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ABSTRACT KEYWORDS
Cybersecurity is a present and growing concern that needs to be Online vulnerability; multi-
addressed with both behavioral and design-oriented research. view representation
Public cloud providers such as Amazon Web Services and federal learning; attention

mechanisms; cybersecurity;

funding agencies such as the National Science Foundation have ;
deep learning;

inve_sted billions of doIIa.rs into developing high-performance com- cyberinfrastructure; design
puting resources accessible to users through configurable virtual science; cloud computing;
machine (VM) images. This approach offers users the flexibility of asset clustering
changing and updating their environment for their computational

needs. Despite the substantial benefits, users often introduce thou-

sands of vulnerabilities by installing open-source software packages

and misconfiguring file systems. Given the scale of vulnerabilities,

security personnel struggle to identify and prioritize vulnerable

assets for remediation. In this research, we designed a novel unsu-

pervised deep learning-based Multi-View Combinatorial-Attentive

Autoencoder (MV-CAAE) to capture multi-dimensional vulnerability

data and automatically identify groups of similar vulnerable com-

pute instances to help facilitate the development of targeted

remediation strategies. We rigorously evaluated the proposed MV-

CAAE against state-of-the-art methods in three technical clustering

experiments. Experiment results indicate that the MV-CAAE

achieves V-measure scores (metric of cluster quality) 8 percent-48

percent higher than benchmark methods. We demonstrated the

practical value through a comprehensive case study by clustering

vulnerable VMs and gathering qualitative feedback from experi-

enced security professionals through semi-structured interviews.

The results indicated that clustering vulnerable assets can help

prioritize vulnerable instances for remediation and enhance deci-

sion-making tasks. The present design-research work also contri-

butes to our theoretical knowledge of cyber-defense.

Introduction

Cloud computing has emerged as a powerful technology to support an abundance of
computational workflows across industries including banking, finance, e-commerce, and
more [92]. Prevailing public cloud providers and U.S. federal agencies, including Amazon
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Web Services and the National Science Foundation (NSF), have made significant invest-
ments in scalable computing resources and large-scale scientific cyberinfrastructure (CI) to
support a range of high-impact research areas, from neuroimaging to DNA sequencing
[83]. Users of public clouds and scientific CI can access computing resources through
configurable virtual machines (VM) [21, 76] where they can install open-source software
packages from third-party platforms (e.g., GitHub) and manipulate file systems to support
their computational workflow. The global VM market, anticipating a valuation of $119
billion by 2031, comprises millions of users from organizations such as Apple, Netflix,
Samsung, and more [16, 28]. Thousands of VMs are provisioned on demand to support
various computational applications (e.g., analytical modeling and web hosting).

Despite the benefits, open-source software in VMs often contains vulnerabilities that can
compromise CI [76]. Detecting vulnerabilities within VMs presents a unique set of chal-
lenges compared to detecting vulnerabilities in individual software packages. VMs are
comprised of multiple categories of data with complex representations (e.g., file system
tree structures and software package dependency networks). Unlike isolated software
packages where vulnerabilities can be detected using scanners, VMs are comprised of
thousands of open-source packages, each potentially harboring vulnerabilities.
Furthermore, users who inadvertently install software with vulnerabilities can further
increase the attack surface [15, 76]. This problem is further amplified by the number of
active VMs and, if exploited, can lead to data loss, misuse of resources, and disrupt critical
business operations [15]. Illustrated in Figure 1 is an example of a VM containing a
vulnerable package from GitHub.

In Figure 1, the selected VM (Figure 1a) contains the PacificBiosciences package “python-
pbcommand” (Figure 1b). This package is vulnerable to shell injection attacks (Figure 1c),
allowing attackers to execute arbitrary code. Assessing software vulnerabilities in cloud
environments requires analysts to extract and scan software from the VMs for
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R e c. Shell Injection Vulnerability
in the Software Package

hostname = platform.node()

log.debug(“calling cmd "{c}' on {h}".format(c=cmd, h=hostname))

process = subprocess.Popen(cmd, stderr=stderr_ fh, stdout=stdout|
shell=shell,

executable=executable,

env=env)

Figure 1. Selected virtual machine (VM) including a) a user VM image, b) a selected vulnerable open-
source software package, and c) a shell injection vulnerability in the software package.
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vulnerabilities. This process aligns with information security management principles, which
have become a vital organizational concern with substantial managerial implications [71].
Information security management seeks to safeguard information technology (IT) infra-
structure and assets and can be characterized by activities such as detecting, prioritizing,
remediating, and preventing security risks (e.g., vulnerabilities) [46, 84]. Personnel such as
analysts in security operations centers (SOC) and IT auditors must identify assets, scan for
vulnerabilities, manually prioritize vulnerabilities for remediation [41], and then prioritize
vulnerable assets for remediation by categorizing and grouping assets with similar vulner-
abilities [33].

Despite the well-established nature of these processes, a key challenge in managing
software vulnerabilities from an information security management perspective is over-
coming the vast amount of data and high dimensionality. VMs and other IT assets
encapsulate thousands of software packages, comprising varying distributions of severity
and frequency [76]. Multiple vulnerabilities afflicting IT assets and software packages also
do not allow for a single, definitive label for categorizing and prioritizing vulnerabilities,
requiring an approach to overcome the lack of labeled data. The task of grouping (cluster-
ing) in cybersecurity has been used for anomaly detection to automatically identify mal-
icious behavior and attacks using unlabeled data [6, 25]. Grouping VMs with similar
vulnerabilities could help cybersecurity analysts develop targeted remediation strategies
[72]. However, the magnitude of vulnerabilities returned is beyond comprehension for any
individual [33]. Furthermore, public clouds and scientific CI often lack dedicated support
staff to identify, prioritize, and remediate vulnerabilities that remain undetected for years
[37, 56]. The magnitude of vulnerabilities and lack of sufficient labor requires a computa-
tional approach to group and prioritize vulnerable VMs for remediation.

Recent Information Systems (IS) cybersecurity analytics literature has primarily followed
the computational design science paradigm to develop novel deep learning (DL) methods
for Dark Web analytics [23, 64, 66]. DL has emerged as a powerful methodology capable of
capturing rich data representations without manual feature engineering, which is critical in
cybersecurity contexts [1,2, 67]. This alleviates security analysts who are managing vulner-
abilities from dedicating time to manually engineer and select features [66, 67].
Additionally, DL can operate on complex data structures which are found in VMs (e.g.,
package dependency networks). Due to the deluge of software and vulnerability data, DL is
a suitable methodological approach to group and prioritize vulnerable VMs for remedia-
tion. The difference in data and domain characteristics between software vulnerabilities and
prior Dark Web analytics research in information systems (IS) necessitates a novel DL-
based IT artifact [66]. In light of these concerns, we propose the following research
questions (RQs):

Research Question 1 (RQ1): How can we automatically identify the vulnerabilities that afflict
VMs in cloud computing?

Research Question 2 (RQ2): How can we design a DL-based approach to automatically group
and prioritize vulnerable VMs for remediation?

In this research, we adopted the computational design science paradigm [60] to
develop a novel research design that (1) automatically scans VMs to detect
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vulnerabilities in open-source software on VMs and (2) groups VMs with similar
vulnerabilities to facilitate vulnerability prioritization and remediation efforts. We
propose a novel unsupervised DL-based Multi-View Combinatorial-Attentive
Autoencoder (MV-CAAE) design artifact that draws upon state-of-the-art techniques
in unsupervised graph embedding, multi-view representation learning, and attention
mechanisms to fuse packages, vulnerabilities, and file systems from a VM into an
embedding to support vulnerability prioritization. Our MV-CAAE has two novelties
in its design:

e First, the MV-CAAE incorporates a Combinatorial Attention Mechanism (CAM) that
weighs package, vulnerability, and file system data to measure the relevance of each input.

e Second, the MV-CAAE fuses the data using an inverse relevance score, creating a more
comprehensive VM representation than using the input data separately.

Following the design science paradigm, we rigorously evaluated our MV-CAAE
design artifact against benchmark graph embedding methods, fusion mechanisms,
and multi-view autoencoder variants [34, 60]. The evaluation was performed on a
gold standard dataset of VMs provided by two prevailing NSF-funded science gate-
ways. The results demonstrated that the MV-CAAE outperformed state-of-the-art
graph embedding and fusion mechanisms for grouping similar vulnerable VMs. We
demonstrated the MV-CAAE’s practical utility through a case study that sought to
automatically group (cluster) vulnerable VMs for two major NSF-funded scientific
CI partners. We elicited qualitative feedback about the utility and value of the MV-
CAAE results through semi-structured interviews with four organizations, including
two science gateway partners and two additional organizations that maintain
research and education CI. The results of the case study illustrated that the MV-
CAAE can create groups of vulnerable VMs and allow stakeholders to identify VMs
with high-severity vulnerabilities that can be prioritized for remediation. The case
study also demonstrated evidence of usefulness, which was corroborated by stake-
holders. The proposed research design and the MV-CAAE have practical implica-
tions for analysts in SOCs and IT auditors for grouping and prioritizing
vulnerable VMs.

The remainder of this paper is organized as follows. First, we review two categories of related
research to gather a domain and methodological understanding for the design of our artifact.
We review IS cybersecurity analytics, computational design science principles, and information
security management research to guide the development of our artifact and introduce the
theoretical background. We also establish the methodological background of our research by
reviewing unsupervised graph embeddings, multi-view representation learning, and attention
mechanisms. We then summarize the targeted domain and methodological research gaps our
study targets. Third, we present our proposed research design. Specifically, we formulate meta-
requirements from kernel theories in information security management and identifying meth-
odological limitations that our design addresses. Fourth, we present the evaluation results
against benchmark methods. Fifth, we demonstrate the practical utility of our proposed MV-
CAAE framework with a two-part case study. Sixth, we summarize the practical implications
and contributions of our research design. Finally, we conclude our research and discuss
promising future directions.
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Related Research

Developing artifacts under the computational design science paradigm requires a deep
domain understanding to guide the artifact design [34, 60, 67]. Therefore, we review two
categories of literature to inform the design of a novel DL-based vulnerability assessment IT
artifact. First, we examine recent IS cybersecurity analytics research and information
security management to ground and guide our research. Second, we review three areas of
DL literature to enhance our methodological foundation and guide the development of our
artifact. We review unsupervised graph embedding methods for representing package and
file system relationships, multi-view representation learning for combining categories of
VM data, and attention mechanisms for dynamically weighing package and file systems
during the multi-view learning process.

