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A B S T R A C T

Cyber threat intelligence (CTI) researchers strive to uncover collaborations and emerging techniques within
hacker networks. This study proposes an empirical approach to detect communities within hacker forums
for CTI purposes. Eighteen algorithms are systematically evaluated, including state-of-the-art and benchmark
methods for identifying overlapping and disjoint groups. Using discussions from five prominent English
hacker forums, a comparative analysis examines the influence of the algorithms’ theoretical foundations on
community detection. Since ground truths are unattainable for such networks, the study utilizes a multi-
metric strategy, incorporating modularity, coverage, performance, and a newly introduced quality measure,
Triplet Hub Potential, which quantifies the presence of influential hubs. The findings reveal that while
modularity optimization algorithms such as Leiden and Louvain deliver consistent results, neighbor-based
expanding techniques tend to provide superior performance. In particular, the Expansion algorithm stood
out by uncovering granular hierarchical community structures. The ability to investigate these intimacies is
helpful for CTI researchers. Ultimately, we suggest an approach to investigate hacker forums using community
detection methods and encourage the future development of algorithms tailored to expose nuances within
hacker networks.

1. Introduction

Cybercrime has become a significant global economic concern, with
an annual cost of approximately $600 billion, equivalent to nearly 1%
of the global GDP [1]. As the cyber threat landscape expands, busi-
nesses and organizations are increasingly implementing cyber threat
intelligence (CTI) frameworks to analyze cybercriminal activities and
security risks. One of the approaches is to monitor the criminal ecosys-
tem, which has evolved from knowledge contribution on hacker forums
to marketplaces structured as forums, where cybercriminals profit from
selling information, databases, stolen credit cards, illicit materials, and
software exploits.

Hacker forums, while structurally similar to traditional discussion
forums, fulfill a specialized role within the cybercriminal community.
These platforms are less about fostering open-source knowledge and
more about facilitating the trade of tools and techniques, including
hacking tools, exploits, and leaked data. Users engage not only in the
development of personal brands, but also in the establishment of profes-
sional identities for these brands, striking a balance between anonymity
and recognizable branding for profit [2]. Despite the forums’ market-
driven nature, where ‘‘hubs’’ are competitors rather than collaborators,
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a complex social process is at play. Yip et al. revealed that these forums
act as socioeconomic mechanisms, allowing social capital gains critical
to economic success [3]. Yip concludes that online criminal networks
possess resilience against targeted attacks, as they are structured for
economic rather than social purposes. Although forums may lack an
explicit infrastructure for transactions, they serve as arenas to build
trust and networks of potential profit-making collaboration [4]. Fur-
thermore, instead of focusing exclusively on the most prominent nodes
in the network, more closely analyzing the communities that form can
reveal much about the nature of these collaborations [5].

The cybercrime landscape has evolved from the stereotype of ‘‘lone
wolf’’ to sophisticated organized subcultures with diverse skill sets and
low-risk enterprise [6]. These communities demonstrate the industrial-
ization of cybercrime, capable of producing and distributing malicious
products on a large scale. The concept of ‘‘illicit infrastructure’’, as
discussed by Collier et al. underscores this transformation, showing
how it has revolutionized work, experiences, practices and criminal
activities in these communities. This illicit infrastructure streamlines
processes and supports the construction of larger-scale, higher-level
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malicious systems, such as turnkey hacking solutions or ransomware-as-
a-service [7]. However, this infrastructure is not visible on the forums.
Cybercriminals, while engaging in various arenas of action for their
illicit businesses, maintain stringent operational security. They manage
their online identities cautiously, minimizing attention to themselves,
and avoiding leaving traces across multiple online personas. However,
forums do provide a place for people to build recognizable brands
through nicknames or aliases [8]. Although the community aspect of
user interactions may not be immediately apparent, specialized algo-
rithms have the capability to uncover the underlying structures they
are designed to detect.

Although there are various approaches to identifying prominent
hackers in such forums, the detection and examination of communities
remain relatively underexplored in this domain [9]. When investigating
the communities formed within forums, it is crucial to consider various
factors that shape their dynamics. These include the forum’s culture,
thematic focus, and moderation practices, along with the definition
of community and its boundaries. These elements not only govern
interactions within these digital spaces, but also play a pivotal role in
shaping the analysis conducted within the realm of CTI. To capture the
formation of potential collaboration, we can assume that hacking co-
operation is heavily based on strong social bonds, either from repeated
cooperation or developed trust. Online social networks and forums
serve as platforms where individuals seeking opportunities can initiate
and develop collaborations, which often extend beyond the confines of
the forum [10].

Despite the need to detect communities, the detection problem is
not trivial or generalizable for all networks. Naturally, social interac-
tions differ greatly. Community detection requires a combination of
mathematical, computational, and data-analytical skills. One of its key
challenges is the absence of a single definition of a community, which
leads to different algorithms that identify distinct communities even on
the same dataset. Additionally, the quality of detection depends on the
parameters used and the type of network, making comparisons of the
results of the cross-study difficult [11]. This study was driven by a set
of fundamental questions:
Q1: How do actors in hacker forums organize into sub-communities?
Q2: What practical methods can be employed to detect these communi-
ties within hacker forums, specifically for Cyber Threat Intelligence (CTI)
purposes?
Q3: How does the choice of the detection method influence the definition
and characterization of the detected communities?

We hypothesize that algorithms from the same type of approach will
tend to find similar partitions if the approach is robust to less evident
communities. This means that differences in approaches create different
partitions.

