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The increasing societal concern for consumer information privacy has led to the enforcement of privacy
regulations worldwide. In an effort to adhere to privacy regulations such as the General Data Protection
Regulation (GDPR), many companies’ privacy policies have become increasingly lengthy and complex.
In this study, we adopted the computational design science paradigm to design a novel privacy policy
evolution analytics framework to help identify how companies change and present their privacy policies
based on privacy regulations. The framework includes a self-attentive annotation system (SAAS) that
automatically annotates paragraph-length segments in privacy policies to help stakeholders identify data
practices of interest for further investigation. We rigorously evaluated SAAS against state-of-the-art
machine learning (ML) and deep learning (DL)-based methods on a well-established privacy policy
dataset, OPP-115. SAAS outperformed conventional ML and DL models in terms of Fl-score by
statistically significant margins. We demonstrate the proposed framework’s practical utility with an in-
depth case study of GDPR’s impact on Amazon’s privacy policies. The case study results indicate that
Amazon’s post-GDPR privacy policy potentially violates a fundamental principle of GDPR by causing
consumers to exert more effort to find information about first-party data collection. Given the increasing
importance of consumer information privacy, the proposed framework has important implications for
regulators and companies. We discuss several design principles followed by the SAAS that can help guide
future design science-based e-commerce, health, and privacy research.
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Introduction I

The rapid proliferation of e-commerce, social media, and other
web services has enabled an unprecedented number of
consumers to share large quantities of personal information on
the internet. As a result, consumer information privacy has
rapidly emerged as a significant societal issue (Acquisti et al.,
2020). Increasing concern about how companies maintain the
information privacy of their consumers has led to the
development, update, and enforcement of privacy regulations
such as the EU General Data Protection Regulation (GDPR) in
2018 and the California Consumer Privacy Act (CCPA) in 2020.
Each regulation stipulates how companies must control
customers’ personal information. Companies that violate
regulations can incur significant financial fines and damage their
reputation. We summarize major companies that have recently
violated GDPR in Table 1. Events are summarized based on the
company name, industry type, country whose court decided to
fine the company, fine incurred, and violation.

The far-reaching implications of regulations worldwide have led
to many companies revising their privacy policies to include
details about their data practices (i.e., collecting, processing,
storing, sharing, and protecting customer data). Privacy policy
revisions often result from the introduction of new regulations
(e.g., GDPR, CCPA) or from requirements stipulated by the
regulation. For example, the Federal Deposit Insurance
Corporation (FDIC) and CCPA require banks and companies to
update their privacy policies at least once per year (Bowers et al.,
2017). Many regulations require companies to update their
policies after introducing a new product or service. The
frequency of updates can often cause the length of privacy
policies to increase rapidly. Between 2009 and 2019, the average
length of updated privacy policies doubled (Amos et al., 2021).
In Figure 1, we present Amazon’s privacy policy pre-GDPR
(March 3, 2014) and post-GDPR (February 12, 2021) to
illustrate how the privacy policy grew in length and complexity.

In the “For What Purposes Does Amazon Use Your Personal
Information” section of Amazon’s policy, the text related to
using consumers’ information for improving Amazon services
in Amazon’s pre-GDPR privacy policy contained only three
words (Red Box 1 in Figure 1). However, following the
implementation of GDPR, the number of words pertaining to the
same purpose increased to 28 (Red Box 2 in Figure 1). In
addition, the number of legalistic, jargon-laden, and ambiguous
phrases increased (e.g., “comply with legal obligations”) (Red
Box 3 in Figure 1). These characteristics have caused legislators
and researchers to become increasingly concerned that
companies may draft privacy policies in ways that are compliant
with regulations but do not actually improve consumers’ ability
to understand and control how companies process their personal
information (Fazzini, 2019). Moreover, the update frequency
and ever-growing length of privacy policies have also created
challenges for companies wishing to ensure that their policies
comply with regulations and for regulators aiming to monitor
and enforce regulations. Taken together, these concerns
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underscore the significant need to identify how the contents of
privacy policies change and are presented based on the
stipulations of new or existing privacy regulations. While
information systems (IS) scholars are uniquely positioned to
analyze the text characteristics of privacy policies, prevailing IS
privacy literature has focused on privacy concerns, risks, and
controls from behavioral and economic perspectives. Methods
within these paradigms are not designed to analyze the rich text
within privacy policies. Therefore, a novel information
technology (IT) artifact equipped with advanced machine
learning (ML) and deep learning (DL) methods for text analytics
is needed to identify how privacy policies change.

In this study, we adopted the computational design science
paradigm to design a novel privacy policy evolution analytics
framework that analyzes long and complex privacy policy texts
to help identify how text content changed after regulations were
implemented. At the heart of this framework stands a novel DL-
based self-attentive annotation system (SAAS) that draws upon
emerging DL-based structured self-attentive sentence
embedding (SSASE) and attention mechanism techniques.
SAAS aims to automatically annotate paragraph-length
segments in privacy policies into one or more data practice
categories to help relevant stakeholders, particularly companies
and regulators, identify specific aspects of privacy policies for
further investigation (in this study, identifying how privacy
policies changed according to new regulations or updates to
existing regulations) without reading large amounts of text.
There are two novelties in SAAS’s design. First, a row-wise
attention (RWA) mechanism aims to identify the set of words
and phrases (i.e., aspects) that helps SAAS assign the correct
data practice category label(s) for a privacy policy segment.
Second, a multi-label classifier learns sharing parameters that
introduce strong regularization effects to make models less
prone to overfitting. We rigorously evaluated SAAS against
prevailing methods in automated privacy policy analysis
literature and benchmark ML and DL algorithms with a series of
experiments. We demonstrated the practical utility of our
proposed framework with an in-depth case study on Amazon’s
pre- and post-GDPR privacy policies. Apart from offering
academic and practical contributions to IS privacy analytics, our
proposed SAAS follows several key design principles that can
guide the design of future IT artifacts for e-commerce and health
analytics applications.

The remainder of this paper is organized as follows. First, we
review literature related to IS information privacy research and
computational design science guidelines, privacy policy
analysis, SSASE, and attention mechanisms. Second, we
summarize key research gaps within the extant literature and
pose research questions for the study. Third, we present our
proposed privacy policy evolution analytics framework. Fourth,
we present the results of our experiments and case study. Finally,
we discuss this study’s contributions to the IS knowledge base,
summarize selected managerial implications, and present some
promising directions for future research.
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Table 1. Selected Recent Cases of GDPR Violations

Company Industry type Country Fine (€) Violation

Google Computer software France 150M Insufficient legal basis for data processing

WhatsApp Instant messaging Ireland 225M Insufficient fulfillment of information
obligations

Amazon E-commerce Luxembourg 746M Noncompliance with general data
processing principles

H&M Retail Germany 35M Insufficient legal basis for data processing

TIM Telecommunications Italy 27.8M Insufficient legal basis for data processing

March 3, 2014

communicating with you.

We use the information that you provide for such purposes as responding to your requests, customizing future shopping for you and

February 12,2021
For What Purposes Does Amazon Use Your Personal Information?

- Purchase and delivery of products and services. We use your personal infor|

We use your personal information to operate, provide, develop, and improve| 2. Long Texts

payments, and communicate with you about orders, products and services, and

1. Short Texts

tes that we offer our customers. These purposes include:
dle orders, deliver products and services, process

motional offers.

the usability and effectiveness of the Amazon Services.

- Provide, troubleshoot, and improve Amazon Services. We use your personal information to provide functionality, analyze performance, fix errors, and improve

identify your preferences, and personalize your experience with Amazo

information to respond to your requests, provide the requested servic

- Recommendations and personalization. We use your personal information to recommend features, products, and services that might be of interest to you,

Provide voice, image and camera services. When you use our voice, im| 3 Le

| galistic, jargon-laden, and/or ambiguous phrases |'

_click here.

/

- Comply with legal obligations. In certain cases, we collect and use your personal information to comply with laws. For instance, we collect from sellers
information regarding place of establishment and bank account information for identity verification and other purposes.

Figure 1. Amazon’s Privacy Policy Pre- (Top) and Post- (Bottom) GDPR

Literature Review

We review four areas of literature to ground our research.
First, we review recent IS information privacy research and
the computational design science paradigm to guide the
development of our proposed DL-based privacy policy
evolution analytics framework. Second, we review privacy
policy analysis literature to identify prevailing methods for
automatically detecting changes to privacy policies. Third, we
review SSASE to understand how a DL-based text analytics
technique could be leveraged to enhance automated privacy
policy evolution analytics. Finally, we identify attention
mechanisms to identify approaches that can dynamically
weigh input features within privacy policy text to improve
SSASE performance.

IS Information Privacy Research and
Computational Design Science Guidelines

Information privacy is fundamentally defined as “the ability of
the individual to control personal information about one’s self”
(Stone et al, 1983). The explosive growth of personal
information disclosure on the internet has motivated many IS
scholars to scrutinize varying aspects of information privacy.
To date, IS scholars have leveraged behavioral and economic

paradigms to make remarkable progress in three major
categories of information privacy research: concern, control,
and risk. In Table 2, we summarize the focus, IS paradigm, and
analytical method(s) leveraged in selected recent major IS
information privacy studies.

Research examining privacy concerns, controls, and risks has
primarily employed behavioral theories or econometric models
to investigate the impact of privacy concerns on user or
organizational decision-making, explore how various privacy
controls influence users’ behaviors, or examine the factors that
affect privacy risk, respectively (Cao et al., 2018; Kim & Kwon,
2019; Wunderlich et al., 2019). Despite their important
contributions, the analytical methods employed in these studies
were not designed to analyze lengthy and unstructured privacy
policy text. Consequently, a novel IT artifact designed to
identify privacy policy evolution requires a principled
approach. The design science paradigm offers prescriptive
guidelines on designing, developing, and evaluating novel IT
artifacts (e.g., constructs, models, methods, and instantiations)
for critical societal applications (Hevner et al., 2004). Four
genres of design science exist (Rai, 2017): computational,
optimization, economics, and representation. Among the four,
the computational genre is the most relevant for developing
novel computational approaches, frameworks, models, and
algorithms for advanced text analytics research.
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Table 2. Summary of Recent Selected Major IS Information Privacy Literature

Category | Year | Author(s) Focus IS paradigm | Analytical method(s)*
Privacy 2021 | Cichy etal. | The impact of privacy concern on connected | Behavioral SEM
concern car adoption
2019 | Wunderlich | The impact of privacy concern on Internet of | Behavioral Qualitative coding,
et al. Things (loT) adoption hierarchical regression
2019 | Buckman et | Factors affecting users’ valuation of their Behavioral ANCOVA, Tobit
al. personal information regression
2019 | Crossler & Factors affecting the use of privacy settings Behavioral SEM
Bélanger on smartphones
2018 | Adjerid et Examining rational cognition and heuristics Behavioral Linear regression
al. of privacy decision-making
2018 | Gopal etal. | Users’ privacy concerns about companies’ Economic Econometric model
third-party sharing strategies
2017 | Breward et | The impact of privacy and security concerns | Behavioral Qualitative coding,
al. on controversial IT adoption SEM
2017 | Koh et al. The impact of privacy cost on voluntary Economic Econometric model
profiling on e-commerce platforms
Privacy 2021 | Zalmanson | The impact of social cues and trust on users’ | Behavioral OLS and logistic
control et al. personal information disclosure regression path
2018 | Cao et al. The impact of peer disclosure and related Economic Econometric model
policies on online community participation
2018 | Gal-Or et al. | The impact of targeted ads and privacy Economic Econometric model
controls on users’ selection of platforms
2018 | Heimbach & | The impact of sharing mechanism on Behavioral Logistic model,
Hinz content sharing in social media Poisson regression
2016 | Cavusoglu The impact of privacy control options on Economic Poisson regression
etal. disclosure behavior on social media
Privacy 2019 | Kim & Kwon | The impact of electronic health records Economic Cox proportional
risk (EHRs) and meaningful use on the risk of hazards model
patient information breaches

Note: *ANCOVA: analysis of covariance; OLS: ordinary least squares; SEM: structural equation model

IT artifacts developed through the lens of the computational
design science paradigm generally follow three guidelines
(Rai, 2017). First, the artifact’s design can be inspired by key
domain requirements or characteristics when a strong
underlying theory is lacking. For example, in Li and Qin
(2017), unique data characteristics guided the development of
a novel text analytics framework that incorporated carefully
constructed feature representations and algorithms to
anonymize medical records. Second, the artifact’s novelty is
demonstrated by evaluating its technical performance against
state-of-the-art approaches via well-established quantitative
metrics (e.g., precision, F1). Finally, the artifact should
contribute to the IS knowledge base to help guide related
future research. Contributions can include situated
implementations (e.g., processes, software, etc.) and/or
nascent design theory in the form of design principles.
Properly executing each guideline requires a strong
understanding of the application space for which the artifact is
being developed. For this study, this requires reviewing key

1456 MIS Quarterly Vol. 48 No. 4 / December 2024

data characteristics of privacy policies and examining how
advanced text analytics techniques can be developed to
identify changes in privacy policies. Therefore, we review the
extant privacy policy analysis literature next.