IS Cybersecurity Analytics and Computational Design Science Principles

Cybersecurity analytics has emerged as an important research stream in the IS discipline. We
summarize selected recent IS cybersecurity analytics research in Table 1. For each study, we
present the year it was published, the author(s), the objective, the dataset(s) used, the analytical
method, and if the study incorporated a vulnerability assessment (the focus of our study).

Recent cybersecurity analytics studies have centered around de-anonymizing cybercrim-
inals [89], detecting and classifying hacker assets on the Dark Web for cyber threat
intelligence (CTI) [7, 8, 23, 24, 64, 65, 91], assessing the impact of hacker attacks [68],
and decision- making for managing risk [10, 38, 46, 96]. The analytical methods used in
earlier hacker analysis studies are primarily machine learning (ML)-based methods [65, 89],
while more recent studies have leveraged DL [7, 8, 23, 24, 64]. Despite providing essential
contributions to the cybersecurity IS knowledge base, recent IS cybersecurity analytics
research has largely focused on addressing challenges related to CTI, designing DL-based
artifacts to address malicious hackers and Dark Web activity [7, 8, 23, 24, 64, 65, 91]. The
emphasis on exploring hacker activity and Dark Web data leaves a dearth of research
investigating the potential vulnerabilities (weaknesses that allow hackers to compromise
IT infrastructure [64]) that many hackers target with their exploits. Additionally, recent
studies have designed novel DL-based methods based on the unique data characteristics of
Dark Web hacker forum posts and exploits, such as global text dependencies and sequential
word patterns [7, 23, 24, 64]. However, the data characteristics of VMs are fundamentally
different from Dark Web data as VMs contain large networks of data (software package
dependency networks, file system hierarchies) and potential vulnerabilities.

Developing a novel IT artifact capable of assessing and prioritizing vulnerable VMs
requires a design-based approach. The design science research paradigm offers prescriptive
guidance to scholars aiming to develop novel IT artifacts for a practically motivated
problem [34]. The breadth of research inquiries within the IS discipline has helped four
genres of design science research to emerge: computational, optimization, representation,
and economics [60]. Of the four genres, computational design science research provides
several guidelines for developing novel IT artifacts (e.g., algorithms) [60]. First, the artifact’s
design can be practically motivated by key domain requirements or data characteristics. For
example, Ebrahimi et al. [24] leveraged the webpage structure of DNMs to guide the
development of a novel transductive SVM for identifying cyber threats. Computational
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Table 1. Summary of selected recent IS cybersecurity analytics literature.

Analytical Vulnerability

Year Author Objective Dataset(s) method assessment? Publication

2024  Ampel et al. [7] Automatically label DNFs BiLSTM, None MISQ
hacker exploits for Attention
proactive CTI

2024 Ampel et al. [8] Link exploits to the DNFs, CRMF Transformer  None JMIS
MITRE ATT&CK
framework.

2022 Jensen et al. [38]  Improve phishing Survey Data Lab None JMIS
reporting through Experiment
security gamification

2022  Samtani et al. [64] Link exploits found on  DNFs, DSSM Yes, Nessus MISQ
hacker forums with Vulnerability
identified Scans
vulnerabilities

2022  Ebrahimi et al. [23] Detect hacker assets in DNFs BiLSTM, GAN  None MISQ
non-English
language on DNFs

2020  Liu et al. [46] Effect of IT governance Data Breaches  Regression None JMIS
on security breaches

2020  Ebrahimi et al. [24] Cyber threat DNMs SVM, BiLSTM  None IMIS
identification on the
Dark Web

2020  Sen et al. [68] Determine the impact  Software Regression None JMIS
of hacker attacks in market
software markets

2020  Zhuang et al. [96]  Determine if security Phishing DID None JMIS
awareness improves websites
organizational
security

2019  Yin et al. [89] Identify entities by de-  Bitcoin Boosted None IMIS
anonymizing the transactions classifiers
Bitcoin blockchain

2019  Yue et al. [91] Observe the impact of  DNFs LDA None MISQ
hacker forum
discussion on DDoS
attacks

2018  Benaroch [10] Mitigating DoS incidents,  Real options  None ISR
cybersecurity risk emails model
through IT
investment decision-
making

2017  Samtani et al. [65] Classification of DNFs SVM, LDA None JMIS
malware code on
DNFs

Abbreviations: BiLSTM, bi-directional long short-term memory; COC, convention on cybercrime; CRMF, Cybersecurity Risk
Management Framekwork; DID, difference-in-differences; DNF, dark net forum; DNM, dark net marketplace; DoS, denial of
service; GAN, generative adversarial network; IRC, internet-relay-chat; ISR, information systems research; JMIS, Journal of
Management Information Systems; LDA, latent dirichlet allocation; MISQ, MIS Quarterly; SVM, support vector machine.

design science artifacts can also be informed by meta-requirements carefully derived from
specific kernel theories [1]. Second, scholars should demonstrate the novelty of their
proposed IT artifact’s design through a series of evaluations that compares their artifact’s
performance against state-of-the-art approaches via well-established quantitative evaluation
metrics (e.g., homogeneity, completeness, V-measure). Finally, novel artifacts should con-
tribute situated implementations or nascent design theory (e.g., design principles) back to
the IS knowledge base to guide future research [32, 60]. To inform the design of an IT
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artifact that can identify and prioritize vulnerable VMs across multiple dimensions of
vulnerabilities, we review information security management.

Information Security Management

Information security management has emerged as an important sociotechnical concern for IT
managers and organizations and has drawn substantial research interest from IS scholars [46].
While information security management extends across a wide range of contexts, the objectives
can be broadly categorized as (1) identifying assets, vulnerabilities, and threats, (2) assessing and
prioritizing assets and vulnerabilities, (3) respond to and remediate vulnerable assets, and (4)
continuously monitoring for further risks [5, 84]. The principles of objectives 1 and 2, which are
the most pertinent to our study, are supported by two key theories: Control and Auditing Theory
and Risk Management Theory. Control and Auditing Theory suggests that organizations should
establish systems for preventing, detecting, and correcting illegal events [35, 85]. Frameworks
such as the Control Objectives for Information and Related Technology (COBIT) and ISO 17799
frameworks have emerged to ensure appropriate I'T governance and define information security
management requirements [61, 69]. Under this theory, systems should be capable of auditing
assets to identify potential security risks (vulnerabilities). Risk Management Theory comprises
establishing and maintaining information systems security and suggests that threats and vulner-
abilities can be assessed by analyzing security risks [84, 86]. Following this theoretical back-
ground, an IT artifact should be capable of auditing IT assets for vulnerabilities and allow key
decision-makers to assess and prioritize vulnerable assets. IT infrastructure in public clouds and
scientific CI comprises various IT assets like VMs and open-source software. Security analysts
and managers need to identify potential vulnerabilities to determine appropriate actions for
securing IT infrastructure. After identifying vulnerabilities, analysts categorize them into groups
of similar types and severities to help managers prioritize and secure IT infrastructure. The
abundance of vulnerabilities (types and severities) in clouds and Cls necessitates an IT artifact
that automates the detection and grouping of vulnerable IT assets (i.e., vulnerable VMs and
open-source software).

Auditing and assessing VMs for vulnerabilities, requires approaches for identifying assets and
ascertaining their vulnerabilities, respectively. Device fingerprinting is a common IT auditing
task that identifies and categorizes devices based on their characteristics by extracting device-
specific features to create a unique signature representing the device [20, 48]. Recent literature
indicates that scholars are developing supervised ML/DL-based methods to classify Internet-of-
Things (IoT) devices and detect physical position by analyzing network traffic and radio
frequency sequences [11, 47, 48, 73]. VMs offered by public clouds and scientific CI have three
fundamental properties that prevent the direct application of extant ML/DL-based fingerprinting
methods. First, VMs are typically hosted on a single server in a virtual environment. However,
the prevailing task for IoT fingerprinting aims to detect a device’s physical position. Second,
extant fingerprinting methods leverage supervised learning methods to classify known devices.
However, VMs in public clouds and scientific CI that offer VMs are not labeled with vulnerability
types and severities. Finally, VMs allow users to install numerous open-source packages and alter
the file system contents and structure. Such capabilities are not typically seen in IoT devices.
Taken together, the differences between VMs and IoT devices necessitate an approach that can
capture multiple modalities of VM data into a single embedding (representation).
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Table 2. Summary of prevailing graph embedding methods.

Node
Core operation Description Method features? Reference
Spectral Extract statistical network measures to represent  FeatherG Yes Rozemberczki and
Fingerprint the graph Sarakar [63]
NetLSD Yes Tsitzulin et al. [75]
Spectral No De Lara and
Fingerprinting Pineau [43]
Implicit Decompose a graph adjacency matrix to represent Graph2vec Yes Narayanan et al.
Factorization the entire graph as an embedding [53]

Unsupervised Graph Embedding Methods

Capturing multiple modalities of VM data into a single representation requires an
approach that can encode the package, vulnerability, and file system data and their
relationships. Therefore, we review unsupervised graph embedding methods for repre-
senting package and file system relationships. Packages and file systems in VMs both
follow graph structures G = (V, E), where G is the overall graph, V denotes the nodes in
the graph (packages or file system directories), and E denotes the edges connecting the
nodes (package dependency relationships, file paths) [3,50]. Creating a representation of
an entire VM that can be used to group vulnerable VMs requires encoding (i.e.,
embedding) the entire graph [31]. Since VMs in public clouds and scientific CI do
not contain labels detailing the vulnerability types and severities in the VMs, an
unsupervised graph embedding approach is required. Graph-level embedding methods
aim to represent entire graphs as points in vector space [62]. A graph embedding is a
mapping function v : g — z € R?% where y embeds a graph g to an embedding z; of
d-dimensions; similar graph embeddings z; and z; will be mapped close together in
vector space and indicate similarities between graph properties (nodes, edges, features).
The embedding is then input into ML and DL models for clustering and classification
tasks [18]. Prevailing graph embedding methods are categorized into two types based on
core operation: implicit factorization (Table 2) [62].

