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ABSTRACT

Cybersecurity is a present and growing concern that needs to be 
addressed with both behavioral and design-oriented research. 
Public cloud providers such as Amazon Web Services and federal 
funding agencies such as the National Science Foundation have 
invested billions of dollars into developing high-performance com-
puting resources accessible to users through con)gurable virtual 
machine (VM) images. This approach o/ers users the 0exibility of 
changing and updating their environment for their computational 
needs. Despite the substantial bene)ts, users often introduce thou-
sands of vulnerabilities by installing open-source software packages 
and miscon)guring )le systems. Given the scale of vulnerabilities, 
security personnel struggle to identify and prioritize vulnerable 
assets for remediation. In this research, we designed a novel unsu-
pervised deep learning-based Multi-View Combinatorial-Attentive 
Autoencoder (MV-CAAE) to capture multi-dimensional vulnerability 
data and automatically identify groups of similar vulnerable com-
pute instances to help facilitate the development of targeted 
remediation strategies. We rigorously evaluated the proposed MV- 
CAAE against state-of-the-art methods in three technical clustering 
experiments. Experiment results indicate that the MV-CAAE 
achieves V-measure scores (metric of cluster quality) 8 percent-48 
percent higher than benchmark methods. We demonstrated the 
practical value through a comprehensive case study by clustering 
vulnerable VMs and gathering qualitative feedback from experi-
enced security professionals through semi-structured interviews. 
The results indicated that clustering vulnerable assets can help 
prioritize vulnerable instances for remediation and enhance deci-
sion-making tasks. The present design-research work also contri-
butes to our theoretical knowledge of cyber-defense.
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Introduction

Cloud computing has emerged as a powerful technology to support an abundance of 
computational workflows across industries including banking, finance, e-commerce, and 
more [92]. Prevailing public cloud providers and U.S. federal agencies, including Amazon 
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Web Services and the National Science Foundation (NSF), have made significant invest-
ments in scalable computing resources and large-scale scientific cyberinfrastructure (CI) to 
support a range of high-impact research areas, from neuroimaging to DNA sequencing 
[83]. Users of public clouds and scientific CI can access computing resources through 
configurable virtual machines (VM) [21, 76] where they can install open-source software 
packages from third-party platforms (e.g., GitHub) and manipulate file systems to support 
their computational workflow. The global VM market, anticipating a valuation of $119 
billion by 2031, comprises millions of users from organizations such as Apple, Netflix, 
Samsung, and more [16, 28]. Thousands of VMs are provisioned on demand to support 
various computational applications (e.g., analytical modeling and web hosting).

Despite the benefits, open-source software in VMs often contains vulnerabilities that can 
compromise CI [76]. Detecting vulnerabilities within VMs presents a unique set of chal-
lenges compared to detecting vulnerabilities in individual software packages. VMs are 
comprised of multiple categories of data with complex representations (e.g., file system 
tree structures and software package dependency networks). Unlike isolated software 
packages where vulnerabilities can be detected using scanners, VMs are comprised of 
thousands of open-source packages, each potentially harboring vulnerabilities. 
Furthermore, users who inadvertently install software with vulnerabilities can further 
increase the attack surface [15, 76]. This problem is further amplified by the number of 
active VMs and, if exploited, can lead to data loss, misuse of resources, and disrupt critical 
business operations [15]. Illustrated in Figure 1 is an example of a VM containing a 
vulnerable package from GitHub.

In Figure 1, the selected VM (Figure 1a) contains the PacificBiosciences package “python- 

pbcommand” (Figure 1b). This package is vulnerable to shell injection attacks (Figure 1c), 
allowing attackers to execute arbitrary code. Assessing software vulnerabilities in cloud 
environments requires analysts to extract and scan software from the VMs for 

Figure 1. Selected virtual machine (VM) including a) a user VM image, b) a selected vulnerable open- 
source software package, and c) a shell injection vulnerability in the software package.
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vulnerabilities. This process aligns with information security management principles, which 
have become a vital organizational concern with substantial managerial implications [71]. 
Information security management seeks to safeguard information technology (IT) infra-
structure and assets and can be characterized by activities such as detecting, prioritizing, 
remediating, and preventing security risks (e.g., vulnerabilities) [46, 84]. Personnel such as 
analysts in security operations centers (SOC) and IT auditors must identify assets, scan for 
vulnerabilities, manually prioritize vulnerabilities for remediation [41], and then prioritize 
vulnerable assets for remediation by categorizing and grouping assets with similar vulner-
abilities [33].

Despite the well-established nature of these processes, a key challenge in managing 
software vulnerabilities from an information security management perspective is over-
coming the vast amount of data and high dimensionality. VMs and other IT assets 
encapsulate thousands of software packages, comprising varying distributions of severity 
and frequency [76]. Multiple vulnerabilities afflicting IT assets and software packages also 
do not allow for a single, definitive label for categorizing and prioritizing vulnerabilities, 
requiring an approach to overcome the lack of labeled data. The task of grouping (cluster-
ing) in cybersecurity has been used for anomaly detection to automatically identify mal-
icious behavior and attacks using unlabeled data [6, 25]. Grouping VMs with similar 
vulnerabilities could help cybersecurity analysts develop targeted remediation strategies 
[72]. However, the magnitude of vulnerabilities returned is beyond comprehension for any 
individual [33]. Furthermore, public clouds and scientific CI often lack dedicated support 
staff to identify, prioritize, and remediate vulnerabilities that remain undetected for years 
[37, 56]. The magnitude of vulnerabilities and lack of sufficient labor requires a computa-
tional approach to group and prioritize vulnerable VMs for remediation.

Recent Information Systems (IS) cybersecurity analytics literature has primarily followed 
the computational design science paradigm to develop novel deep learning (DL) methods 
for Dark Web analytics [23, 64, 66]. DL has emerged as a powerful methodology capable of 
capturing rich data representations without manual feature engineering, which is critical in 
cybersecurity contexts [1,2, 67]. This alleviates security analysts who are managing vulner-
abilities from dedicating time to manually engineer and select features [66, 67]. 
Additionally, DL can operate on complex data structures which are found in VMs (e.g., 
package dependency networks). Due to the deluge of software and vulnerability data, DL is 
a suitable methodological approach to group and prioritize vulnerable VMs for remedia-
tion. The difference in data and domain characteristics between software vulnerabilities and 
prior Dark Web analytics research in information systems (IS) necessitates a novel DL- 
based IT artifact [66]. In light of these concerns, we propose the following research 
questions (RQs): 

Research Question 1 (RQ1): How can we automatically identify the vulnerabilities that afflict 

VMs in cloud computing?

Research Question 2 (RQ2): How can we design a DL-based approach to automatically group 

and prioritize vulnerable VMs for remediation?

In this research, we adopted the computational design science paradigm [60] to 
develop a novel research design that (1) automatically scans VMs to detect 
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vulnerabilities in open-source software on VMs and (2) groups VMs with similar 
vulnerabilities to facilitate vulnerability prioritization and remediation efforts. We 
propose a novel unsupervised DL-based Multi-View Combinatorial-Attentive 
Autoencoder (MV-CAAE) design artifact that draws upon state-of-the-art techniques 
in unsupervised graph embedding, multi-view representation learning, and attention 
mechanisms to fuse packages, vulnerabilities, and file systems from a VM into an 
embedding to support vulnerability prioritization. Our MV-CAAE has two novelties 
in its design:

● First, the MV-CAAE incorporates a Combinatorial Attention Mechanism (CAM) that 
weighs package, vulnerability, and file system data to measure the relevance of each input.

● Second, the MV-CAAE fuses the data using an inverse relevance score, creating a more 
comprehensive VM representation than using the input data separately.

Following the design science paradigm, we rigorously evaluated our MV-CAAE 
design artifact against benchmark graph embedding methods, fusion mechanisms, 
and multi-view autoencoder variants [34, 60]. The evaluation was performed on a 
gold standard dataset of VMs provided by two prevailing NSF-funded science gate-
ways. The results demonstrated that the MV-CAAE outperformed state-of-the-art 
graph embedding and fusion mechanisms for grouping similar vulnerable VMs. We 
demonstrated the MV-CAAE’s practical utility through a case study that sought to 
automatically group (cluster) vulnerable VMs for two major NSF-funded scientific 
CI partners. We elicited qualitative feedback about the utility and value of the MV- 
CAAE results through semi-structured interviews with four organizations, including 
two science gateway partners and two additional organizations that maintain 
research and education CI. The results of the case study illustrated that the MV- 
CAAE can create groups of vulnerable VMs and allow stakeholders to identify VMs 
with high-severity vulnerabilities that can be prioritized for remediation. The case 
study also demonstrated evidence of usefulness, which was corroborated by stake-
holders. The proposed research design and the MV-CAAE have practical implica-
tions for analysts in SOCs and IT auditors for grouping and prioritizing 
vulnerable VMs.

The remainder of this paper is organized as follows. First, we review two categories of related 
research to gather a domain and methodological understanding for the design of our artifact. 
We review IS cybersecurity analytics, computational design science principles, and information 
security management research to guide the development of our artifact and introduce the 
theoretical background. We also establish the methodological background of our research by 
reviewing unsupervised graph embeddings, multi-view representation learning, and attention 
mechanisms. We then summarize the targeted domain and methodological research gaps our 
study targets. Third, we present our proposed research design. Specifically, we formulate meta- 
requirements from kernel theories in information security management and identifying meth-
odological limitations that our design addresses. Fourth, we present the evaluation results 
against benchmark methods. Fifth, we demonstrate the practical utility of our proposed MV- 
CAAE framework with a two-part case study. Sixth, we summarize the practical implications 
and contributions of our research design. Finally, we conclude our research and discuss 
promising future directions.
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Related Research

Developing artifacts under the computational design science paradigm requires a deep 
domain understanding to guide the artifact design [34, 60, 67]. Therefore, we review two 
categories of literature to inform the design of a novel DL-based vulnerability assessment IT 
artifact. First, we examine recent IS cybersecurity analytics research and information 
security management to ground and guide our research. Second, we review three areas of 
DL literature to enhance our methodological foundation and guide the development of our 
artifact. We review unsupervised graph embedding methods for representing package and 
file system relationships, multi-view representation learning for combining categories of 
VM data, and attention mechanisms for dynamically weighing package and file systems 
during the multi-view learning process.

IS Cybersecurity Analytics and Computational Design Science Principles

Cybersecurity analytics has emerged as an important research stream in the IS discipline. We 
summarize selected recent IS cybersecurity analytics research in Table 1. For each study, we 
present the year it was published, the author(s), the objective, the dataset(s) used, the analytical 
method, and if the study incorporated a vulnerability assessment (the focus of our study).

