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 The increasing societal concern for consumer information privacy has led to the enforcement of privacy 

regulations worldwide. In an effort to adhere to privacy regulations such as the General Data Protection 

Regulation (GDPR), many companies’ privacy policies have become increasingly lengthy and complex. 

In this study, we adopted the computational design science paradigm to design a novel privacy policy 

evolution analytics framework to help identify how companies change and present their privacy policies 

based on privacy regulations. The framework includes a self-attentive annotation system (SAAS) that 

automatically annotates paragraph-length segments in privacy policies to help stakeholders identify data 

practices of interest for further investigation. We rigorously evaluated SAAS against state-of-the-art 

machine learning (ML) and deep learning (DL)-based methods on a well-established privacy policy 

dataset, OPP-115. SAAS outperformed conventional ML and DL models in terms of F1-score by 

statistically significant margins. We demonstrate the proposed framework’s practical utility with an in-

depth case study of GDPR’s impact on Amazon’s privacy policies. The case study results indicate that 

Amazon’s post-GDPR privacy policy potentially violates a fundamental principle of GDPR by causing 

consumers to exert more effort to find information about first-party data collection. Given the increasing 

importance of consumer information privacy, the proposed framework has important implications for 

regulators and companies. We discuss several design principles followed by the SAAS that can help guide 

future design science-based e-commerce, health, and privacy research. 

Keywords: Privacy policy, structured self-attentive sentence embedding, deep learning, attention 

mechanisms, multi-label classification, GDPR, privacy analytics, computational design science 
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Introduction 

The rapid proliferation of e-commerce, social media, and other 
web services has enabled an unprecedented number of 
consumers to share large quantities of personal information on 
the internet. As a result, consumer information privacy has 
rapidly emerged as a significant societal issue (Acquisti et al., 
2020). Increasing concern about how companies maintain the 
information privacy of their consumers has led to the 
development, update, and enforcement of privacy regulations 
such as the EU General Data Protection Regulation (GDPR) in 
2018 and the California Consumer Privacy Act (CCPA) in 2020. 
Each regulation stipulates how companies must control 
customers’ personal information. Companies that violate 
regulations can incur significant financial fines and damage their 
reputation. We summarize major companies that have recently 
violated GDPR in Table 1. Events are summarized based on the 
company name, industry type, country whose court decided to 
fine the company, fine incurred, and violation. 

The far-reaching implications of regulations worldwide have led 
to many companies revising their privacy policies to include 
details about their data practices (i.e., collecting, processing, 
storing, sharing, and protecting customer data). Privacy policy 
revisions often result from the introduction of new regulations 
(e.g., GDPR, CCPA) or from requirements stipulated by the 
regulation. For example, the Federal Deposit Insurance 
Corporation (FDIC) and CCPA require banks and companies to 
update their privacy policies at least once per year (Bowers et al., 
2017). Many regulations require companies to update their 
policies after introducing a new product or service. The 
frequency of updates can often cause the length of privacy 
policies to increase rapidly. Between 2009 and 2019, the average 
length of updated privacy policies doubled (Amos et al., 2021). 
In Figure 1, we present Amazon’s privacy policy pre-GDPR 
(March 3, 2014) and post-GDPR (February 12, 2021) to 
illustrate how the privacy policy grew in length and complexity. 

In the <For What Purposes Does Amazon Use Your Personal 
Information= section of Amazon’s policy, the text related to 
using consumers’ information for improving Amazon services 
in Amazon’s pre-GDPR privacy policy contained only three 
words (Red Box 1 in Figure 1). However, following the 
implementation of GDPR, the number of words pertaining to the 
same purpose increased to 28 (Red Box 2 in Figure 1). In 
addition, the number of legalistic, jargon-laden, and ambiguous 
phrases increased (e.g., <comply with legal obligations=) (Red 
Box 3 in Figure 1). These characteristics have caused legislators 
and researchers to become increasingly concerned that 
companies may draft privacy policies in ways that are compliant 
with regulations but do not actually improve consumers’ ability 
to understand and control how companies process their personal 
information (Fazzini, 2019). Moreover, the update frequency 
and ever-growing length of privacy policies have also created 
challenges for companies wishing to ensure that their policies 
comply with regulations and for regulators aiming to monitor 
and enforce regulations. Taken together, these concerns 

underscore the significant need to identify how the contents of 
privacy policies change and are presented based on the 
stipulations of new or existing privacy regulations. While 
information systems (IS) scholars are uniquely positioned to 
analyze the text characteristics of privacy policies, prevailing IS 
privacy literature has focused on privacy concerns, risks, and 
controls from behavioral and economic perspectives. Methods 
within these paradigms are not designed to analyze the rich text 
within privacy policies. Therefore, a novel information 
technology (IT) artifact equipped with advanced machine 
learning (ML) and deep learning (DL) methods for text analytics 
is needed to identify how privacy policies change.  

In this study, we adopted the computational design science 
paradigm to design a novel privacy policy evolution analytics 
framework that analyzes long and complex privacy policy texts 
to help identify how text content changed after regulations were 
implemented. At the heart of this framework stands a novel DL-
based self-attentive annotation system (SAAS) that draws upon 
emerging DL-based structured self-attentive sentence 
embedding (SSASE) and attention mechanism techniques. 
SAAS aims to automatically annotate paragraph-length 
segments in privacy policies into one or more data practice 
categories to help relevant stakeholders, particularly companies 
and regulators, identify specific aspects of privacy policies for 
further investigation (in this study, identifying how privacy 
policies changed according to new regulations or updates to 
existing regulations) without reading large amounts of text. 
There are two novelties in SAAS’s design. First, a row-wise 
attention (RWA) mechanism aims to identify the set of words 
and phrases (i.e., aspects) that helps SAAS assign the correct 
data practice category label(s) for a privacy policy segment. 
Second, a multi-label classifier learns sharing parameters that 
introduce strong regularization effects to make models less 
prone to overfitting. We rigorously evaluated SAAS against 
prevailing methods in automated privacy policy analysis 
literature and benchmark ML and DL algorithms with a series of 
experiments. We demonstrated the practical utility of our 
proposed framework with an in-depth case study on Amazon’s 
pre- and post-GDPR privacy policies. Apart from offering 
academic and practical contributions to IS privacy analytics, our 
proposed SAAS follows several key design principles that can 
guide the design of future IT artifacts for e-commerce and health 
analytics applications. 

The remainder of this paper is organized as follows. First, we 
review literature related to IS information privacy research and 
computational design science guidelines, privacy policy 
analysis, SSASE, and attention mechanisms. Second, we 
summarize key research gaps within the extant literature and 
pose research questions for the study. Third, we present our 
proposed privacy policy evolution analytics framework. Fourth, 
we present the results of our experiments and case study. Finally, 
we discuss this study’s contributions to the IS knowledge base, 
summarize selected managerial implications, and present some 
promising directions for future research.
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Table 1. Selected Recent Cases of GDPR Violations 

Company Industry type Country Fine (€) Violation 

Google Computer software France 150M Insufficient legal basis for data processing 

WhatsApp Instant messaging Ireland 225M Insufficient fulfillment of information 
obligations 

Amazon E-commerce Luxembourg 746M Noncompliance with general data 
processing principles 

H&M Retail Germany 35M Insufficient legal basis for data processing 

TIM Telecommunications Italy 27.8M Insufficient legal basis for data processing 

 

 
Figure 1. Amazon’s Privacy Policy Pre- (Top) and Post- (Bottom) GDPR 

 

Literature Review 

We review four areas of literature to ground our research. 

First, we review recent IS information privacy research and 

the computational design science paradigm to guide the 

development of our proposed DL-based privacy policy 

evolution analytics framework. Second, we review privacy 

policy analysis literature to identify prevailing methods for 

automatically detecting changes to privacy policies. Third, we 

review SSASE to understand how a DL-based text analytics 

technique could be leveraged to enhance automated privacy 

policy evolution analytics. Finally, we identify attention 

mechanisms to identify approaches that can dynamically 

weigh input features within privacy policy text to improve 

SSASE performance. 

IS Information Privacy Research and 
Computational Design Science Guidelines 

Information privacy is fundamentally defined as <the ability of 

the individual to control personal information about one’s self= 

(Stone et al., 1983). The explosive growth of personal 

information disclosure on the internet has motivated many IS 

scholars to scrutinize varying aspects of information privacy. 

To date, IS scholars have leveraged behavioral and economic 

paradigms to make remarkable progress in three major 

categories of information privacy research: concern, control, 

and risk. In Table 2, we summarize the focus, IS paradigm, and 

analytical method(s) leveraged in selected recent major IS 

information privacy studies. 

Research examining privacy concerns, controls, and risks has 

primarily employed behavioral theories or econometric models 

to investigate the impact of privacy concerns on user or 

organizational decision-making, explore how various privacy 

controls influence users’ behaviors, or examine the factors that 

affect privacy risk, respectively (Cao et al., 2018; Kim & Kwon, 

2019; Wunderlich et al., 2019). Despite their important 

contributions, the analytical methods employed in these studies 

were not designed to analyze lengthy and unstructured privacy 

policy text. Consequently, a novel IT artifact designed to 

identify privacy policy evolution requires a principled 

approach. The design science paradigm offers prescriptive 

guidelines on designing, developing, and evaluating novel IT 

artifacts (e.g., constructs, models, methods, and instantiations) 

for critical societal applications (Hevner et al., 2004). Four 

genres of design science exist (Rai, 2017): computational, 

optimization, economics, and representation. Among the four, 

the computational genre is the most relevant for developing 

novel computational approaches, frameworks, models, and 

algorithms for advanced text analytics research.
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Note: *ANCOVA: analysis of covariance; OLS: ordinary least squares; SEM: structural equation model 

 

IT artifacts developed through the lens of the computational 

design science paradigm generally follow three guidelines 

(Rai, 2017). First, the artifact’s design can be inspired by key 

domain requirements or characteristics when a strong 

underlying theory is lacking. For example, in Li and Qin 

(2017), unique data characteristics guided the development of 

a novel text analytics framework that incorporated carefully 

constructed feature representations and algorithms to 

anonymize medical records. Second, the artifact’s novelty is 

demonstrated by evaluating its technical performance against 

state-of-the-art approaches via well-established quantitative 

metrics (e.g., precision, F1). Finally, the artifact should 

contribute to the IS knowledge base to help guide related 

future research. Contributions can include situated 

implementations (e.g., processes, software, etc.) and/or 

nascent design theory in the form of design principles. 

Properly executing each guideline requires a strong 

understanding of the application space for which the artifact is 

being developed. For this study, this requires reviewing key 

data characteristics of privacy policies and examining how 

advanced text analytics techniques can be developed to 

identify changes in privacy policies. Therefore, we review the 

extant privacy policy analysis literature next. 

Privacy Policy Analysis 

A privacy policy is a legal contract that describes a 

company’s collecting, processing, sharing, and storing 

practices of users’ personal information. It is currently the 

primary instrument stakeholders (e.g., regulators and 

companies) rely on to understand a company’s data practices 

(Amos et al., 2021). In general, 10 major categories of data 

practices exist in a privacy policy (Wilson et al., 2016). We 

describe each data practice category and specify selected 

recent regulations requiring companies to disclose the 

category in their privacy policies in Table 3.

Table 2. Summary of Recent Selected Major IS Information Privacy Literature 

Category Year Author(s) Focus IS paradigm Analytical method(s)* 

Privacy 
concern 

2021 Cichy et al. The impact of privacy concern on connected 
car adoption 

Behavioral SEM 

2019 Wunderlich 
et al.  

The impact of privacy concern on Internet of 
Things (IoT) adoption 

Behavioral Qualitative coding, 
hierarchical regression 

2019 Buckman et 
al. 

Factors affecting users’ valuation of their 
personal information 

Behavioral ANCOVA, Tobit 
regression 

2019 Crossler & 
Bélanger 

Factors affecting the use of privacy settings 
on smartphones 

Behavioral SEM 

2018 Adjerid et 
al. 

Examining rational cognition and heuristics 
of privacy decision-making 

Behavioral Linear regression 

2018 Gopal et al. Users’ privacy concerns about companies’ 
third-party sharing strategies 

Economic Econometric model 

2017 Breward et 
al. 

The impact of privacy and security concerns 
on controversial IT adoption 

Behavioral Qualitative coding, 
SEM 

2017 Koh et al. The impact of privacy cost on voluntary 
profiling on e-commerce platforms 

Economic Econometric model 

Privacy 
control 

2021 Zalmanson 
et al. 

The impact of social cues and trust on users’ 
personal information disclosure 

Behavioral OLS and logistic 
regression path 

2018 Cao et al. The impact of peer disclosure and related 
policies on online community participation 

Economic Econometric model 

2018 Gal-Or et al. The impact of targeted ads and privacy 
controls on users’ selection of platforms 

Economic  Econometric model 

2018 Heimbach & 
Hinz 

The impact of sharing mechanism on 
content sharing in social media 

Behavioral Logistic model, 
Poisson regression 

2016 Cavusoglu 
et al. 

The impact of privacy control options on 
disclosure behavior on social media 

Economic Poisson regression 

Privacy 
risk 

2019 Kim & Kwon The impact of electronic health records 
(EHRs) and meaningful use on the risk of 
patient information breaches 

Economic Cox proportional 
hazards model 
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Figure 2. A Sample Segment in Google’s Privacy Policy 

 

First Party Collection (FP), Third Party Sharing/Collection 

(TP), Data Retention (DR), and Data Security (DS) detail 

what, how, and why first and third parties collect, process, 

store, share, and protect customer data. User Choice/Control 

(UCC), User Access, Edit, Deletion (UAED), and Do Not 

Track (DNT) pertain to a user’s rights. International & 

specific audiences (ISA) are data practices that pertain only to 

a specific region or user group. A privacy policy often 

contains multiple segments (i.e., a set of consecutive and 

semantically coherent sentences) that present information 

about data practice categories (Wilson et al., 2016). Although 

recent privacy regulations clearly specify the requirements for 

information disclosure, there is no mandated or standard 

format that companies should follow when presenting their 

privacy policies (Alabduljabbar et al., 2021). As a result, 

companies often provide information for a specific data 

practice category in separate segments throughout their 

privacy policy. Moreover, companies may often use one 

segment to explain multiple data practice categories. We 

present a sample segment in Google’s privacy policy that 

pertains to two categories in Figure 2. 

