; Werbos, 1992), etc. In addition, understanding the DNN-
approximation rate for Korobov functions w.r.t the Sobolev norm can
benefit in theoretical understanding of neural approximation of the
solution of many-body electronic Schrédinger problem as it has been
shown that the ground-state of the electronic Schrodinger problem
belongs to the Korobov space (Yserentant, 2004).

1.1. Contribution of the paper

We highlight the contributions of the present paper as follows.

+ We first establish that a ReLU-DNN with depth O(L(log, L)*?) and
width O(N(log, N)*?) can approximate f € X>* with an H!-
error of the order O(N~!L~!) (see Theorem 1) and an L?-error of
the order @(N~2L~2) (see Corollary 1). Notably, these outcomes
align with earlier findings by Blanchard and Bennouna (2021) in
the realm of continuous function approximators (DeVore et al.,
1989). However, our results enhance their results by accommo-
dating arbitrary choices of depth and width, thereby enhancing
the applicability and flexibility of the established approximations.
We next extend the study of DNN approximation of Korobov
functions to the realm of discontinuous function approximators.
More precisely, by adapting the bit-extraction technique (Bartlett
et al., 2019, 1998) we improved the aforementioned approxima-
tion estimates to O(N~2L"2) and O(N~*L~*) in the context of
H'-error and LP-error respective. See Theorems 2 and 4.

Based on a VC-dimension argument, we show that the established
bounds are near-optimal; see Theorems 3 and 5. Note that all
bounds presented in the paper are non-asymptotic with respect to
the network size, i.e., the approximation rate holds for all positive
integers N (width) and L (depth). The results in Lu et al. (2021c),
Shen et al. (2019, 2022), Yang, Yang, and Xiang (2023) are
also non-asymptotic, holding for any network size. This contrasts
with Bartlett et al. (2019, 1998), Cybenko (1989), Hornik (1991),
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Jacot et al. (2018), Yarotsky (2018), which focus on networks
with a large number of parameters or universal approximations.
In Giihring et al. (2020), Giihring and Raslan (2021), Opschoor
et al. (2020, 2022), Siegel (2022), network width is fixed or depth
and width are correlated, with depth often being a logarithmic
function of width. However, the optimality results in this paper
are asymptotic since they rely on the asymptotic behavior of the
VC-dimension of the neural network.

2. Preliminaries
2.1. Notations in deep neural networks

Let us summarize all basic notations used in the DNNs as follows:

1. Assume n € N/, then f(n) = O(g(n)) means that there exists
positive C independent of n, f, g such that f(n) < Cg(n) when all entries
of n go to +oo.

2. Define o(x) = max{0,x}. We call the neural networks with

activation function ¢ as ¢ neural networks (c-NNs). With the abuse
o(xy)

of notations, we define ¢ : RY - RY as o(x) = l for any
o (xd)
X = [x], ,xd]T e R4,

3. Define LLN € N, Ny = d and N;,; = 1, N, € N, for
i =1,2,...,L, then a 6-NN ¢ with the width N and depth L can be
described as follows:

- Wb o - Wby o - Wby
x=hy — hj—h;... — hy —h; —

dx)=hp,,

where W, € RV*Ni-1t and b, € RNi are the weight matrix and the
bias vector in the ith linear transform in ¢, respectively, i.e., h; :=
Wh,_ +b, fori=1,...,L+1and h;=0(h;), fori=1,...,L. In this
paper, an DNN with the width N and depth L, means (a) The maximum
width of this DNN for all hidden layers less than or equal to N. (b) The

number of hidden layers of this DNN less than or equal to L.
2.2. Sparse-grid approximation of Korobov functions

Our approach to establishing the DNN-approximation rates for Ko-
robov functions builds on classical approximation results of the same
class of functions using sparse grids (Bungartz & Griebel, 2004). There-
fore we first recall some relevant results in the sequel. For any f €
X2P(8), it takes the following representation:

F@) =YY o),

1 i€ij
where
ip={ieN?:1<i<2' -1, oddforall 1 <j<d}. 2

The basis function ¢;;(x) is constructed using hat functions and grid
points:

X = (X000 %,,) =102 =t iO R =i0 (... ).

In a piecewise linear setting, the fundamental choice for a 1D basis
function is the standard hat function ¢(x), defined as:

( ) 1 |X|,
(ﬁ X) =
O,

The standard hat function ¢(x) can be utilized to generate any b1, (x;)

if xe[-1,1]

otherwise

with support [Xl,yi,- —hyxg +h,j] = [(ij -1) Ry, (i+ @ h,j] thro-
ugh dilation and translation:

X;—ij- h,/

J
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The resulting 1D basis functions serve as inputs for the tensor product
construction, yielding a suitable piecewise d-linear basis function at
each grid point x,;

d

¢ =[] 1, (x;)-

j=1
The following two lemmas pertain to the truncation error in the hier-
archical representation of Korobov functions.

Lemma 1 (Bungartz & Griebel, 2004, Lemma 3.3). Let f € X>*(Q) be
given in its hierarchical representation

) =30 vy ().
1 i€i
Then, the following estimates for the hierarchical coefficients v;; hold:

logg] <274 270 | £ .

The lemma above characterizes the decay estimates of the expansion
coefficients of the Korobov space under the tensorized basis {¢;;} and
will play a key role in deriving the DNN-approximation rate of the main
theorem.