Privacy Policy Analysis

A privacy policy is a legal contract that describes a
company’s collecting, processing, sharing, and storing
practices of users’ personal information. It is currently the
primary instrument stakeholders (e.g., regulators and
companies) rely on to understand a company’s data practices
(Amos et al., 2021). In general, 10 major categories of data
practices exist in a privacy policy (Wilson et al., 2016). We
describe each data practice category and specify selected
recent regulations requiring companies to disclose the
category in their privacy policies in Table 3.
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Table 3. Summary of Key Data Practice Categories in Privacy Policies

Category Description Regulations
First Party Collection (FP) What data is collected and how and why a company collects data GDPR, CCPA
Third Party Sharing/Collection (TP) What data is shared and how and why a company shares data with | GDPR, CCPA
third parties
User Choice/Control (UCC) Privacy choices and control options available for users GDPR, CCPA
User Access, Edit, Deletion (UAED) How users can access, edit, or delete their data GDPR, CCPA
Data Retention (DR) How long user information is stored GDPR, CCPA
Data Security (DS) How user information is protected GDPR, CCPA
Policy Change (PC) How users will be informed about changes to the privacy policy GDPR, CCPA
Do Not Track (DNT) If and how Do Not Track signals for online tracking and advertising CCPA
are honored
International & Specific Audiences Practices that pertain only to one specific user group HIPPA,
(ISA) COPPA
Other Contact information, introduction, etc. GDPR, CCPA

First Party Collection (FP)

« |\ Cookies and anonymous identifiers

Shared information in FPand TP

one or more CooKIes

]

\ Third Party Sharing/Collection (TP)
< —— P

l 'e| | |1.>~ various technologies to collect and storel
information when you visit a Google service, and this may include sending

> U iUy inioUds (UE

ntifiers to your device

Figure 2. A Sample Segment in Google’s Privacy Policy

First Party Collection (FP), Third Party Sharing/Collection
(TP), Data Retention (DR), and Data Security (DS) detail
what, how, and why first and third parties collect, process,
store, share, and protect customer data. User Choice/Control
(UCC), User Access, Edit, Deletion (UAED), and Do Not
Track (DNT) pertain to a user’s rights. International &
specific audiences (ISA) are data practices that pertain only to
a specific region or user group. A privacy policy often
contains multiple segments (i.e., a set of consecutive and
semantically coherent sentences) that present information
about data practice categories (Wilson et al., 2016). Although
recent privacy regulations clearly specify the requirements for
information disclosure, there is no mandated or standard
format that companies should follow when presenting their
privacy policies (Alabduljabbar et al., 2021). As a result,
companies often provide information for a specific data
practice category in separate segments throughout their
privacy policy. Moreover, companies may often use one
segment to explain multiple data practice categories. We
present a sample segment in Google’s privacy policy that
pertains to two categories in Figure 2.

The selected segment of Google’s privacy policy contains
details about FP (indicated by the word “We”’), TP (indicated
by the phrase “our partners”), and content about both FP and
TP (indicated by the phrase “use various technologies to
collect and store”). Dispersed and mixed information about
data practices in segments can make privacy policy analysis a
nontrivial task (Degeling et al., 2019; Linden et al., 2020).
Furthermore, privacy regulations often require companies to
disclose and regularly update each practice in their privacy
policies to help users understand their rights to control their
data. To comply with the regulations, segments in privacy
policies often change, evolve, and grow in length (Amos et al.,
2021). These changes can exacerbate the challenge for
companies to manage and evaluate their compliance and
regulators aiming to enforce regulations. We review selected
recent privacy policy analysis research in Table 4 to
understand what existing approaches have been proposed to
help researchers, companies, and regulators analyze privacy
policies. The summary is organized based on the focus of the
study, the dataset examined, the corresponding privacy
regulations, and the methodology employed.
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Table 4. Summary of Selected Recent Privacy Policy Analysis Literature

Year |Author Focus Dataset Regulation** |Methodology
Source* |# of Time Manual |Automated analysis
policies |periods analysis |Readability |[Keyword |Descriptive |NLP***
metrics searching |statistics
2022 |Arora Comparative |English 155 1 GDPR, No No No Yes BERT
etal. study and CCPA
German
websites
2021 |Amos Comparative |English 1M 22 GDPR No Yes Yes Yes No
etal. study websites
2021 |Qamar Compliance  |OPP-115 |115 1 GDPR, No No No No BOW + LR,
etal. detection PDPA SVM, BERT
2021 |Zaeem & |Comparative |OPP-115 |115 1 No No No No No CNN, NB
Barber study
2020 |Akanfe Privacy risk Mobile 353 1 GDPR No No Yes No No
etal assessment  |wallets and
remittance
apps
2020 |Akanfe Privacy risk Mobile 230 1 GDPR No No Yes No BOW, LDA
etal. assessment  |wallets and
remittance
apps
2020 (Kumar Privacy English 6K 1 GDPR, No No No Yes LR, topic
etal. settings websites CCPA modeling,
assistant BERT, TF-
IDF
2020 |Linden Comparative |OPP-115 |115 2 GDPR Yes Yes Yes Yes CNN
etal. study
2019 |Andow Compliance  |Apps from |11K 1 No No No Yes No Parse tree +
etal detection Google Rule-based
Play Store
2019 |Chang Privacy OPP-115 |115 1 GDPR No No No No CNN, RF
etal settings
assistant
2019 |Degeling |Comparative |EU 112K 12 GDPR Yes No Yes Yes No
etal. study websites
2019 |Fawaz Comparative |OPP-115 |115 2 GDPR No No No No CNN
etal study, risk
assessment,
privacy
settings
assistant
2019 |Kumar Data practice |OPP-115 [115 1 No No No No No FastText, LR,
et al. annotation MLP, CNN,
BERT
2019 |Nejad Privacy risk OPP-115 |115 1 GDPR No No Yes No Did not
etal. assessment specify
2019 |Ravichander|QA system Apps from |35 1 No No No No No SVM, CNN,
etal. Google BERT
Play Store
2019 |Story Compliance | Apps from |1M 1 No No No No Yes BOW +
etal detection Google Feature
Play Store engineering +
SVM
2019 |Zimmeck |Compliance |Apps from |1M 1 GDPR, No No No Yes BOW + SVM
etal. detection Google COPPA,
Play Store CalOPPA
2018 |Gopinath  |Document English 152 1 No No No No No K-means,
etal. segmentation |websites feature
engineering,
MLP
2018 |Harkous QA system OPP-115 |115 1 No No No No No CNN
etal.
2018 |Tesfay Privacy risk EU 45 1 GDPR No No No No BOW + NB,
etal. assessment | websites SVM, DT, RF
1458 MIS Quarterly Vol. 48 No. 4 / December 2024
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2018 |Story Comparative |Apps from |3M CalOPPA, No No No Yes No
etal. study Google DOPPA,
Play Store FIPPs
2017 |Evans Privacy risk English 30 EU Directive |No No No No Regular
etal. assessment  |websites 95/46/EC, expressions,
HIPAA parse tree
2017 |Nisal Privacy OPP-115 |115 No No No No No Feature
etal. settings engineering,
assistant LR
2017 |Zaeem & |Comparative |NYSE, 600 FIPPs, Yes No No No No
Barber study Nasdag, COPPA
and AMEX
2018 |Oltramari  |QA system OPP-115 |115 No No No No No Rule-based
etal.
2017 |Sathyendra |Privacy OPP-115 |115 FIPPs No No Yes No BOW, LDA,
etal settings Parse tree +
assistant LR
2016a|Bhatia et al. | Privacy risk English 5 No No No No No Regular
assessment  |websites expressions,
parse tree
2016b |Bhatia Privacy risk English 15 EU Directive |No No No No Regular
etal assessment  |websites 95/46/EC, expressions,
HIPAA parse tree
2016 |Liuetal. Data practice |OPP-115 (115 No No No No No NMF, BOW +
annotation LR, LDA
2016 |Sathyendra |Privacy OPP-115 |115 FIPPs No No Yes No BOW + LR,
etal. settings SVM, RF, NB,
assistant KNN
2016 |Slavin Compliance  |Apps from |477 FIPPs Yes No Yes Yes No
etal. detection Google
Play Store
2017 |Zimmeck |[Compliance |Apps from |17K CalOPPA, No No Yes Yes BOW + LR,
etal. detection Google DOPPA, SVM
Play Store FIPPs,
COPPA

Note: *NYSE, Nasdaqg, and AMEX: Stock Exchange Websites; OPP-115: Online Privacy Policies, set of 115. **CalOPPA: California Online Privacy
Protection Act; COPPA: Children’s Online Privacy Protection Act; DOPPA: Delaware Online Privacy and Protection Act; FIPPs: Federal Trade
Commission’s Fair Information Practice Principles; HIPAA: Health Insurance Portability and Accountability Act; PDPA: Personal Data Protection Act.
***BERT: bidirectional encoder representations from transformers; BOW: bag-of-words; CNN: convolutional neural network; DT: decision tree; KNN: k-
nearest neighbors; LDA: latent Dirichlet allocation; LR: logistic regression; MLP: multi-layer perceptron; NB: naive Bayes; NMF: non-negative matrix
factorization; RF: random forest; SVM: support vector machine; TF-IDF: term frequency-inverse document frequency.

Extant privacy policy analysis literature covers several major
themes, including compliance detection, privacy risk
assessment, privacy settings assistants, and comparative
studies. Compliance detection studies have typically
employed classical ML methods with bag-of-words
representations to examine whether a company’s data
practices comply with privacy regulations (Qamar et al., 2021;
Story et al., 2019). Privacy risk assessment studies have
employed classical ML or keyword searching to evaluate
overall user privacy risks based on the types and amount of
personal information collected and third-party sharing
(Akanfe et al., 2020b; Fawaz et al., 2019). Studies on privacy
settings assistants have employed unsupervised topic
modeling, classical ML methods, and parse trees to focus
specifically on opt-out/opt-in options (Kumar et al., 2020;
Sathyendra et al., 2016). Comparative studies compare
privacy policies across different times (Amos et al., 2021),
languages (Arora et al., 2022), and organizations (Zaeem &
Barber, 2021). Since the focus of our research is on
comparative studies, we discuss these studies in further detail.

Most past researchers executing comparative analysis studies
have employed manual analyses (Zaeem & Barber, 2017),
readability metrics, keyword searching, descriptive statistics
(Story et al., 2018), or a combination thereof (Amos et al.,
2021; Degeling et al., 2019). The most common dataset used
in comparative studies is the “Online Privacy Policies, set of
115” (OPP-115) (Wilson et al., 2016). Developed by the
Usable Privacy Policy Project at Carnegie Mellon University,
OPP-115 includes 115 English privacy policies published
between 2003 and 2015 from well-known, highly ranked
websites across 15 sectors (as defined by DMOZ.org), as
determined by Google trends. OPP-115 is suitable for
comparative studies because the annotation scheme covers all
10 data practice categories and focuses on segments rather
than individual sentences. These characteristics allow for a
more thorough elaboration of all data practice categories and
can facilitate a more comprehensive evaluation. However,
privacy policies are lengthy and lack a standard format. Since
prevailing methods for comparative analysis can result in
incomplete content extraction and have limited scalability,
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recent comparative analysis studies have employed
supervised DL algorithms, namely CNN (Zaeem & Barber,
2021; Linden et al., 2020). DL-based supervised learning
techniques have been shown to effectively learn from the
well-defined data practice categories by privacy researchers
and label privacy policy datasets to automatically identify
changed/different data  practice information about
stakeholders’ interest in privacy policies. Thus, we focus on
supervised learning techniques.