Recent cybersecurity analytics studies have centered around de-anonymizing cybercrim-
inals [89], detecting and classifying hacker assets on the Dark Web for cyber threat 
intelligence (CTI) [7, 8, 23, 24, 64, 65, 91], assessing the impact of hacker attacks [68], 
and decision- making for managing risk [10, 38, 46, 96]. The analytical methods used in 
earlier hacker analysis studies are primarily machine learning (ML)-based methods [65, 89], 
while more recent studies have leveraged DL [7, 8, 23, 24, 64]. Despite providing essential 
contributions to the cybersecurity IS knowledge base, recent IS cybersecurity analytics 
research has largely focused on addressing challenges related to CTI, designing DL-based 
artifacts to address malicious hackers and Dark Web activity [7, 8, 23, 24, 64, 65, 91]. The 
emphasis on exploring hacker activity and Dark Web data leaves a dearth of research 
investigating the potential vulnerabilities (weaknesses that allow hackers to compromise 
IT infrastructure [64]) that many hackers target with their exploits. Additionally, recent 
studies have designed novel DL-based methods based on the unique data characteristics of 
Dark Web hacker forum posts and exploits, such as global text dependencies and sequential 
word patterns [7, 23, 24, 64]. However, the data characteristics of VMs are fundamentally 
different from Dark Web data as VMs contain large networks of data (software package 
dependency networks, file system hierarchies) and potential vulnerabilities.

Developing a novel IT artifact capable of assessing and prioritizing vulnerable VMs 
requires a design-based approach. The design science research paradigm offers prescriptive 
guidance to scholars aiming to develop novel IT artifacts for a practically motivated 
problem [34]. The breadth of research inquiries within the IS discipline has helped four 
genres of design science research to emerge: computational, optimization, representation, 
and economics [60]. Of the four genres, computational design science research provides 
several guidelines for developing novel IT artifacts (e.g., algorithms) [60]. First, the artifact’s 
design can be practically motivated by key domain requirements or data characteristics. For 
example, Ebrahimi et al. [24] leveraged the webpage structure of DNMs to guide the 
development of a novel transductive SVM for identifying cyber threats. Computational 
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design science artifacts can also be informed by meta-requirements carefully derived from 
specific kernel theories [1]. Second, scholars should demonstrate the novelty of their 
proposed IT artifact’s design through a series of evaluations that compares their artifact’s 
performance against state-of-the-art approaches via well-established quantitative evaluation 
metrics (e.g., homogeneity, completeness, V-measure). Finally, novel artifacts should con-
tribute situated implementations or nascent design theory (e.g., design principles) back to 
the IS knowledge base to guide future research [32, 60]. To inform the design of an IT 

Table 1. Summary of selected recent IS cybersecurity analytics literature.

Year Author Objective Dataset(s)
Analytical 
method

Vulnerability 
assessment? Publication

2024 Ampel et al. [7] Automatically label 
hacker exploits for 
proactive CTI

DNFs BiLSTM, 
Attention

None MISQ

2024 Ampel et al. [8] Link exploits to the 
MITRE ATT&CK 
framework.

DNFs, CRMF Transformer None JMIS

2022 Jensen et al. [38] Improve phishing 
reporting through 
security gamification

Survey Data Lab  
Experiment

None JMIS

2022 Samtani et al. [64] Link exploits found on 
hacker forums with 
identified 
vulnerabilities

DNFs,  
Vulnerability 
Scans

DSSM Yes, Nessus MISQ

2022 Ebrahimi et al. [23] Detect hacker assets in 
non-English 
language on DNFs

DNFs BiLSTM, GAN None MISQ

2020 Liu et al. [46] Effect of IT governance 
on security breaches

Data Breaches Regression None JMIS

2020 Ebrahimi et al. [24] Cyber threat 
identification on the 
Dark Web

DNMs SVM, BiLSTM None JMIS

2020 Sen et al. [68] Determine the impact 
of hacker attacks in 
software markets

Software 
market

Regression None JMIS

2020 Zhuang et al. [96] Determine if security 
awareness improves 
organizational 
security

Phishing 
websites

DID None JMIS

2019 Yin et al. [89] Identify entities by de- 
anonymizing the 
Bitcoin blockchain

Bitcoin 
transactions

Boosted 
classifiers

None JMIS

2019 Yue et al. [91] Observe the impact of 
hacker forum 
discussion on DDoS 
attacks

DNFs LDA None MISQ

2018 Benaroch [10] Mitigating 
cybersecurity risk 
through IT 
investment decision- 
making

DoS incidents, 
emails

Real options 
model

None ISR

2017 Samtani et al. [65] Classification of 
malware code on 
DNFs

DNFs SVM, LDA None JMIS

Abbreviations: BiLSTM, bi-directional long short-term memory; COC, convention on cybercrime; CRMF, Cybersecurity Risk 
Management Framekwork; DID, difference-in-differences; DNF, dark net forum; DNM, dark net marketplace; DoS, denial of 
service; GAN, generative adversarial network; IRC, internet-relay-chat; ISR, information systems research; JMIS, Journal of 
Management Information Systems; LDA, latent dirichlet allocation; MISQ, MIS Quarterly; SVM, support vector machine.
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artifact that can identify and prioritize vulnerable VMs across multiple dimensions of 
vulnerabilities, we review information security management.

Information Security Management

Information security management has emerged as an important sociotechnical concern for IT 
managers and organizations and has drawn substantial research interest from IS scholars [46]. 
While information security management extends across a wide range of contexts, the objectives 
can be broadly categorized as (1) identifying assets, vulnerabilities, and threats, (2) assessing and 
prioritizing assets and vulnerabilities, (3) respond to and remediate vulnerable assets, and (4)   
continuously monitoring for further risks [5, 84]. The principles of objectives 1 and 2, which are 
the most pertinent to our study, are supported by two key theories: Control and Auditing Theory 

and Risk Management Theory. Control and Auditing Theory suggests that organizations should 
establish systems for preventing, detecting, and correcting illegal events [35, 85]. Frameworks 
such as the Control Objectives for Information and Related Technology (COBIT) and ISO 17799 
frameworks have emerged to ensure appropriate IT governance and define information security 
management requirements [61, 69]. Under this theory, systems should be capable of auditing 
assets to identify potential security risks (vulnerabilities). Risk Management Theory comprises 
establishing and maintaining information systems security and suggests that threats and vulner-
abilities can be assessed by analyzing security risks [84, 86]. Following this theoretical back-
ground, an IT artifact should be capable of auditing IT assets for vulnerabilities and allow key 
decision-makers to assess and prioritize vulnerable assets. IT infrastructure in public clouds and 
scientific CI comprises various IT assets like VMs and open-source software. Security analysts 
and managers need to identify potential vulnerabilities to determine appropriate actions for 
securing IT infrastructure. After identifying vulnerabilities, analysts categorize them into groups 
of similar types and severities to help managers prioritize and secure IT infrastructure. The 
abundance of vulnerabilities (types and severities) in clouds and CIs necessitates an IT artifact 
that automates the detection and grouping of vulnerable IT assets (i.e., vulnerable VMs and 
open-source software).

Auditing and assessing VMs for vulnerabilities, requires approaches for identifying assets and 
ascertaining their vulnerabilities, respectively. Device fingerprinting is a common IT auditing 
task that identifies and categorizes devices based on their characteristics by extracting device- 
specific features to create a unique signature representing the device [20, 48]. Recent literature 
indicates that scholars are developing supervised ML/DL-based methods to classify Internet-of- 
Things (IoT) devices and detect physical position by analyzing network traffic and radio 
frequency sequences [11, 47, 48, 73]. VMs offered by public clouds and scientific CI have three 
fundamental properties that prevent the direct application of extant ML/DL-based fingerprinting 
methods. First, VMs are typically hosted on a single server in a virtual environment. However, 
the prevailing task for IoT fingerprinting aims to detect a device’s physical position. Second, 
extant fingerprinting methods leverage supervised learning methods to classify known devices. 
However, VMs in public clouds and scientific CI that offer VMs are not labeled with vulnerability 
types and severities. Finally, VMs allow users to install numerous open-source packages and alter 
the file system contents and structure. Such capabilities are not typically seen in IoT devices. 
Taken together, the differences between VMs and IoT devices necessitate an approach that can 
capture multiple modalities of VM data into a single embedding (representation).
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Unsupervised Graph Embedding Methods

Capturing multiple modalities of VM data into a single representation requires an 
approach that can encode the package, vulnerability, and file system data and their 
relationships. Therefore, we review unsupervised graph embedding methods for repre-
senting package and file system relationships. Packages and file systems in VMs both 
follow graph structures G ¼ V;Eð Þ, where G is the overall graph, V denotes the nodes in 
the graph (packages or file system directories), and E denotes the edges connecting the 
nodes (package dependency relationships, file paths) [3,50]. Creating a representation of 
an entire VM that can be used to group vulnerable VMs requires encoding (i.e., 
embedding) the entire graph [31]. Since VMs in public clouds and scientific CI do 
not contain labels detailing the vulnerability types and severities in the VMs, an 
unsupervised graph embedding approach is required. Graph-level embedding methods 
aim to represent entire graphs as points in vector space [62]. A graph embedding is a 

mapping function ψ : gi ! zi 2 R
d, where ψ embeds a graph gi to an embedding zi of 

d-dimensions; similar graph embeddings zi and zj will be mapped close together in 

vector space and indicate similarities between graph properties (nodes, edges, features). 
The embedding is then input into ML and DL models for clustering and classification 
tasks [18]. Prevailing graph embedding methods are categorized into two types based on 
core operation: implicit factorization (Table 2) [62].

FeatherG [63], graph2vec [53], and NetLSD [75] hold significant promise for our 
research as they can capture package vulnerabilities as node features. However, prevailing 
graph embedding methods are designed to operate on a single data view. Combining 
multiple views of VM data requires a multi-view representation learning strategy, which 
we review next.

Multi-View Representation Learning

Multi-view representation learning aims to learn a data representation by relating multiple 
data views (i.e., modalities) from the same source to boost learning performance [44]. Two 
major categories of multi-view representation learning exist: alignment and fusion. In 
alignment-based learning, separate models are trained for each view and the features are 
aligned after training. Given two datasets X and Y , alignment is denoted as 
rðx;WrÞ $ sðy;WsÞ, where rðÿÞ and sðÿÞ denote embedding functions to transform the 
datasets to vector space, and $ is the alignment operation. Fusion-based learning employs 
a joint training strategy to create a shared embedding for two data views. Fusion operates 

Table 2. Summary of prevailing graph embedding methods.