The selected segment of Google’s privacy policy contains 

details about FP (indicated by the word <We=), TP (indicated 

by the phrase <our partners=), and content about both FP and 

TP (indicated by the phrase <use various technologies to 

collect and store=). Dispersed and mixed information about 

data practices in segments can make privacy policy analysis a 

nontrivial task (Degeling et al., 2019; Linden et al., 2020). 

Furthermore, privacy regulations often require companies to 

disclose and regularly update each practice in their privacy 

policies to help users understand their rights to control their 

data. To comply with the regulations, segments in privacy 

policies often change, evolve, and grow in length (Amos et al., 

2021). These changes can exacerbate the challenge for 

companies to manage and evaluate their compliance and 

regulators aiming to enforce regulations. We review selected 

recent privacy policy analysis research in Table 4 to 

understand what existing approaches have been proposed to 

help researchers, companies, and regulators analyze privacy 

policies. The summary is organized based on the focus of the 

study, the dataset examined, the corresponding privacy 

regulations, and the methodology employed.

Table 3. Summary of Key Data Practice Categories in Privacy Policies 

Category Description Regulations 

First Party Collection (FP) What data is collected and how and why a company collects data GDPR, CCPA 

Third Party Sharing/Collection (TP) What data is shared and how and why a company shares data with 
third parties 

GDPR, CCPA 

User Choice/Control (UCC) Privacy choices and control options available for users GDPR, CCPA 

User Access, Edit, Deletion (UAED) How users can access, edit, or delete their data GDPR, CCPA 

Data Retention (DR) How long user information is stored GDPR, CCPA 

Data Security (DS) How user information is protected GDPR, CCPA 

Policy Change (PC) How users will be informed about changes to the privacy policy GDPR, CCPA 

Do Not Track (DNT) If and how Do Not Track signals for online tracking and advertising 
are honored 

CCPA 

International & Specific Audiences 
(ISA) 

Practices that pertain only to one specific user group HIPPA, 
COPPA 

Other Contact information, introduction, etc. GDPR, CCPA 
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Table 4. Summary of Selected Recent Privacy Policy Analysis Literature 

Year Author Focus Dataset Regulation** Methodology 

Source* # of 
policies 

Time 
periods 

Manual 
analysis 

Automated analysis 

Readability 
metrics 

Keyword 
searching 

Descriptive 
statistics 

NLP*** 

2022 Arora  
et al. 

Comparative 
study 

English 
and 
German 
websites 

155 1 GDPR,  
CCPA 

No No No Yes BERT 

2021 Amos  
et al. 

Comparative 
study 

English 
websites 

1M 22 GDPR No Yes Yes Yes No 

2021 Qamar  
et al. 

Compliance 
detection 

OPP-115 115 1 GDPR,  
PDPA 

No No No No BOW + LR, 
SVM, BERT 

2021 Zaeem & 
Barber 

Comparative 
study 

OPP-115 115 1 No No No No No CNN, NB 

2020 Akanfe  
et al. 

Privacy risk 
assessment 

Mobile 
wallets and 
remittance 
apps 

353 1 GDPR No No Yes No No 

2020 Akanfe  
et al. 

Privacy risk 
assessment 

Mobile 
wallets and 
remittance 
apps 

230 1 GDPR No No Yes No BOW, LDA 

2020 Kumar  
et al.  

Privacy 
settings 
assistant 

English 
websites 

6K 1 GDPR,  
CCPA 

No No No Yes LR, topic 
modeling, 
BERT, TF-
IDF 

2020 Linden  
et al. 

Comparative 
study 

OPP-115 115 2 GDPR Yes Yes Yes Yes CNN 

2019 Andow  
et al. 

Compliance 
detection 

Apps from 
Google 
Play Store 

11K 1 No No No Yes No Parse tree + 
Rule-based  

2019 Chang  
et al. 

Privacy 
settings 
assistant 

OPP-115 115 1 GDPR No No No No CNN, RF 

2019 Degeling  
et al. 

Comparative 
study 

EU 
websites 

112K 12 GDPR Yes No Yes Yes No 

2019 Fawaz  
et al. 

Comparative 
study, risk 
assessment, 
privacy 
settings 
assistant 

OPP-115 115 2 GDPR No No No No CNN 

2019 Kumar  
et al. 

Data practice 
annotation 

OPP-115 115 1 No  No No No No FastText, LR, 
MLP, CNN, 
BERT 

2019 Nejad  
et al.  

Privacy risk 
assessment 

OPP-115 115 1 GDPR No No Yes No Did not 
specify 

2019 Ravichander 
et al. 

QA system Apps from 
Google 
Play Store 

35 1 No No No No No SVM, CNN, 
BERT 

2019 Story  
et al. 

Compliance 
detection 

Apps from 
Google 
Play Store 

1M 1 No No No No Yes BOW + 
Feature 
engineering + 
SVM 

2019 Zimmeck  
et al. 

Compliance 
detection 

Apps from 
Google 
Play Store 

1M 1 GDPR, 
COPPA, 
CalOPPA 

No No No Yes BOW + SVM 

2018 Gopinath  
et al. 

Document 
segmentation 

English 
websites 

152 1 No No No No No K-means, 
feature 
engineering, 
MLP 

2018 Harkous  
et al. 

QA system OPP-115 115 1 No No No No No CNN 

2018 Tesfay  
et al. 

Privacy risk 
assessment 

EU 
websites 

45 1 GDPR No No No No BOW + NB, 
SVM, DT, RF 
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Note: *NYSE, Nasdaq, and AMEX: Stock Exchange Websites; OPP-115: Online Privacy Policies, set of 115. **CalOPPA: California Online Privacy 
Protection Act; COPPA: Children’s Online Privacy Protection Act; DOPPA: Delaware Online Privacy and Protection Act; FIPPs: Federal Trade 
Commission’s Fair Information Practice Principles; HIPAA: Health Insurance Portability and Accountability Act; PDPA: Personal Data Protection Act. 
***BERT: bidirectional encoder representations from transformers; BOW: bag-of-words; CNN: convolutional neural network; DT: decision tree; KNN: k-
nearest neighbors; LDA: latent Dirichlet allocation; LR: logistic regression; MLP: multi-layer perceptron; NB: naive Bayes; NMF: non-negative matrix 
factorization; RF: random forest; SVM: support vector machine; TF-IDF: term frequency-inverse document frequency. 

 

Extant privacy policy analysis literature covers several major 

themes, including compliance detection, privacy risk 

assessment, privacy settings assistants, and comparative 

studies. Compliance detection studies have typically 

employed classical ML methods with bag-of-words 

representations to examine whether a company’s data 

practices comply with privacy regulations (Qamar et al., 2021; 

Story et al., 2019). Privacy risk assessment studies have 

employed classical ML or keyword searching to evaluate 

overall user privacy risks based on the types and amount of 

personal information collected and third-party sharing 

(Akanfe et al., 2020b; Fawaz et al., 2019). Studies on privacy 

settings assistants have employed unsupervised topic 

modeling, classical ML methods, and parse trees to focus 

specifically on opt-out/opt-in options (Kumar et al., 2020; 

Sathyendra et al., 2016). Comparative studies compare 

privacy policies across different times (Amos et al., 2021), 

languages (Arora et al., 2022), and organizations (Zaeem & 

Barber, 2021). Since the focus of our research is on 

comparative studies, we discuss these studies in further detail.  

Most past researchers executing comparative analysis studies 

have employed manual analyses (Zaeem & Barber, 2017), 

readability metrics, keyword searching, descriptive statistics 

(Story et al., 2018), or a combination thereof (Amos et al., 

2021; Degeling et al., 2019). The most common dataset used 

in comparative studies is the <Online Privacy Policies, set of 

115= (OPP-115) (Wilson et al., 2016). Developed by the 

Usable Privacy Policy Project at Carnegie Mellon University, 

OPP-115 includes 115 English privacy policies published 

between 2003 and 2015 from well-known, highly ranked 

websites across 15 sectors (as defined by DMOZ.org), as 

determined by Google trends. OPP-115 is suitable for 

comparative studies because the annotation scheme covers all 

10 data practice categories and focuses on segments rather 

than individual sentences. These characteristics allow for a 

more thorough elaboration of all data practice categories and 

can facilitate a more comprehensive evaluation. However, 

privacy policies are lengthy and lack a standard format. Since 

prevailing methods for comparative analysis can result in 

incomplete content extraction and have limited scalability, 

2018 Story  
et al. 

Comparative 
study 

Apps from 
Google 
Play Store 

3M 3 CalOPPA, 
DOPPA, 
FIPPs 

No No No Yes No 

2017 Evans  
et al. 

Privacy risk 
assessment 

English 
websites 

30 1 EU Directive 
95/46/EC, 
HIPAA 

No No No No Regular 
expressions, 
parse tree 

2017 Nisal  
et al.  

Privacy 
settings 
assistant 

OPP-115 115 1 No No No No No Feature 
engineering, 
LR 

2017 Zaeem & 
Barber  

Comparative 
study 

NYSE, 
Nasdaq, 
and AMEX 

600 1 FIPPs, 
COPPA 

Yes No No No No 

2018 Oltramari  
et al. 

QA system OPP-115 115 1 No No No No No Rule-based  

2017 Sathyendra 
et al. 

Privacy 
settings 
assistant 

OPP-115 115 1 FIPPs No No Yes No BOW, LDA, 
Parse tree + 
LR 

2016a Bhatia et al. Privacy risk 
assessment 

English 
websites 

5 1 No No No No No Regular 
expressions, 
parse tree 

2016b Bhatia  
et al. 

Privacy risk 
assessment 

English 
websites 

15 1 EU Directive 
95/46/EC, 
HIPAA 

No No No No Regular 
expressions, 
parse tree 

2016 Liu et al. Data practice 
annotation 

OPP-115 115 1 No No No No No NMF, BOW + 
LR, LDA 

2016 Sathyendra 
et al. 

Privacy 
settings 
assistant 

OPP-115 115 1 FIPPs No No Yes No BOW + LR, 
SVM, RF, NB, 
KNN 

2016 Slavin  
et al. 

Compliance 
detection 

Apps from 
Google 
Play Store 

477 1 FIPPs Yes No Yes Yes No 

2017 Zimmeck  
et al. 

Compliance 
detection 

Apps from 
Google 
Play Store 

17K 1 CalOPPA, 
DOPPA, 
FIPPs, 
COPPA 

No No Yes Yes BOW + LR, 
SVM 
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recent comparative analysis studies have employed 

supervised DL algorithms, namely CNN (Zaeem & Barber, 

2021; Linden et al., 2020). DL-based supervised learning 

techniques have been shown to effectively learn from the 

well-defined data practice categories by privacy researchers 

and label privacy policy datasets to automatically identify 

changed/different data practice information about 

stakeholders’ interest in privacy policies. Thus, we focus on 

supervised learning techniques.  

Existing studies employing supervised learning techniques first 

manually or automatically segment privacy policies (Kumar et 

al., 2020; Harkous et al., 2018). Then, a data practice annotation 

system based on ML or DL algorithms (Harkous et al., 2018; 

Kumar et al., 2019; Liu et al., 2016) is often used to annotate 

segments. This process proceeds as follows: 

Step 1: Segment privacy policies using segmentation tools. 

While sentence-level segmentation is suitable for identifying 

information type or opt-in/opt-out options (Kumar et al., 

2020), paragraph-length segments are required to 

comprehensively elaborate all data practices (Wilson et al., 

2016). Automated segmentation tools segment privacy policy 

text into paragraph-length segments based on HTML tags or 

ML (Harkous et al., 2018). HTML-tag-based segmentation 

may result in semantically incoherent segments. Thus, ML-

based tools that merge adjacent sentences with high semantic 

similarities to generate coherent segments are preferred (e.g., 

GraphSeg (Glavas et al., 2016)). 