Existing studies employing supervised learning techniques first
manually or automatically segment privacy policies (Kumar et
al., 2020; Harkous et al., 2018). Then, a data practice annotation
system based on ML or DL algorithms (Harkous et al., 2018;
Kumar et al., 2019; Liu et al., 2016) is often used to annotate
segments. This process proceeds as follows:

Step 1: Segment privacy policies using segmentation tools.
While sentence-level segmentation is suitable for identifying
information type or opt-in/opt-out options (Kumar et al.,
2020), paragraph-length segments are required to
comprehensively elaborate all data practices (Wilson et al.,
2016). Automated segmentation tools segment privacy policy
text into paragraph-length segments based on HTML tags or
ML (Harkous et al., 2018). HTML-tag-based segmentation
may result in semantically incoherent segments. Thus, ML-
based tools that merge adjacent sentences with high semantic
similarities to generate coherent segments are preferred (e.g.,
GraphSeg (Glavas et al., 2016)).

Step 2: Annotate segments using ml algorithms. Following
segmentation, conventional ML algorithms (e.g., LR, SVM)
are then adopted to train 10 binary classifiers, each to predict
(annotate) if a segment belongs to one or more (i.e., multi-
label classification) of the 10 data practice categories (Wilson
et al., 2016).

Step 3: Analyze annotated segments. Based on the annotated
segment, stakeholders (e.g., companies and regulators) conduct
targeted (downstream) analyses about the specific components
of privacy policies (e.g., pre-post analyses, etc.).

Existing privacy policy analysis studies leveraging
conventional ML algorithms (e.g., LR, SVM, NB, DT, RF;
see Kumar et al., 2019; Qamar et al., 2021; Zaecem & Barber,
2021) for data practice annotation often suffer from low
annotation accuracy due to their reliance on segment
representations generated by bag-of-words (BOW) as input
(Sathyendra et al., 2016, 2017). Such representations assume
that segments in the same data practice category share similar
word distributions. In reality, segments often have diverse
word choices. Consequently, BOW representations may lead
to incorrect predictions due, in particular, to missing one or
more data practice categories (labels) for a segment or
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misclassifying a segment into the wrong category. The former
problem may lead regulators to conclude that a company has
failed to address a regulated data practice in its policy, thus
identifying a violation and issuing unwarranted fines. The
latter issue can increase the effort needed to review
misclassified segments or lead to a misunderstanding of
companies’ data practices (e.g., misinterpreting data practices
as TP instead of FP).

Scholars have started adopting DL-based methods (e.g.,
multi-layer perceptron (MLP), CNN, BERT) for data practice
annotation (Chang et al., 2019; Harkous et al., 2018; Linden
etal., 2020; Zaeem & Barber, 2021). DL-based methods apply
multiple layers of nonlinear transformations to automatically
learn features from input text represented by word
embeddings. The MLP and averaged word embeddings
method (Kumar et al., 2019), while effective in many tasks,
can compromise sequence information, neglect long-term
dependencies, and struggle to capture complex sentence
structures and the contextual nuances of each word within a
segment. While CNNs have attained superior performance
over conventional ML algorithms, these methods can often
miss capturing long-range sequential dependencies (Yin et al.,
2017). Such methods could still misclassify long data practice
segments. BERT (Arora et al., 2022; Kumar et al., 2019;
Qamar et al., 2021), despite its power, requires substantial
fine-tuning data, which poses challenges when certain data
practice categories, such as data retention, have limited
instances in the dataset (OPP-115). These limitations
necessitate an alternative DL-based approach that can capture
long-range semantics dependencies to generate better segment
representation for data practice segment annotation with
limited instances. In recent years, RNN-based approaches
such as long short-term memory (LSTM) have been
extensively wused to capture long-range sequential
dependencies (Yin et al., 2017). Increasingly, scholars are
improving the performance of RNN-based approaches by
capturing the nonsequential global dependencies of input
features with attention mechanisms (Lin et al., 2017). SSASE,
which incorporates RNN-based processing with an attention
mechanism, is a possible, suitable, and high-performing
approach for processing data practice segments with lengthy
and mixed information.

Structured Self-Attentive Sentence Embedding
(SSASE)

SSASE generates text representations based on a bidirectional
LSTM (BiLSTM) model with a multi-head self-attention
mechanism (Lin et al., 2017). BiLSTM is a high-performing
DL model often employed in text analytics tasks to capture
sequential and contextual dependency information from text
input. BILSTMs have consistently outperformed CNN-based



methods in text analytics tasks where input texts may have
long-range dependencies or when the prediction is based on
the semantics of the entire text input (Yin et al., 2017). The
multi-head  self-attention ~ mechanism  extracts  the
nonsequential global dependencies of the inputs that the
conventional BiLSTM may not capture. We depict the key
SSASE operations for one data practice category in Figure 3.

SSASE’s input data practice segment has n words,
represented by a sequence of word embeddings S =
(wq, Wy, ...w,). BiLSTM processes the word embedding
sequence in both forward and backward directions. Each
direction generates a u-dimension “directional” hidden state

E (or E) based on wj; and the previous hidden state h,_; (or
h,,1). By concatenating 1_1: and E from the forward and

backward directions, h; = [1_1: E]Tcaptures a more
comprehensive summary of the current hidden state than
using a single direction alone. All hidden states are denoted by
amatrix H = (hq, h,, ... h,), with a size of n X 2u.

The multi-head self-attention mechanism learns weights by
projecting H to different vector subspaces that each focus on
a distinct aspect of the input segment. It generates a multi-head
self-attention weight matrix A with a size of r X n by
Softmax(Wj, tanh(W;HT)). HT is a transposed hidden
state matrix. Wyq and Wy, are two trainable weight matrices
with shapes of d, X 2u and r X d,, respectively, where d, is
a predefined hyperparameter and r is the number of attention
heads. A summarizes “how much attention” should be paid to
each word according to different aspects of the segment
learned by attention heads. Each column in A corresponds to
one word, while each row (i.e., head) is expected to highlight
a salient set (i.e., aspect, component) of related words or
phrases in the segment. A penalty term P in the loss function
diversifies attention heads to avoid learning duplicate aspects:
P = ||AAT — ||, where I is the identity matrix and ||| is
the Frobenius norm. The penalty term is jointly minimized
with the loss function for classification. Segment embedding
M (r X 2u) is the matrix product of A and H. Each row in M
encodes an aspect learned by the corresponding attention
head. M is flattened into a vector and fed into a fully
connected (FC) layer and a softmax layer for binary
classification.

SSASE and its variants have outperformed conventional ML-
based and DL-based algorithms in multi-class text
classification applications, including categorizing health
records (Chen et al., 2022) and analyzing sentiment in social
media posts (Alagha, 2022). However, little work has
examined SSASE’s performance for multi-label classification
tasks like data practice segment annotation. SSASE could
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potentially be formulated for multi-label classification tasks
by training a separate binary classification model for each
label with the sigmoid activation function (extensively used
for generating binary predictions) being used in the fully
connected output layer (Krohn et al., 2020). Such formulation
is consistent with the concept of binary relevance (BR) in
multi-label classification. BR operates by decomposing the
multi-label classification process into a set of independent
binary classification tasks (a classifier per label) (Zhang et al.,
2018). BR operates well when minimal correlations between
labels exist. However, data practice categories often possess
interdependencies wherein all categories are related to the
same topic of privacy. Previous studies have shown that multi-
task learning can benefit loosely related text classification
tasks (Harkous et al., 2018; Kerinec et al., 2018), which may
represent one potential solution to overcoming the limitation
of BR formation. When multiple tasks are closely related,
multi-task learning learns sharing parameters that introduce
strong regularization effects, making models less prone to
overfitting each specific data practice category compared to
independent binary classifiers.

In addition to the limitations associated with BR, SSASE
treats all aspects of segments learned by the multi-head self-
attention mechanism equally when generating segment
embedding. However, some aspects are more differentiating
than others in a data practice segment. For example, “share”
indicates TP, while “the types of collected personal
information” can indicate both FP and TP. Capturing these
differentiating aspects could improve data practice segment
annotation. An attention mechanism is a promising approach
that can learn weights for different inputs based on their
contributions to the model’s final output (Vaswani et al.,
2017). Therefore, we review attention mechanisms next to
understand how to adapt SSASE.

Attention Mechanisms

Attention mechanisms operate by mapping a query vector q
and a set of key vector-value vector pairs (K, v) to an output
vector 0 (Vaswani et al., 2017). q can be considered a
representation of interest (e.g., output embedding), and k
represents the input features. 0 is computed as a weighted v,
where weights are alignment scores calculated based on the
relationship (e.g., similarity) between q and k. Higher
alignment scores are assigned if elements in k are closely
related to q. Evaluating an attention mechanism is typically
executed by comparing the performance of a model with the
proposed attention mechanism against the model without it
on a ground-truth dataset (Galassi et al., 2021; Spliethover et
al., 2019).
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6. Output: The probability that the
segment belongs to a category

A Fully Connected Layer with a Sigmoid Activation Function } ----- 5. Binary Classification

Your location

- 4. Segment Embedding

- 3. Multi-head Self-attention Mechanism

2. BiLSTM

- 1. Input: Data Practice Segment

Figure 3. Conceptual Schematic of SSASE for One Data Practice Category* (Adapted from Lin et al., 2017)
Note: *The same procedure applies to each of the 10 data practice categories.

Attention mechanisms can be categorized into two major
groups: general attention and self-attention (Vaswani et al.,
2017). The former calculates the alignment score between q
and K, and the latter calculates the alignment score within the
elements in K (i.e., q = k). Self-attention mechanisms have
been incorporated into sequence models (e.g., BILSTMs) to
capture global feature dependencies for generating high-quality
text representations in neural machine translation and sentiment
analysis tasks (Letarte et al., 2018; Vaswani et al., 2017). The
global feature dependencies are captured by relating input
features at different positions of a sequence. Self-attention
mechanisms dynamically weight input text features and can
help identify the various informative aspects of data practice
segments and produce an improved representation. However,
how to incorporate self-attention into SSASE to improve
generated segment representation and data practice segment
annotation requires further investigation.

Research Gaps and Questions I

We identified several research gaps in the literature review.
First, while IS scholars have made significant progress in
multiple areas of information privacy research, methods
adopted in prior IS literature were not designed to operate on
privacy policies’ rich and complex text. Since privacy policies
are the main instruments that companies use to convey their
data practices, there is a need for an automated approach to
annotate segments in privacy policies (i.e., label portions of
privacy policies into their data practice categories) such that
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relevant stakeholders (e.g., companies, regulators) can assess
the impact of regulations on companies’ privacy policies in a
targeted fashion. However, many past privacy policy analysis
studies employed conventional ML approaches that relied on
BOW-based segment representations, which cannot capture the
interdependencies or other important features within the text.
While DL-based methods can automatically extract salient
features from text data, extant studies have primarily leveraged
approaches that often missed long sequential word
dependencies in privacy policies. SSASE is a potential high-
performing text analytics approach that can capture long
sequential word dependencies and nonsequential global
semantics dependencies. However, SSASE’s multi-head self-
attention mechanism was mainly adopted for multi-class
classification tasks and may miss key differentiating aspects
within data practice segments. Formulating SSASE’s multi-
head self-attention mechanism to capture differentiating aspects
within a multi-label classification approach (needed for privacy
policy segment annotation) requires further investigation.
Based on these research gaps, we pose the following research
questions for the study:

RQ1: How can the SSASE’s multi-head self-attention be
enhanced to identify key differentiating aspects in data practice
segments to improve the performance of multi-label data
practice segment annotation?

RQ2: How can the enhanced automated data practice segment
annotation system help analyze how privacy policies evolve
(e.g., are revised) following the enforcement of a privacy
regulation?
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Figure 4. Proposed Privacy Policy Evolution Analytics Framework

Proposed Privacy Policy Evolution
Analytics Framework I

We propose a novel DL-based privacy policy evolution
analytics framework to address the posed research questions.
The proposed framework consists of four components (Figure
4): (1) Privacy Policy Testbed, (2) Self-Attentive Annotation
System (SAAS) for Data Practice Segment Annotation, (3)
Benchmark Experiments, and (4) Regulation Impact
Detection: A Case on GDPR. We describe each component of
the framework in the following subsections.