Core operation Description Method
Node  

features? Reference

Spectral 
Fingerprint

Extract statistical network measures to represent 
the graph

FeatherG Yes Rozemberczki and 
Sarakar [63]

NetLSD Yes Tsitzulin et al. [75]
Spectral  

Fingerprinting
No De Lara and 

Pineau [43]
Implicit  

Factorization
Decompose a graph adjacency matrix to represent 

the entire graph as an embedding
Graph2vec Yes Narayanan et al. 

[53]
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through h ¼ ϕðx; yÞ, where h denotes the joint representation and ϕ ÿð Þ denotes the fusion 
operation between inputs x and y. Summarized in Table 3 are the prevailing multi-view 
representation alignment and fusion approaches with example models.

Compared to alignment-based approaches, fusion-based multi-view learning is suitable 
for our task since it allows us to combine multiple representations (i.e., VM packages and 
file systems) into a single embedding for downstream tasks (e.g., clustering). In particular, 
IS scholars are increasingly leveraging neural network-based techniques on vulnerability 
assessment data for CTI and vulnerability management [64, 66]. The lack of a priori 
knowledge (e.g., labels) about vulnerabilities in packages and file system hierarchies neces-
sitates an unsupervised approach for producing an embedding for each VM [44]. The 
prevailing unsupervised neural network-based multi-view architecture is the Multi-View 
Autoencoder (MVA). Prevailing MVA methods primarily operate on image, text, and 
sensor data [12, 90]. The fusion process employs a concatenation or sum operation to 
merge both views, which is suitable for retaining information from complimentary multi- 
modal data or synthetic unimodal data. However, fusing independent data views from the 
same source requires an operation to prioritize features. Attention mechanisms are a 
promising approach that can identify correlated features in package and file system views 
to determine which view should be prioritized during fusion.

Attention Mechanisms

Attention mechanisms are layers in DL architectures that assign trainable weights to input 
data features [9] and allow DL models to attend to input features that are highly correlated 
[22]. An attention layer is formally denoted by a query Q, and a key-value pair K;Vð Þ, where 
Q;K; and V denote the expected output, the input data, and the internal data representa-
tion, respectively. The attention is computed as the weighted sum of V , which is determined 
by a scoring function measuring the similarity between Q and K. Scoring functions are 
operations that determine how attention is calculated. The prevailing functions are sum-
marized in Table 4 [14].

Additive and dot-product scoring mechanisms are among the most popular func-
tions due to their simplicity. These functions are extended to scale the attention values 
when dimensionality is high (scaled dot-product), incorporate an additional weight 
matrix (general), or use bias terms and activation functions (bias and activated gen-
eral). MVA architectures have leveraged additive and dot-product scoring functions to 

Table 3. Summary of prevailing multi-view representation learning approaches.

Multi-view 
category

Selected  
approach Example model(s)

Operation to produce 
the representation References

Alignment- 
based

Correlation CCA, Sparse CCA, Kernel CCA, Deep CCA CCA Yang et al. [88]
Distance CFA, correspondence autoencoder Frobenius norm Gao and Guan [29]; 

Wang et al. [81]Similarity Cross-modal ranking, cross-modal hashing, 
deep cross-view embedding

Dot-product similarity

Fusion- 
based

Graphical 
Model

Multi-modal topic learning, multi-view sparse 
coding, latent multi-view Markov networks

PCMF Zhu et al. [95]

Neural 
Network

Multi-modal autoencoder, multi-view CNN, 
multi-modal RNN

Sum, multiplication, 
concatenation, 
average

Cui et al. [19]; 
Kanezaki et al. 
[39]

Abbreviations: CCA, canonical correlation analysis; CFA, cross-modal factor analysis; MF, matrix factorization; PCMF, prob-
abilistic collective matrix factorization.
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capture word relevancy between user reviews and items in recommender systems [49, 
93] and measure relevancy between words and pictures in multimedia retrieval [36]. 
Despite the important contributions, recent MVA research only adopts standard 
implementations of attention mechanisms to capture word relevancy before fusion, 
treating each embedding identically. How to formulate attention layers in an MVA to 
combine independent package, vulnerability, and file system representations requires 
further study.

Research Gaps

We identified four key research gaps from our review of related research as it pertains to our 
study’s context. In Table 5, we categorize the reviewed bodies of literature and briefly 
summarize the main points, the associated research gaps, and their implications for our 
study.

First, from IS cybersecurity analytics and information security management, there is a 
lack of research that seeks to develop automated methods for detecting and prioritizing 
vulnerabilities. This dearth hinders decision-makers from operationalizing information 
security management principles to audit and assess IT asset vulnerabilities. Developing 
artifacts to enhance vulnerability management efforts can bolster organizational cyber- 
defense [66]. Second, prevailing ML/DL-based fingerprinting methods operate on a single 
view of data from IoT devices and omit software package vulnerabilities in the overall 
representation that can offer VMs can help facilitate vulnerable VM prioritization and 
remediation. Third, ML/DL-based fingerprinting methods analyze network traffic and 
radio frequency sequences to create a fingerprint. However, packages and file systems in 
VMs follow a graph representation structure. Graph embedding methods can represent 
entire graphs but only operate on a single view of data. Fourth, prevailing MVAs primarily 
operate on complementary and closely linked text and image data. However, the data 
characteristics of packages and file systems are independent and require a mechanism 
that can compute the relevancy between the inputs prior to fusion. We aim to address 
these research gaps with our proposed research design.

Table 4. Summary of prevailing attention mechanism scoring functions.

Scoring functions Description Equation

Additive (Concatenate) Non-linear activation applied to concatenated representations 
of query and key vectors.

wT ÿ σ Wi ÿ Q þ Wj ÿ K
� ÿ

þ b

Dot-product Calculates attention weights by taking the dot-product 
between query and key vectors, followed by a softmax 
activation.

QT K

Scaled dot-product Scales the dot-product between query and key vectors by a 
factor of the square root of the dimensionality.

QT Kooo
dk

p V

General Pairwise interactions between query and key vectors by 
applying a learned linear transformation.

QT WK

Biased general Introduces bias terms to assign relevance to query-key pairs 
based on learned biases.

QT WK þ b

Activated general Incorporates an additional activation function after the linear 
transformation.

σ QT WK þ b
� ÿ

Similarity Calculates attention weights by measuring the similarity or 
distance between query and key vectors.

sim Q; Kð Þ
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Research Design

Computational design science research has leveraged kernel theories and justificatory 
knowledge to inform the design of novel artifacts [34, 79]. Furthermore, studies following 
the computational genre of design science should seek to address the limitations of the 
methodological knowledge base from which the IT artifacts are derived [34, 60, 67]. 
Following these guidelines, we propose a novel research design to automatically detect 
vulnerabilities in open-source software on VMs and group similar vulnerable VMs to 
facilitate prioritization and remediation efforts. Our research design is informed by two 
meta-requirements derived from kernel theories: Control and Auditing Theory and Risk 

Figure 2. Proposed research design.

Table 5. Summary of reviewed literature, research gaps, and implications.

Bodies of 
literature Main points Research gaps Implications for our study

-IS Cybersecurity 
Analytics 

-Information 
Security 
Management

-Recent IS cybersecurity analytics 
research has investigated 
hacker activity on the Dark 
Web. 

-Theories from information 
security management offer 
guidelines for identifying, 
prioritizing, and remediating 
security risks. 

-Device auditing and asset 
inventories are completed 
using fingerprinting methods.

-IS cybersecurity analytics 
research lacks artifacts to 
address vulnerabilities. 

-Fingerprinting methods operate 
on single-view data, primarily 
from IoT devices, and do not 
consider device vulnerability 
data.

-Designing IT artifacts for 
vulnerability management 
can assist in cyber-defense. 

-Devices often include 
multiple views of data that 
characterize them. 
Including vulnerability data 
in device fingerprints can 
bolster auditing tasks with 
vulnerability grouping and 
prioritization.

-Unsupervised 
Graph 
Embedding 
Methods

-Graph embeddings capture 
statistical and feature data 
from graphs into a latent 
representation (embedding). 

-Classes of methods are capable 
of embedding entire graphs.

-Prevailing methods are designed 
to only operate on single-view 
graph representations

-VMs are characterized by 
multiple types of data 
views (e.g., packages and 
file systems). Packages and 
file systems from VMs are 
both represented as graphs 
and capture different VM 
properties.

-Multi-View 
Representation 
Learning and 
Attention 
Mechanisms

-Learns representations of 
multiple views of the same 
input for alignment or fusion. 

-Assigns weights to relevant 
input features.

-Input embeddings are primarily 
treated identically instead of 
independently.

-In order to combine multiple, 
independent views of VM 
data (e.g., packages and file 
systems), the views must 
be carefully weighed.

Abbreviations: IS, information systems; IT, information technology; IoT, internet of things; VM, virtual machine.
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Management Theory. We develop a novel DL-based IT artifact that addresses limitations of 
unsupervised graph embeddings, multi-view learning, and attention mechanisms in prior-
itizing vulnerable VMs in cloud environments. Illustrated in Figure 2 is our research design 
with four major components: (1) Data Extraction, (2)  Vulnerability Scanning, (3) Multi- 
View Combinatorial-Attentive Autoencoder (MV-CAAE), and (4) Evaluation.

We formulated two key meta-requirements to guide our research design that align with 
dimensions of our kernel theories, Control and Auditing Theory and Risk Management 
Theory. Summarized in Table 6 are the originating statements from our kernel theories, 
derived meta-requirements from the theories, the corresponding research design compo-
nents, and methodological limitations addressed by our MV-CAAE artifact.

According to our kernel theories, Control and Auditing Theory and Risk Management 
Theory, we derived two meta-requirements to guide our design choices for our artifact. First, 
public clouds and scientific CI should establish systems capable of auditing and assessing 
assets (e.g., VMs and open-source software) for vulnerabilities, thereby identifying potential 
security risks. We account for this requirement in our artifact design by auditing each VM 
hosted by two NSF-funded scientific CIs to extract the software packages and identify their 

Table 6. Design guidelines for MV-CAAE framework.

ISM Kernel theories Meta-requirements Research design component
Identified domain and 
methodological gaps

-Control and Auditing Theory: 
Auditing procedures for 
information systems and 
IT assets should be 
conducted to measure 
control performance [35, 
85].

Public clouds and scientific 
CI should establish 
systems capable of 
auditing assets to identify 
potential vulnerabilities.

Data Extraction: VMs from 
partner CIs are audited to 
extract relevant data (e.g., 
software, file systems) for 
producing comprehensive 
VM representations.

-Clouds and scientific CIs lack 
an artifact to assess 
internal software package 
vulnerabilities within VMs.

Vulnerability Scanning: 
Software is scanned for 
vulnerabilities to 
determine security risks.

-Risk Management Theory: 
Organizations must assess 
potential threats and 
vulnerabilities of asset 
groups or information 
systems by identifying, 
prioritizing, and 
mitigating risks [84, 86].