Lemma 2 (Bungartz & Griebel, 2004, Lemma 3.13). Set f{"(x)
Dl <ntd—1 Liei, V%), and for any f € X>*(£), the approximation
error satisfies

s
s

_ 3d-1)
‘L‘”(Q) ZO(M ? |togy M| )

‘Hl(g) =(9(M_1 [log, M|(d_l)>, 3)

where M = OQ2"n4"1).

Lemma 2 bounds the error between the sparse-grid approximation
,S') and f € X%>%(Q). In the rest of the paper, we seek optimal
approximations to f,jl) by DNNs.

2.3. Bit-extraction technique

Proposition 1 below leverages the bit-extraction technique intro-
duced in Bartlett et al. (2019, 1998) to represent piecewise linear
functions on a fixed regular grid with M cells by a ¢-NN with only
O(\/ﬁ ) parameters. Recall that the activation ¢ = ReLU.

Proposition 1 (Lu et al., 2021c, Proposition 4.4). Given any N, L,s € N,
and & € [0,1] for i = 0,1,..., N2L? — 1, there exists a c-NN ¢ with the
width 16s(N + 1)log,(8 N) and depth (5L + 2)log,(4L) such that

L |¢pG) =& < NL™ % fori=0,1,...,N?L* - 1.

20<p(x)<1, xeR

3. Approximation in Korobov spaces with rates in continuous
function approximators

In this section, we aim to establish the approximation of DNNs
with an optimal rate in continuous function approximation theory. Our
approximation error is dependent not only on the width N but also
on the depth L of the DNNs. The result, measured by H' norms, is
presented as follows, and the result measured by L” norm is provided
in Corollary 1.

Theorem 1. For any N,L € N, and f(x) € X22°(Q), there exists a
continuous function approximator ¢-NN ¢(x) with the width C, N (log, N )¢
and a depth of C,L(log, L)? such that

C
||f(x)_¢(x)||1-11(g) < (€))

3
NL
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with ¢(x)|,o = 0, where C; and C, are independent with N and L, and
polynomially dependent on the dimension d. Cj is dependent on |f|, ., and
is independent of N and L.

Remark 1. We remark that approximation rates in the main Theo-
rems 1, 2, and the subsequent main results, including Theorem 4 and
Corollary 1, are non-asymptotic in the sense that the approximation
error bounds are valid for all N and L, where N is the width of the
neural networks and L is the depth of the neural networks. However,
we also note that the approximation lower bounds used to justify the
optimality of discontinuous approximation (see Theorems 3 and 5) are
asymptotic, i.e. requiring the network sizes are large enough.

Before the proof, we need to approximate the grid functions in the
first.

Proposition 2. Forany N,L e N, with |l|; <n+d-1,1<i< 2l 1,
there exists a continuous function approximator ¢-NN qg,yi (x) with the width
9(N + 1)+ 4d — 1 and depth 14d(d — 1)L + 1 such that

A 3 _
lri(x) = i ()l pr1.eo(y < 10d2(N + 1)77¢E 2l

with supp ¢y ;(x) C supp ¢y ;(x).

Proof. For each hat function ¢I,,i, (x;), it can be expressed as:

xj—ij-h,j xj—ij-h,j
J J
x;—1i;-h
o L +1).
h,/

According to Proposition 7, there exists a 0-NN ¢p,,q with a width of
9(N +1)+d~1 and depth of 14d(d 1)L such that [|¢proqlly 10,114y < 18
and

[ Borea ) = 3135 Yl 1 oy, < 1060 = DN + DTE.

Hence, we define ¢, ;(x) = dproa(dby, i, (X)) ... By, 1, (X)), Where ¢y ;(x)
is a 6-NN with a width of 9(N +1)+4d — 1 and depth of 14d(d — 1)L +1.
Furthermore, considering Proposition 7 and Lemma 8, we have:

”qgl,i(x) - ¢l,i(x)||wl,oo(_Q)

= ||(¢prod — Wiy yd)°(¢11,,'l (xp)s e »¢1d,,‘d Dl 100(2)-
This leads to:
161,00 = b (®)ly1emyy < 1043 (N + 1y74L 2l

Furthermore, if ¢;;(x) = 0, there exists ¢,j,,~j(x/-) = 0. As per Proposi-
tion 7, we conclude ¢, ;(x)=0. [J

Proof of Theorem 1. Denote

dx) = Y D o)

1]} <nt+d—1 i€i

which can be interpreted as a ¢-NN with a width of O(2"n?~!N) and
depth of O(L), with the error given by

”f - ¢||HI(Q)

<c[M7'flog, MV Y
1], <n+d—1

6]

H(Q)

N W)y (%) = by (x))

i€i

where the constant C is polynomially dependent on the dimension d.?

! In fact, C;,C, and C; can be expressed by d with an explicit formula as
we note in the proof of this theorem. However, the formulas may be very
complicated.

2 In this paper, we consistently employ the symbol C as a constant
independent of M, N, and L, which may vary from line to line.
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Due to supp (f),’,-(x) C supp ¢ ;(x), Proposition 2, and the fact that a
given x € Q2 belongs to the support of at most one ¢, ;(x) because they
have disjoint supports, we have

D W)y () = by (%)) <2727 £1, (1043 (N + DL (6)

i€i

H(Q)

i -d -1 1
Since 274 ¥ pa—1 271 < 535 <1, we have that

X W)y () = by (%)) <C(N + 1)L, @)

i€i

1], <nt+d—1 HI@Q)

where C is dependent on | f|, ., and is independent of N and L. Setting
n = |log, N|+ [log, L|, the neural network ¢(x) can be viewed as a o-
NN with a depth of O(L) and a width of O(N L(log, N log, LY~ N). It
can also be regarded as the sum of a number of O(L(log, L)4~!/log, N)
neural networks, each with a width of O(N (log, N)N) and a depth of
O(L). Due to Proposition 9, we know that ¢(x) is a o-NN with a depth
of O(LI(log, L)?~!/log, N) and a width of O(N (log, N)¢ N).