FeatherG [63], graph2vec [53], and NetLSD [75] hold significant promise for our
research as they can capture package vulnerabilities as node features. However, prevailing
graph embedding methods are designed to operate on a single data view. Combining
multiple views of VM data requires a multi-view representation learning strategy, which
we review next.

Multi-View Representation Learning

Multi-view representation learning aims to learn a data representation by relating multiple
data views (i.e., modalities) from the same source to boost learning performance [44]. Two
major categories of multi-view representation learning exist: alignment and fusion. In
alignment-based learning, separate models are trained for each view and the features are
aligned after training. Given two datasets X and Y, alignment is denoted as
r(x; W) < s(y; W), where r(-) and s(-) denote embedding functions to transform the
datasets to vector space, and « is the alignment operation. Fusion-based learning employs
a joint training strategy to create a shared embedding for two data views. Fusion operates



716 (&) ULLMAN ET AL.

Table 3. Summary of prevailing multi-view representation learning approaches.

Multi-view Selected Operation to produce
category approach Example model(s) the representation References
Alignment-  Correlation CCA, Sparse CCA, Kernel CCA, Deep CCA CCA Yang et al. [88]
based Distance CFA, correspondence autoencoder Frobenius norm Gao and Guan [29];
Similarity Cross-modal ranking, cross-modal hashing, Dot-product similarity Wang et al. [81]
deep cross-view embedding
Fusion- Graphical Multi-modal topic learning, multi-view sparse PCMF Zhu et al. [95]
based Model coding, latent multi-view Markov networks
Neural Multi-modal autoencoder, multi-view CNN, Sum, multiplication, Cui et al. [19];
Network multi-modal RNN concatenation, Kanezaki et al.
average [39]

Abbreviations: CCA, canonical correlation analysis; CFA, cross-modal factor analysis; MF, matrix factorization; PCMF, prob-
abilistic collective matrix factorization.

through h = ¢(x, y), where h denotes the joint representation and ¢(-) denotes the fusion
operation between inputs x and y. Summarized in Table 3 are the prevailing multi-view
representation alignment and fusion approaches with example models.

Compared to alignment-based approaches, fusion-based multi-view learning is suitable
for our task since it allows us to combine multiple representations (i.e., VM packages and
file systems) into a single embedding for downstream tasks (e.g., clustering). In particular,
IS scholars are increasingly leveraging neural network-based techniques on vulnerability
assessment data for CTI and vulnerability management [64, 66]. The lack of a priori
knowledge (e.g., labels) about vulnerabilities in packages and file system hierarchies neces-
sitates an unsupervised approach for producing an embedding for each VM [44]. The
prevailing unsupervised neural network-based multi-view architecture is the Multi-View
Autoencoder (MVA). Prevailing MVA methods primarily operate on image, text, and
sensor data [12, 90]. The fusion process employs a concatenation or sum operation to
merge both views, which is suitable for retaining information from complimentary multi-
modal data or synthetic unimodal data. However, fusing independent data views from the
same source requires an operation to prioritize features. Attention mechanisms are a
promising approach that can identify correlated features in package and file system views
to determine which view should be prioritized during fusion.

Attention Mechanisms

Attention mechanisms are layers in DL architectures that assign trainable weights to input
data features [9] and allow DL models to attend to input features that are highly correlated
[22]. An attention layer is formally denoted by a query Q, and a key-value pair (K, V), where
Q, K, and V denote the expected output, the input data, and the internal data representa-
tion, respectively. The attention is computed as the weighted sum of V, which is determined
by a scoring function measuring the similarity between Q and K. Scoring functions are
operations that determine how attention is calculated. The prevailing functions are sum-
marized in Table 4 [14].

Additive and dot-product scoring mechanisms are among the most popular func-
tions due to their simplicity. These functions are extended to scale the attention values
when dimensionality is high (scaled dot-product), incorporate an additional weight
matrix (general), or use bias terms and activation functions (bias and activated gen-
eral). MVA architectures have leveraged additive and dot-product scoring functions to
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Table 4. Summary of prevailing attention mechanism scoring functions.
Scoring functions Description Equation

Additive (Concatenate) Non-linear activation applied to concatenated representations w’ x o(W, x Q+ W x K) +b
of query and key vectors.

Dot-product Calculates attention weights by taking the dot-product Q'K
between query and key vectors, followed by a softmax
activation.

Scaled dot-product Scales the dot-product between query and key vectors bya 2k
factor of the square root of the dimensionality. Ve

General Pairwise interactions between query and key vectors by QWK
applying a learned linear transformation.

Biased general Introduces bias terms to assign relevance to query-key pairs QWK + b
based on learned biases.

Activated general Incorporates an additional activation function after the linear o(QTWK + b)
transformation.

Similarity Calculates attention weights by measuring the similarity or sim(Q,K)

distance between query and key vectors.

capture word relevancy between user reviews and items in recommender systems [49,
93] and measure relevancy between words and pictures in multimedia retrieval [36].
Despite the important contributions, recent MVA research only adopts standard
implementations of attention mechanisms to capture word relevancy before fusion,
treating each embedding identically. How to formulate attention layers in an MVA to
combine independent package, vulnerability, and file system representations requires
further study.

Research Gaps

We identified four key research gaps from our review of related research as it pertains to our
study’s context. In Table 5, we categorize the reviewed bodies of literature and briefly
summarize the main points, the associated research gaps, and their implications for our
study.

First, from IS cybersecurity analytics and information security management, there is a
lack of research that seeks to develop automated methods for detecting and prioritizing
vulnerabilities. This dearth hinders decision-makers from operationalizing information
security management principles to audit and assess IT asset vulnerabilities. Developing
artifacts to enhance vulnerability management efforts can bolster organizational cyber-
defense [66]. Second, prevailing ML/DL-based fingerprinting methods operate on a single
view of data from IoT devices and omit software package vulnerabilities in the overall
representation that can offer VMs can help facilitate vulnerable VM prioritization and
remediation. Third, ML/DL-based fingerprinting methods analyze network traffic and
radio frequency sequences to create a fingerprint. However, packages and file systems in
VMs follow a graph representation structure. Graph embedding methods can represent
entire graphs but only operate on a single view of data. Fourth, prevailing MV As primarily
operate on complementary and closely linked text and image data. However, the data
characteristics of packages and file systems are independent and require a mechanism
that can compute the relevancy between the inputs prior to fusion. We aim to address
these research gaps with our proposed research design.
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Table 5. Summary of reviewed literature, research gaps, and implications.

Bodies of

literature Main points Research gaps

Implications for our study

-IS Cybersecurity ~ -Recent IS cybersecurity analytics -IS cybersecurity analytics

Analytics research has investigated research lacks artifacts to
-Information hacker activity on the Dark address vulnerabilities.

Security Web. -Fingerprinting methods operate

Management  -Theories from information on single-view data, primarily

from loT devices, and do not
consider device vulnerability
data.

security management offer
guidelines for identifying,
prioritizing, and remediating
security risks.

-Device auditing and asset
inventories are completed
using fingerprinting methods.

-Unsupervised -Graph embeddings capture

Graph statistical and feature data to only operate on single-view
Embedding from graphs into a latent graph representations
Methods representation (embedding).
-Classes of methods are capable
of embedding entire graphs.
-Multi-View -Learns representations of -Input embeddings are primarily

Representation
Learning and
Attention
Mechanisms

multiple views of the same
input for alignment or fusion.

-Assigns weights to relevant
input features.

treated identically instead of
independently.

-Designing IT artifacts for

vulnerability management
can assist in cyber-defense.

-Devices often include

multiple views of data that
characterize them.
Including vulnerability data
in device fingerprints can
bolster auditing tasks with
vulnerability grouping and
prioritization.

-Prevailing methods are designed -VMs are characterized by

multiple types of data
views (e.g., packages and
file systems). Packages and
file systems from VMs are
both represented as graphs
and capture different VM
properties.

-In order to combine multiple,

independent views of VM
data (e.g., packages and file
systems), the views must
be carefully weighed.

Abbreviations: IS, information systems; IT, information technology; loT, internet of things; VM, virtual machine.

Research Design

Computational design science research has leveraged kernel theories and justificatory
knowledge to inform the design of novel artifacts [34, 79]. Furthermore, studies following
the computational genre of design science should seek to address the limitations of the
methodological knowledge base from which the IT artifacts are derived [34, 60, 67].
Following these guidelines, we propose a novel research design to automatically detect
vulnerabilities in open-source software on VMs and group similar vulnerable VMs to
facilitate prioritization and remediation efforts. Our research design is informed by two
meta-requirements derived from kernel theories: Control and Auditing Theory and Risk
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Figure 2. Proposed research design.
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Management Theory. We develop a novel DL-based IT artifact that addresses limitations of
unsupervised graph embeddings, multi-view learning, and attention mechanisms in prior-
itizing vulnerable VMs in cloud environments. Illustrated in Figure 2 is our research design
with four major components: (1) Data Extraction, (2) Vulnerability Scanning, (3) Multi-
View Combinatorial-Attentive Autoencoder (MV-CAAE), and (4) Evaluation.

We formulated two key meta-requirements to guide our research design that align with
dimensions of our kernel theories, Control and Auditing Theory and Risk Management
Theory. Summarized in Table 6 are the originating statements from our kernel theories,
derived meta-requirements from the theories, the corresponding research design compo-
nents, and methodological limitations addressed by our MV-CAAE artifact.

According to our kernel theories, Control and Auditing Theory and Risk Management
Theory, we derived two meta-requirements to guide our design choices for our artifact. First,
public clouds and scientific CI should establish systems capable of auditing and assessing
assets (e.g., VMs and open-source software) for vulnerabilities, thereby identifying potential
security risks. We account for this requirement in our artifact design by auditing each VM
hosted by two NSE-funded scientific Cls to extract the software packages and identify their

Table 6. Design guidelines for MV-CAAE framework.

Identified domain and

ISM Kernel theories Meta-requirements Research design component methodological gaps

-Clouds and scientific Cls lack
an artifact to assess
internal software package
vulnerabilities within VMs.

Data Extraction: VMs from
partner Cls are audited to
extract relevant data (e.g.,
software, file systems) for
producing comprehensive
VM representations.

Vulnerability Scanning:
Software is scanned for
vulnerabilities to
determine security risks.