Vulnerabilities can be 
assessed by analyzing 
security risks, allowing 
stakeholders to make 
informed decisions based 
on prioritized assets and 
vulnerabilities.

MV-CAAE: Comprises design 
features to capture and 
represent vulnerabilities in 
VMs: 

-Unsupervised Graph 
Embeddings: Produces 
latent representations 
(embeddings) of software 
package and file system 
graphs encapsulated into 
VMs. 

-Multi-View Learning: Fuses 
multiple dimensions of VM 
data to create a 
comprehensive 
representation. 
-Combinatorial Attention 
Mechanism: Dynamically 
measures relevancy of 
each view during fusion.

-ML/DL Device Fingerprinting: 
Fingerprinting methods 
do not take into account 
device vulnerability data. 

-Unsupervised Graph 
Embeddings: Prevailing 
methods only operate on 
single-view data. 

-Multi-View Learning and 
Attention Mechanisms: 
Input embeddings are 
primarily treated 
identically instead of 
independently

Downstream Clustering Task: 
Output representations 
are clustered together to 
help prioritize groups of 
vulnerable VMs.

-

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; CI, cyberinfrastructure; VM, virtual machine; ISM, 
information security management; ML/DL, machine learning/deep learning.
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vulnerabilities. Second, vulnerabilities can be assessed by analyzing the security risks, allowing 
key stakeholders to make informed decisions based on the prioritized vulnerabilities. Our 
proposed MV-CAAE satisfies the second meta-requirement by creating a single representa-
tion (embedding) from the data and vulnerabilities extracted from each VM which are 
subsequently input into a downstream clustering task to create groups of similar vulnerable 
VMs. The procedure of clustering vulnerable VMs allows stakeholders to identify specific 
groups of VMs that should be prioritized and addressed based on the severity or frequency of 
vulnerabilities. We further describe each component of our research design (Figure 2 and 
Table 5) in the following sub-sections.

Data Extraction and Vulnerability Scanning

We partnered with two major NSF-funded science gateways, referred to as “CI-A” and “CI- 
B,” to preserve their anonymity for our own NSF-funded project. Both gateways have 
received more than $140M of funding from the NSF, support more than 400 projects 
funded by the NSF, and have a user-base of over 70,000 life science researchers from over 
7,000 institutions. Each gateway hosts its VMs on cloud computing platforms accessible to 
users through web browsers. We designed a custom script for each science gateway that 
automatically (1) launches each VM; (2) collects operating system (OS), package, and file 
system data for each VM; and (3) parses the data into a database. We collected the source 
code for each package maintained on GitHub, the prevailing open-source software platform 
[17], and scanned for code-based vulnerabilities, resulting in a large and valuable scientific 
CI and VM research testbed.

We selected two popular and well-regarded scanners to detect vulnerabilities in software 
package code. Bandit reconstructs the source code into abstract syntax trees (AST) to scan for 
nine insecurities and attacks in Python [74]. Flawfinder matches syntactic patterns in source 
code files to scan for three insecurities and attacks in C [40]. Bandit and Flawfinder provide 
descriptions of detected vulnerabilities and categorize vulnerabilities based on severity scores 
using data from the Common Weaknesses and Enumeration database. Bandit and Flawfinder 
are suitable for our study since the leading programming languages in our collection are 
Python and C. In particular, they are open-source scanners that organizations can implement 
at minimal cost [76]. We summarize the type, description, and example of vulnerabilities from 
each scanner in Online Supplemental Appendix 1. Scanning for vulnerabilities using open- 

Table 7. Data extraction vulnerability scan summary for each science gateway.

Gateway
Number 
of VMs

Number of 
gitHub 

packages

Number 
of file 

systems

Number of 
vulnerable 
packages*

Vulnerability 
severity 

distribution

Top vulnerable 
repository/ 

package
Number of 

vulnerabilities

CI-A 126 817,646 4,014 233,090 High 2,355 usit-gd/zabbix 104
Medium 9,959 PacificBiosciences/ 

pbcore
1,599

Low 246,318 sympy/sympy 66,344
Total: 258,632 - -

CI-B 89 851,180 3,367 260,535 High 2,182 usit-gd/zabbix 104
Medium 9,944 PacificBiosciences/ 

pbcore
1,599

Low 165,496 annulen/webkit 9,599
Total: 177,622 - -

Notes: Packages can contain multiple severities of vulnerabilities. Vulnerabilities are measured across all VMs combined.
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source or commercial tools is a standard practice in vulnerability management research and 
allows us to capture unique vulnerability characteristics of the VMs in our testbed [41]. 
Summarized in Table 7 are the data extraction and vulnerability scan results including the 
number of VMs, GitHub-based packages, file systems, vulnerable packages, vulnerability 
severity distribution, and top vulnerable package for each gateway.

In total, package and file system data were collected from 215 VMs (CI-A = 126, CI-B = 89). 
Over 800,000 GitHub-maintained packages were collected from all VMs for each gateway, 
ranging between 810 and 12,920 packages per VM. 4,014 file systems were collected from CI- 
A, and 3,367 file systems were collected from CI-B. Bandit and Flawfinder detected 233,090 
vulnerable packages for CI-A and 260,535 vulnerable packages for CI-B. The package zabbix, a 
network monitoring package, contained the most high-severity vulnerabilities at 104. The 
package pbcore (designed for processing Pacific Biosciences data files) contained the most 
medium-severity vulnerabilities at 1,599. The packages sympy (66,344) and webkit (9,599) 
contained the most low-severity vulnerabilities for CI-A and CI-B, respectively.

The VM testbed in this study is among the first in academia to include thousands 
of open-source packages, their vulnerabilities, and file systems from over 200 VMs 
collected from two significant scientific CI. Our testbed differs from Dark Web data 
used in past IS cybersecurity analytics research in several important ways [23, 64]. 
First, the open-source packages provide a comprehensive summary of the software in 
cloud VMs. Second, the code-based vulnerabilities capture vulnerabilities overlooked 
by general-purpose scanners used in recent IS literature [64]. Third, the file system 
data indicates how users configure their VMs and store data. Taken together, the 
unique data characteristics of our testbed can help facilitate important IS cybersecurity 
analytics research on open-source software security, vulnerability prioritization, and 
more.

Multi-View Combinatorial-Attentive Autoencoder (MV-CAAE)

Given the unique characteristics of our VM testbed and limitations of extant unsupervised 
graph embeddings, MVL, and attention mechanisms, we design a novel MV-CAAE that 
extends the MVA with a combinatorial attention mechanism (CAM) and aggregation 
fusion via inverse relevance scoring. The proposed MV-CAAE is contrasted against the 
conventional MVA in Figure 3, with the key novelties residing within Steps 2 and 3. The 
MV-CAAE fuses graph embeddings of package and file system data to generate an aggre-
gated embedding to group similar VMs.

The MV-CAAE comprises five steps: (1) graph construction and embedding, (2) combi-
natorial attention mechanism, (3) aggregation fusion via inverse relevance scoring, (4)  
decoder, and (5) MSE calculation and backpropagation. The core novelty for the MV- 
CAAE lies in Steps 2 and 3. Each step in the MV-CAAE and its design rationale is described 
further below:

● Step 1 (Graph Construction and Embedding): We structure the package and file 
system views as graphs to capture their relationships [3,50]. The package view is 
defined as G ¼ AG;EG; FGð Þ, where G is an undirected graph, AG is the node set, 

u1; . . . ; unf g, of all packages in a VM, EG is the edge set e1; . . . ; enf g connecting the 
packages based on shared dependencies, and FG is a feature matrix of vulnerabilities. 
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The file system view is defined as T ¼ AT ;ET ; FTð Þ, where T is an acyclic graph, AT is 
the node set, v1; . . . ; vnf g; of all file system directories, ET is the edge set p1; . . . ; pnf g
of directed edges between each directory, and FT is the feature matrix of file system 
node features (e.g., permissions, file system type). We generate graph embeddings with 
graph2vec since it (1) embeds entire graphs, and (2) captures node features (e.g., 

vulnerabilities) in the embedding, denoted as Enc Gið Þ ! gi 2 R
d and 

Enc Tið Þ ! ti 2 R
d, where gi and ti are embeddings with real values R of d dimensions.

● Step 2 (Combinatorial Attention Mechanism): We first employ a scaled dot-product 
self-attention operation on each embedding to identify important features from each 
view separately [77]. Each embedding gi and ti is weighted by the self-attention 

operation such that HG ¼ softmax gT
i gi=

ooooo
dg

p� ÿ
gi and HT ¼ softmax tT

i ti=
oooo
dt

p� ÿ
ti, 

where dg and dt are the scaling factors that scale each weighted embedding according 

to the feature dimensions for each embedding. We propose a novel combinatorial 
attention mechanism (CAM) to measure the relevancy of MV-CAAE’s independent 
embeddings for a comprehensive representation. For a pair of self-attended views Hi 

and Hj, we extract salient information combinations si;j, where si;j is a scalar represent-

ing how relevant the views are to each other. The function 

S ¼ si;jjsi;j ¼ ϕ Wi;j Hi;Hj

ÿ ÿ� ÿ
; i; j 2 1; . . . ; n½ ÿ

ÿ ÿ
computes the relevance, where ϕ is 

the non-linear activation function, Wi;j is a set of trainable weights, and S is a 

matrix that stores the relevance score. The relevancy score for the self- 

Conventional MVA Procedure: MV-CAAE Procedure (Novelty in Steps 2-3): 

1. Encoder 

2. Fusion Operation 

3. Decoder 

4. MSE Calculation and Backpropagation 

1. Graph Construction and Embedding

2. Combinatorial Attention Mechanism 

3. Aggregation Fusion via Inverse Relevance Scoring 

4. Decoder

5. MSE Calculation and Backpropagation

Figure 3. Comparison of conventional multi-view autoencoder (MVA) (left) and proposed multi-view 
combinatorial-attentive autoencoder (MV-CAAE) (right).
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attended package and file system views HG and HT is calculated as 

S ¼ sG;T jsG;T ¼ ϕ WG;T HG;HT½ ÿ
� ÿ

;Gi;Ti 2 1; . . . ; n½ ÿ
ÿ ÿ

. The output relevance score 

matrix S is then used in Step 3 to weigh and combine the embeddings HG and HT . 
Our proposed CAM is adapted from the conventional additive attention, where the 
attention score is learned from the non-linear combination of the concatenated queries 
and keys to understand word context [9,77]. In the conventional additive attention 
mechanism, encoder and decoder hidden representations of source word sequences 
are concatenated and input into a non-linear activation function to predict a target 
sequence (e.g., neural machine translation). The attention score then determines how 
much of the hidden state of the source sequence is considered in predicting the target 
sequence. In contrast, our proposed CAM produces an attention matrix based on the 
relevancy between independent input views to determine how much from each view’s 
hidden state should be considered in producing a combined embedding.