1.1. Theoretical and practical contributions

One of the major research contributions of this study is the develop-
ment of an empirical approach tailored for the analysis of communities
within hacker forums for CTI purposes. In the formulation of the ap-
proach, we carefully selected 18 community identification algorithms.
These algorithms include both state-of-the-art and benchmark method-
ologies that can identify both overlapping and disjoint groups. The
algorithms were systematically classified according to their primary
operating strategies. Our research involved a comprehensive compar-
ative analysis of these algorithms using discussions extracted from
five prominent hacker forums. These forums have gained recognition
as essential hubs for the exchange of exploits, tutorials, tools, and
information within the CTI domain. Despite their shared reputation as
the go-to platform, each forum has a unique nature and social structure.

Given the inherent challenge of lacking a definitive ground truth
to evaluate community detection within hacker forums, we suggest a
multimetric evaluation approach. Our approach incorporated four met-
rics, each carefully selected to complement the limitations of the others,

providing a more comprehensive evaluation of algorithm performance.
In addition to established metrics, we introduced a quality metric,
Triplet Hub Potential (T-Hub Potential), which assesses the potential
presence of hubs in a scale-free nature.

Inter-algorithm comparisons revealed instances of convergence in
community identifications, informing us about the strengths and weak-
nesses of each method. Our study concludes that employing a com-
bination of metrics provides deeper insight into community detection
than relying solely on modularity. For instance, Performance measure
favors methods based on clustering coefficients, which tend to detect
smaller, tightly knit groups. Furthermore, the detected communities are
significantly influenced by the algorithm’s theoretical approach. We
suggest utilizing multiple algorithms but from different methodology
categories, along with a multimetric evaluation strategy.

The remainder of this paper is organized as follows. Sections 2.1 and
2.2 present an overview of existing studies and theoretical premises on
hacker forums and community detection techniques that are known to
be utilized on real social networks. Section 3 describes the research
design, testbed and algorithmic experimental setup and evaluation
methods. Section 4 presents the results. Section 5 discusses the re-
search findings, implications of the derived approach, future ideas, and
concluding remarks.

2. Literature review and methodological background

2.1. Cyber Threat Intelligence (CTI) from hacker forums

In response to the growing cyber threat landscape, businesses and
organizations are increasingly adopting cyber threat intelligence (CTI)
frameworks to manage and analyze information related to cybercrim-
inals and emerging security risks [19]. CTI aims to improve cyber-
security decision making by identifying new threats and key threat
actors [20]. To accomplish this, CTI researchers use various tools,
including open source intelligence (OSINT), to collect information on
cyber threats, such as the tactics, techniques, and procedures employed
by cybercriminals, as well as the impact of these threats on both
organizations and individuals. OSINT serves as a valuable resource for
monitoring and evaluating evolving cyber threats, such as emerging
malware strains, phishing campaigns, and data breaches. It involves an-
alyzing and evaluating information derived from underground forums,
tracking the progression of hacking expertise, gauging contributions to
discussions, and evaluating social trust and participation in specific in-
cidents. The academic literature on CTI provides essential information
on strategies to identify and investigate cyber threats through OSINT.
These strategies include computational methods to identify malicious
tools, data breaches, key threat actors, and emerging trends [13,21–
26].

The advancement of CTI has been a research topic for many years.
Researchers have studied data collection techniques and effective and
safe ways to identify, collect, store, parse, and monitor hacker fo-
rums [20,27]. In recent years, researchers have continued to advance
CTI techniques by improving methods to identify dense discussions
on potential cyber threats, such as emerging hacking tools, zero-day
vulnerabilities, and exploits [13,28,29]. For example, Grisham et al.
focused on the extraction of mobile malware from hacker forums [22].
Other work has focused on extracting and classifying or clustering all
exploits from forums using traditional machine learning approaches
[13,26] and deep learning approaches [30].

However, the identification of key hackers or actors involved in
cyber threats has also been a key focus area [21–25]. Recent studies
have prioritized hackers according to their influence based on their con-
tribution to threat content [18,25] and social activity [14,16,25]. For
example, Biswas et al. have performed a holistic analysis of cybercrim-
inals online, developing a mapping of their expertise, contribution to
cyber threats, sentiment of messages, and lifespan, to rank key members
of hacker forums [31]. Similarly, Otto et al. compared unsupervised
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Table 1
Summary of recent studies focusing on communities in online hacker forums.

Date Author(s) Dataset Method(s) Objective(s)

2021 Pourhabibi et al. [12] TN Random walk with Surprise
optimization

Identification of Communities in MultiGraphs
in the context of Terrorist Network

2020 Tachaiya et al. [13] HF Sparse Matrix Regression,
K-means

Content Clustering

2020 Pete et al. [14] HF Louvain Key Members Detection
2020 Sarkar et al. [15] HF Louvain Threat and Incident Prediction
2019 Huang et al. [16] HF Louvain Key Members Detection
2018 Marin et al. [17] DNM Louvain Community Detection
2016 Huang et al. [18] HF Louvain Key Members Detection

TN = Terrorist Networks; HF = Hacker Forum(s); DNM = Dark Net Marketplace(s).

graph embedding methods to track the evolution of hackers in forums
based on their expertise [32].