Privacy Policy Testbed

We adopted OPP-115 as our testbed. OPP-115 contains 115
English privacy policies with 3,792 segments from well-known
websites. Each segment was annotated with one or more data
practice labels from 10 categories by three law school students
(Wilson et al., 2016). Although privacy policies in OPP-115
were collected before the release of several recent privacy
regulations, the OPP-115 annotation scheme is consistent with
the legal assumptions (e.g., transparency requirements, data
practice categories, etc.) in recent regulations (e.g., GDPR,
CCPA) (Leone & Di Caro, 2020; Poplavska et al., 2020).
Consequently, OPP-115 is the prevailing dataset researchers
have used for privacy policy analysis tasks, including training
ML-based data practice segment annotation systems designed
to annotate unlabeled privacy policies after regulations have
been published (e.g., GDPR and CCPA) (Linden et al., 2020).
Consistent with previous studies, we retained data practice
category labels for each segment when two or more annotators
agreed on labels (Harkous et al., 2018). As a result, 3,749 data
practice segments that contained at least one data practice
category label agreed upon by two or more annotators were
included in our testbed.

Self-Attentive Annotation System (SAAS) for
Data Practice Segment Annotation

Recognizing the key limitations of SSASE as it pertains to
data practice segment annotation, we propose a novel SAAS
that builds upon SSASE and attention mechanism principles.
SAAS comprises a novel row-wise self-attentive embedding
(RSE) model and a multi-label classifier. RSE extends SSASE
with a novel attention mechanism to weigh the importance of
different aspects in each row of segment embeddings learned
by the multi-head self-attention mechanism. The multi-label
classifier classifies RSE’s learned representations into one or
more data practice categories to help facilitate privacy policy
evolution analysis. We present a comparison between the
conventional SSASE and the proposed SAAS in Figure 5. The
novelties of our proposed SAAS are highlighted in red. We
summarize each SAAS component after.

Row-Wise Self-Attentive Embedding (RSE)

RSE takes a data practice segment as input. Each word in the
segment is represented by a word embedding. Bi-directional
gated recurrent units (BiGRU) is a variant of BiLSTM that
automatically extracts the forward and backward context
information from the embedding sequence. BiIGRU achieves
comparable performance while converging faster than
BiLSTM, as it leverages a two-gate structure (as opposed to
BiLSTM’s three-gate structure) (Cho et al., 2014). The multi-
head self-attention mechanism learns from all hidden states
extracted by BiGRU the contributions of sets of related words
or phrases to different aspects of the segment as the multi-head
self-attention weight matrix. The multi-head self-attention
weight matrix is applied back to the hidden states to produce
the segment embedding M.
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Procedure for 10 Data Practice Categories
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Figure 5. lllustration of Conventional SSASE and Proposed SAAS

While M is a low-dimensional matrix where each row encodes
different aspects of the segment separately, not all aspects are
equally important for predicting data practice labels.
Therefore, we designed a novel row-wise attention (RWA)
mechanism. Similar to how self-attention mechanisms
determine each word’s contribution to the model
performance, the proposed RWA mechanism learns the
importance of each row (aspect) in segment embedding that
contributes to classification decisions as follows:

aR®¥ = Softmax(wRWMT),
where aR®W is the row-wise attention weight vector, M7 is the
transposed segment embedding, and wRY is the trainable
weight vector. The softmax activation function introduces
nonlinearity into the row-wise attention weight vector. Each
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element in aRY indicates the importance of each aspect. All
elements add up to 1. akW is applied back to the segment
embedding by multiplying each row in M with the
corresponding weight in a®Wformulating as follows:

MRW = Diag(aRW)M,
where MRW is the weighted M with a size of r X 2u and
Diag(a®%) is a square diagonal matrix with the elements of
vector aRW on the main diagonal. aR" is a regularizer in label
predictions, i.e., if one aspect (row) is useful for label
predictions, then all elements of such an aspect (row) are
useful and should be assigned higher weights. RWA is
suitable for complex text with varied lengths, such as data
practice segments. MRW is then flattened into a vector and fed
into the downstream multi-label classifier.
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Table 5. Summary of Benchmark Experiments

Experiment Model category* Benchmark models* References
SAAS vs. Paragraph vector-based (Doc2Vec**): Sentence Doc2Vec + LR Wilson et al.,
conventional embedding is learned with a Continuous Bag of Doc2Vec + SVM 2016
machine Words (CBOW) approach that predicts a missing Doc2Vec + RF Sathyendra et
learning models | word based on other words in the sentence. Doc2Vec + KNN al., 2016
Term frequency (TF)-based (TF-IDF): Sentence TF-IDF + LR Sathyendra et
embedding is learned based on TF divided by inverse | TF-IDF + SVM al., 2016;
document frequency (IDF). TF-IDF + RF Tesfay et al.,
TF-IDF + NB 2018b;
TF-IDF + KNN Zimmeck et
al., 2019
SAAS vs. deep | CNN-based: Text features are extracted through one CNN Harkous et
learning models | convolutional layer and max pooling. Features are al., 2018
input into two dense layers for classification.
Uni-directional RNN-based: Contextual informationis | LSTM + Max pooling Lai et al.,
captured through a uni-directional recurrent structure. | LSTM + Mean pooling 2015
Extracted features are pooled through max and mean | GRU + Max pooling
operations. GRU + Mean pooling
Bi-directional RNN-based: Contextual information is BiLSTM + Max pooling Lin et al.,
captured through a bi-directional recurrent structure. BILSTM + Mean pooling 2017
Extracted features are pooled through max and mean | BiGRU + Max pooling
operations. BiGRU + Mean pooling
Attention-based: A self-attention mechanism and bi- 10 SSASEs, one for each
directional recurrent structure learn a matrix data practice category
embedding. SSASE with a multi-label
classifier
Ablation Without RWA Galassi et al.,
analysis Replacing RWA with MLP 2021;
10 SAASSs, one for each data practice category Slp|igg11%Ve" et
al,
Ground truth vs. | Ground truth segmentation Joty et al.,
automated 2013

Automated segmentation

segmentation

Note: *Bi: bidirectional; CNN: convolutional neural network; GRU: gated recurrent unit; KNN: k-nearest neighbors; LR: logistic regression; LSTM:
long-short term memory; MLP: multi-layer perceptron; NB: naive Bayes; RF: random forest; SVM: support vector machine. **Naive Bayes does
not work with Doc2Vec text representation as naive Bayes requires positive numeric input.

Multi-Label Classifier

Originally, SSASE was only tested on various multi-class
classification tasks. Although we could formulate a multi-label
classification task into multiple binary classification tasks and
train separate SSASE for each task, such a formulation would
ignore relationships between categories. Therefore, we propose
a multi-label classifier that incorporates 10 binary classification
tasks in one model. The flattened MRW is input into a fully
connected layer with 10 output neurons. A sigmoid activation

function, o(x) = transforms the outputs such that the

1+e=%
outputs become 10 probabilities for 10 label predictions, ¥ =
(J1,¥2, -, Y10), Where ¥, is between 0 and 1 (how likely a
segment belongs to the i-th data practice category). Binary cross
entropy (BCE) is used as the loss function to compare each of
the predicted probabilities to the actual label, which can be
either O (i.e., does not belong to the category) or 1 (i.e., belongs
to the category). BCE has been extensively used to evaluate

binary classification tasks (Bird et al., 2009). BCE is formulated
as L=- N*lm Y1 2321 (vij log(37) + (1 — vij) log(1 = 7)),
where N is the number of training instances, and y;; is the
ground-truth label of the i" data practice category of the j®
training instance. By simultaneously minimizing the loss of 10
categories during backpropagation in model training, the model
can learn common features across categories and is less prone
to overfitting a specific category (Kerinec et al., 2018).

Benchmark Experiments

Consistent with the computational design science paradigm
(Rai, 2017), we rigorously evaluated SAAS with four
benchmark experiments (Table 5): (1) SAAS vs. conventional
machine learning models, (2) SAAS vs. deep learning models,
(3) ablation analysis, and (4) ground truth vs. automated
segmentation.
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Table 6. Number of Segments in Each Data Practice Category in OPP-115

Data practice category (label) Number of Segments
First Party collection (FP) 1,522
Third Party Sharing/Collection (TP) 1,186
User Choice/Control (UCC) 632
User Access, Edit, Deletion (UAED) 231
Data Retention (DR) 156
Data Security (DS) 375
Policy Change (PC) 192
Do Not Track (DNT) 32
International & Specific Audiences (ISA) 353
Other (O) 1,763
Total: 6,442

In Experiment 1, we compared SAAS against five conventional
ML benchmark models commonly used in IS literature
(Kitchens et al., 2018): logistic regression (LR), support vector
machine (SVM), random forest (RF), naive Bayes (NB), and k-
nearest neighbors (KNN). Two text representation techniques
commonly used in privacy policy analysis literature, Doc2Vec
and TF-IDF, represented each segment’s text and were inputted
into each model (Sathyendra et al., 2016; Wilson et al., 2016).
In Experiment 2, we compared SAAS against four categories of
DL-based models: CNN-based, uni-directional RNN-based
(LSTM and GRU), bi-directional RNN-based (BiLSTM and
BiGRU), and attention-based (SSASE). We considered two
SSASE variants for data practice segment annotation: training
10 SSASEs (one for each data practice category) and one
SSASE combined with a multi-label classifier. In Experiment
3, we conducted an ablation analysis that evaluated three
variations of the SAAS: (1) SAAS without RWA, (2) SAAS
replacing RWA with MLP, and (3) 10 SAAS models, one for
each data practice category. In Experiment 4, we compared
SAAS’s performance on the original OPP-115 segmentation
and ST-Ro segments to evaluate the effect of the automated
segmentation on data practice annotation (Joty et al., 2013).

Consistent with privacy policy analysis literature, we executed
each benchmark experiment with the 3,749 segments from the
OPP-115 dataset that possessed one or more data practice labels
agreed upon by two or more of the original annotators (Wilson
et al., 2016). Overall, 2,848 segments had one label, 792
segments had two labels, 88 segments had three labels, 18
segments had four labels, and three segments had five labels.
We present the number of segments associated with each data
practice category (label) in Table 6.

The number of segments in each category ranged from 32 to

1,763, suggesting that the distribution of segments across the
categories was imbalanced. The FP and TP categories had
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the highest number of segments, with 1,522 and 1,186,
respectively, while the DNT category contained the fewest
segments (32). We executed each experiment for each data
practice category. Since the dataset was imbalanced, model
performances were measured using precision, recall, and F1-
score. Precision measures whether a model correctly
classifies a segment into a specific category and is defined
as follows:

Precision® = 7”)@0
TP(c;) + FP(c;)

where ¢; € C. C is the set of 10 data practice categories,
TP(c;) (true positives) denotes the number of segments
correctly classified to a specific data practice category c;,
and FP(c;) (false positives) is the number of segments
incorrectly classified to a specific data practice category c;.
Recall measures whether a model detects all the segments in
each data practice category and is defined as follows:

Recallsi = P
TP(¢;) + FN(¢)

where FN(c;) (false negative) is the number of segments
incorrectly classified as not a specific data practice category
¢;. The F1-score is the harmonic mean of precision and recall
and is defined as follows:

2 X Precision®i X Recall®i

F1-score€i = — .
Precision®i 4+ Recall¢

We also used the micro-averaged precision, micro-averaged
recall, and micro-averaged F1-score metrics to evaluate the
performance of each model across all data practice
categories (Harkous et al., 2018; Wilson et al., 2016). The
three metrics are defined as follows:



micro _ Zciec TP(Ci)
YeecTP(c) + FP(c))

Precision

Recallmi"" _ ZciECTP(Ci)
Yeec TP(c) + FN(c)

2 X Precision™™ x Recall™c™°

F1-score™icro = — _ .
Precision™ 4 Recall™icro

Finally, we used hamming loss (HL) and micro-averaged HL
to evaluate model performance for each category and across
all categories. HL is a commonly used metric for evaluating
the performance of multi-label classification tasks
(Tsoumakas & Katakis, 2007). HL measures the fraction of
labels that are incorrectly predicted. HL and micro-averaged
HL are defined as follows:

Hamming Loss‘i = FPe) + FN(c)
g TP(c;) + FP(c;) + TN(c,) + FN(c,)

; Yc;ec FP(ci)+FN(c;)
H 5 L micro = L
grmming Loss Seec TP +FP(c)ATN(C) +FN (c)

where TN (c;) (true negatives) denotes the number of segments
correctly classified as not belonging to a specific data practice
category c;. HL. examines how likely the model is to predict
data practice segments with incorrect data practice categories.