Step 2: Annotate segments using ml algorithms. Following 

segmentation, conventional ML algorithms (e.g., LR, SVM) 

are then adopted to train 10 binary classifiers, each to predict 

(annotate) if a segment belongs to one or more (i.e., multi-

label classification) of the 10 data practice categories (Wilson 

et al., 2016). 

Step 3: Analyze annotated segments. Based on the annotated 

segment, stakeholders (e.g., companies and regulators) conduct 

targeted (downstream) analyses about the specific components 

of privacy policies (e.g., pre-post analyses, etc.). 

Existing privacy policy analysis studies leveraging 

conventional ML algorithms (e.g., LR, SVM, NB, DT, RF; 

see Kumar et al., 2019; Qamar et al., 2021; Zaeem & Barber, 

2021) for data practice annotation often suffer from low 

annotation accuracy due to their reliance on segment 

representations generated by bag-of-words (BOW) as input 

(Sathyendra et al., 2016, 2017). Such representations assume 

that segments in the same data practice category share similar 

word distributions. In reality, segments often have diverse 

word choices. Consequently, BOW representations may lead 

to incorrect predictions due, in particular, to missing one or 

more data practice categories (labels) for a segment or 

misclassifying a segment into the wrong category. The former 

problem may lead regulators to conclude that a company has 

failed to address a regulated data practice in its policy, thus 

identifying a violation and issuing unwarranted fines. The 

latter issue can increase the effort needed to review 

misclassified segments or lead to a misunderstanding of 

companies’ data practices (e.g., misinterpreting data practices 

as TP instead of FP). 

Scholars have started adopting DL-based methods (e.g., 

multi-layer perceptron (MLP), CNN, BERT) for data practice 

annotation (Chang et al., 2019; Harkous et al., 2018; Linden 

et al., 2020; Zaeem & Barber, 2021). DL-based methods apply 

multiple layers of nonlinear transformations to automatically 

learn features from input text represented by word 

embeddings. The MLP and averaged word embeddings 

method (Kumar et al., 2019), while effective in many tasks, 

can compromise sequence information, neglect long-term 

dependencies, and struggle to capture complex sentence 

structures and the contextual nuances of each word within a 

segment. While CNNs have attained superior performance 

over conventional ML algorithms, these methods can often 

miss capturing long-range sequential dependencies (Yin et al., 

2017). Such methods could still misclassify long data practice 

segments. BERT (Arora et al., 2022; Kumar et al., 2019; 

Qamar et al., 2021), despite its power, requires substantial 

fine-tuning data, which poses challenges when certain data 

practice categories, such as data retention, have limited 

instances in the dataset (OPP-115). These limitations 

necessitate an alternative DL-based approach that can capture 

long-range semantics dependencies to generate better segment 

representation for data practice segment annotation with 

limited instances. In recent years, RNN-based approaches 

such as long short-term memory (LSTM) have been 

extensively used to capture long-range sequential 

dependencies (Yin et al., 2017). Increasingly, scholars are 

improving the performance of RNN-based approaches by 

capturing the nonsequential global dependencies of input 

features with attention mechanisms (Lin et al., 2017). SSASE, 

which incorporates RNN-based processing with an attention 

mechanism, is a possible, suitable, and high-performing 

approach for processing data practice segments with lengthy 

and mixed information.  

Structured Self-Attentive Sentence Embedding 
(SSASE) 

SSASE generates text representations based on a bidirectional 

LSTM (BiLSTM) model with a multi-head self-attention 

mechanism (Lin et al., 2017). BiLSTM is a high-performing 

DL model often employed in text analytics tasks to capture 

sequential and contextual dependency information from text 

input. BiLSTMs have consistently outperformed CNN-based 
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methods in text analytics tasks where input texts may have 

long-range dependencies or when the prediction is based on 

the semantics of the entire text input (Yin et al., 2017). The 

multi-head self-attention mechanism extracts the 

nonsequential global dependencies of the inputs that the 

conventional BiLSTM may not capture. We depict the key 

SSASE operations for one data practice category in Figure 3. 

SSASE’s input data practice segment has ÿ words, 

represented by a sequence of word embeddings þ =(Āÿ, ĀĀ, &Āÿ). BiLSTM processes the word embedding 

sequence in both forward and backward directions. Each 

direction generates a �-dimension <directional= hidden state ý�⃗⃗  ⃗ (or ý�⃖⃗ ⃗⃗ ) based on Āþ and the previous hidden state ý�2ÿ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (or ý�+ÿ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗). By concatenating ý�⃗⃗  ⃗ and ý�⃖⃗ ⃗⃗  from the forward and 

backward directions, ýþ = [ý�⃗⃗  ⃗ ý�⃖⃗ ⃗⃗ ]�captures a more 

comprehensive summary of the current hidden state than 

using a single direction alone. All hidden states are denoted by 

a matrix ÿ = (ýÿ, ýĀ, & ýÿ), with a size of ÿ × 2�. 

The multi-head self-attention mechanism learns weights by 

projecting ÿ to different vector subspaces that each focus on 

a distinct aspect of the input segment. It generates a multi-head 

self-attention weight matrix � with a size of ÿ × ÿ by Softmax(��Ā tanh(��ÿÿÿ)). ÿÿ is a transposed hidden 

state matrix. ��ÿ and ��Ā are two trainable weight matrices 

with shapes of þ� × 2� and ÿ × þ�, respectively, where þ� is 

a predefined hyperparameter and ÿ is the number of attention 

heads. � summarizes <how much attention= should be paid to 

each word according to different aspects of the segment 

learned by attention heads. Each column in � corresponds to 

one word, while each row (i.e., head) is expected to highlight 

a salient set (i.e., aspect, component) of related words or 

phrases in the segment. A penalty term � in the loss function 

diversifies attention heads to avoid learning duplicate aspects: � = ‖��ÿ 2 Ā‖�2 , where Ā is the identity matrix and ‖∙‖� is 

the Frobenius norm. The penalty term is jointly minimized 

with the loss function for classification. Segment embedding 

M (ÿ × 2�) is the matrix product of � and ÿ. Each row in M 

encodes an aspect learned by the corresponding attention 

head. M is flattened into a vector and fed into a fully 

connected (FC) layer and a softmax layer for binary 

classification. 

SSASE and its variants have outperformed conventional ML-

based and DL-based algorithms in multi-class text 

classification applications, including categorizing health 

records (Chen et al., 2022) and analyzing sentiment in social 

media posts (Alagha, 2022). However, little work has 

examined SSASE’s performance for multi-label classification 

tasks like data practice segment annotation. SSASE could 

potentially be formulated for multi-label classification tasks 

by training a separate binary classification model for each 

label with the sigmoid activation function (extensively used 

for generating binary predictions) being used in the fully 

connected output layer (Krohn et al., 2020). Such formulation 

is consistent with the concept of binary relevance (BR) in 

multi-label classification. BR operates by decomposing the 

multi-label classification process into a set of independent 

binary classification tasks (a classifier per label) (Zhang et al., 

2018). BR operates well when minimal correlations between 

labels exist. However, data practice categories often possess 

interdependencies wherein all categories are related to the 

same topic of privacy. Previous studies have shown that multi-

task learning can benefit loosely related text classification 

tasks (Harkous et al., 2018; Kerinec et al., 2018), which may 

represent one potential solution to overcoming the limitation 

of BR formation. When multiple tasks are closely related, 

multi-task learning learns sharing parameters that introduce 

strong regularization effects, making models less prone to 

overfitting each specific data practice category compared to 

independent binary classifiers.  

In addition to the limitations associated with BR, SSASE 

treats all aspects of segments learned by the multi-head self-

attention mechanism equally when generating segment 

embedding. However, some aspects are more differentiating 

than others in a data practice segment. For example, <share= 

indicates TP, while <the types of collected personal 

information= can indicate both FP and TP. Capturing these 

differentiating aspects could improve data practice segment 

annotation. An attention mechanism is a promising approach 

that can learn weights for different inputs based on their 

contributions to the model’s final output (Vaswani et al., 

2017). Therefore, we review attention mechanisms next to 

understand how to adapt SSASE. 

Attention Mechanisms 

Attention mechanisms operate by mapping a query vector � 

and a set of key vector-value vector pairs (�, ÿ) to an output 

vector Ā (Vaswani et al., 2017). � can be considered a 

representation of interest (e.g., output embedding), and � 

represents the input features. Ā is computed as a weighted ÿ, 

where weights are alignment scores calculated based on the 

relationship (e.g., similarity) between � and �. Higher 

alignment scores are assigned if elements in � are closely 

related to �. Evaluating an attention mechanism is typically 

executed by comparing the performance of a model with the 

proposed attention mechanism against the model without it 

on a ground-truth dataset (Galassi et al., 2021; Spliethöver et 

al., 2019). 
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Figure 3. Conceptual Schematic of SSASE for One Data Practice Category* (Adapted from Lin et al., 2017) 

Note: *The same procedure applies to each of the 10 data practice categories. 

 
Attention mechanisms can be categorized into two major 

groups: general attention and self-attention (Vaswani et al., 

2017). The former calculates the alignment score between � 

and �, and the latter calculates the alignment score within the 

elements in ÿ (i.e., � = �). Self-attention mechanisms have 

been incorporated into sequence models (e.g., BiLSTMs) to 

capture global feature dependencies for generating high-quality 

text representations in neural machine translation and sentiment 

analysis tasks (Letarte et al., 2018; Vaswani et al., 2017). The 

global feature dependencies are captured by relating input 

features at different positions of a sequence. Self-attention 

mechanisms dynamically weight input text features and can 

help identify the various informative aspects of data practice 

segments and produce an improved representation. However, 

how to incorporate self-attention into SSASE to improve 

generated segment representation and data practice segment 

annotation requires further investigation. 

Research Gaps and Questions 

We identified several research gaps in the literature review. 

First, while IS scholars have made significant progress in 

multiple areas of information privacy research, methods 

adopted in prior IS literature were not designed to operate on 

privacy policies’ rich and complex text. Since privacy policies 

are the main instruments that companies use to convey their 

data practices, there is a need for an automated approach to 

annotate segments in privacy policies (i.e., label portions of 

privacy policies into their data practice categories) such that 

relevant stakeholders (e.g., companies, regulators) can assess 

the impact of regulations on companies’ privacy policies in a 

targeted fashion. However, many past privacy policy analysis 

studies employed conventional ML approaches that relied on 

BOW-based segment representations, which cannot capture the 

interdependencies or other important features within the text. 

While DL-based methods can automatically extract salient 

features from text data, extant studies have primarily leveraged 

approaches that often missed long sequential word 

dependencies in privacy policies. SSASE is a potential high-

performing text analytics approach that can capture long 

sequential word dependencies and nonsequential global 

semantics dependencies. However, SSASE’s multi-head self-

attention mechanism was mainly adopted for multi-class 

classification tasks and may miss key differentiating aspects 

within data practice segments. Formulating SSASE’s multi-

head self-attention mechanism to capture differentiating aspects 

within a multi-label classification approach (needed for privacy 

policy segment annotation) requires further investigation. 

Based on these research gaps, we pose the following research 

questions for the study: 

RQ1: How can the SSASE’s multi-head self-attention be 

enhanced to identify key differentiating aspects in data practice 

segments to improve the performance of multi-label data 

practice segment annotation? 

RQ2: How can the enhanced automated data practice segment 

annotation system help analyze how privacy policies evolve 

(e.g., are revised) following the enforcement of a privacy 

regulation?
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Figure 4. Proposed Privacy Policy Evolution Analytics Framework 

Proposed Privacy Policy Evolution 
Analytics Framework  

We propose a novel DL-based privacy policy evolution 

analytics framework to address the posed research questions. 

The proposed framework consists of four components (Figure 

4): (1) Privacy Policy Testbed, (2) Self-Attentive Annotation 

System (SAAS) for Data Practice Segment Annotation, (3) 

Benchmark Experiments, and (4) Regulation Impact 

Detection: A Case on GDPR. We describe each component of 

the framework in the following subsections. 

Privacy Policy Testbed 

We adopted OPP-115 as our testbed. OPP-115 contains 115 

English privacy policies with 3,792 segments from well-known 

websites. Each segment was annotated with one or more data 

practice labels from 10 categories by three law school students 

(Wilson et al., 2016). Although privacy policies in OPP-115 

were collected before the release of several recent privacy 

regulations, the OPP-115 annotation scheme is consistent with 

the legal assumptions (e.g., transparency requirements, data 

practice categories, etc.) in recent regulations (e.g., GDPR, 

CCPA) (Leone & Di Caro, 2020; Poplavska et al., 2020). 

Consequently, OPP-115 is the prevailing dataset researchers 

have used for privacy policy analysis tasks, including training 

ML-based data practice segment annotation systems designed 

to annotate unlabeled privacy policies after regulations have 

been published (e.g., GDPR and CCPA) (Linden et al., 2020). 