Identifying key individuals on hacker forums is a crucial task for
both CTI and legal prosecution. However, the detection of communities
within these forums has also gained significance. Researchers have
increasingly directed their attention to hacking communities as a means
of identifying influential members within these forums [14–18,25].
For example, Marin et al. conducted a study on DarkNet Marketplaces
(DNMs) to pinpoint vendor communities engaged in selling exploits
and malware. They developed a method that uses machine learning
techniques and social network connections [17]. In 2021, Pourhabibi
et al. introduced a community detection method (DarkNetExplorer)
customized for terrorist networks with various types of connections.
This method optimizes a ‘‘surprise function’’ in multigraphs, a statistical
measure that evaluates the quality of the partition of a network into
communities [12]. In our study we test one of the algorithms that uses
surprise function as an optimization. To give an understanding of the
research efforts devoted to community detection within hacker and
other underground forums, we have summarized the key literature in
Table 1. This summary encapsulates the critical aspects of these studies,
including the datasets used, the methods used for community detection,
and the primary objectives pursued by each study.

2.2. Community detection techniques and quality assessment

Community detection is the process of identifying clusters within
a network, where nodes with stronger ties are grouped together [33].
Originally derived from information and communication theories, the
concept of a community is applied to various fields such as social sci-
ences [34], biology [35], computer science [36], and criminology [37].
The challenge in identifying these communities comes from the var-
ied structures of networks and the algorithm-dependent definitions
of what constitutes a community. Algorithms in this field are largely
influenced by their foundational assumptions and are generally divided
based on whether they view communities as non-overlapping distinct
groups or as entities that can share nodes [11]. Approaches vary: some
methods focus on optimizing quality functions to gauge and enhance
the detected communities’ ‘‘goodness’’ [38,39], while others replicate
real-world network dynamics, using either divisive techniques to split
networks into smaller groups or agglomerative strategies to merge
individual nodes into larger ones.

Techniques such as greedy modularity optimization methods prior-
itize a modularity score to define the community structure [40–43].
On the other hand, stochastic algorithms introduce an element of
randomness into the detection process operating on the assumption that
the nature of random walks taken through the network will naturally
converge on the true distribution of tightly knit groups within the
network [44,45]. Other algorithms operate on the assumption that
communities form cliques, tightly knit groups where every node is
connected to every other node within the group, and aim to maximize
the clustering coefficient [39,46]. Furthermore, there is a growing
body of work exploring the enhancement of community detection by
incorporating additional attributed information about the nodes and

the connections between them. These advanced methods can poten-
tially produce more specified community detection based on attributes,
but require more detailed data on the components of the network or
nodes, which are often nearly impossible to gather from anonymous
and underground online communities, or require detailed analysis of
the content posted on the forum [12,47].

In the subsequent Section 3.3, we categorize the algorithms chosen
based on the algorithmic approach. We do not include in the literature
and the scope of this study deep learning (DL) based methods, as
DL-based algorithms might bring several limitations for the CTI and
OSINT tasks, such as examining the formation of collaboration between
participants of cybercriminal communities.

The reservation towards integrating DL models into our analysis of
community detection hinges not only on interpretability and scalability,
but also on the inherent nature of DL methodologies. Unlike traditional
algorithms that often optimize a clearly defined objective function or
operate on the theoretical grounding behind it, DL models derive their
partitions from layered learning processes, either from embeddings of
nodal attributes or/and network structures. This makes DL methods
ambiguous for the categorization of the approach and, hence, the
comparison with other approaches and measures of community quality.
Furthermore, since some DL-based methods require training datasets,
the absence of ground-truth labels complicates the use of such algo-
rithms, but also the evaluation and comparison of performances [48].
Scalability also poses a practical challenge as DL-based models require
considerable computational resources, increasing with network size,
which can be impractical for CTI purposes.

However, the potential of DL algorithms to identify nuanced com-
munity structures in cybercriminal contexts warrants future investiga-
tion, where we can explore these models in more focused studies, where
their effectiveness can be evaluated on a smaller scale with concrete
test cases. However, the objective of the study is not only to detect
communities, but also to understand the underlying reasons for their
formation.

3. Research design and testbed

Our research design comprises four main components: data collec-
tion, graph construction, community detection, and a closer look at
the detected communities. Each process is described in the subsequent
sections below (Sections 3.1, 3.2, 3.3 and 3.4).

3.1. Data collection

We identified five English language hacker forums for collection and
analysis based on the existing literature in the field [19,26,32,49–51].
These forums were chosen for their prominence as popular destinations
for hackers seeking assistance and their tendency to share exploits,
source codes, and tools frequently [19]. These forums, known for their
varied structures and user densities, fit the objective of this study of
investigating the communal structure in various cases.

We collected forum data using a custom crawler with pre-defined
credentials to extract threads, posts, and metadata such as times-
tamps and user details. This established scraping method, reflected
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Fig. 1. Example post with a reply on exetools, traditional hacker forum. Personal information is masked.

in prior cybercrime-related research [4,20,52,53], efficiently captures
web content for analysis while maintaining user privacy, as shown in
Fig. 1.