5 times 2-fold (5%2) cross-validation was adopted for each
experiment as it is suitable for comparing two classifiers on a
single dataset (DemsSar, 2006; Dietterich, 1998). 5x2 cross-
validation overcomes the problem of underestimated variance
and elevated Type I error when using resampled paired #-test
and the k-fold cross-validated paired #-test. We randomly
assigned all 3,749 segments into two partitions with an iterative-
stratification sampling strategy (Sechidis et al., 2011) to ensure
low performance variance across folds. In each fold, one
partition was used for testing, and the other was used for
training (90%) and validation (10%). This process was repeated
five times, and the results were averaged to produce a single
estimation. Paired #-tests were used to identify statistically
significant differences between performance metrics (Demsar,
2006; Dietterich, 1998). Performance differences were
considered significant at p < 0.05, 0.01, and 0.001.

All experiments were executed on a Microsoft Windows 10
Pro server with 128GB of random access memory, an Nvidia
GeForce GTX 1070 Ti graphical processing unit, and an E5-
2670 v4 at 2.60 gigahertz Intel central processing unit. All
implementations were based on the PyTorch (Paszke et al.,
2019), Natural Language Toolkit (Bird et al., 2009), NumPy
(van der Walt et al., 2011), Pandas (McKinney, 2010), genism
(Rehurek & Sojka, 2010), and scikit-learn (Pedregosa et al.,
2011) packages. The complete details for SAAS appear in
Appendix A.
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Results and Discussion: Experiments and
Case Study

Experiment 1 Results: SAAS vs. Conventional
Machine Learning Models

Experiment 1 compared the performance of SAAS against
conventional ML models. We present each model’s
performance in terms of micro-averaged precision, micro-
averaged recall, micro-averaged F1-score, and micro-averaged
HL in Table 7. Results are grouped based on the underlying text
representation used by the algorithm. The best scores are
highlighted in boldface. Each model’s performance in each of
the 10 data practice categories is reported in Appendix B.

SAAS outperformed all benchmark methods in terms of micro-
averaged recall (0.714), micro-averaged F1-score (0.758), and
micro-averaged HL (0.058) by statistically significant margins.
Similarly, SAAS outperformed all methods, except TF-IDF +
RF, on micro-averaged precision (0.807) by statistically
significant margins. Overall, models generating segment
representations that retained word-level information (i.e., term
frequency-based and proposed SAAS) outperformed those that
aggregated word-level information (i.e., paragraph vector-
based) across all metrics. In privacy policy annotation,
keywords are useful for identifying whether a segment belongs
to a specific data practice category. For example, the keyword
“share” is more likely to indicate “Third Party
Sharing/Collection,” and the keyword “collect” can indicate
both “First Party Collection” and “Third Party
Sharing/Collection.” Within the term frequency-based
category, LR and SVM outperformed other models on micro-
averaged Fl-score, attaining scores of 0.721 and 0.700,
respectively, possibly due to their ability to process high-
dimensional features (Kamath et al., 2018).

SAAS’s performance is likely attributable to its ability to
capture keywords, leverage each word’s contextual and local
semantics, and process high-dimensional feature sets. We
present a segment SAAS correctly labeled as DS and FP, but
TF-IDF + LR (the best-performing benchmark model in terms
of F1-Score) mislabeled as FP only in Table 8. Instances related
to FP were selected because they have the highest number of
labels (653). The table is organized based on the company that
the privacy policy belongs to, the segment in the privacy policy,
the row-wise attention weight, the ground truth data practice
category of the segment, and the predicted data practice
category produced by SAAS and TF-IDF + LR. The color
shades represent the normalized word weights learned by the
attention head that extracted the aspect of the segment with the
highest row-wise attention weight. Dark red indicates the higher
importance of phrases in the segment. For illustration purposes,
we set the number of attention heads as 5. If aspects are treated
equally, each will have a row-wise attention weight of 0.2.
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Table 7. Experiment 1: SAAS vs. Conventional Machine Learning Models

Model category Model Micro-averaged Micro-averaged Micro-averaged Micro-averaged
precision recall F1-score HL
Paragraph vector- LR 0.692** 0.524*** 0.596** 0.091™*
based (Doc2Vec) SVM 0.768*** 0.478*** 0.589*** 0.085"**
RF 0.700*** 0.387*** 0.499*** 0.099***
KNN 0.676*** 0.454*** 0.543*** 0.097***
Term frequency- LR 0.763*** 0.683*** 0.721** 0.068***
based (TF-IDF) SVM 0.733"** 0.670*** 0.700*** 0.073***
RF 0.846 0.548*** 0.546*** 0.085***
NB 0.778*** 0.550*** 0.645*** 0.077***
KNN 0.759*** 0.626™** 0.686™** 0.073***
Proposed SAAS 0.807 0.714 0.758 0.058

Note: *, **, ***: Statistically significant difference at p < 0.05, 0.01, 0.001

Table 8. Example Segments SAAS Detected but Conventional ML Models Missed

Company |Segment Row-wise Ground [SAAS’s TF-IDF +LR’s
attention weight| truth predictions |predictions
Fool 0.294 DS, FP |DS, FP FP

when you place an order for a product or service we need to
know the sort of information typically used for credit card
transactions such as your name mailing and billing addresses and
shipping address if different telephone number and credit card
number and expiration date gathering this information allows us to
process and fulfill your order and notify you of your order status
we will also use your information to contact you regarding your

if necessary we encrypt all of this information using'secure

5l technology

The aspect with the highest row-wise attention weight (0.294) averaged HL in Table 9. The results are grouped based on their
highlighted the phrase “using secure socket layers SSL DL architecture. The best scores appear in boldface. Each
technology,” which likely belongs to “Data Security.” While model’s performance in each of the 10 data practice categories
SAAS was able to capture security-related jargon using is reported in Appendix B.

contextual information, term frequency-based and paragraph

vector-based methods often suffered from the low frequency of SAAS outperformed each benchmark method in terms of
eachjar gon phrase or word. A similar pattern occurred in 75 out mjcro-averaged precision (0.807), micr()-averaged F1-score
of 1,872 segments in the test dataset (across all data practice (0.758), and micro-averaged HL (0.058) by statistically
categories). It is crucial to avoid missing identifying segments significant margins. SAAS consistently outperformed CNN
of data practices mandated to be disclosed by privacy (Fl-score of 0.745) and unidirectional RNN-based methods
regulations. For example, when a company encounters a data (F1-scores between 0.730-0.749), indicating that operating in

breach incident', regulators eyaluate Whe.ther the' company has forward and backward directions captures more comprehensive
sufficient security measures in place for it to avoid the incident local context information for distinguishing word semantics. In
and determine whether the business should take responsibility addition, SAAS attained a higher Fl-score (0.758) than
and be fined. In this example, if regulators were to use TF-IDF T ) ) )

. . . . bidirectional RNN-based methods (F1-scores between 0.742
+ LR, they might d§c1de to leYy unwarranted fines agamst'the and 0.747), indicating that capturing global and local
company for not incorporating content about appropriate depen dencie’s with the selfattention mechanism can

security measures (i.e., secure sockets layer) when in fact, the . . .

company indeed included this information in the segment. disambiguate Segmeflt semantics (Du et al, 2020). SAAS
outperformed the 10 independent SSASEs approach (F1-score
of 0.749) and SSASE leveraging the multi-label classifier (F1-

Experiment 2 Results: SAAS vs. Deep Learning score of 0.750) by statistically significant margins. These results
Models suggest that SAAS may have captured relationships and
common features between data practice categories that each
In Experiment 2, we compared the performance of SAAS independent SSASE missed and differentiated aspects learned
against 10 state-of-the-art DL-based models. We present each by the multi-head self-attention mechanism more effectively
model’s performance in terms of micro-averaged precision,  thap the SSASE combined with a multi-label classifier.

micro-averaged recall, micro-averaged Fl-score, and micro-
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Table 9. Experiment 2: SAAS vs. Deep Learning Models

Method Model Micro- Micro- Micro- Micro-
category averaged averaged averaged averaged
precision recall F1-score HL
CNN-based CNN 0.762*** 0.729 0.745** 0.064***
Unidirectional |LSTM + Max pooling 0.763*** 0.719 0.739** 0.065"**
RNN-based LSTM + Mean pooling 0.756*** 0.706** 0.730*** 0.067***
GRU + Max pooling 0.773*** 0.724 0.747** 0.063**
GRU + Mean pooling 0.780** 0.721 0.749*** 0.062***
Bidirectional BiLSTM + Max pooling 0.752*** 0.733 0.742** 0.065***
RNN-based BiLSTM + Mean pooling 0.777** 0.712 0.743*** 0.063***
BiGRU + Max pooling 0.767** 0.728 0.746*** 0.063***
BiGRU + Mean pooling 0.779** 0.718 0.747** 0.063**
Attention-based | 10 SSASEs, one for each data practice category |0.770** 0.729* 0.749*** 0.062***
SSASE with a multi-label classifier 0.800*** 0.706* 0.750*** 0.060***
Proposed SAAS 0.807 0.714 0.758 0.058

Note: *, **, ***: Statistically significant difference at p < 0.05, 0.01, 0.001

Table 10. Example Segments SAAS Detected by SSASE Missed

Company|Segment

Row-wise |Ground [SAAS’s SSASE’s
attention |truth |predictions |predictions
weight

Fortune

information we may match

these tracking technologies may be By SIEMMEEGY OUr Service
providers or partners on our behalf these technologies enable us to
assign a unigue number to you and relate your service usage
information to other information about you including your personal

02126 |FP, TP [FP, TP FP

We present an example segment that SAAS correctly
classified as both FP and TP, but all benchmark approaches
incorrectly classified as only FP or TP in Table 10. Instances
related to FP and TP were selected because they had the
highest number of labels (653 for FP and 548 for TP). The
table presents the predicted data practice category generated
by SAAS and SSASE with a multi-label classifier (best-
performing benchmark method in terms of Fl-score). The
color shades represent the normalized word weights learned
by the attention head that extracted the aspect of the segment
with the highest row-wise attention weight. Darker shades
indicate the higher importance of phrases in the segment. For
illustration and clarity purposes, we set the number of
attention heads as 5. If different aspects are treated equally,
each aspect will have a row-wise attention weight of 0.2.

The aspect with the highest row-wise attention weight
highlighted the phrase “by us and or by our service providers
or partners.” This phrase indicates that both the first party and
third party would collect/access users’ data. In addition, since
FP and TP share common information, such as the types of
collected personal information, segments that belong to FP (or
TP) are more likely to also belong to TP (or FP). SAAS can
leverage differentiating aspects and the relationship between

data practice categories to identify both TP and FP, whereas
SSASE only identified FP. A similar pattern occurred in 287
out of 1,872 segments in the testing dataset. Comprehensively
capturing all labels is essential. In this example, if regulators
were to evaluate annotated TP segments generated by SSASE,
they would miss this segment and may impose unwarranted
fines on the company for not documenting all relationships
with third-party data processors. SAAS can help prevent
unwarranted fines by returning the segment containing the
information of third-party tracking technologies to confirm
that the company did request consent in its privacy policy.

Experiment 3 Results: Ablation Analysis

In Experiment 3, we examined the effect of RWA and the
multi-label classifier on SAAS’s performance. Three variants
of SAAS were tested, including SAAS without RWA, SAAS
but replacing RWA with MLP, and 10 SAASs, one for each
data practice category. We present each model’s performance
in terms of micro-averaged precision, recall, F1-score, and HL
in Table 11. The best scores are highlighted in boldface. Each
model’s performance in each of the 10 data practice categories
is reported in Appendix B.
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Table 11. Experiment 3: Ablation Analysis

Model Micro- Micro- Micro- Micro-
averaged averaged averaged averaged
precision recall F1-score HL

Without RWA 0.800*** 0.706*** 0.750*** 0.060***

Replacing RWA with MLP 0.802*** 0.699*** 0.747*** 0.060***

10 SAASSs, one for each data practice category 0.792* 0.659** 0.718*** 0.066***

SAAS 0.807 0.714 0.758 0.058

Note: *, **, ***: Statistically significant difference at p < 0.05, 0.01, 0.001

SAAS outperformed the SAAS variants in terms of micro-
averaged precision (0.807), micro-averaged recall (0.714),
micro-averaged Fl-score (0.758), and micro-averaged HL
(0.058) by statistically significant margins. The results suggest
that the RWA emphasized the critical aspects corresponding
to each segment extracted by the multi-head self-attention
mechanism to help improve performance. Replacing RWA
with MLP resulted in a lower Fl-score (0.747) than the
proposed SAAS (0.758). An MLP layer can learn a fixed
weighting matrix while RWA can update weights based on
different input segments. The proposed SAAS, which
simultaneously predicts 10 data practice categories,
outperformed 10 independent SAAS models, possibly
because the generated representation is aware of relationships
and common features across categories.