Setting N = 1 and L = [log, N| + |log, L|, we have that ¢(x) is
a ¢-NN with a width of O(N(log, N)¢) and a depth of O(L(log, L)!).
Furthermore,

Z(Ul,i)(qgl,i(x) — ¢(x))

|11 <n+d—1 ||i€i; HI(Q)
<C(N + 1)L < Cco-7doe(ND) < é ®
NL
Finally, due to M < CN L(log, NL)?~!, we obtain that
-1 d-1) 1 C
If =Bl <C M7 flogy M7+ — | < ==, C)
NL NL

where the constant C is polynomially dependent on the dimension d.
The boundary condition can be directly obtained from supp 43,’,.(35) «
supp ¢;(x). [

Following the same idea in the proof, we derive the following
corollary, which describes the approximation of Korobov functions by
deep neural networks measured by L? norms:

Corollary 1. For any N,L € N, and f(x) € X2%°(Q), there exists a
continuous function approximator ¢-NN ¢(x) with the width C; N (log, N)*
and a depth of C,L(log, L)*? such that

S 10
N2LZ 10)
with 1 < p < oo and ¢(x)|;5 = 0, where C; and C, are independent with
N and L, and depending on the dimension d at most polynomially. The
constant Cy depends on |f|, o, but does not depend on N and L.

1f(x) - ¢(x)||LP(_Q) <

Remark 2. Note that the number of parameters is (N2L
(log, L)*(log, N)®%), with an error of O(N~2L~2). This result is consis-
tent with the findings in Montanelli and Du (2019) when we fix N and
consider depth L. Our result achieves the optimal approximation rate
for continuous function approximation, as established in DeVore et al.
(1989). The main improvement in our findings, compared to Blanchard
and Bennouna (2021), Mao and Zhou (2022), Montanelli and Du
(2019), Suzuki (2018), lies in our consideration of depth flexibility in
DNNs and the establishment of the approximation rate measured by the
H' norms.

4. Super convergence rates for Korobov functions in LP-norms

In this section, our primary objective is to establish DNNs as func-
tion approximators within Korobov Spaces with a super-convergence
rate, surpassing existing works. More specifically, for approximating a
target function in W"” measured by the norm W™?  we use the bit-
extraction technique introduced in Barron (1993), Bartlett et al. (2019)
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to approximate piecewise polynomial functions on a fixed regular grid
with M cells using only O(\/ﬁ ) parameters. This leads to an approxi-
mation rate of CM~2(=m/d in terms of the number of parameters M,
which is significantly faster than traditional methods of approximation.
This phenomenon is known as the super-convergence of deep ReLU
networks.

In this context, we focus solely on error measurement using L7,
where 1 < p < 0. In the next section, we will extend our error analysis
to include Sobolev norms, specifically the H! norm.

Theorem 2. For any f € X>*(Q) and |fl,, < I, N,L € N,
there is a o-NN k(x) with 3¢(64d(N + 3)(log,(8 N))¥*!) width and (33L +
2)(log,(4L))**! + 2d depth such that

k(x) = F) oy < CN*L™4(log, N)*~'(log, L), amn

where C is the constant independent with N, L, and dependent on the
|f|2,oo! 1 SP < 0.

Remark 3. Theorem 1 and Corollary 1 established the optimal ap-
proximation rate of Korobov spaces by continuous function approx-
imators (Definition 3), which is also achieved previously in Blan-
chard and Bennouna (2021), Montanelli and Du (2019), Suzuki (2018).
The new results in Theorems 2 and 4 show significant improvements
over Theorem 1 and Corollary 1 due to the bit-extraction technique
(Proposition 1) when the function approximators are allowed to be
discontinuous, which to best of our knowledge is the first result of this
kind for Korobov functions.

We split the proof of Theorem 2 into three parts. First, we prove the
approximation of the Korobov function by DNNs across the entire do-
main £, excluding a small set. Then, we prove that the Korobov space
consists of continuous functions. Finally, we extend the approximation
to the whole domain with the help of Lemma 3 and Proposition 3.

We initially employ DNNs to approximate functions f € X>®(Q)
across the entire domain £, excluding a small set. The domain is
precisely defined as follows:

1

Definition 4. Foranyn>1and |l|, <n+d-1,1leté= >z

, and

Q5= U 2450 12)

i€l

d
2i,—1 2i,+1 _
‘Ql,i,& = H [ err s 2rKr - 1k<Kr*1 , K, = 2h= 1,

r=1
Then we define

%= [ s
1) <n+d—1

Proposition 3. For any f € X>®(@Q) with p > 1 and |flro < 1,
N, L €N,, there is a 0-NN k(x) with 64d(N +2)(log,(8N))**! width and

(33L + 2)(log,(41))**+! depth, such that
k) = £ @) Lo,y < CN L7 logy N)*~'(log, L), 13)

where C is the constant independent with N, L, and dependent on the

|f|2,oo'

Proof. In the proof, our first step involves utilizing DNNs to approxi-
mate Ziem vy ¢, (%) for ||} <n+d—1. Note that Ziei,* o, i, (%)
can be reformulated as

81,(x) = py (0)q;, ().

