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Abstract
Solving partial differential equations (PDEs) on fine spatio-temporal scales for high-
fidelity solutions is critical for numerous scientific breakthroughs. Yet, this process can
be prohibitively expensive, owing to the inherent complexities of the problems, including
nonlinearity and multiscale phenomena. To speed up large-scale computations, a process
known as downscaling is employed, which generates high-fidelity approximate solutions
from their low-fidelity counterparts. In this paper, we propose a novel Physics-Guided Dif-
fusion Model (PGDM) for downscaling. Our model, initially trained on a dataset comprising
low-and-high-fidelity paired solutions across coarse and fine scales, generates new high-
fidelity approximations from any new low-fidelity inputs. These outputs are subsequently
refined through fine-tuning, aimed at minimizing the physical discrepancies as defined by
the discretized PDEs at the finer scale. We evaluate and benchmark our model’s performance
against other downscaling baselines in three categories of nonlinear PDEs. Our numerical
experiments demonstrate that our model not only outperforms the baselines but also achieves
a computational acceleration exceeding tenfold, whilemaintaining the same level of accuracy
as the conventional fine-scale solvers.

Keywords Diffusion model · Data driven model · Optimization · Numerical PDEs

Mathematics Subject Classification 65C20 · 65N21 · 65M22 · 65K10

1 Introduction

Numerical simulation of PDEs play an indispensable role in science and engineering. Tradi-
tional numerical methods, such as finite difference method and finite element method, often
become computationally intensive with an increase in mesh grids. This increase is typically
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necessary to accurately resolve PDEs, given their complexities, such as nonlinearity, scale-
separation stiffness, and high dimensionality. In recent times, the adoption of deep learning
techniques to develop more efficient numerical methods has seen a significant rise in pop-
ularity. Numerous studies have explored the direct approximation of solutions using neural
networks. The work [32] proposed the physics-informed neural networks (PINNs) that min-
imizes the L2-loss associated with the governing physics, and it has proven to be highly
efficient in addressing various complex PDE problems, such as the fluid dynamic [5], inverse
problem [49] and multiscale problem [18, 29]. Furthermore, it is worth mentioning several
variations and enhancements of PINNs, such as [20, 21, 42]. Many other approaches have
also been developed, such as Deep RitzMethod [26, 28, 45], based on the variational (or Ritz)
formulation of PDEs, the deep BSDE method [12, 13] for certain class of parabolic PDEs
based on their probabilistic and control formulation, and the weak adversarial networks [50]
based on the Galerkin (or weak) formulation. Additionally, deep learning has been lever-
aged to expedite classical iterative solvers [2, 3, 6, 16, 30, 38], showcasing its versatility and
potential in enhancing computational efficiency across various PDE-solving methodologies.

In many scientific domains, there’s a notable interest in discerning mappings or opera-
tors between infinite-dimensional function spaces. Recent advancements have seen neural
networks being harnessed to approximate these solution operators. Among the leading neu-
ral operator models are the Deep operator networks (DeepONet) [27, 41] and the Fourier
neural operator (FNO) [9, 24, 25]. Nevertheless, these standard neural operators often neces-
sitate a substantial training dataset composed of numerous parameter-solution pairs, posing
challenges in scenarios where solution labels are costly to obtain. To circumvent this issue,
physics-informed neural operators [10, 43] have been introduced, merging PDE constraints
with operator learning by embedding known differential equations directly into the training
loss function. Notably, neural operators have found applications in downscaling climate data
[17, 48] and enhancing super-resolution in imaging [44], as well as general PDE problems
[22], showcasing their versatility. Themethod we propose in this paper will also be compared
with the neural operator baselines.

In this paper, we focus on accelerating the computation of PDEs from a downscaling
viewpoint. In climate modeling and simulation, downscaling [46] refers to a class of meth-
ods that generate high-fidelity climate data out of their low-fidelity counterpart. Similar
processes may carry with different names. For instance in the community of imaging and
computer vision, this process is named super-resolution. Such a downscaling/super-resolution
is appealing because low-fidelity solutions can be generated via solving PDEs on coarse-grids
which is computationally much cheaper compared to the high-fidelity solutions. Classical
downscaling techniques in climate science and meteorology have ranged from pointwise
regression [34, 39] to super-resolution [40] and maximum likelihood estimation [4]. Recent
initiatives have seen Fourier neural operators being applied for downscaling [48], effectively
bridging fast low-resolution simulations to high-resolution climate outputs. Moreover, the
use of deep generative models for climate data downscaling, inspired by their success in
computer vision for super-resolution, has gained traction. In [23, 31], Generative Adver-
sarial Networks (GANs) were adopted for downscale precipitation forecasting. In [11], the
authors proposed a ClimAlign approach to downscaling with normalizing flows. Recently,
diffusion models have demonstrated their ability to produce high quality samples, beating
many competing generative models such as GANs in numerous machine learning problems
[7]. Specifically, diffusion-models [14, 36, 37] are capable of generating high-fidelity (super-
resolution) images [15]. Inspired by their great success inmachine learning tasks, we propose
to deploy diffusionmodels for downscaling PDE solvers. Unlike the purely data-driven nature
of downscaling in the aforementioned applications, our PDE-focused generative downscaling
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necessitates adherence to the physical laws governing the PDE model, integrating a unique
challenge to this innovative approach.