Experiment 4 Results: Ground Truth vs. Automated
Segmentation

In OPP-115, privacy policies were segmented manually.
However, scaling this manual segmentation process to handle
a large volume of privacy policies in practical applications is
neither feasible nor efficient. In Experiment 4, we assessed
SAAS’s performance on two different segmentation
approaches: ground truth segments from OPP-115 and
automated segments. For the automated segmentation, we
chose ST-Ro (Aumiller et al., 2021), as it outperformed
prevailing text segmentation algorithms (e.g., GraphSeg,
averaging over Global Vectors) on OPP-115 using the P,
metric (Beeferman et al., 1999) by statistically significant
margins (p < 0.001). ST-Ro (Aumiller et al., 2021) operates
by taking two neighbor sentences as input and predicting
whether they belong to the same segments. In the 5x2 cross-
validation, we trained SAAS on the first fold of the OPP-115
segmentation data in each round and used the second fold for
testing. To generate ST-Ro segments, we concatenated
neighboring sentences in the second fold if ST-Ro predicted
that they should be part of the same segment. We also assigned
data practice category labels to the ST-Ro segments if two or
more of the original OPP-115 annotators indicated a specific
data practice category within the segment.
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The micro-averaged precision, recall, and Fl-score for the
original OPP-115 segmentation were 78.7%, 70.9%, and
74.6%, respectively. In comparison, the micro-averaged
precision, recall, and F1-score for the ST-Ro segments were
76.3%, 71.2%, and 73.7%, respectively. The difference in
F1-scores between these two segmentation methods was not
statistically significant. These results indicate that SAAS is
consistent in capturing key information for prediction when
applied to both the original OPP-115 segmentation and the
segments generated by the automated ST-Ro method. This
suggests that while automated segmentation approaches may
produce segments differently from manual methods, they do
not significantly impact SAAS’s overall performance.

Regulation Impact Detection: A Case on GDPR

To demonstrate proof of concept and the potential practical
value of our proposed SAAS, we conducted a GDPR impact
detection analysis on Amazon’s privacy policies. While our
proposed framework can be applied to any privacy
regulation (new, updates to existing policies, or updated
privacy policies), we focused the analysis on the impacts of
GDPR on privacy policy evolution. GDPR was chosen
because it impacts companies worldwide (since it protects
all EU residents) rather than regionally (e.g., CCPA in
California), and it has more documented global impacts than
other recent regulations. We chose Amazon because it was
recently fined $888 million based on accusations of using
user data for developing targeted ads without attaining the
consent of its users (thereby violating GDPR) (Dumiak,
2021). Therefore, our case study aims to identify whether
Amazon’s pre- and post-GDPR privacy policies provided
information about the ad targeting system and if they
explicitly asked users to agree to Amazon’s use of their data
(i.e., regulation impact detection). We employed five steps
to execute the case study, which can be adopted by relevant
stakeholders (e.g., legislators, regulators, researchers) in
their privacy policy analysis.
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Table 12. Selected Segments Pertaining to FP in Amazon’s Privacy Policy Pre- and Post-GDPR

Time Segment

Row-wise attention weight

Pre-GDPR
(March 3, 2014)

o e

payment service and stora
between

what about cookies cookies are unigue identifiers that we transfer
to your device to enable our systems to recognize your device and
to provide features such as click purchasing recommended for
your personalized on other web sites amazon associate with
content served by and web S|tes usmg checkout by amazon

0.2766

Post-GDPR
(February 12, 2021)

what about cookies and other identifiers to enable our systems to
recagnize your browser or device and to provide and improve
amazon services we use cookies and other identifiers for more
information about cookies and how we use them please read our

0.3044

Step 1: Collect privacy policies before and after a time of
interest. GDPR became enforceable on May 25, 2018.
Therefore, we collected Amazon’s pre- and post-GDPR privacy
policies from March 3, 2014, through February 12, 2021.

Step 2: Pre-process the privacy policies by dividing them
into semantically coherent segments with text segmentation
techniques. Consistent with the best practices (Fawaz et al.,
2019; Harkous et al., 2018; Zaeem & Barber, 2021), we
segmented the retrieved policies with automated text
segmentation techniques, ST-Ro (Aumiller et al., 2021).

Step 3: Annotate segments with SAAS. We annotated
segments in pre- and post-GDPR privacy policies using SAAS
pre-trained on the OPP-115 corpus.

Step 4: Select data practice categories of interest. We
selected segments labeled as FP for further investigation in this
case study. FP contains user data information, including
personally identifiable information and behavioral data that
facilitate targeted ads.

Step 5: Visualize segments in data practice categories of
interest using attention weights. To identify the difference in
privacy policies and the presentation of data practice categories,
we visualized segments using the feature weights assigned by
SAAS’s attention mechanisms.

We present two FP segments in Amazon’s pre- and post-GDPR
privacy policies in Table 12. The color shades are the
normalized row-wise attention weights. Dark red indicates the
higher importance of phrases in the segment. For illustration
purposes, we set the number of attention heads as 5. If aspects
are treated equally, each aspect will have a row-wise attention
weight of 0.2.

As shown in Table 12, the segments are related to cookies,
commonly known for collecting users’ behavioral data to

generate personalized recommendations. In the pre-GDPR
privacy policy, the aspect with the highest row-wise attention
weight (0.2766) highlighted examples of specific features that
utilized cookies in such a segment. In the post-GDPR policy,
the aspect with the highest row-wise attention weight (0.3044)
highlighted the phrase that leads users to another document
called “Cookies Notice.” This redirect could increase the
burden on users aiming to understand data practices related to
targeted ads. Recitals 39 and 58 of the GDPR mandate
transparency in data practices, i.e., require that any information
addressed to the public or the data subject be concise, easily
accessible, and easy to understand. However, in Amazon’s
updated policy, Amazon does not explicitly present the
information about cookies. This information is hidden in a
separate document that users have to locate, access, and read
(thereby violating the “easily accessible” principle of GDPR).
Users who cannot access or comprehend the separate document
will not know what they are consenting to. Taken together,
these results can help regulators identify how Amazon is
adhering to GDPR in a targeted manner.

Discussion and Contributions I

The increasing societal concern about consumer information
privacy has led to new privacy regulations and fundamental
changes in companies’ privacy policies. Consequently, there is
aneed to evaluate how companies change their privacy policies
and whether they provide more protection for users’
information. In this study, we adopted the computational design
science paradigm to design, implement, and evaluate a novel
privacy analytics framework with a novel DL-based SAAS text
analytics method that was guided by key privacy analytics
domain requirements. SAAS automatically annotates segments
in privacy policies into data practice categories. We rigorously
evaluated SAAS against benchmark ML and DL methods and
demonstrated its practical utility with an in-depth case study of
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GDPR’s impact on Amazon’s privacy policies. Our research
contributes to the IS knowledge base and has managerial and
practical implications.

Contributions to the IS Knowledge Base

Novel IT artifacts often contribute prescriptive knowledge back
to the IS knowledge base to guide future research (Hevner et al.,
2004; Nunamaker et al., 1990; Rai, 2017; Zhu et al., 2021).
Common contributions can include a situated implementation
of an IT artifact in a selected domain and/or design principles
that can be applied to other application environments. Our
proposed privacy analytics framework is a situated
implementation aligned with information privacy and data
analytics. It also follows two key design principles that are
applicable beyond the privacy policy evolution analysis: (1)
differentiating the importance of different sets of words or
phrases in a given complex and long text and incorporating
common features between labels into a multi-label
classification model for improving the model performance and
(2) automatically annotating long text into finer-grained
categories to facilitate downstream analytical tasks. Each
design principle could help guide the design of IT artifacts for
e-commerce, health, and privacy. Table 13 summarizes the
framework components, the framework’s general design
principle, the relevant IS literature to which each principle could
offer value, and potential classes of research inquiry. We then
elaborate on how these design principles can provide value to
each listed body of IS literature.

E-Commerce

Customer reviews in e-commerce help reveal relationships
between users’ preferences and product choices (Wu et al.,
2019). Customer reviews often include complaints about, for
example, the price, quality of the after-sales service, and other
characteristics of a particular product. However, multi-class
classification approaches cannot effectively identify and label
product reviews that mention multiple preferences and products
(Abrahams et al., 2015; Zhou et al., 2018). Scholars could
consider Design Principle 1 to help design a multi-label
classification approach to point out multiple interdependent
(i.e., correlated) product issues (labels) with similar features
mentioned in a customer review.

Health

Social media has become a popular channel for patients
seeking health support (Bardhan et al., 2020). Users often
post about multiple symptoms and afflictions (e.g., stress,
physical disorders, mental disorders, etc.) in a single social
media post (Chau et al., 2020). Scholars could consider
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Design Principle 1 when developing their multi-label
classification approaches to automatically identify multiple
(potentially related) symptoms or health needs in the content
posted by patients to automatically group and label social
media posts for further investigation.

Privacy

Regulations such as GDPR and CCPA have significant and
lasting global impacts on developing legal documents.
However, the length and complex nature of legal documents
often make fundamental privacy analysis tasks (e.g.,
compliance checking) challenging to execute. Consequently,
there is a significant need to develop approaches that can
automatically synthesize the content in legal documents (e.g.,
Terms of Use) into manageable components. To this end,
scholars could consider including Design Principle 2 when
segmenting legal documents into coherent and semantically
related sections that end users can select for their tasks.

Managerial and Practical Implications

Regulators and companies are increasingly focusing on the
protection of consumer information privacy. Privacy policies
are essential reference documents in examining how companies
handle personal data. However, as businesses are affected by
new privacy regulations, the complexity of privacy policies to
be analyzed and reviewed has steadily increased (Amos et al.,
2021). Our proposed framework automatically synthesizes the
rich text content in privacy policies into semantically coherent
data practice category label(s). We believe that our privacy
analytics framework will help the two types of stakeholders in
practice: regulators and companies.

Regulators: Our proposed framework can help identify content
changes in different data practice categories. By analyzing how
companies adjusted their privacy policies based on new or
updated regulations, regulators could potentially improve their
testing and evaluation processes for regulatory compliance and,
therefore, enforce regulations more effectively.

Companies: Privacy policies will continue to change based on
the functions provided by the business, requirements of new
privacy regulations, and evolving consumer privacy
expectations. Companies could use our proposed framework to
review potential compliance issues in their privacy policies. Our
framework can also help pinpoint specific data practice
segments according to new (or updated) domestic and global
privacy regulations. Consequently, companies could use our
framework to better identify potential privacy violations and the
associated legal and financial consequences.
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Table 13. Design Principles Offered by our Proposed Privacy Policy Evolution Analytics Framework for

Selected Bodies and Classes of IS Research Inquiry

Framework General design principle Relevant IS Potential class of research inquiry

component literature

SAAS Differentiating the importance of different E-commerce | o |dentifying and labeling multiple product
sets of words or phrases in a given issues within customer reviews
complex and long text and incorporating
common features and relationships Health e |dentifying patients’ needs for social
between labels for improving multi-label support from social media posts
classification

Regulation Automatically annotating long text into Privacy e Analysis of legal articles

impact finer-grained categories to facilitate )
downstream analytical tasks. ® Analysis of Terms of Use or End-User

License Agreement documents

Conclusion and Future Directions Il

Consumer information privacy has rapidly emerged as a
significant societal issue. Increasingly, legislators, regulators,
and citizens are expressing concern about how companies
maintain the information privacy of their consumers.
Consequently, the past half-decade has seen the development
and enforcement of various privacy regulations such as the EU’s
GDPR and the CCPA. However, many privacy policies that
have been revised due to regulatory requirements have become
increasingly lengthy and complex. Consequently, regulators and
legislators often find it difficult to systematically identify how a
company is amending and presenting its privacy policies.

In this study, we developed a novel privacy policy evolution
analytics framework to help identify how companies change and
present their privacy policies based on new privacy regulations.
The core novelty of this framework is a SAAS method that
automatically labels paragraph-length segments in long and
unstructured privacy policies into their appropriate data practice
category(ies) to help stakeholders focus on data practices of
interest (without reading all of the text within privacy policies).
SAAS incorporates RWA into the conventional SSASE to
emphasize the differentiating features within segments during
the data practice category labeling process. SAAS outperformed
conventional ML approaches and state-of-the-art DL algorithms
in conducting multi-label data practice segment annotation. We
also illustrated SAAS’s potential practical value with a case
study identifying the differences between Amazon’s privacy
policies pre- and post-GDPR. The results of this case study
indicate that Amazon’s revised privacy policy requires
consumers to exert more effort to find all the information related
to targeted ads (violating a fundamental principle of GDPR).
Regulators and legislators could leverage the proposed
framework to amend their regulations to better protect
consumers’ information and to help companies evaluate the
potential noncompliance of their privacy policies.