● Step 3 (Aggregation Fusion via Inverse Relevance Scoring): To produce a compre-
hensive embedding for the input VM, we need to condense the representation from 
each view based on S that includes all non-overlapping information. Producing a 
representation without overlapping information creates a comprehensive representa-
tion of a VM without data redundancy from the embeddings. Based on the relevance 
score output S from the CAM in Step 2, we apply a softmax function to the inverse of 

the relevance scores σ 1=si; 1:n½ ÿ
� ÿ

to produce a probability distribution, guiding the 

model to focus on feature dimensions of the embeddings HG and HT with few over-
lapping information. The probability distributions are summed across all views to 
obtain the relative contribution of HG and HT to the aggregate of the views. The 
attention weights are obtained from the aggregated distribution using a second 

softmax function: ak ¼ σ
P

i

σ 1=si; 1:n½ ÿ
� ÿÿ ÿ

k

. The condensed embedding E is produced 

by an attention-weighted linear-combination of the representations of all views: 
E ¼ P

k

akHk. For the packages and file systems, the condensed embedding is repre-

sented as E ¼
P

kakHGHT , where E is the weighted sum of the attention weights ak 

multiplied by the self-attended embeddings HG and HT . Since each VM is unique, the 
relative contribution from each view will vary from VM to VM, but the package view 
HG or the file system view HT is prioritized based on the product of the attention 
weights ak and the embeddings HG and HT .

● Step 4 (Decoder): Following MVA principles, two decoder tasks bGi ¼ σĜ WĜE þ bĜ

� ÿ

and T̂i ¼ σT̂ WT̂E þ bT̂

� ÿ
reconstruct the inputs Ĝi and T̂i from the shared representa-

tion E.
● Step 5 (MSE Calculation and Backpropagation): After the decoder reconstructs 

the inputs, two MSE functions MSEGi
¼ 1=n

Pn

i¼1
Gi � bGi

ÿ ÿ2 
and 

MSETi
¼ 1=n

Pn

i¼1
Ti � T̂i

� ÿ2 
calculate the loss between the original and reconstructed 

package and file system inputs. The internal MV-CAAE weights are iteratively updated 
through backpropagation until convergence and repeated until both MSE functions 
are minimized.
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The final output of the converged MV-CAAE is the fused embedding E from Step 3. 
This embedding is a unique representation for each VM that can be used in a 
downstream clustering task to group VMs with similar packages, file systems, and 
vulnerabilities.

Our proposed MV-CAAE has two key novelties in its design. First, the MV-CAAE’s 
CAM computes relevance scores between multiple views of embeddings to determine 
which dimensions are more relevant prior to fusion. Unlike the standard additive 
attention, the CAM in this context allows the MV-CAAE to weigh independent features 
separately as opposed to identically. The conventional MVA only uses non-linear 
activation functions and therefore weights the inputs identically. However, packages 
and file systems of a VMs are fundamentally different (i.e., independent); packages 
contain source code with vulnerabilities whereas file systems control how data is stored 
on a VM. Second, the aggregation fusion via inverse relevance scoring combines non- 
overlapping information from each embedding to produce a comprehensive VM repre-
sentation. The conventional MVA concatenates embeddings in the fusion process and 
does not prioritize features across both views. The MV-CAAE’s aggregation fusion 
mechanism weights the features from the package and file system views to produce a 
single embedding for the VM.

Evaluation

Research guided by the computational design science paradigm should be rigorously 
evaluated against state-of-the-art methodologies available from the knowledge base using 
appropriate quantitative metrics [34, 60]. In particular, DL-based artifacts are evaluated 
using technical and non-technical experiments [67]. Technical experiments compare the 
performance of a proposed DL-based model against prevailing ML and DL benchmarks in a 
downstream task [67]. Performance metrics are selected based on the downstream task type 
(e.g., classification or clustering) and learning paradigm (e.g., supervised or unsupervised), 
which are informed by the domain requirements and data characteristics [67]. Non- 
technical experiments measure whether the proposed model can address a higher-level 
problem in the application environment [57, 58]. Case studies, interviews, focus groups, 
questionnaires, simulations, and illustrative scenarios are possible approaches to evaluate 
the proposed artifact in a real-world setting [57, 58, 67]. Since we followed the computa-
tional design science paradigm to develop a novel DL-based artifact, we systematically 
evaluated our proposed MV-CAAE with technical and non-technical approaches [8, 57, 60, 
64, 67]. First, we conducted a series of rigorous technical benchmark experiments to 
quantitatively evaluate the performance of our MV-CAAE compared to methodologies 
from the knowledge bases it was designed from. Second, we performed a two-part case 
study to demonstrate the potential practical value of our artifact: we instantiated the MV- 
CAAE in a real-world setting to cluster vulnerable VMs from CI-A and subsequently 
gathered feedback regarding its usefulness through semi-structured interviews with four 
organizations.

For the technical benchmark experiments, we follow evaluation procedures from prior IS 
computational design science research developing DL-based artifacts, where evaluating 
unsupervised algorithms is often conducted by inputting the algorithm’s generated embed-
ding into a downstream task [63, 67]. The selection of a downstream evaluation task is 
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Table 8. Summary of benchmark experiments.

Experiment Justification
Benchmark 

method Description References
Evaluation 

metrics*

1 MV-CAAE  
against single 
view 
representation.

Single view models are 
the prevailing 
approach for device 
fingerprinting.

SF Calculates k 
lowest 
eigenvalues of 
normalized 
Laplacian 
matrix

de Lara and 
Pineau [43]

ARI, AMI, 
Completeness, 
Homogeneity, 
V-measure

FeatherG Node features 
and random 
walk weights 
are pooled to 
create graph- 
level statistics

Rozemberczki 
and Sarkar 
[63]

NetLSD Calculates kernel 
heat trace of 
normalized 
Laplacian 
matrix

Tsitsulinet al. 
[75]

Graph2vec Document- 
feature co- 
occurrence 
matrix is 
decomposed 
to generate 
graph 
representation

Narayanan et 
al. [53]

2 MV-CAAE’s 
combinatorial 
attention 
against 
benchmark 
fusion 
mechanisms.

Evaluate combinatorial 
attention weighting 
over benchmark 
fusion mechanisms 
that do not weigh 
features during 
fusion.

Subtraction Element-wise 
subtraction of 
both 
embeddings

Blandfort et al. 
[13]; Francis 
et al. [27]; Li 
et al. [44]

Sum An element-wise 
sum of both 
embeddings

Average Average of both 
embeddings

Concatenation Concatenation of 
both 
embeddings

Multiplication Multiplication of 
both 
embeddings

3 MV-CAAE against 
MVA variants.

Evaluate MV-CAAE 
against MVA variants 
with input noise, 
sparsity constraints, 
and without 
attention 
mechanisms.

Conventional 
MVA

MVA with no 
feature 
weighting or 
regularization

Goodfellow et 
al. [30]; 
Samtani et 
al. [64]

Denoising 
MV-CAAE

Gaussian noise 
added to the 
inputs

Sparse MV- 
CAAE

Regularization 
penalty 
applied to the 
inputs

MV-CAAE without self-attention
MV-CAAE without CAM and 

aggregation fusion

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; SF, Spectral Fingerprinting; ARI, Adjusted Rand 
Index; AMI, Adjusted Mutual Information; MVA, multi-view autoencoder.

JOURNAL OF MANAGEMENT INFORMATION SYSTEMS 725



typically based on the task that the model output is designed for [80]. Our research objective 
is to create groups of vulnerable VMs which is naturally represented as a clustering task. 
Clustering refers to the task of grouping similar data points based on inherent similarities or 
patterns [58]. In our context, we evaluated the quality of the embeddings produced by MV- 
CAAE and benchmark graph embedding, multi-view fusion mechanism, and autoencoder 
variants such that we can provide direct comparisons between our proposed MV-CAAE 
and each class of methods that inspire its design. We summarize each benchmark experi-
ment in Table 8. For each experiment, we present a justification, the benchmark methods 
used in the experiment, and evaluation metrics. In Experiment 1, we evaluated the MV- 
CAAE against state-of-the-art graph embeddings of both package and file system views 
independently to identify if multi-view learning creates a more comprehensive VM repre-
sentation. The benchmark graph embedding methods include Spectral Fingerprinting (SF), 
FeatherG, NetLSD, and graph2vec [43, 53, 63, 75]. In Experiment 2, we examined the 
performance of the MV-CAAE’s CAM against approaches that do not re-weight features 
during fusion. The methods in Experiment 2 include subtraction, sum, average, concatena-
tion, and multiplication [13, 27, 44]. In Experiment 3, we investigated how the MV-CAAE 
performed against alternative designs. Since each component in the MV-CAAE can be 
varied based on autoencoder principles, we evaluated the MV-CAAE against the conven-
tional MVA, sparse MV-CAAE, denoising MV-CAAE, MV-CAAE without self-attention, 
and MV-CAAE without CAM and aggregation fusion via inverse relevance scoring [30, 64]. 
The MV-CAAE was implemented in Python 3.7 using Keras, TensorFlow, and numpy. To 
facilitate scientific reproducibility, we provide full parameters of the MV-CAAE in Online 
Supplemental Appendix 2.

The embeddings generated from each method were clustered using K-means and 
evaluated using prevailing extrinsic cluster evaluation metrics [82]: adjusted rand index 
(ARI), adjusted mutual information (AMI), completeness, homogeneity, and V-measure. 
We select these evaluation metrics since other common ML evaluation metrics (e.g., 
accuracy, precision, recall, F1-score) are designed for supervised learning tasks (e.g., 
classification), where methods have prior knowledge of input labels. Our unsupervised 
approach learns patterns or groups (clusters) of data without prior knowledge of the label. 
Therefore, we require metrics that can measure the method’s ability to effectively produce 
pre-defined clusters. ARI and AMI measure the similarity between normal and unbalanced 
clusters, respectively, based on true labels y and predicted labels ŷ. Scores range between -1 
and 1, where scores closer to -1 or 1 are optimal. Completeness measures whether all the 
data points that are members of a class are elements of the same cluster. Homogeneity 
measures whether all the clusters contain only data points that are members of a single class. 
V-measure is the harmonic mean between completeness and homogeneity. Scores for 
completeness, homogeneity, and V-measure range between 0 and 1, where scores closer 
to 1 are optimal. In the context of our study, achieving strong ARI, AMI, completeness, 
homogeneity, and V-measure scores indicates that each cluster contains VMs with identical 
vulnerabilities. Security analysts responsible for assessing and managing vulnerabilities in 
cloud environments would use these clusters to automatically identify groups of vulnerable 
VMs that should be prioritized. Since each VM in their respective clusters would have near 
identical vulnerability distributions, security analysts could apply the same remediation 
strategy to each VM in the same cluster, alleviating the need to audit and assess each 
individual VM for vulnerabilities manually and providing greater visibility of the 
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vulnerabilities within each user VM in their infrastructure. Each method was performed ten 
times and averaged, and one-sided t-tests were used to measure statistically significant 
differences between method. All experiments were conducted on a Windows 10 work-
station with 32GB of Random Access Memory (RAM), a NVIDIA GeForce RTX 2070 Super 
Graphical Processing Unit (GPU), an AMD Ryzen 7 3700x Central Processing Unit (CPU), 
and one terabyte of disk space.