Consistent with previous studies, we retained data practice 

category labels for each segment when two or more annotators 

agreed on labels (Harkous et al., 2018). As a result, 3,749 data 

practice segments that contained at least one data practice 

category label agreed upon by two or more annotators were 

included in our testbed. 

Self-Attentive Annotation System (SAAS) for 
Data Practice Segment Annotation 

Recognizing the key limitations of SSASE as it pertains to 

data practice segment annotation, we propose a novel SAAS 

that builds upon SSASE and attention mechanism principles. 

SAAS comprises a novel row-wise self-attentive embedding 

(RSE) model and a multi-label classifier. RSE extends SSASE 

with a novel attention mechanism to weigh the importance of 

different aspects in each row of segment embeddings learned 

by the multi-head self-attention mechanism. The multi-label 

classifier classifies RSE’s learned representations into one or 

more data practice categories to help facilitate privacy policy 

evolution analysis. We present a comparison between the 

conventional SSASE and the proposed SAAS in Figure 5. The 

novelties of our proposed SAAS are highlighted in red. We 

summarize each SAAS component after. 

Row-Wise Self-Attentive Embedding (RSE)  

RSE takes a data practice segment as input. Each word in the 

segment is represented by a word embedding. Bi-directional 

gated recurrent units (BiGRU) is a variant of BiLSTM that 

automatically extracts the forward and backward context 

information from the embedding sequence. BiGRU achieves 

comparable performance while converging faster than 

BiLSTM, as it leverages a two-gate structure (as opposed to 

BiLSTM’s three-gate structure) (Cho et al., 2014). The multi-

head self-attention mechanism learns from all hidden states 

extracted by BiGRU the contributions of sets of related words 

or phrases to different aspects of the segment as the multi-head 

self-attention weight matrix. The multi-head self-attention 

weight matrix is applied back to the hidden states to produce 

the segment embedding �.
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Conventional SSASE 
 

 

Proposed SAAS 
 

 

Procedure for One Data Practice Category* 
 

1. Input: Data practice segment 
2. BiLSTM 
3. Multi-head self-attention mechanism 
4. Segment embedding 
5. Binary classifier 
6. Output: The probability that the segment belongs to a 

category 
 
*The same procedure applies to each of the 10 data 
practice categories. 

Procedure for 10 Data Practice Categories 
 

Row-wise self-attentive embedding (RSE): 
1. Input: Data practice segment 
2. BiGRU 
3. Multi-head self-attention mechanism 
4. Segment embedding 
5. Row-wise attention (RWA) mechanism  

Multi-label classifier: 
6. Multi-label classifier 
7. Output: The 10 probabilities that the segment 

belongs to each of the 10 categories 

Figure 5. Illustration of Conventional SSASE and Proposed SAAS 

While � is a low-dimensional matrix where each row encodes 

different aspects of the segment separately, not all aspects are 

equally important for predicting data practice labels. 

Therefore, we designed a novel row-wise attention (RWA) 

mechanism. Similar to how self-attention mechanisms 

determine each word’s contribution to the model 

performance, the proposed RWA mechanism learns the 

importance of each row (aspect) in segment embedding that 

contributes to classification decisions as follows: �ý� = Softmax(Āý��⊤), 
where �ý� is the row-wise attention weight vector, �⊤ is the 

transposed segment embedding, and Āý� is the trainable 

weight vector. The softmax activation function introduces 

nonlinearity into the row-wise attention weight vector. Each 

element in �ý� indicates the importance of each aspect. All 

elements add up to 1. �ý� is applied back to the segment 

embedding by multiplying each row in ā with the 

corresponding weight in �ý�formulating as follows: �ý� = Diag(�ý�)�, 
where �ý� is the weighted � with a size of r × 2u and Diag(�ý�) is a square diagonal matrix with the elements of 

vector �ý� on the main diagonal. �ý� is a regularizer in label 

predictions, i.e., if one aspect (row) is useful for label 

predictions, then all elements of such an aspect (row) are 

useful and should be assigned higher weights. RWA is 

suitable for complex text with varied lengths, such as data 

practice segments. �ý� is then flattened into a vector and fed 

into the downstream multi-label classifier.
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Note: *Bi: bidirectional; CNN: convolutional neural network; GRU: gated recurrent unit; KNN: k-nearest neighbors; LR: logistic regression; LSTM: 
long-short term memory; MLP: multi-layer perceptron; NB: naive Bayes; RF: random forest; SVM: support vector machine.  **Naive Bayes does 
not work with Doc2Vec text representation as naive Bayes requires positive numeric input. 

 

Multi-Label Classifier  

Originally, SSASE was only tested on various multi-class 

classification tasks. Although we could formulate a multi-label 

classification task into multiple binary classification tasks and 

train separate SSASE for each task, such a formulation would 

ignore relationships between categories. Therefore, we propose 

a multi-label classifier that incorporates 10 binary classification 

tasks in one model. The flattened MRW is input into a fully 

connected layer with 10 output neurons. A sigmoid activation 

function, �(ý) = 11+�−�, transforms the outputs such that the 

outputs become 10 probabilities for 10 label predictions, �̂ =(þ1� ,þ2�, & , þ10� ), where þÿ�  is between 0 and 1 (how likely a 

segment belongs to the �-th data practice category). Binary cross 

entropy (BCE) is used as the loss function to compare each of 

the predicted probabilities to the actual label, which can be 

either 0 (i.e., does not belong to the category) or 1 (i.e., belongs 

to the category). BCE has been extensively used to evaluate 

binary classification tasks (Bird et al., 2009). BCE is formulated 

as L = 2 1�∗10 ∑ ∑ (þÿĀ log(þÿĀ�) + (1 2 þÿĀ) log(1 2 þÿĀ�))10ÿ=1�Ā=1 , 

where Ă is the number of training instances, and þÿĀ is the 

ground-truth label of the �th data practice category of the jth 

training instance. By simultaneously minimizing the loss of 10 

categories during backpropagation in model training, the model 

can learn common features across categories and is less prone 

to overfitting a specific category (Kerinec et al., 2018). 

Benchmark Experiments 

Consistent with the computational design science paradigm 

(Rai, 2017), we rigorously evaluated SAAS with four 

benchmark experiments (Table 5): (1) SAAS vs. conventional 

machine learning models, (2) SAAS vs. deep learning models, 

(3) ablation analysis, and (4) ground truth vs. automated 

segmentation. 

Table 5. Summary of Benchmark Experiments 

Experiment Model category* Benchmark models* References 

SAAS vs. 
conventional 
machine 
learning models 

Paragraph vector-based (Doc2Vec**): Sentence 
embedding is learned with a Continuous Bag of 
Words (CBOW) approach that predicts a missing 
word based on other words in the sentence. 

Doc2Vec + LR Wilson et al., 
2016 Doc2Vec + SVM 

Doc2Vec + RF Sathyendra et 
al., 2016 Doc2Vec + KNN 

Term frequency (TF)-based (TF-IDF): Sentence 
embedding is learned based on TF divided by inverse 
document frequency (IDF). 

TF-IDF + LR Sathyendra et 
al., 2016; 
Tesfay et al., 
2018b; 
Zimmeck et 
al., 2019 

TF-IDF + SVM 

TF-IDF + RF 

TF-IDF + NB 

TF-IDF + KNN 

SAAS vs. deep 
learning models 

CNN-based: Text features are extracted through one 
convolutional layer and max pooling. Features are 
input into two dense layers for classification. 

CNN Harkous et 
al., 2018 

Uni-directional RNN-based: Contextual information is 
captured through a uni-directional recurrent structure. 
Extracted features are pooled through max and mean 
operations. 

LSTM + Max pooling Lai et al., 
2015 LSTM + Mean pooling 

GRU + Max pooling 

GRU + Mean pooling 

Bi-directional RNN-based: Contextual information is 
captured through a bi-directional recurrent structure. 
Extracted features are pooled through max and mean 
operations. 

BiLSTM + Max pooling Lin et al., 
2017 BiLSTM + Mean pooling 

BiGRU + Max pooling 

BiGRU + Mean pooling 

Attention-based: A self-attention mechanism and bi-
directional recurrent structure learn a matrix 
embedding. 

10 SSASEs, one for each 
data practice category 

SSASE with a multi-label 
classifier 

Ablation 
analysis 

Without RWA Galassi et al., 
2021; 
Spliethöver et 
al., 2019 

Replacing RWA with MLP 

10 SAASs, one for each data practice category 

Ground truth vs. 
automated 
segmentation 

Ground truth segmentation Joty et al., 
2013 

Automated segmentation 
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In Experiment 1, we compared SAAS against five conventional 

ML benchmark models commonly used in IS literature 

(Kitchens et al., 2018): logistic regression (LR), support vector 

machine (SVM), random forest (RF), naive Bayes (NB), and k-

nearest neighbors (KNN). Two text representation techniques 

commonly used in privacy policy analysis literature, Doc2Vec 

and TF-IDF, represented each segment’s text and were inputted 

into each model (Sathyendra et al., 2016; Wilson et al., 2016). 

In Experiment 2, we compared SAAS against four categories of 

DL-based models: CNN-based, uni-directional RNN-based 

(LSTM and GRU), bi-directional RNN-based (BiLSTM and 

BiGRU), and attention-based (SSASE). We considered two 

SSASE variants for data practice segment annotation: training 

10 SSASEs (one for each data practice category) and one 

SSASE combined with a multi-label classifier. In Experiment 

3, we conducted an ablation analysis that evaluated three 

variations of the SAAS: (1) SAAS without RWA, (2) SAAS 

replacing RWA with MLP, and (3) 10 SAAS models, one for 

each data practice category. In Experiment 4, we compared 

SAAS’s performance on the original OPP-115 segmentation 

and ST-Ro segments to evaluate the effect of the automated 

segmentation on data practice annotation (Joty et al., 2013). 

Consistent with privacy policy analysis literature, we executed 

each benchmark experiment with the 3,749 segments from the 

OPP-115 dataset that possessed one or more data practice labels 

agreed upon by two or more of the original annotators (Wilson 

et al., 2016). Overall, 2,848 segments had one label, 792 

segments had two labels, 88 segments had three labels, 18 

segments had four labels, and three segments had five labels. 

We present the number of segments associated with each data 

practice category (label) in Table 6. 

The number of segments in each category ranged from 32 to 

1,763, suggesting that the distribution of segments across the 

categories was imbalanced. The FP and TP categories had 

the highest number of segments, with 1,522 and 1,186, 

respectively, while the DNT category contained the fewest 

segments (32). We executed each experiment for each data 

practice category. Since the dataset was imbalanced, model 

performances were measured using precision, recall, and F1-

score. Precision measures whether a model correctly 

classifies a segment into a specific category and is defined 

as follows: 

�ÿÿý�Ā�Āÿ�� = ��(ýÿ)��(ýÿ) + ��(ýÿ), 
where ýÿ ∈ �. � is the set of 10 data practice categories, ��(ýÿ) (true positives) denotes the number of segments 

correctly classified to a specific data practice category ýÿ, 
and ��(ýÿ) (false positives) is the number of segments 

incorrectly classified to a specific data practice category ýÿ. 
Recall measures whether a model detects all the segments in 

each data practice category and is defined as follows: 

�ÿý�ýý�� = ��(ýÿ)��(ýÿ) + �Ă(ýÿ), 
where �Ă(ýÿ) (false negative) is the number of segments 

incorrectly classified as not a specific data practice category ýÿ. The F1-score is the harmonic mean of precision and recall 

and is defined as follows: 

�1-ĀýĀÿÿ�� = 2 × �ÿÿý�Ā�Āÿ�� × �ÿý�ýý���ÿÿý�Ā�Āÿ�� + �ÿý�ýý�� . 
We also used the micro-averaged precision, micro-averaged 

recall, and micro-averaged F1-score metrics to evaluate the 

performance of each model across all data practice 

categories (Harkous et al., 2018; Wilson et al., 2016). The 

three metrics are defined as follows: 

Table 6. Number of Segments in Each Data Practice Category in OPP-115 

Data practice category (label) Number of Segments  

First Party collection (FP) 1,522 

Third Party Sharing/Collection (TP) 1,186 

User Choice/Control (UCC) 632 

User Access, Edit, Deletion (UAED) 231 

Data Retention (DR) 156 

Data Security (DS) 375 

Policy Change (PC) 192 

Do Not Track (DNT) 32 

International & Specific Audiences (ISA) 353 

Other (O) 1,763 

Total:  6,442 
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�ÿÿý�Ā�Āÿ�ÿ��� = ∑ ��(ýÿ)��∈�∑ ��(ýÿ)��∈� + ��(ýÿ),  
 �ÿý�ýý�ÿ��� = ∑ ��(ýÿ)��∈�∑ ��(ýÿ)��∈� + �Ă(ýÿ) 

�1-ĀýĀÿÿ�ÿ��� = 2 × �ÿÿý�Ā�Āÿ�ÿ��� × �ÿý�ýý�ÿ����ÿÿý�Ā�Āÿ�ÿ��� + �ÿý�ýý�ÿ��� . 
Finally, we used hamming loss (HL) and micro-averaged HL 

to evaluate model performance for each category and across 

all categories. HL is a commonly used metric for evaluating 

the performance of multi-label classification tasks 

(Tsoumakas & Katakis, 2007). HL measures the fraction of 

labels that are incorrectly predicted. HL and micro-averaged 

HL are defined as follows: 

��þþ�ÿ� ĀĀĀĀ�� = ��(ýÿ) + �Ă(ýÿ)��(ýÿ) + ��(ýÿ) + �Ă(ýÿ) + �Ă(ýÿ) 
��þþ�ÿ� ĀĀĀĀ�ÿ��� = ∑ ��(��)+��(��)��∈�∑ ��(��)+��(��)+��∈� ��(��)+��(��), 
where �Ă(ýÿ) (true negatives) denotes the number of segments 

correctly classified as not belonging to a specific data practice 

category ýÿ. HL examines how likely the model is to predict 

data practice segments with incorrect data practice categories. 