Here, g(x) is a piecewise function on [0, 1]¢ defined by

d

a, () = vy, for x € [] [ = 1) - 27, G + 1) - 274]. a4
k=1
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Meanwhile, p(x) is a piecewise-polynomial defined as
X s x —@2s—1)-h
— 4 lj
p (x) = Z ¢<T>
s=1 J
d
i, =[] 2, 0 as)
k=1
Here, p; (x) represents a deformed sawtooth function.
Let N2L? > K, = 2/"~1. By leveraging Proposition 8, we ascertain

the existence of a 6-NN ¢,(x) with a width of 4N, + 5 and a depth of
4L, + 4 such that

k k+1
dJ,(x)zk,xe Z,Tr—5'1k<Kr_l], k=1,...,Kr—1,

with 6 € (0, %] Then define

>

oi(x) hr(x)  bax)]"
K, K, 77Ky ’

Py(x) = [

For each p=0,1,... ,]'[‘f:1 K, — 1, there is a bijection

d
) = [y, . omgl € [J0. ... K, = 1}

r=1
such that Z;j:] n; Hi;: K, =p. Set C,; =277l £, > |y | for all
i, and define

v+ Coy
o=~ e 0], (16)
al,.i ZCn,z*

Based on Proposition 1, there exists a neural network ¢,(x) with a
width of 16s(N + 1)log,(8N) and a depth of (5L +2)log,(4L) such that

(& -1
d’a Z 2 L Kr _§a,l*,i

< Zst N*ZS

j=1 r=

for |I,|, <n+d-1landie€ i . Therefore, we define

d J
P (x) 1= 2Ca,l*¢§u <Z Xj H Kr> - C(l,l*' a7
Jj=1 r=1

Consequently, we find that
A P
2Ca,l* ¢ll Z D) Kr - C{l,,* - UI*_,i
J

<2GC,y,

| (h2(x)) — g1 (X)| =

<20, BN s)

forxeq ;= e, ['2’;1 2;’1:1 -6 1k<1<,—1]-
Since there are at most 2"~! elements in i, we set [2N? > 201,
Above all, we can let L = max{L,L,} = 2" and N = max{L,N,} =
2™, where 2(n; + n,) is the smallest even number larger or equal to
n — 1. Then ¢,(x) is a 6-NN with 4d N + 54 width and 4L + 4 depth.
$o(x) is a o-NN with the width 16s(N + 1)log,(8N) and depth (5L +
2)log,(4L). Above all, ¢ (d,(x)) is a c-NN with 16sd(N + 1)log,(8N)
and depth (9L + 2)log,(4L). We denote this ¢, (¢,(x)) as 51, (%), which
can approximate g; (x) well on Q5 Set s = 2"]+2 , we also find sy, (%),
which can approximate q;, (%) well on Q s for|l|y <n+d-1
Recall

05 = ﬂ 2 5
L] <n+d—1
then sy, (%), which can approximate q, (%) well on Q; for |I.|; < n+d-1.
Next, we aim to approximate p; (x) = HZ= 1 1, (). The proof relies
on leveraging the periodicity of each p; (x;). We first define

w1(x) = p, (x), x € [0,27"F1*™], otherwise is0.



Y. Yang and Y. Lu

Neural Networks 180 (2024) 106702

o

2 on

®

[ 1
>
D

Fig. 1. The sawtooth functions y,.

Then, y,(x) is a neural network (NN) with 4N width and 1 depth (see
Fig. 1).

Next, we define y; for i = 2,3,4 based on the symmetry and
periodicity of g;.

* y, is a function with period # over the interval |0, % , where
each period is represented by a hat function with a gradient of 1.

* 3 is a function with period % over the interval [0, %], charac-
terized by hat functions with a gradient of 1 for each period.

* y, is a function with period % over the interval [0, 1], with each
period being a hat function having a gradient of 1.

Similar to y, y, is a network with a width of 4N and a single layer.
Drawing from Proposition 9, we infer that both y; and y, are networks
with a width of 7 and a depth of L + 1.

Finally, by Proposition 7, there exists a o-NN w;_(x) with 4(N +d +

3) + s’ — 1 width and 16s’(s’ — 1)L depth, such that
llwr, (x) = pp ()l ooy < 10(5" = DN + 1)L, 19)

Based on Proposition 6, since log 41 <1, there exists ¢ with a width
of 15N and a depth of 24L such that

Hq.’?(x,y) - xy“L‘x’([—l,l]z) <6NTH (20)
Therefore, we have
||(l§(51* (%), wy, (%) — IZR (x)q,* (€3]] L®(Q5)
<llCsy, (), w0y, (x)) = 51, (X)w0y, ()| oo
+ sy, (0w, (%) = 51 ()py, )l oo (g2
+ sz, (o)py, () = pr, (g, ()l Lo (2;)
<ONT2L 120(s" — Y(N + 1)L +4C,, L™¥N7%. 1)

Setting s’ = s = 2, we notice that
10(s' = (N + 1)L = 20(N + 1) 4L < 20(N + 1)™4E+D < 2oN—4L~4
6N—8L — 6N4L . N—4(L+l) < 6N_4L_4. (22)

Above all, we have that there exists a o-NN y; with 64d(N +
1)log,(8 N) width and (33L + 2)log,(4L) depth such that