Executing benchmark evaluations requires ground truth (i.e., gold-standard) datasets [54, 
64]. Consistent with best practices in IS cybersecurity analytics literature, we constructed gold- 
standard datasets by randomly sampling 50 percent of the VMs from both datasets and recruited 
three IS cybersecurity researchers with vulnerability assessment experience to label the datasets 
[23, 64]. The random sample resulted in 63 VMs from CI-A and 45 VMs from CI-B. For 
labeling the datasets, each panel member was tasked with assigning group labels to the VMs 
based on the similarity between the installed packages, their vulnerabilities (severity and type), 
and file systems. For example, two or more VMs would be assigned to the same group if they 
had similar packages, vulnerabilities, and file systems. Grouping vulnerable VMs emulates how a 
SOC analyst or IT auditor will prioritize vulnerabilities. After the first round of grouping, we 
measured interrater reliability with Fleiss’ kappa since our panel consisted of more than two 
raters [26], which resulted in 0.68 and 0.81 for CI-A and CI-B, respectively, indicating 
substantial agreement. We then met with the panel members to discuss the disagreements 
and instructed them to go through a second round of grouping. After the second round, the 
Fleiss’ kappa for CI-A was 0.89 and 0.83 for CI-B, near-perfect agreement [51]. The remaining 
differences were resolved between the lead author and each panel member. This resulted in five 
groups of VMs for CI-A and three groups of VMs for CI-B. We summarize the gold-standard 
datasets in Table 9, including the number of VMs in each cluster. We provide sample data used 
by the panel to group the VMs, including, the average number of GitHub packages across all 
VMs in each cluster, the average number of vulnerable packages, the average number of file 
systems, and selected packages found in the clustered VMs.

Table 9. Summary of gold-standard datasets.

Dataset

Gold- 
standard 

cluster
Number 
of VMs

Average number of 
gitHub packages

Average number of 
vulnerable packages

Average number 
of file systems Sample packages

CI-A A1 7 1,240 196 16 Go, Jenkins, 
openCASCADE

A2 20 2,011 430 18 Compass, NodeJS, 
PHP, Openstack

A3 15 7,131 2,248 31 Docker, JQuery, 
Hashicorp, Kodi

A4 10 10,755 2,667 35 Budgie, Caja, 
Ejabberd, Twitch

A5 11 12,917 3,987 35 Ayatana, Cloudkitty, 
Kopano, Staden

Total: 5 63 34,054 9,528 135 -
CI-B B1 7 1,227 206 15 openCASCADE, 

sqlite, OpenStack
B2 12 7,153 2,225 35 Django, Docker, 

Hashicorp Jquery
B3 26 12,846 3,963 34 Ayatana, Casacore, 

Cloudkitty
Total: 3 45 21,226 6,394 84 -

Abbreviations: VM, virtual machine; CI-A and CI-B, anonymous NSF-funded science gateways.
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The gold-standard dataset for CI-A contained 63 VMs across five clusters, where 
cluster A1 had the lowest average number of packages (1,240), and Cluster A5 had the 
highest average number of packages (12,917). The number of vulnerable packages ranged 
from 196 to 3,987 for Clusters A1 to A5. The gold-standard dataset for CI-B contains three 
clusters with 7, 12, and 26 VMs (45 total). The average number of GitHub packages was 
1,227 for B1, 7,153 packages for B2, and 12,846 packages for B3. Clusters B1, B2, and B3 

have an average of 206, 2,225, and 3,963 vulnerable packages, respectively. The packages 
in the gold-standard clusters represent the different types of software installed on each 
VM within the assigned cluster. For example, Docker for containerization, and sqlite for 
database management.

Results and Discussion

Experiment 1: MV-CAAE Against Single View Representation

In Experiment 1, we evaluated our proposed MV-CAAE against single view representations. 
We present each method’s ARI, AMI, completeness, homogeneity, and V-measure scores in 
Table 10. The best scores are highlighted in boldface.

The MV-CAAE outperformed state-of-the-art graph embedding methods in ARI, 
AMI, completeness, and V-Measure for both the package view file system view for 
CI-A and CI-B with statistical significance. FeatherG and graph2vec obtained higher 
homogeneity scores on the package view from CI-A, indicating that its clusters 
contain VMs primarily belonging to the same class. However, the MV-CAAE’s 
higher completeness score (0.506 for CI-A, 0.309 for CI-B) indicates it assigned 
VMs from the same class to the same cluster more effectively than the second-best 
performing methods FeatherG and graph2vec. Interestingly, the results of the bench-
mark methods for the package view in CI-B were identical for each respective 

Table 10. Results for Experiment 1: MV-CAAE against single view representation.

Dataset Method

Evaluation metric

ARI AMI Completeness Homogeneity V-measure

CI-A Package View SF 0.236** 0.347** 0.435** 0.383** 0.407**
FeatherG 0.240** 0.355** 0.440** 0.398 0.418**
NetLSD 0.251** 0.357** 0.446** 0.391** 0.417**
Graph2vec 0.257** 0.377** 0.432** 0.442 0.437**

File System View SF 0.217** 0.298** 0.375** 0.361** 0.368**
FeatherG 0.247** 0.344** 0.445** 0.354** 0.394**
NetLSD 0.155** 0.201** 0.296** 0.238** 0.264**
Graph2vec 0.092** 0.099** 0.183** 0.188** 0.185**

MV-CAAE 0.264 0.389 0.506 0.393 0.443
CI-B Package View SF -0.014** 0.120** 0.168** 0.168** 0.168**

FeatherG -0.014** 0.120** 0.168** 0.168** 0.168**
NetLSD -0.014** 0.120** 0.168** 0.168** 0.168**
Graph2vec -0.014** 0.120** 0.168** 0.168** 0.168**

File System View SF -0.053** 0.064** 0.153** 0.106** 0.125**
FeatherG -0.032** 0.106** 0.156** 0.153** 0.155**
NetLSD -0.036** 0.106** 0.214** 0.135** 0.165**
Graph2vec -0.062** 0.041** 0.125** 0.095** 0.108**

MV-CAAE 0.386 0.256 0.309 0.286 0.297

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; ARI, Adjusted Rand Index; AMI, Adjusted Mutual 
Information; CI-A and CI-B, anonymous NSF-funded science gateways; SF, spectral fingerprinting.</TFN10>
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metric, suggesting that the factorization and spectral fingerprinting operations could 
be restricted by the limited data. The MV-CAAE’s higher V-measure score (0.443 
for CI-A, 0.297 for CI-B) indicates that the MV-CAAE overall groups VMs from the 
same class more correctly and provides better intra-cluster coherence between the 
VMs. Included in Online Supplemental Appendix 3 is a selected example illustrating 
how the MV-CAAE embedding was clustered correctly and the graph2vec embed-
ding (second-best method) was incorrectly clustered. Overall, the results of 
Experiment 1 suggest that capturing multiple data views provides a more complete 
VM representation than a single view alone [47, 76].

Experiment 2: MV-CAAE’s Combinatorial Attention Against Benchmark Fusion 

Mechanisms

In Experiment 2, we evaluated the MV-CAAE against benchmark MVA fusion mechanisms 
to test whether the weighting process of the additive attention gate outperforms benchmark 
fusion mechanisms. We present each method’s ARI, AMI, completeness, homogeneity, and 
V-measure scores in Table 11. The top scores are highlighted in boldface.

The MV-CAAE outperformed all fusion mechanisms with statistical significance (p 
< 0.01) in all but one metric (homogeneity) for CI-A and all metrics for CI-B. The 
MV-CAAE attained V-measure scores of 0.443 and 0.297 for CI-A and CI-B, respec-
tively, surpassing the next best performing fusion mechanisms: multiplication for CI-A 
(0.436), and average and subtraction for CI-B (0.258). Conventional fusion mechan-
isms do not iteratively re-weight package and file system embeddings [27, 44]. 
However, MV-CAAE prioritizes the package or file system views by iteratively re- 
weighting the embeddings using the relevance score : Illustrated in Online 
Supplemental Appendix 3 is an example where the MV-CAAE embedding of a selected 
VM in CI-B was clustered correctly, but the embedding produced by average fusion 
(next best performing method) was misclustered.

Table 11. Experiment 2 results: MV-CAAE’s combinatorial attention against benchmark fusion 
mechanisms.

Evaluation metric

Dataset Method ARI AMI Completeness Homogeneity V-measure

CI-A Subtraction 0.225** 0.319** 0.428** 0.378** 0.402**
Sum 0.226** 0.318** 0.435** 0.367** 0.398**
Average 0.226** 0.318** 0.435** 0.367** 0.398**
Concatenation 0.226** 0.318** 0.435** 0.367** 0.398**
Multiplication 0.241** 0.353** 0.462** 0.414 0.436**
MV-CAAE 0.264 0.389 0.506 0.393 0.443

CI-B Subtraction 0.185* 0.207** 0.244** 0.273** 0.258**
Sum -0.014** 0.12** 0.168** 0.168** 0.168**
Average 0.185* 0.207** 0.244** 0.273** 0.258**
Concatenation -0.014** 0.12** 0.168** 0.168** 0.168**
Multiplication -0.054** 0.008** 0.08** 0.063** 0.071**
MV-CAAE 0.386 0.256 0.309 0.286 0.297

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; ARI, Adjusted Rand Index; AMI, Adjusted Mutual 
Information; CI-A and CI-B, anonymous NSF-funded science gateways.
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Experiment 3: MV-CAAE Against MVA Variants

In Experiment 3, we evaluated how the MV-CAAE performed against the conventional 
MVA, denoising MV-CAAE, sparse MV-CAAE, MV-CAAE without self-attention, and 
MV-CAAE without the CAM and aggregation fusion. The results for each method are 
presented in Table 12. The top performances appear in boldface.