1.1 RelatedWork

The utilization of deep generative models for solving PDEs is not new. Initial studies, such
as those by [8, 19], harnessed adversarial generative models to tackle PDEs by integrating
a physics-informed loss with a uniquely tailored adversarial loss. More recent efforts, like
the study by [47], showcased the diffusion model’s efficacy as an alternative solution opera-
tor, mapping initial conditions to solutions at subsequent times, and displaying competitive
prowess alongside other neural operator approaches. To overcome the hurdle of scarce data in
operator learning, [1] utilized the diffusion model for the creation of synthetic data samples,
thereby enriching the training dataset. The research work [35] is most relevant to ours, where
the authors developed a physics-informed diffusion model designed to accurately reconstruct
high-fidelity samples from low-fidelity ones. While both our approach and the method pro-
posed in [35] intend to reconstruct high-fidelity data from low-fidelity sources, our approach
differs from [35] in several aspects. First, they added physics-informed loss in the denosing
score-matching loss in the training of their diffusion models, which can be very expensive
due to the enforcement of PDE information in each gradient step during the training. In con-
trast, our physics-guided diffusionmodel decouples the step of purely data-driven conditional
diffusion model from the physics-enhancement step. The pre-trained model when combined
with low-fidelity input produces a high-fidelity output that can be used as a good warm-
start for minimizing the physics-informed loss in the second step. This two-step procedure
improves substantially the efficiency of training and accuracy of generated solutions.

1.2 Our Contributions

We introduce the physics-guided diffusion model as a universal framework for downscaling
PDE solutions from low-resolution to high-resolution.

– We first reformulate the downscaling problem as a conditional sampling task, where the
objective is to sample from the posterior distribution of unknown high-fidelity solutions,
given any arbitrary low-fidelity input. This reformulation allows for a more targeted and
accurate generation of high-resolution outputs from their lower-resolution counterparts.

– The first step involves conditional sampling via a diffusion model to produce preliminary
high-fidelity samples. Subsequently, these samples are refined through a physics-
informed loss minimization step, ensuring they adhere to the physical laws governing the
PDEs. This dual-step approach effectively merges data-driven sample generation with
physics-based accuracy enhancement.

– The proposed method consistently outperforms several existing downscaling baselines
in a range of nonlinear static and time-dependent PDEs. Remarkably, it not only matches
the accuracy of traditional high-fidelity solvers at the fine scale but also achieves this with
a significant reduction in computational expenditure, cutting costs by more than tenfold.
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2 Problem Set-Up

2.1 Problem Description

Our primary focus is on developing efficient approximations for the solution u to a generic
PDE, subject to appropriate boundary conditions, as outlined below:

Lu = a, (1)

where L is the (possibly nonlinear) differential operator and a is the source term. Tradi-
tional grid-based PDE solvers typically approach this by solving a discretized version of the
problem:

Lhuh = ah + εh .

Here h represents the spatial-temporal grid-size, εh denotes certain (unknown) noise that
potentially encapsulating errors in the pointwise evaluations of the functions, and Lh , uh
and ah represent the discrete approximations to the operator L, the solution u and the source
a respectively. Discretization on fine grids (characterized by a small h) usually results in
high-fidelity (high-resolution) solutions but at the expense of significantly increased compu-
tational costs. Therefore, finding an optimal cost-accuracy balance is crucial. Downscaling,
in this context, refers to a series of techniques that first solve PDEs on coarse grids and subse-
quently convert the low-fidelity solutions obtained on these coarse grids to their high-fidelity
equivalents on fine grids, offering a strategic approach to manage the trade-offs between
computational expense and solution accuracy.

2.2 Downscaling as Conditional Sampling

To describe our diffusion-based downscaling approach, we would like to first present a
conditional-sampling formulation to the downscaling problem. To ease the notation, we will
suppress the dependence of quantities on the grid size h and denote by uc and u f the low-
fidelity solution and high-fidelity solution respectively. Similarly one can define for g = c, f
the operators Lg , the source terms ag and the noise εg . Moreover, we have

Lgug = ag + εg.

Assume that ac = Ra f with some fine-to-coarse restriction operator R, one has

RL f u f = Lcuc + Rε f − εc.

Assuming the invertibility of Lc, we can rewrite above as

uc = (Lc)−1RL f u f + ε, where ε := −(Lc)−1(Rε f − εc).

In another words, the downscaling problem is an inverse problem of recovering u f from the
noisy downscaling observation uc via

uc = Gu f + ε, where G := (Lc)−1RL f .

We adopt the Bayesian approach for solving the inverse problem. Given a prior p(u f ) on
the set of fine solutions, one can define by the Bayes’ rule the posterior distribution

p(u f |uc) ∝ p(uc|u f ) × p(u f ), (2)
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where p(uc|u f ) is the likelihood function. With above, we have recast the downscaling as
the problem of conditional sampling from the Bayesian posterior p(u f |uc) given an arbitrary
low-fidelity input uc.

2.3 Challenges and Our Approach

Despite the appealing conditional sampling framework offered by downscaling, direct sam-
pling from the Bayesian posterior (2) presents infeasibility and numerous challenges. First,
the prior p(u f ) is unknown and needs to be learned from the data.

Secondly, evaluating the likelihood function poses significant difficulties due to two
primary reasons: (1) the forward map G is either inaccessible, owing to an unknown fine-
to-coarse restriction or, even if known, the computation may be prohibitively expensive, and
(2) the noise distribution is typically unknown, leading to an intractable likelihood. Last
but not the least, the conditional samples u f given uc even can be generated may not fulfil
the discrete PDE problem on the fine grid, especially given a limited amount of data. To
address these issues, we introduce a physics-guided diffusion model designed to learn and
draw physics-conformal high-fidelity samples from any low-fidelity inputs. Our approach is
methodically divided into two pivotal steps:

(1) Pre-training step: We pre-train a conditional diffusion model using a finite collection of
low-and-high fidelity solution pairs {(uci , u f

i )}ni=1 laying the groundwork for subsequent
refinements.

(2) Refining step: Upon receiving any new low-fidelity input, we refine the output via the
pre-trained model to ensure an enhanced fit with the fine-grid PDE, thereby further
improving the solution’s fidelity.

The pre-training phase of our approach is primarily data-driven and accounts for the
majority of computational expenditure. In contrast, the refining step is more computation-
ally economical and aims to enhance the high-fidelity output by minimizing the physics
misfit loss. This enhancement could be achieved, for instance, by executing few, such as
two, Gauss-Newton iterations, starting with the initial output from the pre-trained model,
thereby streamlining the process towards achieving superior solution accuracy with reduced
computational demand.