-Control and Auditing Theory: Public clouds and scientific
Auditing procedures for Cl should establish
information systems and systems capable of
IT assets should be auditing assets to identify
conducted to measure potential vulnerabilities.
control performance [35,

85].

-Risk Management Theory:
Organizations must assess
potential threats and
vulnerabilities of asset
groups or information
systems by identifying,
prioritizing, and
mitigating risks [84, 86].

Vulnerabilities can be
assessed by analyzing
security risks, allowing
stakeholders to make
informed decisions based
on prioritized assets and
vulnerabilities.

MV-CAAE: Comprises design
features to capture and
represent vulnerabilities in
VMs:

-Unsupervised Graph
Embeddings: Produces
latent representations
(embeddings) of software
package and file system
graphs encapsulated into
VMs.

-Multi-View Learning: Fuses
multiple dimensions of VM
data to create a
comprehensive
representation.
-Combinatorial Attention
Mechanism: Dynamically
measures relevancy of
each view during fusion.

Downstream Clustering Task:
Output representations
are clustered together to
help prioritize groups of
vulnerable VMs.

-ML/DL Device Fingerprinting:
Fingerprinting methods
do not take into account
device vulnerability data.

-Unsupervised Graph
Embeddings: Prevailing
methods only operate on
single-view data.

-Multi-View Learning and
Attention Mechanisms:
Input embeddings are
primarily treated
identically instead of
independently

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; Cl, cyberinfrastructure; VM, virtual machine; ISM,
information security management; ML/DL, machine learning/deep learning.
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vulnerabilities. Second, vulnerabilities can be assessed by analyzing the security risks, allowing
key stakeholders to make informed decisions based on the prioritized vulnerabilities. Our
proposed MV-CAAE satisfies the second meta-requirement by creating a single representa-
tion (embedding) from the data and vulnerabilities extracted from each VM which are
subsequently input into a downstream clustering task to create groups of similar vulnerable
VMs. The procedure of clustering vulnerable VMs allows stakeholders to identify specific
groups of VMs that should be prioritized and addressed based on the severity or frequency of
vulnerabilities. We further describe each component of our research design (Figure 2 and
Table 5) in the following sub-sections.

Data Extraction and Vulnerability Scanning

We partnered with two major NSF-funded science gateways, referred to as “CI-A” and “CI-
B,” to preserve their anonymity for our own NSF-funded project. Both gateways have
received more than $140M of funding from the NSF, support more than 400 projects
funded by the NSF, and have a user-base of over 70,000 life science researchers from over
7,000 institutions. Each gateway hosts its VMs on cloud computing platforms accessible to
users through web browsers. We designed a custom script for each science gateway that
automatically (1) launches each VM; (2) collects operating system (OS), package, and file
system data for each VM; and (3) parses the data into a database. We collected the source
code for each package maintained on GitHub, the prevailing open-source software platform
[17], and scanned for code-based vulnerabilities, resulting in a large and valuable scientific
CI and VM research testbed.

We selected two popular and well-regarded scanners to detect vulnerabilities in software
package code. Bandit reconstructs the source code into abstract syntax trees (AST) to scan for
nine insecurities and attacks in Python [74]. Flawfinder matches syntactic patterns in source
code files to scan for three insecurities and attacks in C [40]. Bandit and Flawfinder provide
descriptions of detected vulnerabilities and categorize vulnerabilities based on severity scores
using data from the Common Weaknesses and Enumeration database. Bandit and Flawfinder
are suitable for our study since the leading programming languages in our collection are
Python and C. In particular, they are open-source scanners that organizations can implement
at minimal cost [76]. We summarize the type, description, and example of vulnerabilities from
each scanner in Online Supplemental Appendix 1. Scanning for vulnerabilities using open-

Table 7. Data extraction vulnerability scan summary for each science gateway.

Number of ~ Number Number of Vulnerability Top vulnerable
Number gitHub of file vulnerable severity repository/ Number of
Gateway of VMs  packages systems packages* distribution package vulnerabilities
Cl-A 126 817,646 4,014 233,090 High 2,355  usit-gd/zabbix 104
Medium 9,959 PacificBiosciences/ 1,599
pbcore
Low 246,318 sympy/sympy 66,344
Total: 258,632 - -
CI-B 89 851,180 3,367 260,535 High 2,182  usit-gd/zabbix 104
Medium 9,944  PacificBiosciences/ 1,599
pbcore
Low 165,496 annulen/webkit 9,599

Total: 177,622 - -

Notes: Packages can contain multiple severities of vulnerabilities. Vulnerabilities are measured across all VMs combined.
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source or commercial tools is a standard practice in vulnerability management research and
allows us to capture unique vulnerability characteristics of the VMs in our testbed [41].
Summarized in Table 7 are the data extraction and vulnerability scan results including the
number of VMs, GitHub-based packages, file systems, vulnerable packages, vulnerability
severity distribution, and top vulnerable package for each gateway.

In total, package and file system data were collected from 215 VMs (CI-A = 126, CI-B = 89).
Over 800,000 GitHub-maintained packages were collected from all VMs for each gateway,
ranging between 810 and 12,920 packages per VM. 4,014 file systems were collected from CI-
A, and 3,367 file systems were collected from CI-B. Bandit and Flawfinder detected 233,090
vulnerable packages for CI-A and 260,535 vulnerable packages for CI-B. The package zabbix, a
network monitoring package, contained the most high-severity vulnerabilities at 104. The
package pbcore (designed for processing Pacific Biosciences data files) contained the most
medium-severity vulnerabilities at 1,599. The packages sympy (66,344) and webkit (9,599)
contained the most low-severity vulnerabilities for CI-A and CI-B, respectively.

The VM testbed in this study is among the first in academia to include thousands
of open-source packages, their vulnerabilities, and file systems from over 200 VMs
collected from two significant scientific CI. Our testbed differs from Dark Web data
used in past IS cybersecurity analytics research in several important ways [23, 64].
First, the open-source packages provide a comprehensive summary of the software in
cloud VMs. Second, the code-based vulnerabilities capture vulnerabilities overlooked
by general-purpose scanners used in recent IS literature [64]. Third, the file system
data indicates how users configure their VMs and store data. Taken together, the
unique data characteristics of our testbed can help facilitate important IS cybersecurity
analytics research on open-source software security, vulnerability prioritization, and
more.

Multi-View Combinatorial-Attentive Autoencoder (MV-CAAE)

Given the unique characteristics of our VM testbed and limitations of extant unsupervised
graph embeddings, MVL, and attention mechanisms, we design a novel MV-CAAE that
extends the MVA with a combinatorial attention mechanism (CAM) and aggregation
fusion via inverse relevance scoring. The proposed MV-CAAE is contrasted against the
conventional MVA in Figure 3, with the key novelties residing within Steps 2 and 3. The
MV-CAAE fuses graph embeddings of package and file system data to generate an aggre-
gated embedding to group similar VMs.

The MV-CAAE comprises five steps: (1) graph construction and embedding, (2) combi-
natorial attention mechanism, (3) aggregation fusion via inverse relevance scoring, (4)
decoder, and (5) MSE calculation and backpropagation. The core novelty for the MV-
CAAE lies in Steps 2 and 3. Each step in the MV-CAAE and its design rationale is described
further below:

o Step 1 (Graph Construction and Embedding): We structure the package and file
system views as graphs to capture their relationships [3,50]. The package view is
defined as G = (Ag, Eg, Fg), where G is an undirected graph, Ag is the node set,
{ur,...,u,}, of all packages in a VM, Eg is the edge set {ej,...,e,} connecting the
packages based on shared dependencies, and F; is a feature matrix of vulnerabilities.
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4. MSE Calculation and Backpropagation 4. Decoder
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Figure 3. Comparison of conventional multi-view autoencoder (MVA) (left) and proposed multi-view
combinatorial-attentive autoencoder (MV-CAAE) (right).

The file system view is defined as T = (Ar, Er, Fr), where T is an acyclic graph, Ar is
the node set, {vy,..., v}, of all file system directories, Er is the edge set {p1,...,pn}
of directed edges between each directory, and Fr is the feature matrix of file system
node features (e.g., permissions, file system type). We generate graph embeddings with
graph2vec since it (1) embeds entire graphs, and (2) captures node features (e.g.,
vulnerabilities) in the embedding, denoted as Enc(G;) — g € R? and
Enc(T;) — t; € R, where g and t; are embeddings with real values R of d dimensions.
Step 2 (Combinatorial Attention Mechanism): We first employ a scaled dot-product
self-attention operation on each embedding to identify important features from each
view separately [77]. Each embedding g; and ¢; is weighted by the self-attention
operation such that Hg = softmax(glrgi/\/@)gi and Hr = softmax(t]t;/\/d;)t;,
where d; and d; are the scaling factors that scale each weighted embedding according
to the feature dimensions for each embedding. We propose a novel combinatorial
attention mechanism (CAM) to measure the relevancy of MV-CAAEF’s independent
embeddings for a comprehensive representation. For a pair of self-attended views H;
and Hj, we extract salient information combinations s; j, where s;; is a scalar represent-
ing how relevant the views are to each other. The function
S= {s,-,]-|s,-7j = ¢(W,-_J [H,-;Hj]),i,j €l,.. .,n]} computes the relevance, where ¢ is
the non-linear activation function, W;; is a set of trainable weights, and S is a
matrix that stores the relevance score. The relevancy score for the self-
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attended package and file system views Hg and Hry is calculated as
S= {SG.T|SG‘T = ¢(WG7T[HG;HT]), G, T, €l,..., n}} The output relevance score
matrix S is then used in Step 3 to weigh and combine the embeddings H¢ and Hr.
Our proposed CAM is adapted from the conventional additive attention, where the
attention score is learned from the non-linear combination of the concatenated queries
and keys to understand word context [9,77]. In the conventional additive attention
mechanism, encoder and decoder hidden representations of source word sequences
are concatenated and input into a non-linear activation function to predict a target
sequence (e.g., neural machine translation). The attention score then determines how
much of the hidden state of the source sequence is considered in predicting the target
sequence. In contrast, our proposed CAM produces an attention matrix based on the
relevancy between independent input views to determine how much from each view’s
hidden state should be considered in producing a combined embedding.