There are several promising directions for future research.
First, different cultures and countries may address consumer
privacy issues differently. To this end, future work could
develop a multilingual privacy policy evolution analytics
framework to handle multiple languages in different policy
data categories and segments to investigate a privacy policy’s
global impact. Second, a SAAS-based Al assistance system
with a user-friendly interface and browse, search, and
recommendation functions could assist end users in large-
scale online privacy policy comparisons from different
companies when selecting online products or services. Each
direction could help build a better understanding of how
organizations and consumers respond to privacy policy
requirements in a rapidly changing digital world.
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Appendix A

SAAS Model Specifications I

The proposed SAAS model is implemented with PyTorch (Paszke et al., 2019). Consistent with best practices in computational design science
research, we provide the key architectural details and the parameter settings of our proposed model in Table Al (Zhu et al., 2021).

Table A1. SAAS Model Specification

Component Layer Previous layer Activation function Dropout | Output shape
Input Input - - - (500)
Word embedding Embedding Input - Yes (500, 300)
Bi-LSTM Bi-LSTM Embedding - Yes (500, 256*4)
Attention mechanism Dense1 Bi-LSTM tanh No (25674, 512)
Dense?2 Denset Softmax Yes (512, 30)
Matrix sentence embedding M_emb Bi-LSTM, Dense2 - - (512, 30)
Row-wise attention Dense3d M_emb Tanh, Softmax - (30, 1)
Multi-label classifier Dense4 M_emb - Yes (512*30, 1024)
Dense5 Dense4 Sigmoid - (1024, 1)
Dense6 Dense4 Sigmoid - (1024, 1)
Dense14 Dense4 Sigmoid - (1024, 1)

To ensure the length consistency of the input data practice segments, we padded and truncated segments that contained fewer than or more
than (respectively) 500 words. Each word was encoded as a 300-dimensional word embedding. Each Bi-LSTM direction contained two
LSTM layers with a 256-dimensional hidden state. The four hidden states of Bi-LSTM were concatenated as the input of the attention
mechanism and matrix sentence embedding. In the attention mechanism, the Densel layer generated 512 linear combinations of the Bi-LSTM
hidden state, from which the Dense2 layer extracted 30 disparate aspects. Row-wise attention weighted the 30 aspects of matrix sentence
embedding. Finally, matrix sentence embedding was passed to a dense layer of 1,024 nodes and 10 binary classifiers (i.e., Dense5 to Dense14)
for multi-label classification. To evaluate the multi-label classification performance of the models, we used binary cross-entropy as the loss
function. The Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.0005 and a batch size of 32 was used to train SAAS. (Ebrahimi
et al., 2020).
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Appendix B

Performance Breakdown by Category I

In the main text, we presented the results of the proposed SAAS and all benchmark machine learning (ML) and deep learning (DL) models
across all 10 data practice categories. However, identifying how each approach is performed in each category can help stakeholders identify
the appropriate model for particular categories. We present SAAS’s performance against ML models by 10 data practice categories in Table
B1. All models were evaluated based on precision, recall, F1-score, and hamming loss (HL). We performed paired t-tests to identify
statistically significant differences between SAAS and the benchmark methods. The best scores appear in boldface.

Table B1. Performance of SAAS vs. Conventional ML Models by Category

Model Model FP TP ucc UAED DR DS PC DNT ISA (o)
category (n=1,522) |[(n=1,186) |(n=632) |(n=231) |[(n=156) |(n=375) |(n=192) |(n=32) (n=353) |(n=1,763)
Precision
Paragraph LR 0.766** 0.718** 10.635** 0.550*** [0.249*** |0.641*** |0.663*** |0.400*** |0.821*** |0.616™**
vector-based [SVM |0.783 0.757* 0.742 0.699** 0.100*** ]0.894 0.770*** |0.583*** ]0.913 0.703***

(Doc2Vec) [RF  [0.726™* |0.725** [0.610*** [0.649** [0.081*** |0.741* 0.871** |0.100** [0.810** [0.673***
KNN [0.731** [0.713** [0.616** [0.615** [0.050** [0.684*** [0.878** [0.667* |0.836*** [0.591***

Term LR [o0.787 0.781 0.679** [0.839 0.733 0.855 0.911 1.000 0.909 0.667***
frequency- [SVM [0.760** 0.742** |0.643*** [0.828 0.723 0.848 0.902* 1.000 0.916 0.633***
based (TF-  [RF  [0.826 0.849 0.809 0.870 0.818 0.957 0.980 0.700 0.954 0.821
IDF) NB_ |0.767* 0.757"*  |0.760 0.780 0.794*  |0.908 0.779** [0.982 0.909 0.759*
KNN [0.742* [0.740* [0.700* [0.768 0.823 0.873 0.842** [1.000 0.898 0.748***
Proposed SAAS 0.799 0.802 0.787 0.791 0.798 0.851 0.933 0.974 0.907 0.802
Recall

Paragraph |[LR [0.636** |0.556*** [0.365*** [0.422*** [0.138 0.532*** 10.669 0.547 0.728*** [0.397***
vector-based [SVM [0.625*** [0.523*** [0.304*** [0.291*** [0.002** [0.429*** [0.637** [0.528 0.670** [0.317***
(Doc2Vec) [RF  [0.538* [0.451*** [0.221** [0.116** [0.006** |0.152*** [0.442*** [0.006™* |0.287*** [0.380***
KNN [o0.556***  |0.473*** [0.298*** [0.126*** [0.002** [0.262*** |0.581*** [0.077*** [0.346*** [0.551
Term LR [o.751** Jo0.711*** |0.537 0.600 0.323 0.669 0.785 0.903 0.817 0.625
frequency- [SvM [0.738*** [0.705*** [0.537 0.580* 0.313 0.640** [0.735 0.858 0.771** ]0.618
based (TF- [RF  [0.511** |0.458** [0.347*** |[0.085** [0.057* 0.350*** [0.290*** [0.110*** [0.521*** |0.369***

IDF) NB 0.722*** 0.558*** 10.336™** |0.260*** [0.121 0.550*** |0.632*** [0.535 0.615*** |0.475"**
KNN ]0.750*** 0.663*** |0.445™" 0.469*** [0.168 0.554*** 10.740 0.832 0.761*** |0.534"
Proposed SAAS 0.855 0.815 0.499 0.695 0.121 0.681 0.732 0.468 0.813 0.585
F1-score

Paragraph |[LR [0.694** |0.626*** [0.461*** [0.474*** [0.175 0.579*** 10.663*** [0.453** [0.771*** [0.481***
vector-based |[SVM [0.695*** [0.618*** [0.428*** [0.406*** |0.004** [0.579*** |0.694*** [0.543 0.772*** [0.436***
(Doc2Vec) [RF  [0.618** |0.556*** [0.324** [0.193** [0.012* [0.250** [0.583*** [0.012*** [0.421*** [0.485***
KNN [0.631*** [0.568*** |[0.400*** [0.208*** [0.004*** [0.378*** [0.697*** [0.137*** |0.488*** [0.570***
Term LR [0.769** |0.744*** |0.598 0.699 0.441 0.749 0.842 0.948 0.859 0.645*

frequency- [SvM [0.749*** [0.722** [0.584* 0.681* 0.433 0.729**  0.809 0.923 0.836**  |0.625***
based (TF- [RF  [0.631*** [0.595*** [0.343*** [0.153** [0.106 0.511*** [0.444** |0.172*** [0.672*** [0.509***

IDF) NB  |0.743** |0.642** |0.466"* |0.388"* |0.210 0.685* |0.697** |0.685 0.733"* | 0.584"
KNN |0.746"*  |0.699"* |0.543*** |0.581"* |0.274 0.677"* |0.786* _ |0.907 0.824" | 0.622*
Proposed SAAS 0.825 0.806 0.603 0.737 0.196 0.752 0.819 0.607 0.856 0.675
HL

Paragraph LR 0.195***10.180*** |0.097*** ]0.040*** |0.033*** |0.045*** |0.023*** 0.011*** |0.035*** |0.249***
vector-based [SVM |0.191***|0.175** |0.093*** [0.036*** |0.025* 0.036*** ]0.019*** |0.007** 0.032*** |0.240***
(Doc2Vec) RF 0.232***|0.196*** |0.105*** |0.041*** |0.026™* |0.052*** |0.021*** |0.008*** ]0.064*** |0.235"**
KNN ]0.226***]0.195*** ]0.102*** |0.041** ]0.025* 0.050*** ]0.017*** |0.008*** ]0.059*** |0.243***

Term LR [0.158***]0.133*** [0.082** [0.022 0.020 0.026 0.010 0.001 0.022 0.201***
frequency- [SvM [0.172***]0.147*** [0.087*** [0.023 0.020 0.028* 0.012 0.001 0.024*  |0.216***
based (TF-  [RF  [0.208***]0.169*** [0.094*** [0.040*** [0.024 0.039*** [0.024*** [0.007*** [0.041*** [0.208***
IDF) NB [0.173**]0.169* [0.088*** [0.035 0.023 0.029* 0.018 0.004 0.036"* |0.198**
KNN [0.178**]0.155* [0.086** [0.029** [0.022 0.031*** [0.013* [0.001 0.027*** [0.189***
Proposed SAAS 0.127 [0.106 0.074 0.021 0.023 0.026 0.011 0.005 0.022 0.165

MIS Quarterly Vol. 48 No. 4 / December 2024 1479



Lin et al. / Automated Analysis of Changes in Privacy Policies

SAAS outperformed other benchmarks on FP (0.825), TP (0.806), UCC (0.603), UAED (0.737), DS (0.752), and O (0.675) on F1-score (6
of the 10 categories) and on FP (0.127), TP (0.106), UCC (0.074), UAED (0.021), DS (0.026), ISA (0.022), and O (0.165) on HL.
Furthermore, SAAS outperformed all conventional ML methods, except TF-IDF + RF, on FP (0.799), TP (0.802), UCC (0.787), DR (0.798),
PC (0.933), and O (0.802) on precision. In addition, SAAS achieved the best recall on FP (0.855), TP (0.815), UAED (0.695), and DS (0.681).
The results suggest that SAAS’s use of the attention mechanism with Bi-GRU enabled the model to leverage the context information better
to achieve higher classification performance than benchmark methods. However, SAAS did not outperform term frequency-based models on
DR, PC, and DNT categories on all the metrics, likely due to a lack of training data. We also evaluated the performances of the DL-based
benchmarks by data practice category. Table B2 summarizes model performances. The best scores are highlighted in boldface.