3 Methodology

3.1 Unconditioned DiffusionModel

To introduce our conditional diffusion models for downscaling, we start with a general
overview of unconditioned diffusion models, with our focus on the Denoising Diffusion
Probabilistic Models and one of its accelerated version called Denoising Diffusion Implicit
Models.

3.1.1 Denoising Diffusion Probabilistic Models(DDPM)

Let q(x) represent the target data distribution. DDPMconstructs aMarkovian noising process
that incrementally contaminates the data x0 with Gaussian noise over

T steps, ultimately transforming it into pure Gaussian noise. This noising process is
denoted by q(x0:T ), where the x1, · · · , xT are progressively noised versions of the data, all
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maintaining the same dimensionality as x0, and q(xT ) is approximately an isotropicGaussian
distribution. This forward process of x0:T can be described by the Markov process with the
transition kernel defined by

q(xt |xt−1) := N (xt ;√
αt xt−1, (1 − αt )I) (3)

where {αt }Tt=0 ⊂ (0, 1) is a sequence of user designed parameters. Since the noises we add
in each step are Gaussian, we have

xt |x0 d= √
ᾱt x0 + ε

√
1 − ᾱt , ε ∼ N (0, I), (4)

where ᾱt = �t=1αt . Generation of new data samples can be done via the backward process
in DDPM. More precisely, with the assumption that the reverse process q(xt−1|xt ) can be
modeled as Gaussians with trainable mean and fixed variance, a reversed Markov process is
parameterized in the form of

pθ (xt−1|xt ) := N
(
xt−1; 1√

αt

(
xt +

√
(1 − αt )√
(1 − ᾱt )

sθ (xt , t)
)
, σ 2

t I
)
, (5)

where σ 2
t = (1−αt )(1−ᾱt−1)

1−ᾱt
and is trained with the weighted evidence lower bound (ELBO)

θ̂ = argmin
θ

T∑

t=1

(1 − ᾱt )Eq(x0)Eq(xt |x0)
∥∥∥

1√
1 − ᾱt

sθ (xt , t) − ∇x log(p(xt |x0))
∥∥∥
2
.

It can be shown further by integration by parts that minimizing the ELBO is equivalent to
the denoising problem

θ̂ = argmin
θ

T∑

t=1

Ex0∼q(x0)Eεt∼N (0,I)

∥∥∥
(1 − αt )

2

2σ 2
t αt (1 − ᾱt )

sθ (
√

ᾱt x0 + εt
√
1 − ᾱt , t) + εt

∥∥∥
2
.

The optimized neural network s
θ̂
enables us to generate new samples x0 through the backward

process iterates: starting with xT ∼ N (0, I),

xt−1 = 1√
αt

(
xt +

√
(1 − αt )√
(1 − ᾱt )

sθ (xt , t)
)

+ σtξt , t = T , T − 1, · · · , 1,

where {ξt }Tt=1
i .i .d.∼ N (0, I).

3.1.2 Accelerating Sampling with Denoising Diffusion Implicit Models (DDIM)

One major drawback of DDPM is that generating a new sample from the data distribution
requires simulating the whole Markov backward process for many (typically hundred or
thousand) steps (or equivalently the forward network passes), which can be computationally
intensive and time-consuming. Recently, Song et. al. [36] proposed the denoising diffusion
implicit models (DDIM), accelerating the generative process by using a non-Markovian
deterministic diffusion pathway, culminating in implicit models capable of producing sam-
ples at an faster pace without compromising on quality. More specifically, given a selective
increasing sequence of length L , denoted by {τi }Li=1 ⊂ [1, 2, · · · , T ], DDIM generates a
sample xτi−1 from xτi by making the following update:

xτi−1 =
√

ᾱτi−1√
ᾱτi

xτi + (

√
1 − ᾱτi

√
ᾱτi−1√

ᾱτi

−
√
1 − ᾱτi−1)sθ̂

(
xτi , τi

)
, i = 1, 2, · · · , L,
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where s
θ̂
is the optimal score network trained in the same manner as in DDPM.

3.2 Conditioned DiffusionModel

Now let us move on to the problem of conditional sampling using conditional diffusion
model. Recall that our goal is to sample from the posterior distribution

p(u f |uc) ∝ p(uc|u f ) × p(u f )

for any given low-fidelity solution uc. One straightforward idea for doing so would be to
train a conditional score network sθ (u

f
t , uc, t) that minimizes the ELBO in the conditional

setting:

θ̂ = argmin
θ

T∑

t=1

(1 − ᾱt )Eu f
0 ∼p(u f )

E
p(u f

t |u f
0 )

∥∥∥
1√

1 − ᾱt
sθ (u f

t , uc, t) − ∇
u f
t
log(p(u f

t |u f
0 , uc))

∥∥∥
2
.

By the Bayes’ formula, the true conditional score function ∇
u f
t
log(p(u f

t |u f
0 , uc)) can be

written as

∇
u f
t
log(p(u f

t |u f
0 , uc)) = ∇

u f
t
log p(u f

t ) + ∇
u f
t
log(p(uc|u f

0 , u f
t )),

where the first term represents the score function corresponding to the prior p(u f ) and the
second term encodes the conditional likelihood. While the prior p(u f ) can be learned from
high-fidelity training samples, the conditional likelihood is often computationally intractable
and existing conditional diffusion models resort to various approximations to the conditional
likelihood, such as the pseudo-inverse in the inverse problem setting or the posterior mean
in the general nonlinear inverse problem setting. Unfortunately, it is impossible to construct
those approximations in our setting due to the lack of the complete knowledge on the forward
operator G as we illustrated in Sect. 2.3. To bypass these issues, we seek a purely data-driven
approach to learn the conditional score without incorporating the forward model. To be
concrete, given a training set of low-and-high fidelity solution pairs {(uck, u f

k )}Nk=1, we seek

to optimize the score network sθ (u
f
t , uc, t) with respect to the parameter θ such that