Selected forums feature threaded discussions where users can start
topics and engage in unlimited replies, often leading to tangential
debates. Interactions range from quick exchanges to extended dialogues
with lulls. Table 2 shows the activity level of each forum, with thou-
sands of threads and active users. Although they are English-based and
long-established, forum sizes differ.
Exetools is a forum self-described as primary discussions on reverse

engineering, software cracking, and computer security. It serves as
a platform where experts and enthusiasts exchange knowledge, tech-
niques, tools, and code samples in these fields, covering topics like
reverse engineering, debugging, malware analysis, software security,
and hacking. Note that the forum is currently closed, meaning that
registration requires the administrator’s approval; however, at the time
of data collection, registration did not require any form of vouching.
Cardingteam, on the other hand, is known for hosting discussions

related to illegal activities, particularly credit card fraud, identity theft,
and other forms of cybercrimes. Participants in this forum share in-
formation on methods of committing credit card fraud, fraudulent
transactions, and trading stolen credit card data and personal infor-
mation. The forum also investigates hacking, money laundering, and
various online scams.
Cipher focuses on cryptography, encryption, and cybersecurity dis-

cussions. Users engage in discussions about secure communication
methods and seek advice on encryption-related challenges, while stay-
ing up-to-date on cybersecurity developments.
Go4Expert is an online community primarily centered around pro-

gramming, web development, and technology. Members discuss pro-
gramming languages, software and web development technologies, and
various technical challenges. It provides a platform for programmers,
developers, and tech enthusiasts to seek assistance, share knowledge,
and collaborate on solving coding and development issues. However,
it is not structured as a question-and-answer platform, such as Stack-
Overflow, but a natural discussion of issues driven in a threaded
manner.
Antionline is another online community that emphasizes discussions

on computer security, hacking, and technology. Users engage in con-
versations related to hacking, network security, vulnerabilities, and
programming.

It is important to note that while some discussions in these forums
are centered on knowledge sharing and expertise, others may involve
implicit transactions among individuals interested in specific services
or tasks related to the expertise being discussed.

3.2. Graph construction

In our graph construction, we use an approach to model implicit
social connections among users based on their contributions to thread
topics initiated by other users. Specifically, we consider all users who

Table 2
Data collection from hacker forums.

Forum Earliest Post Post count Author count Thread count

antionline 2001–07–30 466,268 13,287 58,727
exetools 2002–01–16 32,776 909 3,303
cardingteam N/A 2,765 690 1,222
cipher 2015–05–25 42,870 3,564 3,820
go4expert 2004–07–15 76,648 14,953 19,748

have posted in the same thread initiated by a user to be socially linked
to that user and to each other. This approach has been used in previous
studies of hacker forums [14,25], and helps to capture the nature of
social interactions and information flow.

The graph for each forum as a weighted directed monopartite graph
ă = (Ē ,ā, ā), where Ē is a set of nodes, (i.e., users), ā � {(ċ, Č) E

(ċ, Č) * Ē 2, ċ � Č} is a set of directed edges from ċ to Č, and
ā : ā ³ R is a function mapping every edge between nodes to its
weight value č, defined by ā(ċ, Č) = č, where č > 0 if (ċ, Č) * ā and
ċ replied with frequency č in the thread(s) where Č participated. When
there is no observed participation of ċ in the same discussions where
user Č participated, then (ċ, Č) + ā and we set ā(ċ, Č) = 0.

Table 3 summarizes the resulting graph representations of the five
selected forums. Nodes without links or degrees less than two are
excluded from the analysis as we assume they do not contribute to
the communal structure. It is important to note that the structural
characteristics of these forum graphs exhibit variations, as highlighted
by their degrees, density, average clustering coefficients, strongly con-
nected components (SCCs) and average shortest path, all of which are
summarized in Table 3.

The average clustering coefficient is a metric that reveals the extent
to which the network’s users are interconnected, essentially indicating
the presence of full cliques within the network. In other words, it
measures how tightly the users are connected to each other and all
forums show relatively high average clustering coefficients, suggesting
that users tend to form tightly-knit groups. Graph density represents the
ratio of actual connections to all possible connections between nodes.
A higher density value implies more connections within the network,
signifying that users are actively engaged in the forum’s activities. Note
that ‘‘exetools’’ exhibits the highest network density, indicating strong
user interactions in contrast to ‘‘go4expert’’, which is a sparse network.
A strongly connected component (SCC) is a subgraph in which every pair
of nodes is connected by a directed path, meaning that there is a way to
connect from one node to any other within the SCC, and vice versa. In
the dataset, although some forums have several SCCs, the largest SCC
spans most of the network, meaning that most users are involved in the
forum’s main agenda and do not tend to break into evident subgroups.

3.3. Community detection algorithms

In the subsequent phase of our study, we begin to select algorithms
designed to detect communities. However, prior to introducing these
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Table 3
Descriptive statistics of the graph representations for each forum.

antionline exetools cardingteam cipher go4expert

Number of nodes 11,459 886 452 3364 8774
Number of edges 4,9 M 138,590 4530 317,388 246,466
Sum of weighted edges 27 M 376,003 9516 1,25 M 622,388
Average degree 858 313 20 189 56
Max degree 10,320 1244 258 3874 12,264
Average Clustering Coef 0.91 0.71 0.85 0.84 0.86
Density 0.04 0.18 0.02 0.03 0.0032
Components (SCC) 6 1 2 1 18
Size of the largest SCC 11,444 886 449 3364 8733
Average Shortest Path (on largest SCC) 2.45 1.88 2.93 2.18 2.51

SSC = Strongly Connected Component.

Table 4
Overview of assumptions and types of algorithms used for comparison.