Table B2. Performance of SAAS vs. Prevailing Deep Learning Models by Data Practice Category

Model Model FP TP UCC |UAED |DR DS PC DNT [ISA o
category (n=1,522) (n=1,186)| (n=632) | (n=231) | (n=156) | (n=375) | (n=192) |(n=32) |(n=353) |(n=1,763)
Precision
CNN-based |CNN 0.809 [0.783* [0.615**[0.674* [0.662 [0.752** [0.795** [0.917 [0.840***[0.755*
Uni- LSTM + Max pooling 0.823 [0.823 [0.614**[0.728 [0.452 [0.721***[0.842* [0.834* |[0.860***|0.704**
directional  [LSTM + Mean pooling 0.816 |0.796 |0.665** |0.663** [0.531 [0.722**[0.851* [0.626* [0.878 [0.722**
RNN-based |GRU + Max pooling 0.826  |0.835  |0.664***|0.702** |0.540 [0.727** |0.878* |0.890 |0.855** |0.699***
GRU + Mean pooling 0.801 [0.817 |0.675* |0.723* [0.571 [0.751** [0.858* [0.924 [0.884* [0.760
Bi-directional|BILSTM + Max pooling  |0.826  [0.798  [0.645** [0.735* [0.460 [0.789* [0.888* [0.965 [0.865" |0.683***
RNN-based [BiLSTM + Mean pooling |0.799  |0.821 0.676* [0.793 [0.692 [0.743** [0.881* [0.839* [0.864** |0.734**
BiGRU + Max pooling 0.820 [0.815 |0.636***|0.762 [0.398* [0.741** [0.893* [0.883 [0.893 [0.695***
BiGRU + Mean pooling  |0.823  [0.804 [0.678** [0.750 |0.551 [0.761** [0.891* [0.960 [0.878* [0.733*
Attention- |10 SSASEs 0.797 [0.795 [o0.662* [0.729* [0.565 [0.745* [0.887 |0.824 [0.890 [0.745
based gggssifi;”'th amulti-label | 767 19811 0758 [0.800 |0.748 |0.861 |0.924 [0.930 |0.876* |0.825
Proposed SAAS 0.799 [0.802 [0.787 0.791 [0.798 [0.851 [0.933 [0.974 [0.907 [0.802
Recall
CNN-based [CNN 0.776** [0.798 J0.648 [0.707 J0.355 [0.720 [0.829 [0.832 [0.864 [0.627
Uni- LSTM + Max pooling 0.798* [0.775* |o0.617 |0.649 [0.181 [0.739 [0.703 0.569 [0.832 [0.638
directional  [LSTM + Mean pooling 0.782 [0.786~ [0.597 0.678 [0.257 [0.697 [0.708 [0.492 [0.845 [0.596
RNN-based |GRU + Max pooling 0.808* [0.780 [0.609 [0.716 [0.247 [0.706 [0.695 [0.544 [0.845 [0.638
GRU + Mean pooling 0.832  [0.797 [0.605 [0.702 0.302 [0.721 [0.737 0.722 [0.834 [0.568
Bi-directional| BILSTM + Max pooling  |0.788** [0.796 [0.613 [0.707 [0.255 [0.727 [0.747 0.648 [0.873 [0.662
RNN-based [BiLSTM + Mean pooling |0.811* [0.775* [0.591 [0.669 [0.355 [0.733 [0.703 |0.615 [0.823 [0.587
BiGRU + Max pooling 0.803** [0.791 0.632 [0.667 [0.166 [0.715 0.726 [0.805 [0.841 [0.643
BiGRU + Mean pooling  [0.805* [0.798 [0.590 0.693 [0.257 [0.705 [0.718 [0.738 [0.842 [0.600
Attention- |10 SSASEs 0.835 [0.807 [0.589 0.691 [0.287 [0.733 [0.756 0.830 [0.847 [0.590
based fg;\jfi;”'th amulti-label | o35 0789 0550 [0.684 |0.155 |0676 |0.727 |0.736 |0.838 |0.555
Proposed SAAS 0.855 |0.815 |0.499 |0.695 |0.121 [0.681 |0.732 |0.468 [0.813 [0.585
F1-score
CNN-based [CNN 0.791*** [0.789* [0.628 [0.683 [0.445 [0.731* [0.809 [0.859 [0.851 [0.684
Uni- LSTM + Max pooling 0.809* [0.798 [0.605 |0.675 |0.248 [0.728** |0.750** |0.651 [0.844 [0.665
directional  [LSTM + Mean pooling 0.797*** [0.789° [0.624 |0.665 [0.318 [0.701***[0.768* [0.462 [0.860 |0.649
RNN-based |GRU + Max pooling 0.816* [0.805 [0.630 [0.705 [0.331 [0.711***]0.770* [0.643 [0.848 |0.664
GRU + Mean pooling 0.814 [0.805 [0.631 |0.705 [0.387 [0.729***[0.780* [0.787 [0.856 |0.648"
Bi-directional| BILSTM + Max pooling  |0.805*** [0.795* [0.621 |0.718 [0.268 |0.753 [0.806 [0.732 [0.867 [0.670
RNN-based [BiLSTM + Mean pooling |0.804*** [0.797* [0.627 [0.724 [0.450 [0.736** [0.775* [0.637 [0.841* [0.648
BiGRU + Max pooling 0.810** |0.801 0626 |0.710 |0.221 [0.721**|0.797 [0.821 [0.865 [0.666
BiGRU + Mean pooling  [0.811* [0.799 [0.623 [0.716 [0.331 [0.725**[0.786 |0.822 [0.858 [0.657
Attention- |10 SSASEs 0.814* [0.798 |0.614 |0.702 |[0.366 [0.731* [0.810 |0.823 [0.867 |0.656
based SESASS”E’V““ amulti-label | ghee 10796 (0629 [0.723 |0.240 [0751 |0.809 |0.807 |0.854 |0.656
Proposed SAAS 0.825 |0.806 |0.603 |0.737 |0.196 |0.752 0.819 |0.607 |0.856 |0.675
HL
CNN-based [CNN 0.143** [0.116* [0.088** [0.028* [0.021 [0.031** [0.013* [0.002 [0.025** [0.169
Uni- LSTM + Max pooling 0.131 [0.107 |0.092** [0.027* [0.025 [0.032***|0.015* [0.005 [0.025* [0.187***
directional  [LSTM + Mean pooling 0.138* [0.114 [0.082* [0.030* [0.032 [0.035***[0.014* [0.012 [0.022 [0.187**
RNN-based |GRU + Max pooling 0.128 [0.102 [0.082* [0.026 [0.023 [0.034** [0.013* [0.004 [0.025 [0.188***
GRU + Mean pooling 0.132  [0.105 [0.080* [0.025* [0.024 [0.031***[0.014* [0.003 [0.023 [0.180***
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Bi-directional | BILSTM + Max pooling 0.133 0.111 0.085* |0.024 10.043 |0.028 [0.012 |0.003 |0.022 |0.190***
RNN-based |BiLSTM + Mean pooling |0.137** |0.107 0.080* |0.022 ]0.022 |0.031** |0.013* [0.005 |0.025** |0.186***
BiGRU + Max pooling 0.131 0.107 0.087* |0.024 | 0.025* |0.032** |0.012 |0.003 |0.021 0.188***
BiGRU + Mean pooling 0.130 0.109 0.082* 10.024 10.024 |0.031***|0.013* |0.003 [0.023 |0.183**

Attention- |10 SSASEs 0133 [0.111 __|0.084 [0.025 [0.023 [0.032° |0.012 |0.002 |0.021 |0.180""
based giéssif'fe;’”th amulti-label 14145 [0.100  [0.073 [0.022 [0.023 |0.026 [0.011 [0.003 [0.023 |0.169
Proposed SAAS 0127 0102|0074 |0.021 0023 |0.026 |0.011 |0.005 |0.022 |0.165

SAAS achieved the highest F1-score on FP (0.825), TP (0.806), UAED (0.737), and PC (0.819) and the lowest HL on FP (0.127), UAED
(0.021), DS (0.026), PC (0.011), and O (0.165). SAAS achieved the best precision on UCC (0.787), DR (0.798), PC (0.933), DNT (0.974),
and ISA (0.907). In addition, SAAS outperformed prevailing DL models on recall on FP (0.855) and TP (0.815). No other model attained
the best performances in two or more categories in any metric. The results indicate that SAAS consistently considers the unique differentiating
aspects of all data practice categories when annotating segments. We also examined how the proposed SAAS and its variant performed in
each category, summarized in Table B3. The best scores appear in boldface.

Model FP TP ucc UAED DR DS PC DNT ISA o
(n=1,522) |(n=1,186) | (n=632) |[(n=231) |(n=156) |[(n=375) |(n=192) |[(n=32) (n=353) |(n=1,763)
Precision
Without RWA 0.787 0.811 0.758 0.800 0.748 0.861 0.924 0.930 0.876* 0.825
Replacing RWA with MLP | 0.785 0.818 0.751 0.780 0.745 0.821 0.928 0.970 0.916 0.816
10 SAASs 0.780 0.812 0.712* 0.802 0.325* 0.761 0.944 0.919** 0.845** 0.833
SAAS 0.799 0.802 0.787 0.791 0.798 0.851 0.933 0.974 0.907 0.802
Recall
Without RWA 0.835 0.789 0.550 0.684 0.155 0.676 0.727 0.736 0.838 0.555
Replacing RWA with MLP | 0.840 0.779 0.542 0.610 0.111 0.706 0.755 0.671 0.786 0.551*
10 SAASs 0.786™* 0.761** 0.528 0.625* 0.087 0.706 0.652 0.843 0.851 0.451***
SAAS 0.855 0.815 0.499 0.695 0.121 0.681 0.732 0.468 0.813 0.585
F1-score
Without RWA 0.806** 0.796 0.629 0.723 0.240 0.751 0.809 0.807 0.854 0.656
Replacing RWA with MLP | 0.810 0.796 0.625 0.655 0.185 0.753 0.830 0.783 0.842 0.655
10 SAASs 0.782*** |0.782* 0.588 0.691* 0.133 0.719** 0.749 0.855 0.845 0.579***
SAAS 0.825 0.806 0.603 0.737 0.196 0.752 0.819 0.607 0.856 0.675
HL
Without RWA 0.140* 0.109 0.073 0.022 0.023 0.026 0.011 0.003 0.023 0.169
Replacing RWA with MLP | 0.138 0.108 0.074 0.028 0.023 0.027 0.010 0.003 0.024 0.169
10 SAASs 0.152*** |0.114 0.083* 0.024 0.023 0.032* 0.013 0.002 0.026 0.189***
SAAS 0.127 0.106 0.074 0.021 0.023 0.026 0.011 0.005 0.022 0.165

SAAS outperformed its variants on the majority of data practice categories on F1-score (FP: 0.825; TP: 0.806; UAED: 0.737; ISA: 0.856; O:
0.675). This is mainly because the row-wise attention can emphasize the critical semantics in segment embedding extracted by the multi-
head self-attention mechanism. In addition, the results indicated that the proposed row-wise attention operation contributes to performance
improvement by leveraging the dynamic weighting. Furthermore, compared to the variant that leveraged 10 independent binary classification
models, SAAS can capture the relationships and common features between data practice categories.
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Appendix C

Sensitivity Analysis of Our Proposed SAAS I

We examined SAAS’s sensitivity to four key sets of DL parameters: the number of hidden states in Bi-LSTM, the number of attention units,
the number of attention heads, and the number of units in the dense layer of the multi-label classifier. We compared model performances
based on micro-averaged precision, micro-averaged recall, micro-averaged F1-score, and micro-averaged HL. The baseline SAAS had 256
Bi-LSTM hidden states, 256 attention units to extract aspects of segments into a 30-head matrix segment embedding, and 1024 units in the
dense layer. We changed the target parameter and fixed all other parameters for each SAAS variation. All models were compared with the
baseline model for each set of parameters to examine the statistical significance. In this setup, the null hypothesis assumes that there is no
significant difference between each model and the baseline model. We summarize the performance of SAAS and its variants in Table CI1.
The best performance of each parameter for each metric appears in boldface.

Table C1. Performance of SAAS with Parameter Variations

Number of hidden states in Bi-LSTM (baseline model: 256 hidden states)
Model Micro-averaged precision | Micro-averaged recall Micro-averaged F1-score |Micro-averaged HL
128 hidden states 0.806 0.714 0.757 0.058
256 hidden states 0.807 0.714 0.758 0.058
512 hidden states 0.796* 0.722 0.757 0.059
Number of attention units (baseline model: 256 attention units)
128 units 0.806 0.713 0.756 0.059
256 units 0.807 0.714 0.758 0.058
512 units 0.809 0.714 0.758 0.058
Number of attention heads (baseline model: 30 heads)

20 heads 0.801 0.715 0.755 0.059
30 heads 0.807 0.714 0.758 0.058
40 heads 0.800 0.711 0.752 0.060

Number of units in the dense layer of the multi-label classifier (baseline model: 1024 units)
512 units 0.807 0.712 0.756 0.059
1024 units 0.807 0.714 0.758 0.058
2048 units 0.804 0.711 0.755 0.059

Note: *Statistically significant difference at p < 0.05

When the number of Bi-LSTM hidden states increased from 128 to 256, there was no significant difference in micro-averaged precision
(between 0.806 and 0.807), micro-averaged recall (between 0.714 and 0.714), micro-averaged F1-score (between 0.757 and 0.758), or micro-
averaged HL (between 0.058 and 0.058). Further, increasing the number of hidden states did not yield statistically significant performance
differences in micro-averaged F1-score or micro-averaged HL. Similarly, altering the number of attention units, attention heads, and units in
the dense layer did not affect the statistically significant differences for any performance metric. This suggests that SAAS performance was
not sensitive to parameter changes on the attention unit, attention head, or unit-in-the-dense layer. In particular, the results of the changes in
the number of attention heads suggest that only a few differentiating aspects of a segment are needed.
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