θ̂ = argmin
θ

T∑

t=1

1

N

N∑

k=1

[ (1 − αt )
2

2σ 2
t αt (1 − ᾱt )

∥∥∥sθ (
√

ᾱtu
f
k + εt,k

√
1 − ᾱt , uck, t) + εt,k

∥∥∥
2]

, (6)

where {εt,k} i .i .d.∼ N (0, I), t = 1, · · · , T ; k = 1, · · · , N . As discussed in [14], it is beneficial

to sample quality and simpler to implement to omit the time dependent coefficient (1−αt )
2

2σ 2
t αt (1−ᾱt )

,

and the training process for the the conditional diffusionmodel is summarized in Algorithm 1
below.

Similar to the unconditioned setting, with the optimal score network sθ (u
f
t , uc, t), we can

generate a new high-fidelity sample u f = u f
0 conditioned on a new low-fidelity solution uc

by evolving the backward process with a terminal sample u f
T ∼ N (0, I). In the framework

of DDPM, such a backward process is given by

u f
t−1 = 1√

αt

(
u f
t +

√
(1 − αt )√
(1 − ᾱt )

s
θ̂
(u f

t , uc, t)
)

+ σtξt , t = T , T − 1, · · · , 1.

where {ξt }Tt=1
i .i .d.∼ N (0, I).
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In the case of DDIM, the backward process updates according to

u f
τi−1

=
√

ᾱτi−1√
ᾱτi

u f
τi

+
(√

1 − ᾱτi

√
ᾱτi−1√

ᾱτi

−
√
1 − ᾱτi−1

)

s
θ̂

(
u f

τi
, uc, τi

)
, i = 1, 2, · · · , L.

In practice, we observe that incorporating the information of the source term a in the training
of conditional score network can improve the sample quality in the sense of better fitting
the PDE on the fine scale. Detailed numerical examples of this comparison are provided in
Sect. 4. Therefore throughout the paper we look for a score network depend on a f that solves
(6) with the score network sθ (u f , uc, t) replaced by sθ (u f , uc, a, t).

Algorithm 1 Training of conditional diffusion models

Require: Training dataset S := {uck , u f
k , ak }Nk=1, hyperparameter {αt }Tt=0 ⊂ (0, 1), batch size B.

1: repeat
2: Sample {ucj , u f

j , a j }Bj=1 ∼ S, let u f
0, j = u f

j , j = 1, · · · , B
3: t ∼ Uniform({1, · · · , T })
4: εt, j ∼ N (0, I), j = 1, · · · B
5: Compute u f

t, j = √
ᾱtu

f
0, j + √

1 − ᾱt ε j
6: Take gradient descent step on

7: ∇θ

[ ∑T
t=1

1
B

∑B
j=1 ‖sθ (u f

t, j , u
c
i , t) + εt, j‖2

]

8: until converged.

3.2.1 Physics-Guided Diffusion Model

The generated high-fidelity sampled solution through the conditional diffusion model con-
tains rich information from the training high-fidelity training data while informed by the
low-fidelity input. Yet, the generated sample may not fulfil the PDE on the fine scale and
hence need to be further enhanced to better conformwith the physics. To improve the solution
quality, we refine the solution by solving the (nonlinear) least square problem

u ∈ argmin
u

‖L f u − a‖2, (7)

where the boundary term in the loss for simplicity and could be included in practice. In our
experiments, we generate a refined solution by solve problem (7) with few Gauss-Newton
iterations and initial guess chosen as the generated output from the conditioned diffusion
model.

By combining the conditional sample generation stepwith condition diffusionmodelswith
the refining step with Gauss-Newton, we present below the overall physics-guided diffusion
model for downscaling. Assume that we have access to a pre-trained conditional diffusion
model or specifically the conditional score function sθ (see Algorithm 1). We present the
algorithm 2 for the refined sample generation process in the framework of DDIM. Through
our experiments, we have determined that a refining step of ts = 1 sufficiently enhances the
solution quality to be on par with that of the fine solver. For clarity, the u f

t, j , in Algorithm 1,

denotes the j th noised data at diffusion time step t , while the u f
τi−1 in Algorithm 2 denotes

the reconstruction at diffusion time step τi−1. Furthermore, we employ the Gaussian-Newton
algorithm to refine solutions produced by the diffusion model. Detailed implementation can
be found in Algorithm 4 in the Appendix.

123



Journal of Scientific Computing (2024) 101 :71 Page 9 of 23 71

Algorithm 2 Physics-guided diffusion model (PGDM) for downscaling

Require: A given low-fidelity uc and the source a f evaluated on the fine scale, hyperparameters {αt }Tt=0 ⊂
(0, 1) and a set of indices {τi }Li=1 ⊂ [1, 2, · · · , T ] with length L .

1: u f
T ∼ N (0, I)

2: for i = L − 1, . . . , 0 do

3: u f
τi−1 =

√
ᾱτi−1√
ᾱτi

u f
τi + (

√
1 − ᾱτi

√
ᾱτi−1√

ᾱτi

−
√
1 − ᾱτi−1 )sθ

(
u f

τi , u
c, a f , τi

)

4: end for
5: for j=1, · · · , ts do

6: Refine u f
0 by Gaussian Newton Algorithm 4

7: end for
8: return u f

0

4 Numerical Experiments

In this section, we demonstrate the accuracy and efficiency of the proposed generative down-
scaling method in three types of nonlinear PDEs: the nonlinear Poisson equation in both 2D
and 3D, the 2D Allen-Cahn equation, and the 2D Navier–Stokes equation. Specifically, we
evaluate the performance of PGDM against several baseline downscaling techniques, includ-
ing Fourier Neural Operator (FNO), Cubic Spline Interpolation (CSI), the vanilla conditional
diffusion models DDPM and DDIM without the refinement via Gauss-Newton iterations, a
conditional diffusion model with the conditional score without dependence on the source
term (labeled as DDPM-II), as well as the Physics-Informed Diffusion Model (PIDM) [35].
Our numerical results indicate that PGDM surpasses all baseline methods in performance,
achieving comparable accuracy to high-fidelity solvers while significantly reducing compu-
tational costs by more than tenfold. Below, we present in detail the data generation process,
the neural network architectures employed, and the numerical results for each test case. The
detailed descriptions of the neural network architecture and hyperparameters used for the
diffusion models and FNO can be found in Appendix A.