<(26+4C,; )NT'L™. (23)

L (£25)

vy, () — Z vy, 191,,:(%)

ieip,

Similarly, we can find o-NNs {w;(x)};, <4+q-1 for other Ziei, v Pri
(x) for other 1. Since there are at most n? = (2log,(NL) + 1) satisfied
[1l; <n+d -1, we can have a 6-NN k(x) with

width 32d(N + 1)log,(8N)(2log,(N L) + 1)¢ 24)
and

depth (33L +2)log,(4L) (25)
such that

”k(x) - fl(")(x)” < (52+8C, )NT*L™. (26)

L*(25)

Thanks to Proposition 9, k(x) can be expressed as
32d(N + 1)log,(8N)(2log,(N L) + 1)¢
(log, L)4
width and (33L + 2)(log,(4L))?*! depth.

Finally, combining with Lemma 2 and n = 2log,(N L) + 1, we have
that

< 64d(N +2)(log, 8N (27)

1) = £ O] o,y (52 +8C, INT*L™

Nt -4 Cloga(NL) + 1)3@=D
(2logy(N L) + 1)2@d-D

<CN~*L*(log, N)*L(log, LY. O

+C

(28)
Next, the following lemma establishes a connection between the

approximation on £; and that in the whole domain.

Lemma 3 (Lu et al., 2021c; Shen et al., 2022). Givenany e >0, N, L, K €

N*, and 6 € (0, #], assume f is a continuous function in C ([0, 1]d) and

& can be implemented by a ReLU network with width N and depth L. If
£ (x) - dx)| <&,

then there exists a function ¢ implemented by a new ReLU network with
width 3¢(N +4) and depth L + 2d such that

() — ()| <e+d-wp(é),

where

for any x € £,

for any x € [0,11%,

for any r > 0.

29

w(r) :=sup{|fx) - fW)] : x,y €0, 11, [lx = yll < r},

Now, by leveraging Propositions 3, the Sobolev embedding theorem,
and Lemma 3, we can derive an approximation of Korobov functions
with a super-convergence rate.

Proof of Theorem 2. Based on Propositions 3, the continuity of
Korobov functions, and Lemma 3, for given N, L, and d, we set § to be
sufficiently small to ensure

d-w(8) < N~ L™(log, N)*~'(log, L)*~".

Then, there exists a 6-NN k(x) with 39(64d(N + 3)(log,(8N))4*1)
width and 2d + (33L + 2)(log,(4L))?*! depth such that

lIk(x) = £ (Ol ooy < CNT*L™*(log, N)*~(log, L)*™, (30)

where C is a constant independent of N and L, and polynomially
dependent on the dimension d. Furthermore, we have

k@x) = £l Loy < CN™*L™4(log, N~ (log, L), (31)

for any p € [1,00]. [

The approximation rate in Theorem 2 is significantly superior to
that in Corollary 1. This error outperforms the results in Blanchard and
Bennouna (2021), Mao and Zhou (2022), Montanelli and Du (2019).

Furthermore, our result is nearly optimal based on the following
theorem in the X>* case.
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Theorem 3. Given any p,C,,C,,C3,Jy > 0 and n,d € N*, there exist
N,LeNwith NL > Jyand f € X>* with |fl, < 1, such that

Inf Nl = fllioe > GLT PN, (32)
where
K := {o-NNs in RY with width C, N (log, N )**!

and depth C,L(log, L)**'}.

In order to prove this theorem, we need a definition called the
Vapnik-Chervonenkis (VC) dimension (Abu-Mostafa, 1989), which de-
scribes the richness of the space. If the VC dimension of the space is
large, it means that the space has greater approximating ability:

Definition 5 (VC-dimension Abu-Mostafa, 1989). Let H denote a class
of functions from X to {0, 1}. For any non-negative integer m, define
the growth function of H as

Oy(m) =  max EX|{(h(x1),h(x2),.A.,h(xm)) ‘he H}|.

X1X7,00 00X,

The VC dimension of H, denoted by VCdim(H), is the largest m
such that IT;(m) = 2". For a class G of real-valued functions, define
VCdim(G) := VCdim(sgn(G)), where sgn(¢) := {sgn(f) : f € G} and
sgn(x) = 1[x > 0].

Lemma 4 (Bartlett et al, 2019). For any N,L,d € N_, there exists a
constant C independent with N, L such that

VCdim(®@) < CN?L?log, Llog, N, (33)
& :={¢:¢isac— NN inR? with width < N and depth < L}.

The above lemma shows an upper bound on the VC dimension of
fixed-width and fixed-depth neural networks, highlighting the limita-
tions of such networks. This is applied in Lemma 5, which we can use
to prove the optimality of Theorem 2, i.e., Theorem 3.

Lemma 5 (Siegel, 2022). Let 2 = [0,1]¢ and suppose that K is a
translation invariant class of functions whose VC-dimension is at most n.
By translation invariant we mean that f € K implies that f(- —v) € K for
any fixed vector v € R?. Then there exists an f € W (Q) such that

s
inf - >C(d,pn a 5.00(Q)-
Jnf Ilf =gl 2 CW, pn @ || fllwseoq)

Proof of Theorem 3. Define

K :={c-NNs in R with width C, N(log, N)**!
and depth C, L(log, L)**'}.

Due to Lemma 4, we know that
VCdim(K) < CN2L2(log, LY+ (log, N)2+3.