5 times 2-fold (5×2) cross-validation was adopted for each 

experiment as it is suitable for comparing two classifiers on a 

single dataset (Demšar, 2006; Dietterich, 1998). 5×2 cross-

validation overcomes the problem of underestimated variance 

and elevated Type I error when using resampled paired t-test 

and the k-fold cross-validated paired t-test. We randomly 

assigned all 3,749 segments into two partitions with an iterative-

stratification sampling strategy (Sechidis et al., 2011) to ensure 

low performance variance across folds. In each fold, one 

partition was used for testing, and the other was used for 

training (90%) and validation (10%). This process was repeated 

five times, and the results were averaged to produce a single 

estimation. Paired t-tests were used to identify statistically 

significant differences between performance metrics (Demšar, 
2006; Dietterich, 1998). Performance differences were 

considered significant at p < 0.05, 0.01, and 0.001. 

All experiments were executed on a Microsoft Windows 10 

Pro server with 128GB of random access memory, an Nvidia 

GeForce GTX 1070 Ti graphical processing unit, and an E5-

2670 v4 at 2.60 gigahertz Intel central processing unit. All 

implementations were based on the PyTorch (Paszke et al., 

2019), Natural Language Toolkit (Bird et al., 2009), NumPy 

(van der Walt et al., 2011), Pandas (McKinney, 2010), genism 

(Rehurek & Sojka, 2010), and scikit-learn (Pedregosa et al., 

2011) packages. The complete details for SAAS appear in 

Appendix A. 

Results and Discussion: Experiments and 
Case Study 

Experiment 1 Results: SAAS vs. Conventional 
Machine Learning Models  

Experiment 1 compared the performance of SAAS against 

conventional ML models. We present each model’s 
performance in terms of micro-averaged precision, micro-

averaged recall, micro-averaged F1-score, and micro-averaged 

HL in Table 7. Results are grouped based on the underlying text 

representation used by the algorithm. The best scores are 

highlighted in boldface. Each model’s performance in each of 

the 10 data practice categories is reported in Appendix B. 

SAAS outperformed all benchmark methods in terms of micro-

averaged recall (0.714), micro-averaged F1-score (0.758), and 

micro-averaged HL (0.058) by statistically significant margins. 

Similarly, SAAS outperformed all methods, except TF-IDF + 

RF, on micro-averaged precision (0.807) by statistically 

significant margins. Overall, models generating segment 

representations that retained word-level information (i.e., term 

frequency-based and proposed SAAS) outperformed those that 

aggregated word-level information (i.e., paragraph vector-

based) across all metrics. In privacy policy annotation, 

keywords are useful for identifying whether a segment belongs 

to a specific data practice category. For example, the keyword 

<share= is more likely to indicate <Third Party 

Sharing/Collection,= and the keyword <collect= can indicate 

both <First Party Collection= and <Third Party 

Sharing/Collection.= Within the term frequency-based 

category, LR and SVM outperformed other models on micro-

averaged F1-score, attaining scores of 0.721 and 0.700, 

respectively, possibly due to their ability to process high-

dimensional features (Kamath et al., 2018). 

SAAS’s performance is likely attributable to its ability to 

capture keywords, leverage each word’s contextual and local 

semantics, and process high-dimensional feature sets. We 

present a segment SAAS correctly labeled as DS and FP, but 

TF-IDF + LR (the best-performing benchmark model in terms 

of F1-Score) mislabeled as FP only in Table 8. Instances related 

to FP were selected because they have the highest number of 

labels (653). The table is organized based on the company that 

the privacy policy belongs to, the segment in the privacy policy, 

the row-wise attention weight, the ground truth data practice 

category of the segment, and the predicted data practice 

category produced by SAAS and TF-IDF + LR. The color 

shades represent the normalized word weights learned by the 

attention head that extracted the aspect of the segment with the 

highest row-wise attention weight. Dark red indicates the higher 

importance of phrases in the segment. For illustration purposes, 

we set the number of attention heads as 5. If aspects are treated 

equally, each will have a row-wise attention weight of 0.2.
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Note: *, **, ***: Statistically significant difference at ā < 0.05, 0.01, 0.001 

 

Table 8. Example Segments SAAS Detected but Conventional ML Models Missed 

Company Segment Row-wise 
attention weight 

Ground 
truth 

SAAS’s 
predictions 

TF-IDF + LR’s  
predictions 

Fool  

 
 

0.294 DS, FP DS, FP FP 

 
The aspect with the highest row-wise attention weight (0.294) 

highlighted the phrase <using secure socket layers SSL 

technology,= which likely belongs to <Data Security.= While 

SAAS was able to capture security-related jargon using 

contextual information, term frequency-based and paragraph 

vector-based methods often suffered from the low frequency of 

each jargon phrase or word. A similar pattern occurred in 75 out 

of 1,872 segments in the test dataset (across all data practice 

categories). It is crucial to avoid missing identifying segments 

of data practices mandated to be disclosed by privacy 

regulations. For example, when a company encounters a data 

breach incident, regulators evaluate whether the company has 

sufficient security measures in place for it to avoid the incident 

and determine whether the business should take responsibility 

and be fined. In this example, if regulators were to use TF-IDF 

+ LR, they might decide to levy unwarranted fines against the 

company for not incorporating content about appropriate 

security measures (i.e., secure sockets layer) when in fact, the 

company indeed included this information in the segment. 

Experiment 2 Results: SAAS vs. Deep Learning 
Models  

In Experiment 2, we compared the performance of SAAS 

against 10 state-of-the-art DL-based models. We present each 

model’s performance in terms of micro-averaged precision, 

micro-averaged recall, micro-averaged F1-score, and micro-

averaged HL in Table 9. The results are grouped based on their 

DL architecture. The best scores appear in boldface. Each 

model’s performance in each of the 10 data practice categories 

is reported in Appendix B. 

SAAS outperformed each benchmark method in terms of 

micro-averaged precision (0.807), micro-averaged F1-score 

(0.758), and micro-averaged HL (0.058) by statistically 

significant margins. SAAS consistently outperformed CNN 

(F1-score of 0.745) and unidirectional RNN-based methods 

(F1-scores between 0.730-0.749), indicating that operating in 

forward and backward directions captures more comprehensive 

local context information for distinguishing word semantics. In 

addition, SAAS attained a higher F1-score (0.758) than 

bidirectional RNN-based methods (F1-scores between 0.742 

and 0.747), indicating that capturing global and local 

dependencies with the self-attention mechanism can 

disambiguate segment semantics (Du et al., 2020). SAAS 

outperformed the 10 independent SSASEs approach (F1-score 

of 0.749) and SSASE leveraging the multi-label classifier (F1-

score of 0.750) by statistically significant margins. These results 

suggest that SAAS may have captured relationships and 

common features between data practice categories that each 

independent SSASE missed and differentiated aspects learned 

by the multi-head self-attention mechanism more effectively 

than the SSASE combined with a multi-label classifier. 

Table 7. Experiment 1: SAAS vs. Conventional Machine Learning Models 

Model category Model Micro-averaged 
precision 

Micro-averaged 
recall 

Micro-averaged 
F1-score 

Micro-averaged 
HL 

Paragraph vector-
based (Doc2Vec) 

LR 0.692*** 0.524*** 0.596*** 0.091*** 

SVM 0.768*** 0.478*** 0.589*** 0.085*** 

RF 0.700*** 0.387*** 0.499*** 0.099*** 

KNN 0.676*** 0.454*** 0.543*** 0.097*** 

Term frequency-
based (TF-IDF) 

LR 0.763*** 0.683*** 0.721*** 0.068*** 

SVM 0.733*** 0.670*** 0.700*** 0.073*** 

RF 0.846 0.548*** 0.546*** 0.085*** 

NB 0.778*** 0.550*** 0.645*** 0.077*** 

KNN 0.759*** 0.626*** 0.686*** 0.073*** 

Proposed SAAS 0.807 0.714 0.758 0.058 
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Table 9. Experiment 2: SAAS vs. Deep Learning Models 

Method 
category 

Model Micro-
averaged 
precision 

Micro-
averaged 
recall 

Micro-
averaged 
F1-score 

Micro-
averaged  
HL 

CNN-based  CNN 0.762*** 0.729 0.745** 0.064*** 

Unidirectional 
RNN-based 

LSTM + Max pooling 0.763*** 0.719 0.739*** 0.065*** 

LSTM + Mean pooling 0.756*** 0.706** 0.730*** 0.067*** 

GRU + Max pooling 0.773*** 0.724 0.747** 0.063** 

GRU + Mean pooling 0.780** 0.721 0.749*** 0.062*** 

Bidirectional 
RNN-based 

BiLSTM + Max pooling 0.752*** 0.733 0.742*** 0.065*** 

BiLSTM + Mean pooling 0.777*** 0.712 0.743*** 0.063*** 

BiGRU + Max pooling 0.767** 0.728 0.746*** 0.063*** 

BiGRU + Mean pooling 0.779** 0.718 0.747** 0.063** 

Attention-based  

 

10 SSASEs, one for each data practice category  0.770** 0.729* 0.749*** 0.062*** 

SSASE with a multi-label classifier 0.800*** 0.706* 0.750*** 0.060*** 

Proposed SAAS 0.807 0.714 0.758 0.058 

Note: *, **, ***: Statistically significant difference at ā < 0.05, 0.01, 0.001 
 

Table 10. Example Segments SAAS Detected by SSASE Missed  

Company Segment Row-wise 
attention 
weight 

Ground 
truth 

SAAS’s 
predictions 

SSASE’s 
predictions 

Fortune 

 

 

0.2126 FP, TP FP, TP FP 

 

We present an example segment that SAAS correctly 

classified as both FP and TP, but all benchmark approaches 

incorrectly classified as only FP or TP in Table 10. Instances 

related to FP and TP were selected because they had the 

highest number of labels (653 for FP and 548 for TP). The 

table presents the predicted data practice category generated 

by SAAS and SSASE with a multi-label classifier (best-

performing benchmark method in terms of F1-score). The 

color shades represent the normalized word weights learned 

by the attention head that extracted the aspect of the segment 

with the highest row-wise attention weight. Darker shades 

indicate the higher importance of phrases in the segment. For 

illustration and clarity purposes, we set the number of 

attention heads as 5. If different aspects are treated equally, 

each aspect will have a row-wise attention weight of 0.2. 

The aspect with the highest row-wise attention weight 

highlighted the phrase <by us and or by our service providers 

or partners.= This phrase indicates that both the first party and 

third party would collect/access users’ data. In addition, since 

FP and TP share common information, such as the types of 

collected personal information, segments that belong to FP (or 

TP) are more likely to also belong to TP (or FP). SAAS can 

leverage differentiating aspects and the relationship between 

data practice categories to identify both TP and FP, whereas 

SSASE only identified FP. A similar pattern occurred in 287 

out of 1,872 segments in the testing dataset. Comprehensively 

capturing all labels is essential. In this example, if regulators 

were to evaluate annotated TP segments generated by SSASE, 

they would miss this segment and may impose unwarranted 

fines on the company for not documenting all relationships 

with third-party data processors. SAAS can help prevent 

unwarranted fines by returning the segment containing the 

information of third-party tracking technologies to confirm 

that the company did request consent in its privacy policy. 