4.1 Data Generation

Below we outline the process of generating training and validation data. Let us start with
describing the process of generating the low-fidelity solution, high-fidelity solution, and refer-
ence solution. Our investigation covers both stationary PDEs and time evolutional PDEs. For
stationary PDEs, we restrict our attention on the homogeneous Dirichlet boundary condition:

{
Lu = a on �

u = 0 on ∂�.
(8)

We employ the finite difference method to discretize the nonlinear differential operator L,
adhering to the specified boundary condition g(x). This discretization, denoted as Ld , trans-
forms the problem into a nonlinear optimization problem:

u ∈ argmin
u

‖Ldu − a‖2, (9)

While many nonlinear optimization solvers could potentially be used, in this paper, we opt
for the Levenberg–Marquardt (LM) algorithm due to its adaptivity. Specifically, the LM
algorithm interpolates between the gradient descent method and the Gauss-Newton method.
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Throughout the iteration process, it adjusts its behavior, resembling the gradient descent
method when the iterates are distant from a local minimum and resembling the Gauss-
Newton method when they approach a local minimum. See more details on LM algorithm
in Algorithm 3 of Appendix B. To generate low-fidelity solution, high-fidelity solution, and
reference solution, we execute the the LM algorithm for until the L2-misfit (9) decreases
below a pre-defined error precision η =1e-5.

We also consider evolutional PDEs modeled by

∂t u = Lu,

with eitherDirichlet or periodic boundary condition. To ensure the stabilitywhilemaintaining
a reasonable time step size, we adopt an implicit-Euler scheme for evolutional PDEs. More
concretely, let Kt be the total number of iteration steps and for n = 0, · · · , Kt − 1, the
approximation solutions un+1 are obtained by solving the following optimization problem:

un+1 ∈ argmin
u

‖(I − ΔtLd)u − un‖2, (10)

where Δt be the time step size. Similar to the static case, we employ the LM algorithm as
our numerical solver for (10) with the stopping criterion set to be that the L2-misfit is below
η =1e-5. For the two evolutional PDEs considered in the paper, namely the Allen-Cahn and
Navier–Stokes equations, we consider spatial super-resolution only. Specifically, we employ
spatial mesh grids denoted as Kc and K f , along with a time step size of Δt = 0.05 for
both the low-fidelity and high-fidelity solutions. The reference solutions for the Allen-Cahn
equation are computed on a spatial mesh size of 2K f and a time step size of Δt = 0.025.
For the reference solutions of Navier-Stokes equation, we adopt a Crank-Nicolson scheme
commonly used in literature, such as the one utilized in [24]. Specifically, we set the time
step size to be Δt =5e-5 and utilize a spatial mesh grid size of 2K f . It is important to note
that there is a trade-off between using an implicit scheme with a larger time step and using
a semi-implicit scheme with a smaller time step. The former allows for a larger time step,
leading to faster evolution, but it introduces an error of O(Δt).

In the data preparation step,we generate the source terms and the initial conditions from the
Gaussian randomfieldN (0, (−Δ+b2I)−c),whereb and c are twohyperparameters adjusting
the length-scale and smoothness of the field. For comparison purposes, all comparisons in
this section are conducted at the resolution of the high-fidelity solution, indicated by a spatial
mesh size K f . Let us introduce three classical solvers for solving the nonlinear systems (9) or
(10). The coarse solver generates low-fidelity solutions by solving these systems on a coarser
mesh grid Kc using LMalgorithm and subsequently enhances resolution through cubic spline
interpolation. The fine solver produce high-fidelity solutions by directly solves the nonlinear
systems employing a finer spatial mesh grid K f . Additionally, the reference solver utilize
even finer spatial mesh grid 2K f coupled with a significantly finer time step size, followed
by downsampling to match the resolution of fine solver. In each of the following numerical
examples, we employ the aforementioned methodology to generate N training sample tuples
{uci , u f

i , ai }Ni=1 and M testing sample tuples {ucj , u f
j , u

r
j , a j }Mj=1. Here a is generated by

sampling from the Gaussian random field followed by restriction on the grids, uc is obtained
by the CSI solver, u f is obtained by the fine solver and ur is obtained by the reference
solver. Given our focus on scenarios with limited data, we set N in this paper to be as small
as N = 30. For a better illustration, we summarize the previously mentioned notations
and hyperparameters along with their definitions in Table 5 in Appendix. Additionally, the
detailed descriptions of the neural network architecture and hyperparameters used for the
diffusion models and FNO can be found in Appendix A.
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Table 1 Comparison of relative L2-error for 2D nonlinear Poisson equation at 8x super-resolution on M = 30
testing examples