Based on Lemma 5, there exists a f € W2>([0, 1]) with ||f||W2,m <1
such that

inf I/ = gll oo 2 €@ )N L™ (logy L)™'

x (logy N)™ || fll e o.1y)-

Now we can define f(x) = f(x,) which belongs to X>®. Then we know
that for any p, C3, Jy > 0, there is an f € X>*(2) with |f], ., < 1, and
N, L with NL > J, such that

inf || f = dll o

qlﬁrellc”f Sl Lo

> inf || f(x;) = P(xq,...,x wioy > inf || F(x)) — d(x o

_dzeK.’”f( 1) — $(xy Dl (2) ¢€}e||f( )=o)l ([0,11)

> C(d, p)N~*L™*(log, L) ™ 0(logy, N)™6 > C, L™+ " N4+, (34)

The second inequality is due to the fact that for any fixed x,, x5, ..., x4,
@(xy, ..., x,) belongs to £ with respect to x;. []
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5. Super convergence rates for Korobov functions in H!-norm

In this section, we will extend our analysis from Section 4 to the
case of H! norms. This extension ensures that our DNNs can approxi-
mate functions in Korobov spaces with minimal discrepancies in both
magnitude and derivative, achieving optimality and demonstrating the
super-convergence rate.

Theorem 4. For any f € X>%(Q) and [fle < L Ifllpreg < L
N,L € N, there is a 6-NN k(x) with 29+0d(N + 2)(log,(8 N))?*+! width
and (47L + 2)(logy(4L))?*! depth such that

11 (x) = kGOl g1 g0,170) < CN 2L (log, N)*!(logy, L)*™,

where C is the constant independent with N, L and dependent on the | f |, ..

Remark 4. The proof of Theorem 4 is different from that of Theorem 2.
The reason is that the derivative in £2\£2; is very large and cannot be
estimated well by Lemma 3. Therefore, the proof of Theorem 4 can be
divided into three parts. The first part involves dividing the domain
Q into several parts and finding a neural network to approximate the
target function in each part as in Theorem 2. Then, we establish a
partition of unity and use DNNs to approximate them (Yang, Yang, &
Xiang, 2023). Finally, we combine the neural networks from the first
two steps to establish a neural network that approximates the target
function in the whole domain with H'-norms.

First of all, define a sequence of subsets of Q:

Definition 6. Given K,d € N*, and for any m = (m|,m,,....my) €
{1,2}4, we define 2,, := H;’=1 Q- where Q, := Uﬁgl [éé &]
K [ 1 1
QZ '_Ui=0 %—ﬁ,‘?"rm N[0, 1].
Note that ©; = Q; when K = 2—1,,, where n and ; are defined in
Definition 4.
Next, we are going to establish neural networks on each £, to
approximate the Korobov functions in the H!-norm.
Proposition 4. For any f € X>*(Q) with p > 1 and [fhe <L
N,L € N,, there is a 6-NN k,,(x) for any m € {1,2}? with 64d(N +
2)(log,(8N))?+! width and (33L + 2)(logy(4L))**! depth, such that

[[~m(x) = f(x)”H](_Qm) <CN72L72 (35)

where C is the constant independent with N, L, and dependent on the

|f|2,oo'

Proof. The proof is similar to that of Proposition 3. We consider m =1,
ie, @, = ;. For other m € {1,2}¢, the proof can be carried out in
a similar way. For any |I| < n+ d — 1, there exists a 6-NN y; with

64d(N + 1)log,(8N) width and (33L + 2)log,(4L) depth such that

v (x) — Z vi6p,(X)

i€i;

<(26+4C,; )NT* L™ (36)
W (2y,)

The proof follows a similar structure to that in Proposition 3. This
similarity arises from the fact that Ziei, v91:(%) = p(x)q;(x) and p;
is a piece-wise constant function with a weak derivative always equal
to zero. The approximation of p;(x) has already been measured by the
norm W1 in Proposition 3. Due to W1®(Q) ¢ H'(£2), we can have a
o-NN k,,_(x) with width 32d(N +1)log,(8N)(2logy(N L)+ 1) and depth
(33L +2)log,(4L) such that

[, G = 1@ g < G2 4+8C, 1 INTHL (37)
Combine with Lemma 2, we have
om0 = £ @)1 | < 524 8C N L+ ON L

<CN72L2. O (38)
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Fig. 2. The schematic diagram of g for i =1,2.

Then we define a partition of unity {g,}me(12)¢ 0on [0, 119 with
supp g, N[0, 11¢ c 2, for each m € {1,2}¢:

Definition 7. Given K,d € N, we define

i 1 i 1

1, XE[E+H’E+E

0, xe[%+%,%
g1 (x) = ; . .

4K(x——>, XE[E,E'I-E]

i 3 i 1 i 3
—4K<X—F—H>, XE[E'FE,E‘FH]
1

&(x) =g <x+ ﬁ) (39)

for i € Z, (see Fig. 2). For any m = (m;,m,,...,m;) € {1,2}4, define
d
gm(x) = Hj=1 gmj(xj), x = (X7,X,, ... ,xd)'

Then we use the following proposition to approximate {g,}me(12}4
by o-NNs and construct a sequence of 6-NNs {¢,, },,(12}¢. The proof
shown in the Yang, Yang, and Xiang (2023).