Experiment 3 Results: Ablation Analysis  

In Experiment 3, we examined the effect of RWA and the 

multi-label classifier on SAAS’s performance. Three variants 

of SAAS were tested, including SAAS without RWA, SAAS 

but replacing RWA with MLP, and 10 SAASs, one for each 

data practice category. We present each model’s performance 

in terms of micro-averaged precision, recall, F1-score, and HL 

in Table 11. The best scores are highlighted in boldface. Each 

model’s performance in each of the 10 data practice categories 

is reported in Appendix B.
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Table 11. Experiment 3: Ablation Analysis 

Model Micro- 
averaged 

precision 

Micro-
averaged 
recall 

Micro-
averaged  
F1-score 

Micro-
averaged  
HL 

Without RWA 0.800*** 0.706*** 0.750*** 0.060*** 

Replacing RWA with MLP 0.802*** 0.699*** 0.747*** 0.060*** 

10 SAASs, one for each data practice category 0.792* 0.659** 0.718*** 0.066*** 

SAAS 0.807 0.714 0.758 0.058 

Note: *, **, ***: Statistically significant difference at ā < 0.05, 0.01, 0.001 
 

 

SAAS outperformed the SAAS variants in terms of micro-
averaged precision (0.807), micro-averaged recall (0.714), 
micro-averaged F1-score (0.758), and micro-averaged HL 
(0.058) by statistically significant margins. The results suggest 
that the RWA emphasized the critical aspects corresponding 
to each segment extracted by the multi-head self-attention 
mechanism to help improve performance. Replacing RWA 
with MLP resulted in a lower F1-score (0.747) than the 
proposed SAAS (0.758). An MLP layer can learn a fixed 
weighting matrix while RWA can update weights based on 
different input segments. The proposed SAAS, which 
simultaneously predicts 10 data practice categories, 
outperformed 10 independent SAAS models, possibly 
because the generated representation is aware of relationships 
and common features across categories. 

Experiment 4 Results: Ground Truth vs. Automated 
Segmentation  

In OPP-115, privacy policies were segmented manually. 
However, scaling this manual segmentation process to handle 
a large volume of privacy policies in practical applications is 
neither feasible nor efficient. In Experiment 4, we assessed 
SAAS’s performance on two different segmentation 
approaches: ground truth segments from OPP-115 and 
automated segments. For the automated segmentation, we 
chose ST-Ro (Aumiller et al., 2021), as it outperformed 
prevailing text segmentation algorithms (e.g., GraphSeg, 
averaging over Global Vectors) on OPP-115 using the �ā 
metric (Beeferman et al., 1999) by statistically significant 
margins (p < 0.001). ST-Ro (Aumiller et al., 2021) operates 
by taking two neighbor sentences as input and predicting 
whether they belong to the same segments. In the 5×2 cross-
validation, we trained SAAS on the first fold of the OPP-115 
segmentation data in each round and used the second fold for 
testing. To generate ST-Ro segments, we concatenated 
neighboring sentences in the second fold if ST-Ro predicted 
that they should be part of the same segment. We also assigned 
data practice category labels to the ST-Ro segments if two or 
more of the original OPP-115 annotators indicated a specific 
data practice category within the segment. 

The micro-averaged precision, recall, and F1-score for the 

original OPP-115 segmentation were 78.7%, 70.9%, and 

74.6%, respectively. In comparison, the micro-averaged 

precision, recall, and F1-score for the ST-Ro segments were 

76.3%, 71.2%, and 73.7%, respectively. The difference in 

F1-scores between these two segmentation methods was not 

statistically significant. These results indicate that SAAS is 

consistent in capturing key information for prediction when 

applied to both the original OPP-115 segmentation and the 

segments generated by the automated ST-Ro method. This 

suggests that while automated segmentation approaches may 

produce segments differently from manual methods, they do 

not significantly impact SAAS’s overall performance. 

Regulation Impact Detection: A Case on GDPR  

To demonstrate proof of concept and the potential practical 

value of our proposed SAAS, we conducted a GDPR impact 

detection analysis on Amazon’s privacy policies. While our 

proposed framework can be applied to any privacy 

regulation (new, updates to existing policies, or updated 

privacy policies), we focused the analysis on the impacts of 

GDPR on privacy policy evolution. GDPR was chosen 

because it impacts companies worldwide (since it protects 

all EU residents) rather than regionally (e.g., CCPA in 

California), and it has more documented global impacts than 

other recent regulations. We chose Amazon because it was 

recently fined $888 million based on accusations of using 

user data for developing targeted ads without attaining the 

consent of its users (thereby violating GDPR) (Dumiak, 

2021). Therefore, our case study aims to identify whether 

Amazon’s pre- and post-GDPR privacy policies provided 

information about the ad targeting system and if they 

explicitly asked users to agree to Amazon’s use of their data 

(i.e., regulation impact detection). We employed five steps 

to execute the case study, which can be adopted by relevant 

stakeholders (e.g., legislators, regulators, researchers) in 

their privacy policy analysis. 
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Table 12. Selected Segments Pertaining to FP in Amazon’s Privacy Policy Pre- and Post-GDPR 

Time Segment Row-wise attention weight 

Pre-GDPR  
(March 3, 2014) 

 

0.2766 

Post-GDPR 
(February 12, 2021) 

 

0.3044 

Step 1: Collect privacy policies before and after a time of 

interest. GDPR became enforceable on May 25, 2018. 

Therefore, we collected Amazon’s pre- and post-GDPR privacy 

policies from March 3, 2014, through February 12, 2021. 

Step 2: Pre-process the privacy policies by dividing them 

into semantically coherent segments with text segmentation 

techniques. Consistent with the best practices (Fawaz et al., 

2019; Harkous et al., 2018; Zaeem & Barber, 2021), we 

segmented the retrieved policies with automated text 

segmentation techniques, ST-Ro (Aumiller et al., 2021). 

Step 3: Annotate segments with SAAS. We annotated 

segments in pre- and post-GDPR privacy policies using SAAS 

pre-trained on the OPP-115 corpus. 

Step 4: Select data practice categories of interest. We 

selected segments labeled as FP for further investigation in this 

case study. FP contains user data information, including 

personally identifiable information and behavioral data that 

facilitate targeted ads. 

Step 5: Visualize segments in data practice categories of 

interest using attention weights. To identify the difference in 

privacy policies and the presentation of data practice categories, 

we visualized segments using the feature weights assigned by 

SAAS’s attention mechanisms.  

We present two FP segments in Amazon’s pre- and post-GDPR 

privacy policies in Table 12. The color shades are the 

normalized row-wise attention weights. Dark red indicates the 

higher importance of phrases in the segment. For illustration 

purposes, we set the number of attention heads as 5. If aspects 

are treated equally, each aspect will have a row-wise attention 

weight of 0.2. 

As shown in Table 12, the segments are related to cookies, 

commonly known for collecting users’ behavioral data to 

generate personalized recommendations. In the pre-GDPR 

privacy policy, the aspect with the highest row-wise attention 

weight (0.2766) highlighted examples of specific features that 

utilized cookies in such a segment. In the post-GDPR policy, 

the aspect with the highest row-wise attention weight (0.3044) 

highlighted the phrase that leads users to another document 

called <Cookies Notice.= This redirect could increase the 

burden on users aiming to understand data practices related to 

targeted ads. Recitals 39 and 58 of the GDPR mandate 

transparency in data practices, i.e., require that any information 

addressed to the public or the data subject be concise, easily 

accessible, and easy to understand. However, in Amazon’s 
updated policy, Amazon does not explicitly present the 

information about cookies. This information is hidden in a 

separate document that users have to locate, access, and read 

(thereby violating the <easily accessible= principle of GDPR). 

Users who cannot access or comprehend the separate document 

will not know what they are consenting to. Taken together, 

these results can help regulators identify how Amazon is 

adhering to GDPR in a targeted manner. 

Discussion and Contributions  

The increasing societal concern about consumer information 

privacy has led to new privacy regulations and fundamental 

changes in companies’ privacy policies. Consequently, there is 

a need to evaluate how companies change their privacy policies 

and whether they provide more protection for users’ 
information. In this study, we adopted the computational design 

science paradigm to design, implement, and evaluate a novel 

privacy analytics framework with a novel DL-based SAAS text 

analytics method that was guided by key privacy analytics 

domain requirements. SAAS automatically annotates segments 

in privacy policies into data practice categories. We rigorously 

evaluated SAAS against benchmark ML and DL methods and 

demonstrated its practical utility with an in-depth case study of 



Lin et al. / Automated Analysis of Changes in Privacy Policies 

1472 MIS Quarterly Vol. 48 No. 4 / December 2024 

 

GDPR’s impact on Amazon’s privacy policies. Our research 

contributes to the IS knowledge base and has managerial and 

practical implications.  

Contributions to the IS Knowledge Base 

Novel IT artifacts often contribute prescriptive knowledge back 

to the IS knowledge base to guide future research (Hevner et al., 

2004; Nunamaker et al., 1990; Rai, 2017; Zhu et al., 2021). 

Common contributions can include a situated implementation 

of an IT artifact in a selected domain and/or design principles 

that can be applied to other application environments. Our 

proposed privacy analytics framework is a situated 

implementation aligned with information privacy and data 

analytics. It also follows two key design principles that are 

applicable beyond the privacy policy evolution analysis: (1) 

differentiating the importance of different sets of words or 

phrases in a given complex and long text and incorporating 

common features between labels into a multi-label 

classification model for improving the model performance and 

(2) automatically annotating long text into finer-grained 

categories to facilitate downstream analytical tasks. Each 

design principle could help guide the design of IT artifacts for 

e-commerce, health, and privacy. Table 13 summarizes the 

framework components, the framework’s general design 

principle, the relevant IS literature to which each principle could 

offer value, and potential classes of research inquiry. We then 

elaborate on how these design principles can provide value to 

each listed body of IS literature. 

E-Commerce  

Customer reviews in e-commerce help reveal relationships 

between users’ preferences and product choices (Wu et al., 

2019). Customer reviews often include complaints about, for 

example, the price, quality of the after-sales service, and other 

characteristics of a particular product. However, multi-class 

classification approaches cannot effectively identify and label 

product reviews that mention multiple preferences and products 

(Abrahams et al., 2015; Zhou et al., 2018). Scholars could 

consider Design Principle 1 to help design a multi-label 

classification approach to point out multiple interdependent 

(i.e., correlated) product issues (labels) with similar features 

mentioned in a customer review.  

Health  

Social media has become a popular channel for patients 

seeking health support (Bardhan et al., 2020). Users often 

post about multiple symptoms and afflictions (e.g., stress, 

physical disorders, mental disorders, etc.) in a single social 

media post (Chau et al., 2020). Scholars could consider 

Design Principle 1 when developing their multi-label 

classification approaches to automatically identify multiple 

(potentially related) symptoms or health needs in the content 

posted by patients to automatically group and label social 

media posts for further investigation.  

Privacy  

Regulations such as GDPR and CCPA have significant and 

lasting global impacts on developing legal documents. 

However, the length and complex nature of legal documents 

often make fundamental privacy analysis tasks (e.g., 

compliance checking) challenging to execute. Consequently, 

there is a significant need to develop approaches that can 

automatically synthesize the content in legal documents (e.g., 

Terms of Use) into manageable components. To this end, 

scholars could consider including Design Principle 2 when 

segmenting legal documents into coherent and semantically 

related sections that end users can select for their tasks. 

Managerial and Practical Implications 

Regulators and companies are increasingly focusing on the 

protection of consumer information privacy. Privacy policies 

are essential reference documents in examining how companies 

handle personal data. However, as businesses are affected by 

new privacy regulations, the complexity of privacy policies to 

be analyzed and reviewed has steadily increased (Amos et al., 

2021). Our proposed framework automatically synthesizes the 

rich text content in privacy policies into semantically coherent 

data practice category label(s). We believe that our privacy 

analytics framework will help the two types of stakeholders in 

practice: regulators and companies.  

Regulators: Our proposed framework can help identify content 

changes in different data practice categories. By analyzing how 

companies adjusted their privacy policies based on new or 

updated regulations, regulators could potentially improve their 

testing and evaluation processes for regulatory compliance and, 

therefore, enforce regulations more effectively. 

Companies: Privacy policies will continue to change based on 

the functions provided by the business, requirements of new 

privacy regulations, and evolving consumer privacy 

expectations. Companies could use our proposed framework to 

review potential compliance issues in their privacy policies. Our 

framework can also help pinpoint specific data practice 

segments according to new (or updated) domestic and global 

privacy regulations. Consequently, companies could use our 

framework to better identify potential privacy violations and the 

associated legal and financial consequences.
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Table 13. Design Principles Offered by our Proposed Privacy Policy Evolution Analytics Framework for 
Selected Bodies and Classes of IS Research Inquiry 

Framework 
component 

General design principle  Relevant IS 
literature 

Potential class of research inquiry 

SAAS Differentiating the importance of different 
sets of words or phrases in a given 
complex and long text and incorporating 
common features and relationships 
between labels for improving multi-label 
classification 

E-commerce • Identifying and labeling multiple product 
issues within customer reviews 

Health • Identifying patients’ needs for social 
support from social media posts 

Regulation 
impact  

Automatically annotating long text into 
finer-grained categories to facilitate 
downstream analytical tasks. 

Privacy • Analysis of legal articles 

• Analysis of Terms of Use or End-User 
License Agreement documents 

Conclusion and Future Directions 

Consumer information privacy has rapidly emerged as a 

significant societal issue. Increasingly, legislators, regulators, 

and citizens are expressing concern about how companies 

maintain the information privacy of their consumers. 

Consequently, the past half-decade has seen the development 

and enforcement of various privacy regulations such as the EU’s 
GDPR and the CCPA. However, many privacy policies that 

have been revised due to regulatory requirements have become 

increasingly lengthy and complex. Consequently, regulators and 

legislators often find it difficult to systematically identify how a 

company is amending and presenting its privacy policies. 