Algorithm (Year) Approach based on U D W D/O Complexity

Infomap (2008) [45] Random Walks and Minimization of the MAP Function Y Y Y D ċ(Ą log Ą)

Walktrap (2005) [44] Random Walk Probabilities Y N N D ċ(Ą2 log Ą)

CPM (2011) [54] Rewarding of Intra-community Edges and Penalize Missing Y N Y D ċ(Ąć )

Surprise (2015) [55] Surprise Optimization Y Y Y D ċ(Ąă)

SCD (2014) [39] Maximization of Weighted Community Clustering Y N Y D ċ(āă)

RB Pots (2006) [56] Spectral Modularity Optimization Y Y Y D ċ(Ą log Ą)

Louvain (2008) [40] Hierarchical Modularity Optimization Y N Y D ċ(ă)

Leiden (mod) (2019) [42] Agglomerative Modularity Maximization Y N Y D ċ(Ą log Ą)

LE (2006) [57] Eigenvectors and Eigenvalues of the Modularity Matrix Y N N D ċ(Ą3)

EdMot (2019) [58] Edge Enhancement Rewired to Form Cliques and Partitioning
based on Hierarchical Clustering

Y N Y D ċ(ă3∕2 + Ą log Ą)

LP (2011) [59] Propagation of Labels through Neighbors Y N N D ċ(Ą + ă)

SLPA (2011) [60] Propagation of Multi-Labels through Neighbors Y N N O ċ(ÿĄ)

Expansion (2020) [61] Label Expansion through Finding Cores with Maximization of
Similarity of Common Neighbors

Y N N O ċ(Ą log Ą)

UMST (2020) [62] Maximum Spanning Tree Y N Y O ċ(ă log āăÿĎ)

Ego Splitting (2017) [63] Spanning Subgraphs of Node Neighbors Y N Y O ċ(ă3∕2)

ANGEL (2020) [46] Bottom-Up Clustering of Individual Spanning Subgraphs of
Node Neighbors

Y N Y O ċ(Ą)

BIGCLAM (2013) [64] Affiliation Strength Bipartite Network of Nodes and
Communities using a Nonnegative Latent Factor Matrix

Y N N O ċ(Ą)

NNSED (2017) [65] Encoding and Decoding Nonnegative Latent Factor Matrix Y N Y O ċ(āĄ2)

LE = Leading Eigenvector; CPM = Constant Potts Model; LP = Label Propagation; U = Undirected; D = Directed; W = Weighted; D/O = Disjoint/Overlapping; n = number of
nodes; m = number of edges; i = number of iterations; k = node degree; c = number of communities; d = average node degree; q = size of cliques.

algorithms, it is imperative to establish a clear definition of a ‘‘commu-
nity’’ within the context of the social graphs that we are constructing
for the forums. A community refers to a subgraph ÿÿ of graph ă whose
nodes are densely connected within ÿÿ, but sparsely connected with
nodes from other subgraphs ÿĀ , where Ā � ÿ and ÿÿ K ÿĀ = ∅ for all ÿ, Ā.
Communities can be considered as dense clusters of nodes within the
graph where frequently interacting users are physically closer to each
other. Some communities could be considered overlapping, meaning
that some nodes can claim membership to several partitions since they
are involved in several densely interacting groups [33], in this case we
drop the assumption that ÿÿ K ÿĀ = ∅.

We evaluated the performance of some recently developed commu-
nity detection algorithms and those that have obtained benchmark sta-
tus or have been validated on real-world social networks, as elaborated
in the literature review (Section 2.2). Our assessment encompasses
two distinct scenarios: the detection of disjoint communities and the
identification of overlapping ones. The comprehensive list of algorithms
used in this study and detailed information on the underlying assump-
tions that guide their methodologies is provided in Table 4. We utilize
the direction of the link and the weights if the algorithm allows it;
otherwise, the network is reduced to an undirected and unweighted
graph. These algorithms are systematically categorized based on their
primary approach and the underlying assumptions derived from the
literature or our own bottom-up analysis.

We identified seven primary groups of algorithms. Random walk-
based methods included InfoMap and Walktrap. Clustering-based meth-
ods comprised CPM, Surprise, and SCD. Modularity-based consisted of

RB Potts, Louvain, Leiden, Leading Eigenvector, and EdMot. Propa-
gation through neighbors encompassed Label Propagation, SLPA, and
Expansion. Spanning trees-based included UMST. The Ego nets com-
prised Ego Splitting and ANGEL. Finally, nonnegative Latent Factor
Matrix-based has two methods: BigClam and NNSED.

We expect algorithms within the same group to exhibit similar
performance and substantial agreement on community labels. Further-
more, we also expect that modularity-based algorithms will achieve
higher modularity scores. Algorithms that propagate through neighbors
and those based on ego nets are expected to score higher in triplet hub
potential. Overlapping community detection methods are likely to yield
higher coverage scores because of the increased probability of nodes
being assigned to the most fitting community, where they have fewer
connections with the external network. The definition of the metrics is
discussed in the next Section 3.4.