The MV-CAAE outperformed all MVA variants across all metrics. MV-CAAE attained 
statistically significant V-measure scores of 0.45 for CI-A and 0.318 for CI-B. The second- 
best performing methods were Sparse MV-CAAE, V-measure score of 0.409 for CI-A, and 
MVA, V-measure score of 0.264 for CI-B. The sparse MV-CAAE adds a regularization 
function that penalizes the activation functions, which omits latent features in the learning 
process [30]. The MV-CAAE performance decreased when either the self-attention or CAM 
were removed. Including self-attention indicates that capturing highly correlated features 
contributes to a robust fused representation. The performance of the MV-CAAE with the 
CAM and aggregation fusion suggests that scoring the embedding relevance and fusing 
based on non-overlapping information more effectively captures key features of each data 
view compared to the benchmark methods.

Case Study

Evaluating computational design artifacts often includes various forms of post-hoc analysis 
to gather evidence of the artifact’s effectiveness and utility for a particular problem [58, 67]. 
This often comprises surveys, demonstrations, simulations, questionnaires, or interviews 
that gather client feedback in a real-world setting to measure the artifact’s utility [58, 67, 70]. 
Prior computational design science research has used case studies as a frequent post-hoc 
analysis to demonstrate the potential value of their artifact [8, 64, 94]. Following extant 
computational design science research, we performed a case study with two major activities 
to illustrate the potential practical value of our MV-CAAE artifact. First, we demonstrate 
how the MV-CAAE can be operationalized by clustering embeddings generated by the MV- 
CAAE for each VM from CI-A. Second, we conducted four semi-structured interviews 

Table 12. Experiment 3 results: MV-CAAE against MVA variants.

Evaluation metric

Dataset Method ARI AMI Completeness Homogeneity V-measure

CI-A Conventional MVA 0.226** 0.318** 0.435** 0.367** 0.398**
Denoising MV-CAAE 0.231** 0.323* 0.411** 0.363** 0.386**
Sparse MV-CAAE 0.227** 0.346** 0.431** 0.391* 0.409**
MV-CAAE w/o Self-Attention 0.187** 0.321** 0.466** 0.333** 0.388**
MV-CAAE w/o CAM and Aggregation Fusion 0.226** 0.348** 0.435** 0.367** 0.398**
MV-CAAE 0.264 0.389 0.506 0.393 0.443

CI-B Conventional MVA 0.173** 0.213** 0.249** 0.281** 0.264**
Denoising MV-CAAE 0.13** 0.169** 0.204** 0.22** 0.212**
Sparse MV-CAAE -0.014** 0.005** 0.052** 0.057** 0.055**
MV-CAAE w/o Self-Attention -0.014** 0.069** 0.138** 0.115** 0.126**
MV-CAAE w/o CAM and Aggregation Fusion -0.032** 0.106** 0.156** 0.153** 0.155**
MV-CAAE 0.386 0.256 0.309 0.286 0.297

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; MVA, multi-view autoencoder; ARI, Adjusted Rand 
Index; AMI, Adjusted Mutual Information; CI-A and CI-B, anonymous NSF-funded science gateways.
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where we presented the VM clusters to participants from four different organizations to 
elicit qualitative feedback regarding the usefulness of the MV-CAAE.

Case Study: Clustering Vulnerable VMs in Cyberinfrastructure

The purpose behind our MV-CAAE artifact is to automatically group VMs with similar 
vulnerabilities together, allowing SOC analysts to prioritize groups of selected VMs for 
remediation. To this end, we generated embeddings for every VM from CI-A (126 VMs, 
233,090 vulnerable packages, 4,014 file systems) using the MV-CAAE and subsequently 
clustered each embedding with K-means. The optimal number of clusters is determined by 
scores from Silhouette, Calinski-Harabasz, and Davies Bouldin metrics [78]. Silhouette 
scores range from -1 to 1, where 1 is the best value. Davies Bouldin scores range from 0 
to 1, where 0 is the best value. Calinski-Harabasz scores range from 0 to, where a higher 
score is preferred. Eleven clusters are selected, resulting in the best Silhouette, Davies 
Bouldin, and Calinski-Harabasz scores at 0.885, 0.145, and 31,335, respectively. Clusters 
of the CI-A VMs are visualized and selected packages and their vulnerabilities from four key 
clusters are summarized in Table 13.

We identified four clusters that SOC analysts can consider when prioritizing their VMs 
for remediation. First, VMs in Clusters A and B contain the most high-severity and total 
vulnerabilities. Second, VMs in Clusters C and D contain the least number of vulnerabilities 
and therefore can be deprioritized. Clusters E and F contain an average of 3,452 vulnerable 
packages per VM with 909 high-severity, 1,374 medium-severity, and 2,889 low-severity 
vulnerabilities. Clusters A and B contain an average of 328 vulnerable packages per VM with 
62 high-severity, 117 medium-severity, and 233 low-severity vulnerabilities. Given the 
severity and quantity of vulnerable packages in Clusters E and F, the VMs in these clusters 
should be prioritized for remediation.

Table 13. t-SNE visualization of clusters (k=11) and selected vulnerable packages within clusters.

Cluster Vulnerability Severity Package Count

Clusters A 
and B

Insecure 
Function

High Libblockdev2 41
Yadm 29
Youker 28

Insecure Input High Zabbix-cli 103
Cupp 29
Elastalert 13

XSS 
Vulnerability

High Libqt5webkit5 4
Python3- 

spyder
3

Clusters C 
and D

Insecure Input Low node-gyp 34
bup 31

Insecure 
Module

Low bup 20
python- 

sympy
15

Insecure 
Function

Medium python- 
sympy

60

python- 
html5lib

4

Notes:Clustered results contain overlapping points.
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Case Study: Semi-Structured Interviews

The clusters generated by the MV-CAAE in our technical case study provide valuable 
insights for analysts to assess VMs across multiple dimensions of vulnerabilities and 
design targeted remediation strategies for vulnerable VMs. We conducted semi-struc-
tured interviews using the results from our technical case study to evaluate the 
potential usability and proof-of-value of our MV-CAAE artifact. Semi-structured 
interviews have been used in prior design science research to qualitatively evaluate 
design artifacts by gathering feedback from individuals with experience with a parti-
cular domain or design problem [4]. In our case, with limited organizations and 
participants, semi-structured interviews are preferred compared to surveys and ques-
tionnaires which typically require larger sample sizes to measure statistical significance 
[4, 64]. Following guidelines for conducting semi-structured interviews, we prepared a 
brief script that included introductions, the purpose of the interviews, and a ques-
tioning route to evaluate the utility of our research design and MV-CAAE arti-
fact [52].

To execute the semi-structured interviews, we recruited seven participants from four 
different organizations with more than five years of experience and were directly 
involved in provisioning and securing their respective CI environments. In addition 
to our partner institutions CI-A and CI-B, we interviewed two additional CIs who 
maintain cloud and VM environments, CI-C and CI-D, to strengthen our case study 
and further investigate the generalizability of our MV-CAAE artifact across multiple 
organizations. CI-C is an external education and research SOC and provides security 
services for more than 250 academic and research institutions. CI-D is an academic 
computing infrastructure that supports and maintains a university infrastructure. The 
primary author was the main interviewer during the interviews and a co-author 
observed and took notes. In the interviews, we presented the results from the technical 
case study of clustering vulnerable VMs. We developed a questioning route with two 
vignettes to evaluate the utility of the MV-CAAE output and whether clustering 
vulnerable VMs for prioritization would be useful. The interviews were conducted 
using Zoom to accommodate out-of-state participants and the meeting was transcribed 
using Otter.ai transcription software. We provide further information regarding the 
interviews in Online Supplemental Appendix 4. Summarized in Table 14 First mention 
of Table 14. are the results measuring the utility of the MV-CAAE based on feedback 
from each participant group, where we provide indicators of evidence and 
counterevidence.

In summary, the technical case study of clustering vulnerable VMs and the semi- 
structured interviews demonstrate the practical value and provide evidence of utility 
for our MV-CAAE artifact. The participants from all four organizations indicated that 
clustering vulnerable VMs would be useful in identifying groups of vulnerable VM 
images to prioritize, corroborating evidence of the utility of our artifact. One partici-
pant from CI-A indicated the output of grouped VMs would be useful and further 
elaborated on the potential use case of the clustering output from the MV-CAAE. The 
participant described how the clustered results could allow them to decide whether the 
use of a particular VM should be stopped entirely. The participants from CI-A also 
indicated that the MV-CAAE output would be useful from an organizational stand-
point and aid in decision-making processes. They suggested that the output could 

732 ULLMAN ET AL.



potentially help define user policies, wherein individuals who install vulnerable 
packages or launch VMs with vulnerabilities could be notified of the inherent flaws. 
The participant from CI-B expressed similar thoughts to the participants from CI-A 
regarding the utility of our MV-CAAE artifact but also indicated counterevidence of 

Table 14. Semi-structured interview results measuring utility of MV-CAAE output.

Participant 
group

Discussion 
topic Evidence of utility

Counterevidence of 
utility Quotes

CI-A MV-CAAE 
Cluster 
Results

Yes. Indicated this would 
help prioritize 
vulnerable VMs.

None. “Yeah . . . from an intuition point of 
view, I think that certainly would be 
on the surface good.”

Making  
Decisions 
Using 
Results

Yes. None. “Yeah, certainly. And then . . . depending 
on the severity, we could make 
decisions on do we need to . . . stop 
the use of that [VM] entirely.”

CI-B MV-CAAE 
Cluster 
Results

Yes. Less applicability 
based on 
deployment.

“Yeah, I think you know . . . with the 
differences in deployment 
methodology . . . there’s a little, 
probably less applicable notion 
because there’s fewer images in 
doing this so you’re not going to have 
the large clusters.”

Making 
Decisions 
Using 
Results

Yes. Suggested that this 
would be helpful for 
vulnerable images at 
the project-level.

None. “I think the interesting thing that we 
could have taken away is, is to say, 
okay, within this cluster, is there a 
certain community that needs 
additional health support?”

CI-C MV-CAAE 
Cluster 
Results

Yes. Less applicability 
based on 
returned 
vulnerabilities.

“I think it’s useful and it’s helpful seeing 
the clustering, it helps you 
understand the relationship between 
the things that may not be 
immediately apparent.” 
“At the end of the day, I already 
intuitively know that I have 
vulnerable packages, which ones 
actually matter?”

Making 
Decisions 
Using 
Results

Yes. None. “Being able to cluster around [VMs] and 
make decisions [. . .] but be able to 
tune it to classes of vulnerabilities, 
that would be interesting.”

CI-D MV-CAAE 
Cluster 
Results

Yes. Less applicability 
due to purpose of 
IT assets.

“The groupings of vulnerabilities, 
particularly severity, and which 
packages are causing those 
groupings is helpful to be aware of, 
particularly as you observe it over 
time.” 
“We have a pretty small scope, but I 
could imagine for a very large 
environment, something like 
clustering is probably one of the few 
effective ways you could get your 
arms around certain problems.”