In this study, we developed a novel privacy policy evolution 

analytics framework to help identify how companies change and 

present their privacy policies based on new privacy regulations. 

The core novelty of this framework is a SAAS method that 

automatically labels paragraph-length segments in long and 

unstructured privacy policies into their appropriate data practice 

category(ies) to help stakeholders focus on data practices of 

interest (without reading all of the text within privacy policies). 

SAAS incorporates RWA into the conventional SSASE to 

emphasize the differentiating features within segments during 

the data practice category labeling process. SAAS outperformed 

conventional ML approaches and state-of-the-art DL algorithms 

in conducting multi-label data practice segment annotation. We 

also illustrated SAAS’s potential practical value with a case 

study identifying the differences between Amazon’s privacy 

policies pre- and post-GDPR. The results of this case study 

indicate that Amazon’s revised privacy policy requires 

consumers to exert more effort to find all the information related 

to targeted ads (violating a fundamental principle of GDPR). 

Regulators and legislators could leverage the proposed 

framework to amend their regulations to better protect 

consumers’ information and to help companies evaluate the 

potential noncompliance of their privacy policies. 

There are several promising directions for future research. 

First, different cultures and countries may address consumer 

privacy issues differently. To this end, future work could 

develop a multilingual privacy policy evolution analytics 

framework to handle multiple languages in different policy 

data categories and segments to investigate a privacy policy’s 

global impact. Second, a SAAS-based AI assistance system 

with a user-friendly interface and browse, search, and 

recommendation functions could assist end users in large-

scale online privacy policy comparisons from different 

companies when selecting online products or services. Each 

direction could help build a better understanding of how 

organizations and consumers respond to privacy policy 

requirements in a rapidly changing digital world. 
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Appendix A 

SAAS Model Specifications 

The proposed SAAS model is implemented with PyTorch (Paszke et al., 2019). Consistent with best practices in computational design science 

research, we provide the key architectural details and the parameter settings of our proposed model in Table A1 (Zhu et al., 2021).  

Table A1. SAAS Model Specification 

Component Layer Previous layer Activation function Dropout Output shape 

Input Input - - - (500) 

Word embedding Embedding  Input - Yes (500, 300) 

Bi-LSTM Bi-LSTM Embedding - Yes (500, 256*4) 

Attention mechanism Dense1  Bi-LSTM tanh No (256*4, 512) 

Dense2  Dense1 Softmax Yes (512, 30) 

Matrix sentence embedding M_emb  Bi-LSTM, Dense2 - - (512, 30) 

Row-wise attention Dense3  M_emb Tanh, Softmax - (30, 1) 

Multi-label classifier Dense4 M_emb - Yes (512*30, 1024) 

Dense5  Dense4 Sigmoid - (1024, 1) 

Dense6  Dense4 Sigmoid - (1024, 1) ⋮ ⋮ ⋮ - ⋮ 
Dense14 Dense4 Sigmoid - (1024, 1) 

To ensure the length consistency of the input data practice segments, we padded and truncated segments that contained fewer than or more 

than (respectively) 500 words. Each word was encoded as a 300-dimensional word embedding. Each Bi-LSTM direction contained two 

LSTM layers with a 256-dimensional hidden state. The four hidden states of Bi-LSTM were concatenated as the input of the attention 

mechanism and matrix sentence embedding. In the attention mechanism, the Dense1 layer generated 512 linear combinations of the Bi-LSTM 

hidden state, from which the Dense2 layer extracted 30 disparate aspects. Row-wise attention weighted the 30 aspects of matrix sentence 

embedding. Finally, matrix sentence embedding was passed to a dense layer of 1,024 nodes and 10 binary classifiers (i.e., Dense5 to Dense14) 

for multi-label classification. To evaluate the multi-label classification performance of the models, we used binary cross-entropy as the loss 

function. The Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.0005 and a batch size of 32 was used to train SAAS. (Ebrahimi 

et al., 2020). 
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Appendix B  

Performance Breakdown by Category 

In the main text, we presented the results of the proposed SAAS and all benchmark machine learning (ML) and deep learning (DL) models 

across all 10 data practice categories. However, identifying how each approach is performed in each category can help stakeholders identify 

the appropriate model for particular categories. We present SAAS’s performance against ML models by 10 data practice categories in Table 

B1. All models were evaluated based on precision, recall, F1-score, and hamming loss (HL). We performed paired t-tests to identify 

statistically significant differences between SAAS and the benchmark methods. The best scores appear in boldface. 

Table B1. Performance of SAAS vs. Conventional ML Models by Category 

Model 
category 

Model 
FP 
(n=1,522) 

TP 
(n=1,186) 

UCC 
(n=632) 

UAED 
(n=231) 

DR 
(n=156) 

DS 
(n=375) 

PC 
(n=192) 

DNT 
(n=32) 

ISA 
(n=353) 

O 
(n=1,763) 

Precision 

Paragraph 
vector-based 
(Doc2Vec) 

LR 0.766** 0.718*** 0.635** 0.550*** 0.249*** 0.641*** 0.663*** 0.400*** 0.821*** 0.616*** 

SVM 0.783 0.757** 0.742 0.699** 0.100*** 0.894 0.770*** 0.583*** 0.913 0.703*** 

RF 0.726*** 0.725*** 0.610*** 0.649** 0.081*** 0.741* 0.871** 0.100*** 0.810** 0.673*** 

KNN 0.731*** 0.713*** 0.616*** 0.615*** 0.050*** 0.684*** 0.878** 0.667* 0.836*** 0.591*** 

Term 
frequency-
based (TF-
IDF) 

LR 0.787 0.781 0.679** 0.839 0.733 0.855 0.911 1.000 0.909 0.667*** 

SVM 0.760** 0.742** 0.643*** 0.828 0.723 0.848 0.902* 1.000 0.916 0.633*** 

RF 0.826 0.849 0.809 0.870 0.818 0.957 0.980 0.700 0.954 0.821 

NB 0.767** 0.757** 0.760 0.780 0.794* 0.908 0.779*** 0.982 0.909 0.759* 

KNN 0.742*** 0.740*** 0.700** 0.768 0.823 0.873 0.842** 1.000 0.898 0.748*** 

Proposed SAAS 0.799 0.802 0.787 0.791 0.798 0.851 0.933 0.974 0.907 0.802 

Recall 

Paragraph 
vector-based 
(Doc2Vec) 

LR 0.636*** 0.556*** 0.365*** 0.422*** 0.138 0.532*** 0.669 0.547 0.728*** 0.397*** 

SVM 0.625*** 0.523*** 0.304*** 0.291*** 0.002** 0.429*** 0.637** 0.528 0.670*** 0.317*** 

RF 0.538*** 0.451*** 0.221*** 0.116*** 0.006** 0.152*** 0.442*** 0.006*** 0.287*** 0.380*** 

KNN 0.556*** 0.473*** 0.298*** 0.126*** 0.002** 0.262*** 0.581*** 0.077*** 0.346*** 0.551 

Term 
frequency-
based (TF-
IDF) 

LR 0.751*** 0.711*** 0.537 0.600 0.323 0.669 0.785 0.903 0.817 0.625 

SVM 0.738*** 0.705*** 0.537 0.580* 0.313 0.640** 0.735 0.858 0.771** 0.618 

RF 0.511*** 0.458*** 0.347*** 0.085*** 0.057* 0.350*** 0.290*** 0.110*** 0.521*** 0.369*** 

NB 0.722*** 0.558*** 0.336*** 0.260*** 0.121 0.550*** 0.632*** 0.535 0.615*** 0.475*** 

KNN 0.750*** 0.663*** 0.445** 0.469*** 0.168 0.554*** 0.740 0.832 0.761*** 0.534* 

Proposed SAAS 0.855 0.815 0.499 0.695 0.121 0.681 0.732 0.468 0.813 0.585 

F1-score 

Paragraph 
vector-based 
(Doc2Vec) 

LR 0.694*** 0.626*** 0.461*** 0.474*** 0.175 0.579*** 0.663*** 0.453** 0.771*** 0.481*** 

SVM 0.695*** 0.618*** 0.428*** 0.406*** 0.004** 0.579*** 0.694*** 0.543 0.772*** 0.436*** 

RF 0.618*** 0.556*** 0.324*** 0.193*** 0.012** 0.250*** 0.583*** 0.012*** 0.421*** 0.485*** 

KNN 0.631*** 0.568*** 0.400*** 0.208*** 0.004*** 0.378*** 0.697*** 0.137*** 0.488*** 0.570*** 

Term 
frequency-
based (TF-
IDF) 

LR 0.769*** 0.744*** 0.598 0.699 0.441 0.749 0.842 0.948 0.859 0.645* 

SVM 0.749*** 0.722*** 0.584* 0.681* 0.433 0.729** 0.809 0.923 0.836** 0.625*** 

RF 0.631*** 0.595*** 0.343*** 0.153*** 0.106 0.511*** 0.444*** 0.172*** 0.672*** 0.509*** 

NB 0.743*** 0.642*** 0.466*** 0.388*** 0.210 0.685** 0.697*** 0.685 0.733*** 0.584*** 

KNN 0.746*** 0.699*** 0.543*** 0.581*** 0.274 0.677*** 0.786* 0.907 0.824*** 0.622*** 

Proposed SAAS 0.825 0.806 0.603 0.737 0.196 0.752 0.819 0.607 0.856 0.675 

HL 

Paragraph 
vector-based 
(Doc2Vec) 

LR 0.195*** 0.180*** 0.097*** 0.040*** 0.033*** 0.045*** 0.023*** 0.011*** 0.035*** 0.249*** 

SVM 0.191*** 0.175*** 0.093*** 0.036*** 0.025* 0.036*** 0.019*** 0.007** 0.032*** 0.240*** 

RF 0.232*** 0.196*** 0.105*** 0.041*** 0.026*** 0.052*** 0.021*** 0.008*** 0.064*** 0.235*** 

KNN 0.226*** 0.195*** 0.102*** 0.041*** 0.025* 0.050*** 0.017*** 0.008*** 0.059*** 0.243*** 

Term 
frequency-
based (TF-
IDF) 

LR 0.158*** 0.133*** 0.082** 0.022 0.020 0.026 0.010 0.001 0.022 0.201*** 

SVM 0.172*** 0.147*** 0.087*** 0.023 0.020 0.028* 0.012 0.001 0.024** 0.216*** 

RF 0.208*** 0.169*** 0.094*** 0.040*** 0.024 0.039*** 0.024*** 0.007*** 0.041*** 0.208*** 

NB 0.173*** 0.169*** 0.088*** 0.035 0.023 0.029* 0.018 0.004 0.036** 0.198*** 

KNN 0.178*** 0.155*** 0.086*** 0.029*** 0.022 0.031*** 0.013** 0.001 0.027*** 0.189*** 

Proposed SAAS 0.127 0.106 0.074 0.021 0.023 0.026 0.011 0.005 0.022 0.165 
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SAAS outperformed other benchmarks on FP (0.825), TP (0.806), UCC (0.603), UAED (0.737), DS (0.752), and O (0.675) on F1-score (6 

of the 10 categories) and on FP (0.127), TP (0.106), UCC (0.074), UAED (0.021), DS (0.026), ISA (0.022), and O (0.165) on HL. 

Furthermore, SAAS outperformed all conventional ML methods, except TF-IDF + RF, on FP (0.799), TP (0.802), UCC (0.787), DR (0.798), 

PC (0.933), and O (0.802) on precision. In addition, SAAS achieved the best recall on FP (0.855), TP (0.815), UAED (0.695), and DS (0.681). 

The results suggest that SAAS’s use of the attention mechanism with Bi-GRU enabled the model to leverage the context information better 

to achieve higher classification performance than benchmark methods. However, SAAS did not outperform term frequency-based models on 

DR, PC, and DNT categories on all the metrics, likely due to a lack of training data. We also evaluated the performances of the DL-based 

benchmarks by data practice category. Table B2 summarizes model performances. The best scores are highlighted in boldface. 