It is important to note that we have intentionally excluded algo-
rithms that require a predefined number of clusters to search for, such
as GEMSEC [66] or MNMF [67], as well as those that necessitate the
specification of an initial set of nodes to initiate the search process,
like Lswl-plus [68]. This exclusion is justified by the fact that, in
the context of the problems addressed in this study, we lack prior
knowledge regarding the approximate number of groups to identify or
specific nodes to seed the grouping process. Furthermore, it is essential
to recognize that in the domain of CTI, obtaining ground truth data
is often unattainable and inherently challenging to derive, making the
problem primarily unsupervised in nature.
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3.4. Evaluation and analysis

To assess the performance of our algorithms, we employ metrics
that closely align with the characteristics we aim to identify within
the communities under investigation. These characteristics involve the
presence of stronger connections within the communities compared to
connections outside them, as well as a higher than expected distri-
bution of connections within each community. Using a combination
of measures can provide a better understanding of the algorithms’
performance and quality of the detected communities. To evaluate the
algorithms, we utilize three measures that are closely aligned with
the characteristics we aim to uncover when investigating communities
within CTI tasks. In addition to these standard measures, we introduce
our quality metric, triplet hub potential, which we believe can help
identify communities with potential dominating members. Using a
combination of these measures, we can obtain a more comprehensive
assessment of algorithmic performance.
Modularity measures the strength of a graph division into different

clusters. A high modularity score is achieved when a network has
densely populated communities with few links between them. A score
near 1 indicates that community interaction is more separate and dis-
tinct, while a score near 0 indicates near-random member interaction
and little community formation. To calculate modularity for directed
weighted graphs, we use the function proposed by Nicosia et al. [69],
and in the case of overlapping partitioning, we use the function by
Lazar et al. [70].

However, a high modularity score does not always indicate the pres-
ence of a community structure in a network [49]. In random graphs,
where there is no theoretical bias towards a particular clustering of
nodes, high modularity clustering is still possible [11]. To address this
issue, we also include another quality measure – coverage, which is
defined as the fraction of intracommunity edges to the total number
of edges in a graph [11]. In a perfect community structure where no
two clusters are connected, coverage equals 1, since every edge in the
graph is contained within a single community. We adapt the calculation
of coverage for overlapping communities.

In addition to modularity and coverage, we use performance mea-
sure, which is defined as the ratio of the number of intracommunity
edges plus intercommunity edges to the total number of potential edges
(expected) in the graph [11]. To evaluate overlapping communities, in
place of performance, we utilize a scoring metric known as the normal-
ized cut. This metric, originally derived for image segmentation [71],
but also used in the community detection problem [72], encapsu-
lates the same logic as performance measure. It quantifies community
quality by calculating the ratio of the sum of intercommunity edge
weights to the sum of intracommunity edge weights for each identified
community [71].

The fourth metric (our proposed method) is rooted in the concept
of scale-free networks and builds upon the assumption that social net-
works exhibit a propensity for preferential attachment and the presence
of existing hubs. To calculate the triplet hub potential measure, we focus
on communities with three or more members. Within these communi-
ties, we identify the node with the highest degree (which encompasses
both in-degree and out-degree) and then divide this degree by the
potential maximum degree that the node could attain. A score of 1
denotes a perfect hub within the community, while a score approaching
0 indicates a community with no discernible hubs. We then calculated
the average score for all communities identified by the algorithm.
Below is the formal equation for computation.

The Triplet Hub Potential for a set of communities within a graph is
defined as:

Triplet Hub Potential =
1

ÿ

ÿ1
ÿ=1

Triplet Hub Potentialÿ, (1)

where ÿ represents the number of communities. The potential score
Hub Potentialÿ for each community ÿÿ is calculated as follows:

Triplet Hub Potentialÿ =

⎧⎪⎨⎪⎩

maxČ*ÿÿ (ā
ąċĊ
Č +āÿĄČ )

2×(|ÿÿ|−1) , if |ÿÿ| > 2

0, otherwise
(2)

where āąċĊ
Č
and āÿĄ

Č
are the out-degree and in-degree of a node Č within

the community ÿÿ, respectively. The maximum is taken over all nodes
Č in the community ÿÿ, and |ÿÿ| denotes the number of nodes in the
community ÿÿ. The Triplet Hub Potential score is computed only for
communities that have more than two members. For communities with
two or fewer members, the score is set to zero, which helps to penalize
singletons and couples detected as communities.

The proposed measure is not necessarily intended to outperform
other metrics. Rather, its purpose is to provide quantified insights
into the nature of communities detected by algorithms. For example,
while modularity assesses the potential for divisions within the network,
the Triplet Hub (T-hub) Potential specifically quantifies the presence
of highly connected nodes, or hubs, within these communities. In
contrast to coverage and performance, which evaluate the distribution of
connections between nodes and between communities, T-hub Potential
focuses on quantifying the source of the most connections.

The T-hub potential metric also addresses the issue of
over-segmentation by penalizing it. Grounded in the theory of pref-
erential attachment, it recognizes communities that coalesce around
key contributors. This approach is helpful in differentiating between
egalitarian communities and those led by clear leadership or dominated
by influential contributors. In Appendix, we show how the values of the
score change on the theoretical graphs, such as star graph, complete
graph, and others.

Finally, to comprehensively cross-compare the detected communi-
ties across different algorithms, we employ omega index. This statistical
measure provides a pairwise agreement score between algorithms on
their community labeling, including for overlapping partitions [73].

4. Results

Analysis of algorithms used to detect disjoint and overlapping com-
munities in forums reveals varied performances. Some methods yield
consistently similar results across different forum structures, while
others show divergent behaviors depending on the specific forum. Fig. 2
presents these data through a series of radar (or spider) charts. In these
graphs, each variable is represented on a separate axis radiating from a
central point. The values are plotted along each axis and connected to
form a polygon. Each chart corresponds to a selected forum (antionline,
exetools, and go4expert), with separate analyzes for disjoint and overlap
community detections. The density values are indicated in the title of
the chart.