N = 30 N = 100 N = 30 N = 100 Time
c = 1.6 c = 1.6 c = 1.2 c = 1.2

CSI 2.97e−1 2.97e−1 5.82e−1 5.82e−1 3.05e−1

Fine 3.69e−3 3.69e−3 1.36e−2 1.36e−2 8.73e0

FNO 1.84e−1 1.73e−1 2.36e−1 2.22e−1 1.66e−1

DDPM 8.74e−2 6.48e−2 9.03e−2 8.52e−2 3.22e0

DDIM 1.18e−1 6.83e−2 1.66e−1 1.38e−1 6.15e−1

DDPM-II 2.89e−1 2.53e−1 5.51e−1 5.32e−1 3.13e0

PIDM 2.55e−1 2.32e−1 5.02e−1 4.86e−1 3.56e0

Coarse+GN 6.17e−2 6.17e−2 1.91e−1 1.91e−1 6.27e−1

FNO+GN 3.93e−2 2.28e−2 1.07e−1 4.67e−2 6.14e−1

PGDM 1.31e−2 5.20e−3 2.64e−2 2.01e−2 1.29e0

The last column shows the average computational time over M = 30 realizations of different solutions

4.2 Nonlinear Poisson Equation

The first example is the nonlinear Poisson equation with zero Dirichlet boundary condition,

−0.0005Δu(x) + u(x)3 = a(x), x ∈ (0, 1)d ,

u(x) = 0, x ∈ ∂(0, 1)d .
(11)

Here, d indicates the physics dimensionality and a(x) denotes the source term, which is
sampled from aGaussian randomfields described byN (0, (−Δ+49I)−c), where the inverse
Laplacian is equipped with zero boundary condition. Our investigation spans various values
of c and the size of training set N .

For 2D cases, i.e. d = 2, we select Kc = 16, K f = 128 as the mesh grid sizes for
the coarse solver and the fine solver, respectively. In addition to evaluating DDPM against
the baseline data-driven method FNO, we also compare its performance with two additional
diffusion models: PIDM and DDPM-II. The DDPM-II solver is the diffusion model with
the score function conditioned only on the coarse solution, whereas PIDM is a Physics-
Informed Diffusion Model proposed by [35]. We compare the performances of different
solvers under these conditions for the 2Dscenario inTable 1. Solutions computed fromvarious
solvers in 2D with c = 1.6 and N = 100 are depicted in Fig. 1, while the corresponding
solutions for c = 1.2 and N = 100 are illustrated in Fig. 2. Additionally, we present the error
distributions of the numerical solutions corresponding to all solvers in Fig. 3, indicating that
DDPM performs better than the other three data-driven methods (FNO, DDPM-II, PIDM).
In 3D scenarios, we select Kc = 16, K f = 64 for the mesh grid size of the coarse and the
fine solver respectively. The performances of different solvers under analogous conditions
in 3D settings are comprehensively detailed in Table 2. Visual comparisons for 3D solver
outputs corresponding to c = 1.2 and N = 100 are also presented are presented in Fig. 4,
and the results for c = 1.4 and N = 100 are shown in Fig. 5. As demonstrated in Table 1
and Table 2, PGDM maintains the same level of accuracy as the fine solver while reducing
computational time by a significant factor of ten.
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Fig. 1 Comparison of predictions and absolute errors for the 2D nonlinear Poisson equation on M = 30,
generated by different solvers with c = 1.6 and N = 30 training samples. The first and third rows display
the solutions generated by the different solvers, and the second and fourth rows present the corresponding
absolute errors to the reference solutions

4.3 2D Allen-Cahn Equaiton

Consider 2D Allen-Cahn equaiton with periodic boundary condition:

∂t u(x) = κΔu(x) + γ u(x)
(1
4

− u(x)2
)
, x ∈ (0, 1)2, t ∈ (0, 0.5],

u(0, x) = u0(x), x ∈ (0, 1)2.
(12)

Here the diffusion coefficient set to κ =1e-3 and the reaction coefficient set to γ = 5.
The initial conditions u0(x) draw from Gaussian random field N (0, (−Δ + 49I)−c) where
the inverse Laplacian Δ is applied with periodic boundary conditions. We explore different
values of reaction coefficient γ and various c. The time step size is set toΔt = 0.05, with the
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Fig. 2 Comparison of predictions and absolute errors for the 2D nonlinear Poisson equation on M = 30,
generated by different solvers with c = 1.2 and N = 30 training samples. The first and third rows display
the solutions generated by the different solvers, and the second and fourth rows present the corresponding
absolute errors to the reference solutions

Fig. 3 2D nonlinear Poisson: Boxplot of relative L2 errors for M = 30 test samples compared to the reference
solutions, generated by different solvers trained on N = 30 training samples. The left and right figures show
the numerical results corresponding to c = 1.6 and c = 1.2 respectively. The yellow lines indicate the median,
and the blue boxes represent the interquartile range for each solver. The whiskers extend to the smallest and
largest values within 1.5 times the IQR from the first and third quartiles
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Table 2 Comparison of relative L2 error for 3D nonlinear Poisson equation at 4x super-resolution on M = 30
testing set

N = 30 N = 100 N = 30 N = 100 Time
c = 1.6 c = 1.6 c = 1.4 c = 1.4

CSI 4.69e−1 4.69e−1 6.72e−1 6.72e−1 2.18e−1

Fine 2.66e−2 2.66e−2 4.74e−2 4.74e−2 1.60e2

FNO 2.29e−1 1.71e−1 2.73e−1 2.03e−1 6.63e−1

DDPM 1.13e−1 1.10e−1 1.12e−1 1.10e−1 3.23e1

DDIM 1.46e−1 1.33e−1 1.43e−1 1.36e−1 6.68e0

Coarse+GN 9.61e−2 9.61e−2 1.61e−1 1.61e−1 9.91e0

FNO+GN 3.97e−2 2.99e−2 6.26e−1 5.19e−2 1.03e1

PGDM 2.79e−2 2.77e−2 4.77e−2 4.74e−2 1.63e1

The last column documents the average computational time over M = 30 realizations of different solutions

Fig. 4 3D nonlinear Poisson: Predictions and corresponding absolute errors generated by different solvers
with c = 1.6 and N = 100 training samples