Table B2. Performance of SAAS vs. Prevailing Deep Learning Models by Data Practice Category 

Model 
category 

Model FP  
(n=1,522) 

TP 
(n=1,186) 

UCC 
(n=632) 

UAED 
(n=231) 

DR 
(n=156) 

DS 
(n=375) 

PC 
(n=192) 

DNT 
(n=32) 

ISA 
(n=353) 

O 
(n=1,763) 

Precision 

CNN-based  CNN 0.809 0.783* 0.615*** 0.674* 0.662 0.752** 0.795** 0.917 0.840*** 0.755* 

Uni-
directional 
RNN-based 

LSTM + Max pooling 0.823 0.823 0.614*** 0.728 0.452 0.721*** 0.842* 0.834* 0.860*** 0.704** 

LSTM + Mean pooling 0.816 0.796 0.665** 0.663** 0.531 0.722*** 0.851* 0.626* 0.878 0.722** 

GRU + Max pooling 0.826 0.835 0.664*** 0.702** 0.540 0.727** 0.878* 0.890 0.855** 0.699*** 

GRU + Mean pooling 0.801 0.817 0.675* 0.723* 0.571 0.751** 0.858* 0.924 0.884* 0.760 

Bi-directional 
RNN-based 

BiLSTM + Max pooling 0.826 0.798 0.645** 0.735* 0.460 0.789* 0.888* 0.965 0.865* 0.683*** 

BiLSTM + Mean pooling 0.799 0.821 0.676** 0.793 0.692 0.743** 0.881* 0.839* 0.864** 0.734** 

BiGRU + Max pooling 0.820 0.815 0.636*** 0.762 0.398* 0.741** 0.893* 0.883 0.893 0.695*** 

BiGRU + Mean pooling 0.823 0.804 0.678** 0.750 0.551 0.761** 0.891* 0.960 0.878* 0.733** 

Attention-
based 

10 SSASEs 0.797 0.795 0.662* 0.729* 0.565 0.745* 0.887 0.824 0.890 0.745 

SSASE with a multi-label 
classifier 

0.787 0.811 0.758 0.800 0.748 0.861 0.924 0.930 0.876* 0.825 

Proposed SAAS 0.799 0.802 0.787 0.791 0.798 0.851 0.933 0.974 0.907 0.802 

Recall 

CNN-based  CNN 0.776*** 0.798 0.648 0.707 0.355 0.720 0.829 0.832 0.864 0.627 

Uni-
directional 
RNN-based 

LSTM + Max pooling 0.798** 0.775* 0.617 0.649 0.181 0.739 0.703 0.569 0.832 0.638 

LSTM + Mean pooling 0.782** 0.786* 0.597 0.678 0.257 0.697 0.708 0.492 0.845 0.596 

GRU + Max pooling  0.808* 0.780 0.609 0.716 0.247 0.706 0.695 0.544 0.845 0.638 

GRU + Mean pooling 0.832 0.797 0.605 0.702 0.302 0.721 0.737 0.722 0.834 0.568 

Bi-directional 
RNN-based 

BiLSTM + Max pooling 0.788*** 0.796 0.613 0.707 0.255 0.727 0.747 0.648 0.873 0.662 

BiLSTM + Mean pooling 0.811* 0.775** 0.591 0.669 0.355 0.733 0.703 0.615 0.823 0.587 

BiGRU + Max pooling 0.803** 0.791 0.632 0.667 0.166 0.715 0.726 0.805 0.841 0.643 

BiGRU + Mean pooling 0.805* 0.798 0.590 0.693 0.257 0.705 0.718 0.738 0.842 0.600 

Attention-
based 

10 SSASEs 0.835 0.807 0.589 0.691 0.287 0.733 0.756 0.830 0.847 0.590 

SSASE with a multi-label 
classifier 

0.835 0.789 0.550 0.684 0.155 0.676 0.727 0.736 0.838 0.555 

Proposed SAAS 0.855 0.815 0.499 0.695 0.121 0.681 0.732 0.468 0.813 0.585 

F1-score 

CNN-based  CNN 0.791*** 0.789** 0.628 0.683 0.445 0.731* 0.809 0.859 0.851 0.684 

Uni-
directional 
RNN-based 

LSTM + Max pooling 0.809* 0.798 0.605 0.675 0.248 0.728** 0.750** 0.651 0.844 0.665 

LSTM + Mean pooling 0.797*** 0.789* 0.624 0.665 0.318 0.701*** 0.768* 0.462 0.860 0.649 

GRU + Max pooling  0.816* 0.805 0.630 0.705 0.331 0.711*** 0.770* 0.643 0.848 0.664 

GRU + Mean pooling 0.814 0.805 0.631 0.705 0.387 0.729*** 0.780* 0.787 0.856 0.648* 

Bi-directional 
RNN-based 

BiLSTM + Max pooling 0.805*** 0.795* 0.621 0.718 0.268 0.753 0.806 0.732 0.867 0.670 

BiLSTM + Mean pooling 0.804*** 0.797* 0.627 0.724 0.450 0.736** 0.775* 0.637 0.841* 0.648 

BiGRU + Max pooling 0.810** 0.801 0.626 0.710 0.221 0.721*** 0.797 0.821 0.865 0.666 

BiGRU + Mean pooling 0.811* 0.799 0.623 0.716 0.331 0.725*** 0.786 0.822 0.858 0.657 

Attention-
based 

10 SSASEs 0.814* 0.798 0.614 0.702 0.366 0.731* 0.810 0.823 0.867 0.656 

SSASE with a multi-label 
classifier 

0.806** 0.796 0.629 0.723 0.240 0.751 0.809 0.807 0.854 0.656 

Proposed SAAS 0.825 0.806 0.603 0.737 0.196 0.752 0.819 0.607 0.856 0.675 

HL 

CNN-based  CNN 0.143*** 0.116* 0.088** 0.028* 0.021 0.031** 0.013* 0.002 0.025** 0.169 

Uni-
directional 
RNN-based 

LSTM + Max pooling 0.131 0.107 0.092** 0.027* 0.025 0.032*** 0.015* 0.005 0.025* 0.187*** 

LSTM + Mean pooling 0.138* 0.114 0.082* 0.030* 0.032 0.035*** 0.014* 0.012 0.022 0.187*** 

GRU + Max pooling  0.128 0.102 0.082* 0.026 0.023 0.034** 0.013* 0.004 0.025 0.188*** 

GRU + Mean pooling 0.132 0.105 0.080* 0.025* 0.024 0.031*** 0.014* 0.003 0.023 0.180*** 
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Bi-directional 
RNN-based 

BiLSTM + Max pooling 0.133 0.111 0.085** 0.024 0.043 0.028 0.012 0.003 0.022 0.190*** 

BiLSTM + Mean pooling 0.137** 0.107 0.080* 0.022 0.022 0.031** 0.013* 0.005 0.025** 0.186*** 

BiGRU + Max pooling 0.131 0.107 0.087* 0.024 0.025* 0.032** 0.012 0.003 0.021 0.188*** 

BiGRU + Mean pooling 0.130 0.109 0.082* 0.024 0.024 0.031*** 0.013* 0.003 0.023 0.183** 

Attention-
based 

10 SSASEs 0.133 0.111 0.084* 0.025 0.023 0.032* 0.012 0.002 0.021 0.180*** 

SSASE with a multi-label 
classifier 

0.140 0.109 0.073 0.022 0.023 0.026 0.011 0.003 0.023 0.169 

Proposed SAAS 0.127 0.102 0.074 0.021 0.023 0.026 0.011 0.005 0.022 0.165 

SAAS achieved the highest F1-score on FP (0.825), TP (0.806), UAED (0.737), and PC (0.819) and the lowest HL on FP (0.127), UAED 

(0.021), DS (0.026), PC (0.011), and O (0.165). SAAS achieved the best precision on UCC (0.787), DR (0.798), PC (0.933), DNT (0.974), 

and ISA (0.907). In addition, SAAS outperformed prevailing DL models on recall on FP (0.855) and TP (0.815). No other model attained 

the best performances in two or more categories in any metric. The results indicate that SAAS consistently considers the unique differentiating 

aspects of all data practice categories when annotating segments. We also examined how the proposed SAAS and its variant performed in 

each category, summarized in Table B3. The best scores appear in boldface. 

Table B3. Performance of Ablation Analysis by Category 

Model FP 
(n=1,522) 

TP 
(n=1,186) 

UCC 
(n=632) 

UAED 
(n=231) 

DR 
(n=156) 

DS 
(n=375) 

PC 
(n=192) 

DNT 
(n=32) 

ISA 
(n=353) 

O 
(n=1,763) 

Precision 

Without RWA 0.787 0.811 0.758 0.800 0.748 0.861 0.924 0.930 0.876* 0.825 

Replacing RWA with MLP 0.785 0.818 0.751 0.780 0.745 0.821 0.928 0.970 0.916 0.816 

10 SAASs 0.780 0.812 0.712* 0.802 0.325* 0.761 0.944 0.919** 0.845** 0.833 

SAAS 0.799 0.802 0.787 0.791 0.798 0.851 0.933 0.974 0.907 0.802 

Recall 

Without RWA 0.835 0.789 0.550 0.684 0.155 0.676 0.727 0.736 0.838 0.555 

Replacing RWA with MLP 0.840 0.779 0.542 0.610 0.111 0.706 0.755 0.671 0.786 0.551* 

10 SAASs 0.786** 0.761** 0.528 0.625* 0.087 0.706 0.652 0.843 0.851 0.451*** 

SAAS 0.855 0.815 0.499 0.695 0.121 0.681 0.732 0.468 0.813 0.585 

F1-score 

Without RWA 0.806** 0.796 0.629 0.723 0.240 0.751 0.809 0.807 0.854 0.656 

Replacing RWA with MLP 0.810 0.796 0.625 0.655 0.185 0.753 0.830 0.783 0.842 0.655 

10 SAASs 0.782*** 0.782* 0.588 0.691* 0.133 0.719** 0.749 0.855 0.845 0.579*** 

SAAS 0.825 0.806 0.603 0.737 0.196 0.752 0.819 0.607 0.856 0.675 

HL 

Without RWA 0.140* 0.109 0.073 0.022 0.023 0.026 0.011 0.003 0.023 0.169 

Replacing RWA with MLP 0.138 0.108 0.074 0.028 0.023 0.027 0.010 0.003 0.024 0.169 

10 SAASs 0.152*** 0.114 0.083* 0.024 0.023 0.032* 0.013 0.002 0.026 0.189*** 

SAAS 0.127 0.106 0.074 0.021 0.023 0.026 0.011 0.005 0.022 0.165 

SAAS outperformed its variants on the majority of data practice categories on F1-score (FP: 0.825; TP: 0.806; UAED: 0.737; ISA: 0.856; O: 

0.675). This is mainly because the row-wise attention can emphasize the critical semantics in segment embedding extracted by the multi-

head self-attention mechanism. In addition, the results indicated that the proposed row-wise attention operation contributes to performance 

improvement by leveraging the dynamic weighting. Furthermore, compared to the variant that leveraged 10 independent binary classification 

models, SAAS can capture the relationships and common features between data practice categories. 
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Appendix C  

Sensitivity Analysis of Our Proposed SAAS 

We examined SAAS’s sensitivity to four key sets of DL parameters: the number of hidden states in Bi-LSTM, the number of attention units, 

the number of attention heads, and the number of units in the dense layer of the multi-label classifier. We compared model performances 

based on micro-averaged precision, micro-averaged recall, micro-averaged F1-score, and micro-averaged HL. The baseline SAAS had 256 

Bi-LSTM hidden states, 256 attention units to extract aspects of segments into a 30-head matrix segment embedding, and 1024 units in the 

dense layer. We changed the target parameter and fixed all other parameters for each SAAS variation. All models were compared with the 

baseline model for each set of parameters to examine the statistical significance. In this setup, the null hypothesis assumes that there is no 

significant difference between each model and the baseline model. We summarize the performance of SAAS and its variants in Table C1. 

The best performance of each parameter for each metric appears in boldface.  

Table C1. Performance of SAAS with Parameter Variations 

Number of hidden states in Bi-LSTM (baseline model: 256 hidden states) 

Model Micro-averaged precision Micro-averaged recall Micro-averaged F1-score Micro-averaged HL 

128 hidden states 0.806 0.714 0.757 0.058 

256 hidden states 0.807 0.714 0.758 0.058 

512 hidden states 0.796* 0.722 0.757 0.059 

Number of attention units (baseline model: 256 attention units) 

128 units 0.806 0.713 0.756 0.059 

256 units 0.807 0.714 0.758 0.058 

512 units 0.809 0.714 0.758 0.058 

Number of attention heads (baseline model: 30 heads) 

20 heads 0.801 0.715 0.755 0.059 

30 heads 0.807 0.714 0.758 0.058 

40 heads 0.800 0.711 0.752 0.060 

Number of units in the dense layer of the multi-label classifier (baseline model: 1024 units) 

512 units 0.807 0.712 0.756 0.059 

1024 units 0.807 0.714 0.758 0.058 

2048 units 0.804 0.711 0.755 0.059 

Note: *Statistically significant difference at ā < 0.05 

When the number of Bi-LSTM hidden states increased from 128 to 256, there was no significant difference in micro-averaged precision 

(between 0.806 and 0.807), micro-averaged recall (between 0.714 and 0.714), micro-averaged F1-score (between 0.757 and 0.758), or micro-

averaged HL (between 0.058 and 0.058). Further, increasing the number of hidden states did not yield statistically significant performance 

differences in micro-averaged F1-score or micro-averaged HL. Similarly, altering the number of attention units, attention heads, and units in 

the dense layer did not affect the statistically significant differences for any performance metric. This suggests that SAAS performance was 

not sensitive to parameter changes on the attention unit, attention head, or unit-in-the-dense layer. In particular, the results of the changes in 

the number of attention heads suggest that only a few differentiating aspects of a segment are needed. 
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