Proposition 5 (Yang, Yang, & Xiang, 2023). Given any N, L,n € N, for
K = N2L?, then for any
m=(m;,my,...,my) € {1,2}%,

there is a 6-NN with the width smaller than (9+d)(N +1)+d — 1 and depth
smaller than 15d(d — 1)nL such as

3 —4dnL
1pm () = &m0 0,170y < 50d2 (N + 1) ,

Now we combine {I’\Cm(x)}me(l’z)d and {¢,(x)}ye(12)¢ in Proposi-
tion 5 to extend the approximation into the whole domain 2. Before
doing so, we require the following lemma. This lemma demonstrates
that ¢,,(x) in Proposition 5 attains 0 to 0 behavior in the Sobolev norms.

Lemma 6 (Yang, Yang, & Xiang, 2023). For any 4 € H'([0, 1]¢), we have

Dm - Al o3¢y =NPm - Al g go,130)
||¢m “A- ¢(¢m’ /1)||H1([0,]Jd) :||¢m c A= PP, /I)HHI([(),]Jd) (40)

for any m € {1,2}9, where ¢,, and 2,, is defined in Proposition 5 and
Definition 6, and ¢ is from Proposition 6 (choosing a = 1 in the proposition)
(see Fig. 2).

Proof of Theorem 4. Based on Propositions 3 and 4, there is a
sequence of the neural network {k,,(x)},e(12)¢ such that

lem() = £ GOl 1, < CNT2L,
[En(x) = 7)) < CN~*L™*(log, N)'~(log, L), 73

where C is independent with N and L, and each k,,(x) for any m €
{1,2}9 is a 6-NN with 64d(N + 2)(log,(8N))?*! width and (33L +
2)(log,(4L))**! depth. According to Proposition 5, there is a sequence
of the neural network {¢,,(x)} g1 )¢ such that

5 _
llbm () = &m 100170y < S0d2 (N + 1)~HE,

where {g,}me(12)¢ is defined in Definition 7 with ¥,c(1 )¢ gn(*) = 1
and supp g, N [0,11¢ = @,,. For each ¢,, it is a neural network with
the width smaller than (9 + d)(N + 1) + d — 1 and depth smaller than
15d(d — 1)L.

Due to Proposition 6, there is a neural network & with the width
I5(N + 1) and depth 14L such that ||¢|ly 1.1 < 12 and
5y g SO+ DTED (42)

Now we define

”5(x, -

kx)= Y $bn(x), k(). (43)
me{1,2}4
Note that

R=I£) = ¢l gigonsy = || D &m - LX) = dlx)

me{1.2}4

H([0,1]¢)
<Y [gm £ = bp() - win()]
me{1.2)¢ HI(.119)
Y [on® v = B0, w00 44)
me{1,2}4 HI([0,119)
As for the first part,
D [&n FOO) = Gu(®) - W)
me (1.2} HI(0.114)
< Y gm SO = G - W 1 o
me(1,2})d
< Y [lem = b - £ o) + 1 m = ¥n ) - 10,110
me(1.2}d
= Y [ len = Du ) SN0 + 1 = W)+ @l o0
me(1,2}4
(45)

where the last equality is due to Lemma 6. Based on lf lwreoqoagey < 15
we have

||(gm - d)m(x)) : f(x)”Hl([O,l]‘]) < ||(gm - ¢m(x))||H1([O,l]‘l)
5

<50d7(N + 1)™4nL, (46)

And
||(fm - l//m(x)) : ¢m(x)||Hl([0’l]d)
< ||(fm - Wm)”[.[l([()’l]d) . I|¢m||L°°(.(2m) + ”(fm - Wm)”Lz(.Qm) : “d’m”WlW(_Qm)
5 5
<CN72L72. (1 +50d2 ) +CN~* L. 5447 N*[2(log, N)~'(log, L)!~!
<CN~2L%(log, N)*~'(log, L)47!, (47)
where the second inequality is due to
5

1Dmll Lo,y S NDmllLoqo,i10) < N8mll o o110y + 1Pm — Emll Lo o130y < 1 +50d2
1omllwio,) < Idmllwieqonds < N8mllwieqond + 1Pm = &mllwreqo4)
<4AN?L? 45047 (48)
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Therefore

Y em £ = () - yu(x)]

me{1,2}d

W]~°°([0,1Jd)
<CN72L%(log, N)4~'(log, L)*~!, (49)

due to (N + 1)™#"L < N=2n[~2n,
For the second part, due to Lemma 6, we have

Y [6n® v = B, w0

me(1,2)4 H(10,11¢)
< X En0 wn = B @@ G| 11
me(1,2)4 ’
= X |tn® v - 2@ ume| 1, - (50)
me(1,2)4 "
Due to Lemma 8, we have that
om0 - v = D@ Y G|, |
< CN72L2(log, N)*~(log, L)47". (51)

Combining (49) and (51), we have that there is a 6-NN with (47L +
2)(log,(4L))?+! depth and 2979d(N + 2)(log,(8 N))*! width such that

£ () = k@)l g1 go.130y £ CNT2L™2(log, N)~!(log, Ly,

where C is the constant independent with N, L. []

Remark 5. The approximation rate for Korobov functions provided in
Theorem 4 falls short of achieving the nearly optimal approximation
rate observed in function spaces W?2¢?, as measured by the norm
containing the first derivative (Yang, Yang, & Xiang, 2023). In the latter
case, the optimal rate is O((N L)’f). The limitation in achieving this
optimal rate for Korobov functions is rooted in the sensitivity of these
functions to derivatives. For instance, consider a finite expansion of
f in Korobov spaces denoted as f{"(x) = 2|, <ntd—1 Dty VLiPLi(%)-
In this expansion, there exists a spline function ¢;;(x) for which I =
(n,1,1,1,..., 1), and its partial derivative with respect to x, can be very
large, on the order of 2".