Step 3 (Aggregation Fusion via Inverse Relevance Scoring): To produce a compre-
hensive embedding for the input VM, we need to condense the representation from
each view based on S that includes all non-overlapping information. Producing a
representation without overlapping information creates a comprehensive representa-
tion of a VM without data redundancy from the embeddings. Based on the relevance
score output S from the CAM in Step 2, we apply a softmax function to the inverse of
the relevance scores o(1 /Si,[1;n]) to produce a probability distribution, guiding the
model to focus on feature dimensions of the embeddings Hg and Hy with few over-
lapping information. The probability distributions are summed across all views to
obtain the relative contribution of H; and Hr to the aggregate of the views. The
attention weights are obtained from the aggregated distribution using a second

softmax function: a; = ¢ (Z a(l / si7[1:n])) . The condensed embedding E is produced
i k

by an attention-weighted linear-combination of the representations of all views:
E = > aiHjy. For the packages and file systems, the condensed embedding is repre-
k

sented as E = ), axHgHy, where E is the weighted sum of the attention weights aj

multiplied by the self-attended embeddings Hg and Hy. Since each VM is unique, the

relative contribution from each view will vary from VM to VM, but the package view

Hg or the file system view Hy is prioritized based on the product of the attention

weights a; and the embeddings Hg and Hr.

Step 4 (Decoder): Following MV A principles, two decoder tasks G = oG (WGE + bé)

and T; = 03 (W;E + b;) reconstruct the inputs G; and T; from the shared representa-

tion E.

Step 5 (MSE Calculation and Backpropagation): After the zlecoder recgnstructs

the inputs, two MSE functions MSEg =1/n), (G,- - é,) and
, i=1

MSEr, =1/n), (Ti — Ti)z calculate the loss between the original and reconstructed
i=1

package and file system inputs. The internal MV-CAAE weights are iteratively updated

through backpropagation until convergence and repeated until both MSE functions

are minimized.



724 ULLMAN ET AL.

The final output of the converged MV-CAAE is the fused embedding E from Step 3.
This embedding is a unique representation for each VM that can be used in a
downstream clustering task to group VMs with similar packages, file systems, and
vulnerabilities.

Our proposed MV-CAAE has two key novelties in its design. First, the MV-CAAE’s
CAM computes relevance scores between multiple views of embeddings to determine
which dimensions are more relevant prior to fusion. Unlike the standard additive
attention, the CAM in this context allows the MV-CAAE to weigh independent features
separately as opposed to identically. The conventional MVA only uses non-linear
activation functions and therefore weights the inputs identically. However, packages
and file systems of a VMs are fundamentally different (i.e., independent); packages
contain source code with vulnerabilities whereas file systems control how data is stored
on a VM. Second, the aggregation fusion via inverse relevance scoring combines non-
overlapping information from each embedding to produce a comprehensive VM repre-
sentation. The conventional MVA concatenates embeddings in the fusion process and
does not prioritize features across both views. The MV-CAAE’s aggregation fusion
mechanism weights the features from the package and file system views to produce a
single embedding for the VM.

Evaluation

Research guided by the computational design science paradigm should be rigorously
evaluated against state-of-the-art methodologies available from the knowledge base using
appropriate quantitative metrics [34, 60]. In particular, DL-based artifacts are evaluated
using technical and non-technical experiments [67]. Technical experiments compare the
performance of a proposed DL-based model against prevailing ML and DL benchmarks in a
downstream task [67]. Performance metrics are selected based on the downstream task type
(e.g., classification or clustering) and learning paradigm (e.g., supervised or unsupervised),
which are informed by the domain requirements and data characteristics [67]. Non-
technical experiments measure whether the proposed model can address a higher-level
problem in the application environment [57, 58]. Case studies, interviews, focus groups,
questionnaires, simulations, and illustrative scenarios are possible approaches to evaluate
the proposed artifact in a real-world setting [57, 58, 67]. Since we followed the computa-
tional design science paradigm to develop a novel DL-based artifact, we systematically
evaluated our proposed MV-CAAE with technical and non-technical approaches [8, 57, 60,
64, 67]. First, we conducted a series of rigorous technical benchmark experiments to
quantitatively evaluate the performance of our MV-CAAE compared to methodologies
from the knowledge bases it was designed from. Second, we performed a two-part case
study to demonstrate the potential practical value of our artifact: we instantiated the MV-
CAAE in a real-world setting to cluster vulnerable VMs from CI-A and subsequently
gathered feedback regarding its usefulness through semi-structured interviews with four
organizations.

For the technical benchmark experiments, we follow evaluation procedures from prior IS
computational design science research developing DL-based artifacts, where evaluating
unsupervised algorithms is often conducted by inputting the algorithm’s generated embed-
ding into a downstream task [63, 67]. The selection of a downstream evaluation task is
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Table 8. Summary of benchmark experiments.

Benchmark
method

Evaluation
metrics*

ARI, AMI,
Completeness,
Homogeneity,
V-measure

Experiment Justification References

1 MV-CAAE
against single
view
representation.

Description

de Lara and
Pineau [43]

Calculates k
lowest
eigenvalues of
normalized
Laplacian
matrix

Node features
and random
walk weights
are pooled to
create graph-
level statistics

Calculates kernel
heat trace of
normalized
Laplacian
matrix

Document-
feature co-
occurrence
matrix is
decomposed
to generate
graph
representation

Element-wise

Single view models are SF
the prevailing
approach for device
fingerprinting.

Rozemberczki
and Sarkar
[63]

FeatherG

NetLSD Tsitsulinet al.

[75]

Graph2vec Narayanan et

al. [53]

2 MV-CAAE's Evaluate combinatorial  Subtraction Blandfort et al.

3

combinatorial
attention
against
benchmark
fusion
mechanisms.

attention weighting
over benchmark
fusion mechanisms
that do not weigh
features during
fusion.

MV-CAAE against Evaluate MV-CAAE

MVA variants.

against MVA variants

with input noise,
sparsity constraints,
and without
attention
mechanisms.

Sum

Average

Concatenation

Multiplication

Conventional
MVA

Denoising
MV-CAAE

Sparse MV-
CAAE

subtraction of
both
embeddings
An element-wise
sum of both
embeddings
Average of both
embeddings
Concatenation of
both
embeddings
Multiplication of
both
embeddings
MVA with no
feature
weighting or
regularization
Gaussian noise
added to the
inputs
Regularization
penalty
applied to the
inputs

[13]; Francis
etal. [27]; Li
et al. [44]

Goodfellow et
al. [30];
Samtani et
al. [64]

MV-CAAE without self-attention
MV-CAAE without CAM and
aggregation fusion

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; SF, Spectral Fingerprinting; ARI, Adjusted Rand
Index; AMI, Adjusted Mutual Information; MVA, multi-view autoencoder.
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typically based on the task that the model output is designed for [80]. Our research objective
is to create groups of vulnerable VMs which is naturally represented as a clustering task.
Clustering refers to the task of grouping similar data points based on inherent similarities or
patterns [58]. In our context, we evaluated the quality of the embeddings produced by MV-
CAAE and benchmark graph embedding, multi-view fusion mechanism, and autoencoder
variants such that we can provide direct comparisons between our proposed MV-CAAE
and each class of methods that inspire its design. We summarize each benchmark experi-
ment in Table 8. For each experiment, we present a justification, the benchmark methods
used in the experiment, and evaluation metrics. In Experiment 1, we evaluated the MV-
CAAE against state-of-the-art graph embeddings of both package and file system views
independently to identify if multi-view learning creates a more comprehensive VM repre-
sentation. The benchmark graph embedding methods include Spectral Fingerprinting (SF),
FeatherG, NetLSD, and graph2vec [43, 53, 63, 75]. In Experiment 2, we examined the
performance of the MV-CAAE’s CAM against approaches that do not re-weight features
during fusion. The methods in Experiment 2 include subtraction, sum, average, concatena-
tion, and multiplication [13, 27, 44]. In Experiment 3, we investigated how the MV-CAAE
performed against alternative designs. Since each component in the MV-CAAE can be
varied based on autoencoder principles, we evaluated the MV-CAAE against the conven-
tional MVA, sparse MV-CAAE, denoising MV-CAAE, MV-CAAE without self-attention,
and MV-CAAE without CAM and aggregation fusion via inverse relevance scoring [30, 64].
The MV-CAAE was implemented in Python 3.7 using Keras, TensorFlow, and numpy. To
facilitate scientific reproducibility, we provide full parameters of the MV-CAAE in Online
Supplemental Appendix 2.

The embeddings generated from each method were clustered using K-means and
evaluated using prevailing extrinsic cluster evaluation metrics [82]: adjusted rand index
(ARI), adjusted mutual information (AMI), completeness, homogeneity, and V-measure.
We select these evaluation metrics since other common ML evaluation metrics (e.g.,
accuracy, precision, recall, Fl-score) are designed for supervised learning tasks (e.g.,
classification), where methods have prior knowledge of input labels. Our unsupervised
approach learns patterns or groups (clusters) of data without prior knowledge of the label.
Therefore, we require metrics that can measure the method’s ability to effectively produce
pre-defined clusters. ARI and AMI measure the similarity between normal and unbalanced
clusters, respectively, based on true labels y and predicted labels j. Scores range between -1
and 1, where scores closer to -1 or 1 are optimal. Completeness measures whether all the
data points that are members of a class are elements of the same cluster. Homogeneity
measures whether all the clusters contain only data points that are members of a single class.
V-measure is the harmonic mean between completeness and homogeneity. Scores for
completeness, homogeneity, and V-measure range between 0 and 1, where scores closer
to 1 are optimal. In the context of our study, achieving strong ARI, AMI, completeness,
homogeneity, and V-measure scores indicates that each cluster contains VMs with identical
vulnerabilities. Security analysts responsible for assessing and managing vulnerabilities in
cloud environments would use these clusters to automatically identify groups of vulnerable
VMs that should be prioritized. Since each VM in their respective clusters would have near
identical vulnerability distributions, security analysts could apply the same remediation
strategy to each VM in the same cluster, alleviating the need to audit and assess each
individual VM for vulnerabilities manually and providing greater visibility of the
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vulnerabilities within each user VM in their infrastructure. Each method was performed ten
times and averaged, and one-sided t-tests were used to measure statistically significant
differences between method. All experiments were conducted on a Windows 10 work-
station with 32GB of Random Access Memory (RAM), a NVIDIA GeForce RTX 2070 Super
Graphical Processing Unit (GPU), an AMD Ryzen 7 3700x Central Processing Unit (CPU),
and one terabyte of disk space.