Fig. 5 3D nonlinear Poisson: Predictions and corresponding absolute errors generated by different solvers
with c = 1.4 and N = 100 training samples

total number of steps Kt set to 10. For computational mesh grids, sizes are set at Kc = 16 for
the coarse solver and K f = 128 for the fine solver, respectively. The performance of various
solvers across these settings is detailed in Table 3. Predictions at t = 0.5 of different solvers
with c = 1.6, γ = 5 and N = 30 are presented in Fig. 6, and the snapshots of predictions of
PGDM are shown in Fig. 7.
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Table 3 Comparison of relative L2 error for 2D Allen-Cahn equation at 8x super-resolution on N = 30
training set and M = 20 testing set

γ = 1 γ = 1 Time γ = 5 γ = 5 Time
c = 1.6 c = 1.2 c = 1.6 c = 1.2

CSI 4.16e−1 7.84e−1 5.59e−2 4.57e−1 8.37e−1 2.64e−1

Fine 2.67e−2 6.84e−2 1.71e1 4.73e−2 7.73e−2 5.84e1

FNO 4.57e−1 7.27e−1 8.21e−2 4.61e−1 7.84e−1 8.21e−2

DDPM 1.66e−1 1.71e−1 1.42e1 2.05e−1 1.89e−2 1.42e1

DDIM 1.82e−1 3.2e−1 2.84e0 2.11e−1 3.54e−1 2.84e0

Coarse+GN 8.73e−2 1.91e−1 3.18e−1 1.06e−1 1.94e−1 4.87e−1

FNO+GN 1.03e−1 1.87e−1 3.42e−1 1.29e−1 2.05e−1 3.42e−1

PGDM 5.96e−2 9.09e−2 3.11e0 6.67e−2 1.05e−1 4.23e0

The fourth and the last column show the averaged computational time over M = 20 realizations of different
solutions

Fig. 6 2DAllen-Cahn: Predictions at t = 0.5 and corresponding absolute errors generated by different solvers
with γ = 5, c = 1.6 and N = 30

Fig. 7 2D Allen-Cahn: Snapshots of evolution of PGDM and the corresponding absolute errors compared to
the reference solution with γ = 5, c = 1.6 and N = 30
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Table 4 Comparison of relative
L2 error for 2D Navier-Stokes
equation at 4x super-resolution
on M = 20 testing set

ν = 2e-4 ν = 1e-4 ν = 2e-5 Time

CSI 1.54e−1 1.63e−1 2.35e−1 1.38e0

Fine 4.23e−2 6.51e−2 1.19e−1 2.26e2

FNO 3.43e−1 3.65e−1 4.88e−1 1.38e−2

DDPM 8.09e−2 1.06e−1 1.56e−1 8.99e−1

DDIM 9.59e−2 1.43e−1 2.01e−1 2.32e−1

Coarse+GN 5.42e−2 7.98e−2 1.33e−1 6.28e0

FNO+GN 1.22e−1 1.41e−1 1.84e−1 6.13e0

PGDM 4.23e−2 6.51e−2 1.19e−1 6.34e0

The last columndocuments the average computational timeoverM = 20
realizations of different solutions

Fig. 8 2D Navier–Stokes: Predictions at t = 2 and the corresponding absolute errors generated by different
solvers with ν =2e-4 and N = 30

4.4 2D Navier–Stokes Equation

Consider the 2D Navier–Stokes equation in the vorticity form with periodic boundary con-
dition:

∂tw(t, x) + μu(t, x) · ∇w(t, x) = νΔw(t, x) + f (x), x ∈ (0, 1)2, t ∈ (0, 2],
w(0, x) = w0(x), x ∈ (0, 1)2.

(13)

The transportation coefficient is set to μ = 4, and the forcing term is selected as f (x) =
0.2(sin(2π(x + y)) + cos(2π(x + y))). To generate initial condition, we draw functions
from the same Gaussian random field N (0, (−Δ + 25I)−5) where the inverse Laplacian
Δ is applied with periodic boundary conditions. These functions are subsequently evolved
using the reference solver for two seconds. The time step size is set to Δt = 0.05, with the
total number of steps set to Kt = 40. The mesh grid sizes are set to Kc = 16 for the coarse
solver and K f = 64 for the fine solver, respectively. We fix the training set size N at 30
and examine three different viscosity coefficients ν = 2e-4, 1e-4, 2e-5. The performance of
various solvers across these settings is detailed in Table 4. Predictions at t = 2 of different
solvers with ν =2e-4 are presented in Fig. 8, and the snapshots of predictions of PGDM are
shown in Fig. 9; Predictions at t = 2 of different solvers ν =1e-4 are presented in Fig. 10,
and the snapshots of predictions of PGDM are shown in Fig. 11.
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Fig. 9 2D Navier–Stokes: Snapshots of evolution of PGDM and the corresponding absolute errors to the
reference solution with ν =2e-4 and N = 30

Fig. 10 2D Navier–Stokes: Predictions at t = 2 and the corresponding absolute errors generated by different
solvers with ν =1e-4 and N = 30

Fig. 11 2D Navier–Stokes: Snapshots of evolution of PGDM and the corresponding absolute errors to the
reference solution with ν =1e-4 and N = 30

5 Conclusion

We propose a data-driven surrogate method called PGDM for accelerating the computation
of (nonlinear) PDEs. PGDM first generates a high-fidelity solution conditional on a low-
resolution input, followed by a mild refinement of the former with a PDE solver on the
fine-grid. Our numerical results show that PGDM can produce high-fidelity solutions that are
comparable to those generated by fine-scale solvers, while requiring very limited training data
(as few as 30 instances). More importantly, we demonstrate that our PGDM also significantly
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Table 5 Table of notations Notation Meaning

Kc Uniform grid size of coarse solver

uc CSI solution

K f Uniform grid size of fine solver

u f Fine solution

Kt Number of evolution steps

Δt Time step size in evolution problem

T Total time steps in DDPM

τ Sequence of skipped time steps in DDIM

{βi }Ti=0 Scale of Noise in DDPM

{αi }Ti=0 Hyperparameter in DDPM

N Number of training samples

M Number of testing samples

b, c Hyperparameters of Gaussian random fields

reduce the computational time, especially in 3D examples, where we observe a tenfold
decrease compared to fine-scale solvers.