The way to prove the optimality of the H! case is similar to
Theorem 3 and combined with the following lemma:

Lemma 7 (Yang, Yang, & Xiang, 2023, Theorem 1). Forany N, L,d € N,
there exists a constant C independent with N, L such that

VCdim(D®) < CN?L*log, Llog, N,
for
DO :={y=Dip:¢ped i=12..,d}, (52)

where® :={¢ : ¢ is ac — NN in RY with width < N and depth < L},
and D; is the weak derivative in the ith variable.

Theorem 5. Given any p,C,,C,,Cs,J, > 0 and n,d € N¥, there exist
N.LeNwith NL > Jy and f € X>® with | f|,, < 1, such that

i —2—p Ny —2-
1o = f o) > GLTINT, (3)
where

K := {o-NNs in R? with width C, N (log, N )**!

and depth C,L(log, L)**'}.

Proof. The proof is similar to Theorem 3 and combined with
Lemma 7. [
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Comparing the results in Theorem 1 and Corollary 1 with Theo-
rems 2 and 4, we observe that the results in Theorems 2 and 4 are
significantly better than those in Theorem 1 and Corollary 1. The con-
stants in Theorem 1 and Corollary 1 are superior to those in Theorems 2
and 4, which exponentially depend on the dimension d. This leaves an
open question for future research to explore alternative approaches for
addressing the challenge of incorporating the dependence on d in the
lower bounds while maintaining a super-convergence rate.

6. Conclusion

This paper establishes the approximation of DNNs for Korobov
functions, not only in L? norms for 2 < p < co but also in H!
norms, effectively avoiding the curse of dimensionality. For both types
of errors, we establish a super-convergence rate and prove the optimality
of each approximation.

In our exploration of deep neural networks for approximating Ko-
robov functions, we note that prior work, such as Blanchard and
Bennouna (2021), has focused on two-hidden layer neural networks
for shallow approximations. The establishment of the potential of one-
hidden layer neural networks for approximating functions in Korobov
spaces is considered as future work. Moreover, in this paper, we delve
into proving the optimality of our results. The proof strategy relies on
the fact that the approximation rate in X>%([0, 1]¢) achieves a nearly
optimal approximation rate for W2>%([0, 1]). However, when combining
our work with the estimates provided in Mao and Zhou (2022), it be-
comes evident that the super-convergence rate for X>” can only achieve
O(N _4+%L_4+% (up to logarithmic factors). Determining whether
this rate is nearly optimal and establishing a proof for it remains an
open question.
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Appendix. Preliminary results on ReLU-DNN approximation

In this section, we collect several lemmas and propositions related
to DNNs. The following two propositions concern the approximation of
product operators in the W sense. These will be used in the proof to
represent the sparse grid and combine the neural network in the whole
domain, excluding small sets and the partition of unity.
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Proposition 6 (Yang, Yang & Xiang, 2023). For any N,L € N, and
a > 0, there is a 6-NN ¢ with the width 15N and depth 2L such that
Nl 100 aay < 124* and

llp(x, y) — xyllwl,eo((_a’a)Z) < 6a°NEL. (A1)
Furthermore,

a¢(0,
$(0,3) = % =0, ye (-a,a). A2

Proposition 7 (Yang, Yang, & Xiang, 2023). For any N,L,s € N, with
s > 2, there exists a 6-NN ¢ with the width 9(N + 1) + s — 1 and depth
145(s — 1)L such that [|@ly1.e0(0,1ys) < 18 and

[[Ge) = x1x3 - %, [y 1sogor1yy < 106 = DIN + 1D)77E (A3)

Furthermore, for any i = 1,2, ..., s, if x; =0, we will have

BOX1 XX 0o o) = a¢(x1,x2,...,x(;;i,o,xiun.‘,xs) o,
(A.4)

fori # j.

In the paper, we will use a lemma concerning the composition of
functions in Sobolev spaces:

Lemma 8 (Giihring et al., 2020, Corollary B.5). Let d,m € N, and
2, ¢ R? and 2, c R™ both be open, bounded, and convex. Then for
fewh®(Q,, Q) and g € W (Q,), we have

||g°f||W1~w(_Qz) < \/EmmaX{Hg”Lm(_Qz), ||g||W1.°°(QZ)||f||W1.°°(Ql,Rm)}~

The following proposition, combined with the bit extraction tech-
nique, can be applied to approximate the piecewise linear function well
in the whole domain, excluding a small set.

Proposition 8 (Lu et al, 2021c, Proposition 4.3). Given any N, L € N
and § € (0 Lll for K < N2L?, there exists a 6-NN ¢ with the width

’ 3K
4N + 5 and depth 4L + 4 such that
k k+1
$(x) = k.x € E,T—é-lk«_l],k=0,1,...,K—1.

The following lemma is used to restructure a wide neural network
with a wide last layer into a deep neural network with less width, which
can effectively prune the neural network and make its structure match
our desired specifications.

Proposition 9 (Siegel, 2022, Proposition 1). Given a sequence of the neural
network {p;} , and each p; is a o-NN from R? — R with the width N
and depth L;, then ZZ | Pi is a 6-NN with the width N +2d +2 and depth
T L
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