Executing benchmark evaluations requires ground truth (ie., gold-standard) datasets [54,
64]. Consistent with best practices in IS cybersecurity analytics literature, we constructed gold-
standard datasets by randomly sampling 50 percent of the VMs from both datasets and recruited
three IS cybersecurity researchers with vulnerability assessment experience to label the datasets
[23, 64]. The random sample resulted in 63 VMs from CI-A and 45 VMs from CI-B. For
labeling the datasets, each panel member was tasked with assigning group labels to the VMs
based on the similarity between the installed packages, their vulnerabilities (severity and type),
and file systems. For example, two or more VMs would be assigned to the same group if they
had similar packages, vulnerabilities, and file systems. Grouping vulnerable VMs emulates how a
SOC analyst or IT auditor will prioritize vulnerabilities. After the first round of grouping, we
measured interrater reliability with Fleiss’ kappa since our panel consisted of more than two
raters [26], which resulted in 0.68 and 0.81 for CI-A and CI-B, respectively, indicating
substantial agreement. We then met with the panel members to discuss the disagreements
and instructed them to go through a second round of grouping. After the second round, the
Fleiss” kappa for CI-A was 0.89 and 0.83 for CI-B, near-perfect agreement [51]. The remaining
differences were resolved between the lead author and each panel member. This resulted in five
groups of VMs for CI-A and three groups of VMs for CI-B. We summarize the gold-standard
datasets in Table 9, including the number of VMs in each cluster. We provide sample data used
by the panel to group the VMs, including, the average number of GitHub packages across all
VMs in each cluster, the average number of vulnerable packages, the average number of file
systems, and selected packages found in the clustered VMs.

Table 9. Summary of gold-standard datasets.

Gold-
standard  Number Average number of Average number of Average number
Dataset cluster of VMs  gitHub packages  vulnerable packages  of file systems Sample packages
Cl-A A, 7 1,240 196 16 Go, Jenkins,
openCASCADE
A, 20 2,011 430 18 Compass, NodeJS,
PHP, Openstack
As 15 7,131 2,248 31 Docker, JQuery,
Hashicorp, Kodi
A, 10 10,755 2,667 35 Budgie, Caja,
Ejabberd, Twitch
As 1 12,917 3,987 35 Ayatana, Cloudkitty,
Kopano, Staden
Total: 5 63 34,054 9,528 135 -
Cl-B B, 7 1,227 206 15 openCASCADE,
sqlite, OpenStack
B, 12 7,153 2,225 35 Django, Docker,
Hashicorp Jquery
Bs 26 12,846 3,963 34 Ayatana, Casacore,
Cloudkitty
Total: 3 45 21,226 6,394 84 -

Abbreviations: VM, virtual machine; CI-A and CI-B, anonymous NSF-funded science gateways.
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The gold-standard dataset for CI-A contained 63 VMs across five clusters, where
cluster A; had the lowest average number of packages (1,240), and Cluster A had the
highest average number of packages (12,917). The number of vulnerable packages ranged
from 196 to 3,987 for Clusters A; to As. The gold-standard dataset for CI-B contains three
clusters with 7, 12, and 26 VMs (45 total). The average number of GitHub packages was
1,227 for By, 7,153 packages for B,, and 12,846 packages for Bs. Clusters By, B,, and B;
have an average of 206, 2,225, and 3,963 vulnerable packages, respectively. The packages
in the gold-standard clusters represent the different types of software installed on each
VM within the assigned cluster. For example, Docker for containerization, and sqlite for
database management.

Results and Discussion

Experiment 1: MV-CAAE Against Single View Representation

In Experiment 1, we evaluated our proposed MV-CAAE against single view representations.
We present each method’s ARI, AMI, completeness, homogeneity, and V-measure scores in
Table 10. The best scores are highlighted in boldface.

The MV-CAAE outperformed state-of-the-art graph embedding methods in ARI,
AMI, completeness, and V-Measure for both the package view file system view for
CI-A and CI-B with statistical significance. FeatherG and graph2vec obtained higher
homogeneity scores on the package view from CI-A, indicating that its clusters
contain VMs primarily belonging to the same class. However, the MV-CAAE’s
higher completeness score (0.506 for CI-A, 0.309 for CI-B) indicates it assigned
VMs from the same class to the same cluster more effectively than the second-best
performing methods FeatherG and graph2vec. Interestingly, the results of the bench-
mark methods for the package view in CI-B were identical for each respective

Table 10. Results for Experiment 1: MV-CAAE against single view representation.

Evaluation metric

Dataset Method ARI AMI Completeness ~ Homogeneity ~ V-measure
Cl-A Package View SF 0.236%* 0.347*%* 0.435%* 0.383** 0.407*%*
FeatherG 0.240%* 0.355%* 0.440%* 0.398 0.418**
NetLSD 0.251** 0.357%* 0.446** 0.391** 0.417%*
Graph2vec 0.257%* 0.377*%* 0.432%* 0.442 0.437%*
File System View SF 0.217%* 0.298** 0.375** 0.361** 0.368**
FeatherG 0.247%* 0.344%* 0.445** 0.354** 0.394%*
NetLSD 0.155** 0.201** 0.296** 0.238** 0.264**
Graph2vec 0.092%* 0.099%* 0.183** 0.188** 0.185**
MV-CAAE 0.264 0.389 0.506 0.393 0.443
Cl-B Package View SF -0.014** 0.120%* 0.168** 0.168** 0.168**
FeatherG -0.014**  0.120** 0.168** 0.168** 0.168**
NetLSD -0.014** 0.120%* 0.168** 0.168** 0.168**
Graph2vec -0.014** 0.120%* 0.168** 0.168** 0.168**
File System View SF -0.053** 0.064** 0.153** 0.106** 0.125%*
FeatherG -0.032**  0.106** 0.156** 0.153** 0.155**
NetLSD -0.036** 0.106** 0.214%* 0.135%* 0.165**
Graph2vec -0.062** 0.041** 0.125%* 0.095** 0.108**
MV-CAAE 0.386 0.256 0.309 0.286 0.297

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; ARI, Adjusted Rand Index; AMI, Adjusted Mutual
Information; CI-A and CI-B, anonymous NSF-funded science gateways; SF, spectral fingerprinting.</TFN10>
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metric, suggesting that the factorization and spectral fingerprinting operations could
be restricted by the limited data. The MV-CAAEFE’s higher V-measure score (0.443
for CI-A, 0.297 for CI-B) indicates that the MV-CAAE overall groups VMs from the
same class more correctly and provides better intra-cluster coherence between the
VMs. Included in Online Supplemental Appendix 3 is a selected example illustrating
how the MV-CAAE embedding was clustered correctly and the graph2vec embed-
ding (second-best method) was incorrectly clustered. Overall, the results of
Experiment 1 suggest that capturing multiple data views provides a more complete
VM representation than a single view alone [47, 76].

Experiment 2: MV-CAAE’s Combinatorial Attention Against Benchmark Fusion
Mechanisms

In Experiment 2, we evaluated the MV-CAAE against benchmark MVA fusion mechanisms
to test whether the weighting process of the additive attention gate outperforms benchmark
fusion mechanisms. We present each method’s ARI, AMI, completeness, homogeneity, and
V-measure scores in Table 11. The top scores are highlighted in boldface.

The MV-CAAE outperformed all fusion mechanisms with statistical significance (p
< 0.01) in all but one metric (homogeneity) for CI-A and all metrics for CI-B. The
MV-CAAE attained V-measure scores of 0.443 and 0.297 for CI-A and CI-B, respec-
tively, surpassing the next best performing fusion mechanisms: multiplication for CI-A
(0.436), and average and subtraction for CI-B (0.258). Conventional fusion mechan-
isms do not iteratively re-weight package and file system embeddings [27, 44].
However, MV-CAAE prioritizes the package or file system views by iteratively re-
weighting the embeddings using the relevance score . Illustrated in Online
Supplemental Appendix 3 is an example where the MV-CAAE embedding of a selected
VM in CI-B was clustered correctly, but the embedding produced by average fusion
(next best performing method) was misclustered.

Table 11. Experiment 2 results: MV-CAAE's combinatorial attention against benchmark fusion
mechanisms.

Evaluation metric

Dataset Method ARI AMI Completeness Homogeneity V-measure

Cl-A Subtraction 0.225%* 0.319%* 0.428** 0.378** 0.402*%*
Sum 0.226** 0.318** 0.435%* 0.367** 0.398**
Average 0.226%* 0.318%* 0.435** 0.367** 0.398**
Concatenation 0.226** 0.318** 0.435** 0.367** 0.398**
Multiplication 0.241%* 0.353** 0.462** 0414 0.436%*
MV-CAAE 0.264 0.389 0.506 0.393 0.443

Cl-B Subtraction 0.185* 0.207** 0.244%* 0.273** 0.258*%*
Sum -0.014** 0.12** 0.168** 0.168** 0.168**
Average 0.185% 0.207** 0.244** 0.273%* 0.258**
Concatenation -0.014** 0.12** 0.168** 0.168** 0.168**
Multiplication -0.054** 0.008** 0.08** 0.063** 0.071%*
MV-CAAE 0.386 0.256 0.309 0.286 0.297

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; ARI, Adjusted Rand Index; AMI, Adjusted Mutual
Information; CI-A and CI-B, anonymous NSF-funded science gateways.
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Table 12. Experiment 3 results: MV-CAAE against MVA variants.

Evaluation metric

Dataset Method ARI AMI  Completeness Homogeneity V-measure

Cl-A Conventional MVA 0.226**  0.318** 0.435** 0.367** 0.398**
Denoising MV-CAAE 0.231**  0.323* 0.411** 0.363** 0.386**
Sparse MV-CAAE 0.227**  0.346** 0.431** 0.391* 0.409**
MV-CAAE w/o Self-Attention 0.187**  0.321** 0.466** 0.333** 0.388**
MV-CAAE w/o CAM and Aggregation Fusion 0.226** 0.348** 0.435** 0.367** 0.398**
MV-CAAE 0.264 0.389 0.506 0.393 0.443

CI-B Conventional MVA 0.173**  0.213** 0.249** 0.281** 0.264**
Denoising MV-CAAE 0.13**  0.169** 0.204** 0.22%* 0.212**
Sparse MV-CAAE -0.014**  0.005** 0.052** 0.057** 0.055**
MV-CAAE w/o Self-Attention -0.014**  0.069** 0.138** 0.115** 0.126**
MV-CAAE w/o CAM and Aggregation Fusion -0.032** 0.106** 0.156** 0.153** 0.155**
MV-CAAE 0.386 0.256 0.309 0.286 0.297

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; MVA, multi-view autoencoder; ARI, Adjusted Rand
Index; AMI, Adjusted Mutual Information; CI-A and CI-B, anonymous NSF-funded science gateways.