Appendix

A Neural Networks Architecture and Hyperparameters

Our diffusion models are based on the DDPM architecture [14], which uses U-Net [33] as
the backbone (Table 5). During our experiments, we omit the use of self-attention, resulting
in significant reductions in training time while maintaining similar sample quality. The base
channel count, the list of Down/Up channel multipliers and the list of middle channel refer
to the hyperparameters of the U-Net, which is detailed in Table 6. To accelerate sampling
process using DDIM, we take skipped time steps τ be [1, 5, 10, 15, 20, 25, · · · , T − 5, T ].
The linear noise schedule is configured from β0 = 0.0001 to βT = 0.02.

During training, we utilize the Adam optimizer with a dynamic learning rate that linearly
decays every 5000 steps with a decay rate of 0.05. The total number of training epochs is set
to 10000.

The architecture of FNO follows that described in [24]. The number of lifting channels,
number of FFT truncation modes, and number of Fourier layers for different examples are
specified in Table 7. During training, we utilize the Adam optimizer with a dynamic learning
rate that linearly decays every 5000 steps with a decay rate of 0.05. Training continues until
the loss drops below 1e-6 or reaches the maximum iteration number of 50000.

Our model training were performed on an NVIDIA RTX 3070 graphics card, while pre-
dictions and refinements with Gaussian-Newton were executed on an AMD Ryzen 7 3700X
processor.
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Table 6 Table of DDPM hyperparameters

2D Nonlinear 3D Nonlinear 1Dt + 2Dx 1Dt + 2Dx
poisson poisson Allen-Cahn Navier–Stokes

Target resolution 128 × 128 64 × 64 × 64 10 × 128 × 128 40 × 64 × 64

Super-resolution scale 8 4 8 4

Timesteps T 400 400 400 200

Base Channels 128 128 256 128

Down/Up channel multipliers 1,2,4,8 1,2,4,8 1,2,4,8 1,2,4,8

Middle channel list [512, 512] [1024, 1024] [1024, 1024] [1024, 1024]

Batch size 4 2 2 2

Training time N = 30 ≈ 1.2h ≈ 5.2h ≈ 2.8h ≈ 3.4h

Training time N = 100 ≈ 4.2h ≈ 22.4h ≈ 7.6h ≈ 11.8h

Table 7 Table of FNO
hyperparameters

layers modes lifting channel

Nonlinear Poisson 2D 2 16 32

Nonlinear Poisson 3D 4 12 64

Allen-Cahn 1Dt + 2Dx 4 16 64

Navier–stokes 1Dt + 2Dx 4 16 64

B Levenberg–Marquardt Algorithm

In this part, we present the Levenberg–Marquardt (LM) algorithm for solving the nonlinear
optimization problem (9) and (10) in Algorithm 3. In all of our numerical experiments, we
fix λ = 0.5 and η =1e-5.

Algorithm 3 Levenberg–Marquardt algorithm
Require: Initial guess u0, the source term a, the discretization of operator Ld , initial damping parameter λ

and stopping criterion η.
1: Let u = u0
2: repeat
3: Compute residual r = Ldu − a

4: Compute Jacobian matrix J = ∂Ldu
∂u

5: Solve linear system [J T J + λdiag(J T J )]δ = J T r for δ

6: Update unew = u + δ

7: if ‖Ldunew − a‖ > ‖Ldu − a‖ then
8: λ = λ ∗ 2
9: else
10: λ = λ/2
11: end if
12: u = unew
13: until ‖r‖ < η

14: return u
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C Physics-Informed DiffusionModel

For the physics-informed diffusion model [35], our numerical test suggests that conditioning
the diffusion model on both gradient information and the coarse solution yields better perfor-
mance compared to the vanilla PIDM,which is conditioned solely on gradient information. In
the application of the PIDM to 2D nonlinear Poisson equation, the conditioning information
is defined as the gradient of the L2 misfit, i.e.

gt = ∂rt
∂xt

,

where

rt := ‖ − 0.0005Δxt + x3t − a‖22.
We employ the same architecture to construct and train the model using Algorithm 1, with a
modified loss function:

∇θ

[ T∑

t=1

1

B

B∑

j=1

‖sθ (u f
t, j , u

c
i , gt, j , t) + εt, j‖2

]
.

The gradient guidance strength is set tow = 1. Various time-step locations ts in the backward
diffusion process were tested (ts = [20, 100, 200, 400]), and it was determined that ts = 20
provides optimal performance, leading to its adoption in the model. As shown Fig. 3, DDPM
outperforms PIDM, and we provide some heuristic explanations for this below. In fact, the
inputs of the two score networks of the two methods are different. At a specific time t , the
score of PIDM takes xt , t, uc, g as the inputs, where g is the output of a fixed problem-
dependent function of xt and source term a. In contrast, the score of DDPM takes xt , t, uc, a
as the inputs. Intuitively, including gradient information as an additional input provides
more comprehensive information than simply the source term. However, this significantly
increases training complexity, especially when the residual function is complicated and the
total time step Nt is large, making training much more difficult and potentially leading to
poor performance when the training data is limited.

D Gaussian-Newton Algorithm

To refine the solution obtained from the coarse solver, diffusion model and the FNO, we
introduce the one-step Gaussian-Newton refinement process, outlined in Algorithm 4.

Algorithm 4 One step Gaussian Newton update
Require: The u to be refined, the source term a, and the discretization of operator Ld .

1: Compute Jacobian matrix J = ∂Ldu
∂u

2: Compute residual r = Ldu − a
3: Solve linear system J T Jδ = J T r for δ

4: unew = u + δ

5: return unew
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