In these radar charts, algorithms that form a larger enclosed area in-
dicate better performance in four measured metrics. For example, in the
exetools forum with disjoint communities, the Leiden algorithm shows
robust performance in all metrics, closely followed by the Louvain and
RB Pots algorithms. Conversely, in the go4expert forum under similar
conditions, algorithm performances are more uniform, likely due to the
forum’s sparsity and the presence of more disconnected components.
Here, all algorithms demonstrate confidence in partitioning, and Leiden
and Louvain excel in modularity. In particular, Louvain and Leiden
consistently perform strongly in all five forums using four metrics.
Clustering-based methods such as CPM, Surprise, and SCD score lower
T-hub potential than others, indicating less effectiveness in identifying
communities with node dominance.

The best performances across these metrics are summarized in
Table 5, which highlights the five most effective algorithms. It should
be noted that the algorithms, such as CPM, SCD, Surprise, UMST and
Expansion, excelling in the Normalized Cut and Performancemetrics also
tend to identify a higher number of communities, as detailed in Table 6.
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Fig. 2. Modularity, Coverage, Performance (or Normalized Cut Ratio for overlapping communities) and Triplet Hub Potential of disjoint and overlapping communities detections for
selected forums (with densities).

For overlapping community detection, the Expansion algorithm,
along with ANGEL and EgoNetSplitter algorithms based on ego-net,
demonstrate superior performance in various forums. They particularly
excel in terms of modularity and T-hub potential, as was expected
due to the approach being based on ego nets. However, the UMST
algorithm shows a consistent shortfall in maximizing these metrics.
It does, however, stand out in terms of coverage and normalized cut
metrics. The strong performance of the Expansion algorithm, especially
in achieving high T-hub potential, is not unexpected. This is because the
method inherently focuses on initially identifying hubs by searching for
cores that maximize the similarity of common neighbors. Subsequently,
it expands the subgraph using label propagation. This approach effec-
tively uncovers influential nodes within communities, explaining its
high T-hub potential scores. Generally, overlapping community detec-
tion methods are observed to yield superior quality metrics, likely due
to their ability to flexibly assign nodes to multiple contextually relevant
groups.

Table 6 presents the number of communities detected by various
algorithms in five different forums. The data is arranged in descending
order, revealing a pattern where algorithms with similar methodologies
tend to be grouped together, suggesting that they likely identify similar
community structures. For example, Louvain and Leiden algorithms,
both designed for modularity optimization, yield comparable commu-
nity counts across the forums. The clustering-based algorithms (CPM,
SCD, Surprise) stand out for detecting a higher number of communities,
suggesting that they are adept at uncovering more detailed community
structures within the forums.

Conversely, algorithms that employ modularity optimization and
neighborhood propagation strategies, including EgoNetSplitter, Lou-
vain, and similar methods, tend to identify fewer communities across
the forums, which could imply that these methods are possibly merging
smaller communities into larger ones or identifying only the most
prominent groups.

It should also be noted that algorithms like NNSED and BigClam
consistently detect a lower number of communities across all forums,

treating connected components (SCCs) as giant communities, which is
not helpful for analysis. Note that these methods also do not score high
in quality measures.

Fig. 3 shows the Omega index matrices for five distinct forums. Each
matrix illustrates the pairwise correlation of community membership
assignments by various community detection algorithms. These algo-
rithms are grouped by approach and indicated through different font
colors. The intensity of the color in each cell of the matrix reflects the
Omega coefficient between the community memberships identified by
the corresponding algorithms. The Omega coefficient ranges from −1
to 1, with 1 signifying perfect agreement, 0 indicating no correlation,
and −1 representing perfect disagreement. Notably, in the cardingteam
forum, algorithms tend to show more agreement in their findings
(Average Omega Index = 0.209) compared to the other four forums.
This could be attributed to the smaller size and relative sparsity of
the cardingteam forum, which likely results in more clearly defined
subgroups, as can be seen from the high scores for most algorithms.
On the contrary, the go4expert forum shows a lower overall agreement
among algorithms (Average Omega Index = 0.083), possibly due to
its lower density and larger size, posing a challenge to the common
methodologies of these algorithms.

In terms of clustering-based algorithms such as CPM, Surprise and
SCD, a moderate to high level of agreement is observed, especially in
the exetools and cipher forums. Algorithms such as RB Potts, Louvain,
Leiden, LE, and EdMot, which focus on optimizing modularity, show
strong internal agreement across all forums, with particularly high con-
cordance in the cardingteam, cipher, and antionline forums. The Louvain
and Leiden methods consistently exhibit close agreement. The group
comprising algorithms that propagate through neighbors (Label Prop-
agation, SLPA, Expansion) and ego-net-based methods (EgoNetSplitter,
ANGEL) demonstrate varied levels of agreement. However, SLPA and
LP, given their close relationship, show a relatively higher correlation
with each other in multiple forums. Interestingly, the Expansion al-
gorithm shows less agreement with the label propagation group but
sometimes aligns closely with clustering-based algorithms. The UMST
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Table 5
Top Five community detection algorithms ranked by median score across multiple forums. The font color coding represents the algorithmic
groupings.