Experiment 3: MV-CAAE Against MVA Variants

In Experiment 3, we evaluated how the MV-CAAE performed against the conventional
MVA, denoising MV-CAAE, sparse MV-CAAE, MV-CAAE without self-attention, and
MV-CAAE without the CAM and aggregation fusion. The results for each method are
presented in Table 12. The top performances appear in boldface.

The MV-CAAE outperformed all MVA variants across all metrics. MV-CAAE attained
statistically significant V-measure scores of 0.45 for CI-A and 0.318 for CI-B. The second-
best performing methods were Sparse MV-CAAE, V-measure score of 0.409 for CI-A, and
MVA, V-measure score of 0.264 for CI-B. The sparse MV-CAAE adds a regularization
function that penalizes the activation functions, which omits latent features in the learning
process [30]. The MV-CAAE performance decreased when either the self-attention or CAM
were removed. Including self-attention indicates that capturing highly correlated features
contributes to a robust fused representation. The performance of the MV-CAAE with the
CAM and aggregation fusion suggests that scoring the embedding relevance and fusing
based on non-overlapping information more effectively captures key features of each data
view compared to the benchmark methods.

Case Study

Evaluating computational design artifacts often includes various forms of post-hoc analysis
to gather evidence of the artifact’s effectiveness and utility for a particular problem [58, 67].
This often comprises surveys, demonstrations, simulations, questionnaires, or interviews
that gather client feedback in a real-world setting to measure the artifact’s utility [58, 67, 70].
Prior computational design science research has used case studies as a frequent post-hoc
analysis to demonstrate the potential value of their artifact [8, 64, 94]. Following extant
computational design science research, we performed a case study with two major activities
to illustrate the potential practical value of our MV-CAAE artifact. First, we demonstrate
how the MV-CAAE can be operationalized by clustering embeddings generated by the MV -
CAAE for each VM from CI-A. Second, we conducted four semi-structured interviews
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where we presented the VM clusters to participants from four different organizations to
elicit qualitative feedback regarding the usefulness of the MV-CAAE.

Case Study: Clustering Vulnerable VMs in Cyberinfrastructure

The purpose behind our MV-CAAE artifact is to automatically group VMs with similar
vulnerabilities together, allowing SOC analysts to prioritize groups of selected VMs for
remediation. To this end, we generated embeddings for every VM from CI-A (126 VMs,
233,090 vulnerable packages, 4,014 file systems) using the MV-CAAE and subsequently
clustered each embedding with K-means. The optimal number of clusters is determined by
scores from Silhouette, Calinski-Harabasz, and Davies Bouldin metrics [78]. Silhouette
scores range from -1 to 1, where 1 is the best value. Davies Bouldin scores range from 0
to 1, where 0 is the best value. Calinski-Harabasz scores range from 0 to, where a higher
score is preferred. Eleven clusters are selected, resulting in the best Silhouette, Davies
Bouldin, and Calinski-Harabasz scores at 0.885, 0.145, and 31,335, respectively. Clusters
of the CI-A VMs are visualized and selected packages and their vulnerabilities from four key
clusters are summarized in Table 13.

We identified four clusters that SOC analysts can consider when prioritizing their VMs
for remediation. First, VMs in Clusters A and B contain the most high-severity and total
vulnerabilities. Second, VMs in Clusters C and D contain the least number of vulnerabilities
and therefore can be deprioritized. Clusters E and F contain an average of 3,452 vulnerable
packages per VM with 909 high-severity, 1,374 medium-severity, and 2,889 low-severity
vulnerabilities. Clusters A and B contain an average of 328 vulnerable packages per VM with
62 high-severity, 117 medium-severity, and 233 low-severity vulnerabilities. Given the
severity and quantity of vulnerable packages in Clusters E and F, the VMs in these clusters
should be prioritized for remediation.

Table 13. t-SNE visualization of clusters (k=11) and selected vulnerable packages within clusters.

Cluster Vulnerability Severity Package Count
t-SNE Visualization of 11-Cluster KMeans Clusters A Insecure High Libblockdev2 41
L and B Function Yadm 29
. — Youker 28
+ ‘: i - C(n=11) e Insecure Input  High  Zabbix-cli 103
* . * 5 Cupp 29
& Elastalert 13
XSS High Libgt5webkit5 4

_ Vulnerabilit Python3- 3
B (n=19) A (n=18) y yspyder
% % | Clusters C Insecure Input  Low node-gyp 34
X and D bup 31
Insecure Low bup 20
. D (n=32) Module python- 15
x ¥ sympy

| N 2

Insecure Medium python- 60
Function sympy
python- 4
html5lib

Notes:Clustered results contain overlapping points.
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Case Study: Semi-Structured Interviews

The clusters generated by the MV-CAAE in our technical case study provide valuable
insights for analysts to assess VMs across multiple dimensions of vulnerabilities and
design targeted remediation strategies for vulnerable VMs. We conducted semi-struc-
tured interviews using the results from our technical case study to evaluate the
potential usability and proof-of-value of our MV-CAAE artifact. Semi-structured
interviews have been used in prior design science research to qualitatively evaluate
design artifacts by gathering feedback from individuals with experience with a parti-
cular domain or design problem [4]. In our case, with limited organizations and
participants, semi-structured interviews are preferred compared to surveys and ques-
tionnaires which typically require larger sample sizes to measure statistical significance
[4, 64]. Following guidelines for conducting semi-structured interviews, we prepared a
brief script that included introductions, the purpose of the interviews, and a ques-
tioning route to evaluate the utility of our research design and MV-CAAE arti-
fact [52].

To execute the semi-structured interviews, we recruited seven participants from four
different organizations with more than five years of experience and were directly
involved in provisioning and securing their respective CI environments. In addition
to our partner institutions CI-A and CI-B, we interviewed two additional CIs who
maintain cloud and VM environments, CI-C and CI-D, to strengthen our case study
and further investigate the generalizability of our MV-CAAE artifact across multiple
organizations. CI-C is an external education and research SOC and provides security
services for more than 250 academic and research institutions. CI-D is an academic
computing infrastructure that supports and maintains a university infrastructure. The
primary author was the main interviewer during the interviews and a co-author
observed and took notes. In the interviews, we presented the results from the technical
case study of clustering vulnerable VMs. We developed a questioning route with two
vignettes to evaluate the utility of the MV-CAAE output and whether clustering
vulnerable VMs for prioritization would be useful. The interviews were conducted
using Zoom to accommodate out-of-state participants and the meeting was transcribed
using Otter.ai transcription software. We provide further information regarding the
interviews in Online Supplemental Appendix 4. Summarized in Table 14 First mention
of Table 14. are the results measuring the utility of the MV-CAAE based on feedback
from each participant group, where we provide indicators of evidence and
counterevidence.

In summary, the technical case study of clustering vulnerable VMs and the semi-
structured interviews demonstrate the practical value and provide evidence of utility
for our MV-CAAE artifact. The participants from all four organizations indicated that
clustering vulnerable VMs would be useful in identifying groups of vulnerable VM
images to prioritize, corroborating evidence of the utility of our artifact. One partici-
pant from CI-A indicated the output of grouped VMs would be useful and further
elaborated on the potential use case of the clustering output from the MV-CAAE. The
participant described how the clustered results could allow them to decide whether the
use of a particular VM should be stopped entirely. The participants from CI-A also
indicated that the MV-CAAE output would be useful from an organizational stand-
point and aid in decision-making processes. They suggested that the output could
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Table 14. Semi-structured interview results measuring utility of MV-CAAE output.

Participant Discussion Counterevidence of
group topic Evidence of utility utility Quotes
Cl-A MV-CAAE Yes. Indicated this would  None. “Yeah ... from an intuition point of
Cluster help prioritize view, | think that certainly would be
Results vulnerable VMs. on the surface good.”
Making Yes. None. “Yeah, certainly. And then . . . depending
Decisions on the severity, we could make
Using decisions on do we need to ... stop
Results the use of that [VM] entirely.”
Cl-B MV-CAAE Yes. Less applicability “Yeah, | think you know . .. with the
Cluster based on differences in deployment
Results deployment. methodology ... there’s a little,
probably less applicable notion
because there’s fewer images in
doing this so you're not going to have
the large clusters.”
Making Yes. Suggested that this ~ None. “I think the interesting thing that we
Decisions would be helpful for could have taken away is, is to say,
Using vulnerable images at okay, within this cluster, is there a
Results the project-level. certain community that needs
additional health support?”
cl-C MV-CAAE Yes. Less applicability “I think it's useful and it's helpful seeing
Cluster based on the clustering, it helps you
Results returned understand the relationship between
vulnerabilities. the things that may not be
immediately apparent.”
“At the end of the day, | already
intuitively know that | have
vulnerable packages, which ones
actually matter?”
Making Yes. None. “Being able to cluster around [VMs] and
Decisions make decisions [...] but be able to
Using tune it to classes of vulnerabilities,
Results that would be interesting.”
CI-D MV-CAAE Yes. Less applicability “The groupings of vulnerabilities,
Cluster due to purpose of  particularly severity, and which
Results IT assets. packages are causing those
groupings is helpful to be aware of,
particularly as you observe it over
time.”
“We have a pretty small scope, but |
could imagine for a very large
environment, something like
clustering is probably one of the few
effective ways you could get your
arms around certain problems.”
Making Yes None. “Yeah [...], seeing the vulnerabilities
Decisions that the systems have and clusters, |
Using think it would help make our
Results decision-making around priorities

and what to handle and where to
handle it just much easier to
understand.”