Making 
Decisions 
Using 
Results

Yes None. “Yeah [. . .], seeing the vulnerabilities 
that the systems have and clusters, I 
think it would help make our 
decision-making around priorities 
and what to handle and where to 
handle it just much easier to 
understand.”

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; VM, virtual machine; IT, information technology; 
CI-A, CI-B, CI-C, and CI-D, anonymous NSF-funded science gateways.
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utility as it pertains to the difference in VM deployment. The participant from CI-B 
commented on how this artifact could be used, stating that it would be interesting to 
assess project (community)-level VM deployments. The participants from CI-C echoed 
similar remarks, expressing that the MV-CAAE could be useful for clustering vulner-
able VMs and enhancing decision-making capabilities. They also indicated that the 
clusters would be more beneficial if they could focus on specific classes of vulnerabil-
ities. While our MV-CAAE does not directly account for this, the participants’ insight 
offers a valuable future direction for this research. Participants from CI-D indicated 
that the clusters helped assess and prioritize groups of vulnerable VMs and that the 
process would aid in decision-making. Overall, the participants from all four organiza-
tions indicated that the clustering output from our MV-CAAE would be useful and 
indicated that it could help prioritize groups of vulnerable VMs for remediation or 
further assessment (i.e., alternative deployment strategies or permanent VM image 
removal). While the results were less applicable for CI-C and CI-D based on the 
vulnerability coverage and difference in computing environments, the feedback vali-
dated the potential utility of our approach and offered additional directions for future 
research.

Practical Implications and Contributions to the Is Knowledge Base

Practical Implications

The case study demonstrates the MV-CAAE’s proof-of-concept and potential value by 
grouping similar vulnerable VMs for a major NSF-funded science gateway. The automated 
procedure reduces the labor-intensive process of individually scanning and assessing the 
types and severities of vulnerabilities in VMs. The MV-CAAE can assess and prioritize 
vulnerable VMs in public and scientific infrastructures. We further discuss the practical 
value and impact of the proposed research and how the MV-CAAE can help augment the 
practices for two key cybersecurity-related stakeholders as evidenced by our semi-struc-
tured interviews: SOC analysts and IT auditors [55].

SOC Analysts

Assessing the vulnerability types and severities of devices is a common task for many SOC 
analysts, but enterprise computing environments typically involve thousands of devices 
with hundreds of thousands of vulnerabilities, which surpasses human cognitive capacity 
[42, 59, 66]. SOC analysts can leverage the automated collection and vulnerability assess-
ments in the proposed research design to gather device information and identify code-based 
vulnerabilities in open-source software installed on the devices. The output of the MV- 
CAAE can help analysts automatically group and prioritize vulnerable devices to guide 
targeted remediation efforts.

IT Auditors

IT auditors are responsible for assessing an organization’s infrastructure, policies, and IT 
operations to evaluate security risks and associated costs. During their review, auditors will 
identify potential weaknesses, including vulnerabilities in VMs and software that may 
expose intellectual property. By utilizing clustering results from MV-CAAE’s embeddings, 
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auditors can categorize vulnerable VMs and prioritize assets for safeguarding and remedia-
tion based on the financial value of the intellectual property contained within them.

Contributions to the IS Knowledge Base

Design science research contributions are manifested in various forms, such as design 
artifacts, foundations (i.e., novel methods that extend design knowledge), and methodolo-
gies [34]. IS scholars have indicated that novel IT artifacts developed under the computa-
tional design science paradigm should contribute prescriptive knowledge back to i) 
application environments and ii) the methodological knowledge base [34, 54, 58]. Design 
artifacts can also offer contributions to design theory which consist of situated implementa-
tions (Level 1), nascent design theory (Level 2), or well-developed design theory (Level 3) 
[32]. Level 2 contributions include methods, models, or design principles that develop 
nascent design theory [32]. Prevailing computational design science research has contrib-
uted design principles to formulate nascent design theory in various contexts, such as 
chronic care risk profiling and content viewership prediction [45, 87]. Our study consists 
of two primary contributions: our proposed MV-CAAE research framework (design arti-
fact) and the two major novelties of the proposed MV-CAAE: the CAM and aggregation 
fusion via inverse relevance scoring (design principles).

● MV-CAAE Research Framework: Design artifact contributions should address problems in 
the application area for which they are designed and produce value to its constituent 
community [34]. Our novel MV-CAAE research framework contributes to existing 
vulnerability assessment procedures within information security management. Informed 
by meta-requirements derived from Control and Auditing Theory and Risk Management 
Theory, we contribute a design artifact to the information security management and the IS 
knowledge base that audits and automatically prioritizes vulnerable VMs in cloud infra-
structures. This artifact empowers IT managers to make effective security decisions by 
automatically grouping similar vulnerable VMs and enhancing vulnerability prioritization 
efforts. We illustrated the potential practical value and utility of our MV-CAAE artifact in a 
case study, where stakeholders from four different organizations indicated the value of the 
artifact and clustering output. Compared to conventional approaches for managing 
vulnerabilities, the DL-driven approach of our MV-CAAE framework allows key stake-
holders to measure and assess VMs across multiple dimensions of vulnerabilities. Reports 
generated by conventional vulnerability scanners provide lists of vulnerabilities that are 
organized individually. SOC analysts or IT auditors can sort and filter vulnerabilities by 
severity or type. In our context, analysts and auditors would have to repeat this procedure 
for every active VM instance. The benefit of our DL-based framework allows analysts to 
automate the data extraction and produce VM representations to automatically measure 
similarities to identify groups of vulnerable VMs.

● CAM and Aggregation Fusion via Inverse Relevance Scoring: DL-based contributions in 
design science research consist of novel methods or components that extend the existing 
methodological knowledge base that the method originated from [34, 64]. Our MV- 
CAAE framework contains two design principles based on our CAM and aggregation 
fusion via inverse relevance scoring novelties: (1) relevancy weighting for independent 
input embeddings and (2) fusing embeddings without overlapping information. These 
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design principles that can be generalized to facilitate further research inquiry in other IS 
domains [32, 45, 87]. Two potential bodies of IS research that these design novelties can 
contribute to are cybersecurity and mobile analytics. Design Principle 1 could be 
considered in malware analysis research by measuring the relevancy of both exploit 
and malware embeddings for static (i.e., raw code) and dynamic (i.e., malware behavior) 
analysis. Design Principle 1 dynamically weighs independent data views and it can 
account for key characteristics from different aspects of malware that should be prior-
itized. Design Principle 2 could be considered in mobile analytics research to determine a 
mobile device’s physical position for targeted advertising. For example, a mobile device’s 
Wi-Fi and Bluetooth connections can be represented as two heterogeneous networks and 
fused without overlapping shared connections. The inverse relevance scoring could 
account for unique signals from each connection and omit overlapping features that 
may be captured from radio frequency transmissions.

The MV-CAAE and design principles follow design science guidelines and contribute pre-
scriptive knowledge to the IS and methodological knowledge bases [34]. Taken together, the 
design artifact and design principles of this work also contribute to a nascent design theory 
that can be considered in different IS domains [32]. Feedback from the semi-structured 
interviews with participants from four organizations provides evidence for the proof-of- 
concept and proof-of-value of our design artifact for grouping and prioritizing vulnerable 
IT assets [55].

Limitations

As with any research, our study has several limitations. First, while the MV-CAAE demonstrates 
how vulnerable VMs can be embedded and clustered to aid in vulnerability prioritization efforts, 
the vulnerabilities are dependent on the quality and accuracy of the vulnerability scanners. In 
our study, we used two vulnerability scanners, Bandit and Flawfinder, to detect vulnerabilities in 
software packages written in Python and C++/C#. However, there could be additional code- 
based vulnerabilities from packages in different languages, as well as network vulnerabilities (e. 
g., exposed ports) that afflict the VMs and are not captured by our MV-CAAE. Second, while we 
demonstrated the generalizability of our approach by evaluating the MV-CAAE with data from 
two organizations, our approach does not account for internal security policies that may vary 
between organizations. Third, our MV-CAAE creates embeddings of vulnerable VMs for 
clustering that can be used to aid in vulnerability prioritization efforts. While the clusters are 
automatically generated using the embeddings, our MV-CAAE framework does not indicate 
which cluster of VMs to prioritize. Security analysts or end users need to review the summary of 
vulnerabilities that are associated with the VMs in the clusters to decide further actions.

Conclusion and Future Directions

The public VM market is estimated to reach $119 billion by 2031 [28]. Public clouds and 
scientific CI offer millions of users across industry and academia VMs to access computing 
resources to execute computational workflows. However, VMs often contain vulnerabilities 
from third-party software packages, where exploiting vulnerabilities and misconfigurations 
can impede business workflows and disrupt high-impact scientific research. Drawing from 
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kernel theories in information security management, we developed a novel DL-based research 
design that audits VMs in public clouds for vulnerabilities and automatically groups similar 
vulnerable VMs for prioritization. We developed a novel MV-CAAE that creates an embed-
ding for each VM based on their packages, vulnerabilities, and file systems. The embedding is 
then clustered to create groups of similar vulnerable VMs. The MV-CAAE operates by fusing 
graph embeddings of packages and file systems from VMs into a single embedding with an 
unsupervised multi-view learning strategy. The MV-CAAE iteratively re-weights package and 
file system features through a novel attention-based encoder to generate a unique, VM- 
specific embedding. Through a series of benchmark experiments, we demonstrated that MV- 
CAAE outperforms state-of-the-art graph embedding and fusion mechanisms in clustering 
vulnerable VMs for two prevailing NSF-funded science gateways. We executed a case study 
that illustrated the potential practical utility of the MV-CAAE by grouping VMs for prior-
itization and remediation in a major NSF-funded scientific CI. There is significant potential 
for adopting the MV-CAAE for general VM vulnerability assessment in enterprise systems.

There are several promising directions for future research. First, vulnerability severity could 
be accounted for in the research design to further enhance the VM representations, where 
vulnerabilities are weighted according to their severity (e.g., high severity would equate to a 
higher weight). Second, the MV-CAAE can be expanded to assess microservice architectures. 
Emerging container environments (e.g., Docker) supported by microservice architectures 
offer a dynamic layout to develop and host many services. Multi-view container data could 
include Dockerfiles and their network connections. Third, the multi-view learning component 
can be extended to incorporate additional VM data (e.g., network connections) to capture 
additional vulnerabilities. Fourth, a longitudinal analysis that captures VM representations 
over time can reveal the evolution of vulnerabilities as users modify VMs. Each direction can 
benefit vulnerability assessment practices for public clouds and scientific CI that offer VMs.
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