Abbreviations: MV-CAAE, multi-view combinatorial-attentive autoencoder; VM, virtual machine; IT, information technology;
Cl-A, CI-B, CI-C, and CI-D, anonymous NSF-funded science gateways.

potentially help define user policies, wherein individuals who install vulnerable
packages or launch VMs with vulnerabilities could be notified of the inherent flaws.
The participant from CI-B expressed similar thoughts to the participants from CI-A
regarding the utility of our MV-CAAE artifact but also indicated counterevidence of
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utility as it pertains to the difference in VM deployment. The participant from CI-B
commented on how this artifact could be used, stating that it would be interesting to
assess project (community)-level VM deployments. The participants from CI-C echoed
similar remarks, expressing that the MV-CAAE could be useful for clustering vulner-
able VMs and enhancing decision-making capabilities. They also indicated that the
clusters would be more beneficial if they could focus on specific classes of vulnerabil-
ities. While our MV-CAAE does not directly account for this, the participants’ insight
offers a valuable future direction for this research. Participants from CI-D indicated
that the clusters helped assess and prioritize groups of vulnerable VMs and that the
process would aid in decision-making. Overall, the participants from all four organiza-
tions indicated that the clustering output from our MV-CAAE would be useful and
indicated that it could help prioritize groups of vulnerable VMs for remediation or
further assessment (i.e., alternative deployment strategies or permanent VM image
removal). While the results were less applicable for CI-C and CI-D based on the
vulnerability coverage and difference in computing environments, the feedback vali-
dated the potential utility of our approach and offered additional directions for future
research.

Practical Implications and Contributions to the Is Knowledge Base
Practical Implications

The case study demonstrates the MV-CAAE’s proof-of-concept and potential value by
grouping similar vulnerable VMs for a major NSF-funded science gateway. The automated
procedure reduces the labor-intensive process of individually scanning and assessing the
types and severities of vulnerabilities in VMs. The MV-CAAE can assess and prioritize
vulnerable VMs in public and scientific infrastructures. We further discuss the practical
value and impact of the proposed research and how the MV-CAAE can help augment the
practices for two key cybersecurity-related stakeholders as evidenced by our semi-struc-
tured interviews: SOC analysts and IT auditors [55].

SOC Analysts

Assessing the vulnerability types and severities of devices is a common task for many SOC
analysts, but enterprise computing environments typically involve thousands of devices
with hundreds of thousands of vulnerabilities, which surpasses human cognitive capacity
[42, 59, 66]. SOC analysts can leverage the automated collection and vulnerability assess-
ments in the proposed research design to gather device information and identify code-based
vulnerabilities in open-source software installed on the devices. The output of the MV-
CAAE can help analysts automatically group and prioritize vulnerable devices to guide
targeted remediation efforts.

IT Auditors

IT auditors are responsible for assessing an organization’s infrastructure, policies, and IT
operations to evaluate security risks and associated costs. During their review, auditors will
identify potential weaknesses, including vulnerabilities in VMs and software that may
expose intellectual property. By utilizing clustering results from MV-CAAE’s embeddings,
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auditors can categorize vulnerable VMs and prioritize assets for safeguarding and remedia-
tion based on the financial value of the intellectual property contained within them.

Contributions to the IS Knowledge Base

Design science research contributions are manifested in various forms, such as design
artifacts, foundations (i.e., novel methods that extend design knowledge), and methodolo-
gies [34]. IS scholars have indicated that novel IT artifacts developed under the computa-
tional design science paradigm should contribute prescriptive knowledge back to i)
application environments and ii) the methodological knowledge base [34, 54, 58]. Design
artifacts can also offer contributions to design theory which consist of situated implementa-
tions (Level 1), nascent design theory (Level 2), or well-developed design theory (Level 3)
[32]. Level 2 contributions include methods, models, or design principles that develop
nascent design theory [32]. Prevailing computational design science research has contrib-
uted design principles to formulate nascent design theory in various contexts, such as
chronic care risk profiling and content viewership prediction [45, 87]. Our study consists
of two primary contributions: our proposed MV-CAAE research framework (design arti-
fact) and the two major novelties of the proposed MV-CAAE: the CAM and aggregation
fusion via inverse relevance scoring (design principles).

o MV-CAAE Research Framework: Design artifact contributions should address problems in
the application area for which they are designed and produce value to its constituent
community [34]. Our novel MV-CAAE research framework contributes to existing
vulnerability assessment procedures within information security management. Informed
by meta-requirements derived from Control and Auditing Theory and Risk Management
Theory, we contribute a design artifact to the information security management and the IS
knowledge base that audits and automatically prioritizes vulnerable VMs in cloud infra-
structures. This artifact empowers IT managers to make effective security decisions by
automatically grouping similar vulnerable VMs and enhancing vulnerability prioritization
efforts. We illustrated the potential practical value and utility of our MV-CAAE artifactin a
case study, where stakeholders from four different organizations indicated the value of the
artifact and clustering output. Compared to conventional approaches for managing
vulnerabilities, the DL-driven approach of our MV-CAAE framework allows key stake-
holders to measure and assess VMs across multiple dimensions of vulnerabilities. Reports
generated by conventional vulnerability scanners provide lists of vulnerabilities that are
organized individually. SOC analysts or IT auditors can sort and filter vulnerabilities by
severity or type. In our context, analysts and auditors would have to repeat this procedure
for every active VM instance. The benefit of our DL-based framework allows analysts to
automate the data extraction and produce VM representations to automatically measure
similarities to identify groups of vulnerable VMs.

o CAM and Aggregation Fusion via Inverse Relevance Scoring: DL-based contributions in
design science research consist of novel methods or components that extend the existing
methodological knowledge base that the method originated from [34, 64]. Our MV-
CAAE framework contains two design principles based on our CAM and aggregation
fusion via inverse relevance scoring novelties: (1) relevancy weighting for independent
input embeddings and (2) fusing embeddings without overlapping information. These
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design principles that can be generalized to facilitate further research inquiry in other IS
domains [32, 45, 87]. Two potential bodies of IS research that these design novelties can
contribute to are cybersecurity and mobile analytics. Design Principle 1 could be
considered in malware analysis research by measuring the relevancy of both exploit
and malware embeddings for static (i.e., raw code) and dynamic (i.e., malware behavior)
analysis. Design Principle 1 dynamically weighs independent data views and it can
account for key characteristics from different aspects of malware that should be prior-
itized. Design Principle 2 could be considered in mobile analytics research to determine a
mobile device’s physical position for targeted advertising. For example, a mobile device’s
Wi-Fi and Bluetooth connections can be represented as two heterogeneous networks and
fused without overlapping shared connections. The inverse relevance scoring could
account for unique signals from each connection and omit overlapping features that
may be captured from radio frequency transmissions.

The MV-CAAE and design principles follow design science guidelines and contribute pre-
scriptive knowledge to the IS and methodological knowledge bases [34]. Taken together, the
design artifact and design principles of this work also contribute to a nascent design theory
that can be considered in different IS domains [32]. Feedback from the semi-structured
interviews with participants from four organizations provides evidence for the proof-of-
concept and proof-of-value of our design artifact for grouping and prioritizing vulnerable
IT assets [55].

Limitations

As with any research, our study has several limitations. First, while the MV-CAAE demonstrates
how vulnerable VMs can be embedded and clustered to aid in vulnerability prioritization efforts,
the vulnerabilities are dependent on the quality and accuracy of the vulnerability scanners. In
our study, we used two vulnerability scanners, Bandit and Flawfinder, to detect vulnerabilities in
software packages written in Python and C++/C#. However, there could be additional code-
based vulnerabilities from packages in different languages, as well as network vulnerabilities (e.
g., exposed ports) that afflict the VMs and are not captured by our MV-CAAE. Second, while we
demonstrated the generalizability of our approach by evaluating the MV-CAAE with data from
two organizations, our approach does not account for internal security policies that may vary
between organizations. Third, our MV-CAAE creates embeddings of vulnerable VMs for
clustering that can be used to aid in vulnerability prioritization efforts. While the clusters are
automatically generated using the embeddings, our MV-CAAE framework does not indicate
which cluster of VMs to prioritize. Security analysts or end users need to review the summary of
vulnerabilities that are associated with the VMs in the clusters to decide further actions.

Conclusion and Future Directions

The public VM market is estimated to reach $119 billion by 2031 [28]. Public clouds and
scientific CI offer millions of users across industry and academia VMs to access computing
resources to execute computational workflows. However, VMs often contain vulnerabilities
from third-party software packages, where exploiting vulnerabilities and misconfigurations
can impede business workflows and disrupt high-impact scientific research. Drawing from
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kernel theories in information security management, we developed a novel DL-based research
design that audits VMs in public clouds for vulnerabilities and automatically groups similar
vulnerable VMs for prioritization. We developed a novel MV-CAAE that creates an embed-
ding for each VM based on their packages, vulnerabilities, and file systems. The embedding is
then clustered to create groups of similar vulnerable VMs. The MV-CAAE operates by fusing
graph embeddings of packages and file systems from VMs into a single embedding with an
unsupervised multi-view learning strategy. The MV-CAAE iteratively re-weights package and
file system features through a novel attention-based encoder to generate a unique, VM-
specific embedding. Through a series of benchmark experiments, we demonstrated that MV-
CAAE outperforms state-of-the-art graph embedding and fusion mechanisms in clustering
vulnerable VMs for two prevailing NSF-funded science gateways. We executed a case study
that illustrated the potential practical utility of the MV-CAAE by grouping VMs for prior-
itization and remediation in a major NSF-funded scientific CI. There is significant potential
for adopting the MV-CAAE for general VM vulnerability assessment in enterprise systems.
There are several promising directions for future research. First, vulnerability severity could
be accounted for in the research design to further enhance the VM representations, where
vulnerabilities are weighted according to their severity (e.g., high severity would equate to a
higher weight). Second, the MV-CAAE can be expanded to assess microservice architectures.
Emerging container environments (e.g., Docker) supported by microservice architectures
offer a dynamic layout to develop and host many services. Multi-view container data could
include Dockerfiles and their network connections. Third, the multi-view learning component
can be extended to incorporate additional VM data (e.g., network connections) to capture
additional vulnerabilities. Fourth, a longitudinal analysis that captures VM representations
over time can reveal the evolution of vulnerabilities as users modify VMs. Each direction can
benefit vulnerability assessment practices for public clouds and scientific CI that offer VMs.
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