Algorithm antionline cardingteam cipher exetools go4expert Median

Top 5 by triplet hub potential

Expansion 1.00000 1.00000 1.00000 1.00000 0.99932 1.00000
RB Pots 0.68836 0.82919 0.87185 0.85427 0.67199 0.82919
ANGEL 0.55386 0.77017 0.79067 0.70362 0.94548 0.77017
Louvain 0.75567 0.75150 0.80420 0.85649 0.74638 0.75567
Leiden 0.73549 0.68032 0.81085 0.84851 0.74204 0.74204

Top 5 by modularity

Leiden 0.16905 0.57035 0.39124 0.28657 0.57392 0.39124
ANGEL 0.25392 0.56952 0.39001 0.17714 0.66376 0.39001
Louvain 0.16904 0.55605 0.38762 0.28511 0.56758 0.38762
EgoNetSplitter 0.25043 0.31118 0.32013 −0.07917 0.50680 0.31118
RB Pots 0.02098 0.61597 0.30558 0.22593 0.38652 0.30558

Top 5 by Performance/Normalized cut

UMSTMO 0.99868 0.99875 0.99759 0.99335 0.99746 0.99759
SCD 0.99747 0.99076 0.98622 0.91044 0.99823 0.99076
Surprise 0.99735 0.97476 0.98604 0.91211 0.99690 0.98604
CPM 0.99727 0.98094 0.97907 0.87387 0.99769 0.98094
Expansion 0.97897 0.72909 0.97331 0.93012 0.95848 0.95848

Top 5 by coverage

Label Propagation 0.99988 0.79205 0.99977 1.00000 0.98895 0.99977
ANGEL 0.99964 0.98013 0.99972 0.99997 0.99348 0.99964
NNSED 1.00000 0.68848 0.99371 0.97848 0.97460 0.97848
Expansion 0.97434 0.91038 0.98176 0.97447 0.91908 0.97434
SLPA 0.99996 0.81192 0.95263 1.00000 0.88478 0.95263

Fig. 3. Cross-Comparison of Community Detection Algorithms Across Forums Visualized with the Omega Index. The font color coding represents the algorithmic groupings. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

algorithm, based on spanning tree methods, tends to correlate less with
most other algorithms. This divergence suggests a distinct approach to
community detection and, as indicated in Fig. 2, it appears less effective
overall in modularity and hub potential. EgoNetSplitter, surprisingly,
agrees considerably with several non-overlapping community detection
methods, particularly those based on modularity. This is intriguing
given that EgoNetSplitter primarily uses local ego network structures

and immediate neighbor labeling, while modularity-based algorithms
optimize a global metric.

Fig. 4 visually illustrates the differences in community detection
by three algorithms: Leiden, Expansion, and EgoNetSplitter. While all
three of these algorithms achieve high scores in terms of modular-
ity, EgoNetSplitter and Expansion stand out with their higher T-hub
potential and coverage scores. This figure effectively highlights the



Decision Support Systems 184 (2024) 114271

9

D. Manatova et al.

Fig. 4. Comparison of Communities detected in go4expert (edges are hidden).

Table 6
Number of communities detected by each algorithm. The font color coding represents
the algorithmic groupings.

antionline cardingteam cipher exetools go4expert

CPM 7439 342 1340 244 5849

SCD 5777 168 817 132 3747

Surprise 4651 123 750 146 2545

UMST 1235 211 258 80 2474

Expansion 771 60 183 59 986

Walktrap 801 17 51 5 505

Infomap 169 36 104 2 592

SLPA 26 31 12 1 233

Label Propagation 51 33 12 1 188

EdMot 54 15 13 5 46

EgoNetSplitter 28 13 18 5 41

Louvain 15 15 12 4 57

Leiden 14 14 12 5 53

Eigenvector 36 10 13 5 23

RB Pots 13 10 13 3 40

ANGEL 34 3 2 1 5

NNSED 1 4 2 3 9

BigClam 2 3 2 2 2

variances in community attribution among these algorithms, despite
their shared success in modularity optimization. Although the Leiden
and EgoNetSplitter algorithms identified a relatively similar number
of communities (53 and 41, respectively), the Expansion algorithm
detected a significantly higher number, with 986 smaller communities
(the average size is 13), more intimate communities. This contrasts
sharply with the average community sizes found by Leiden and EgoNet-
Splitter, which were 214 and 165, respectively. This difference high-
lights the unique approach of the Expansion algorithm in identifying
smaller, more closely knit communities within the go4expert forum.

5. Discussion and conclusion

Exploring hacker communities where actors, including threat actors,
form collaboration and develop emerging techniques is a research area
that has garnered relatively little attention within academia. In this
study, we investigate the realm of identifying optimal algorithms for
detecting communal structures that can efficiently separate hackers
with shared but implicit connections into distinct groups. To achieve
this, we employ a comprehensive set of four quality metrics: modularity,
coverage, performance, and the normalized cut ratio. These metrics serve
as our guide as we navigate the intricacies of inferring the ground truth
of these communities. In addition to these well-established metrics for
community detection, we suggest a measure of community quality,
the Triplet hub potential. This measure offers valuable information on
the extent to which detected communities harbor the potential of
influential leaders or leading actors. By incorporating this metric into

our analysis, we gain a sense of the hierarchical dynamics within the
identified communities.

Our investigation involved a thorough cross-comparison of com-
munity detection methods, categorizing algorithms based on the prin-
ciples they operationalize. Generally, algorithms tend to concur on
community partitions when they originate from the same methodolog-
ical approach, although there are exceptions. We observed that two
modularity-based methods, Louvain and Leiden, consistently performed
optimally well, often identifying the same communities. In contrast,
cluster-based approaches showed less efficacy. While the Louvain and
Leiden methods are robust, overlapping approaches generally provided
superior results, particularly ego-net-based approaches and the Expan-
sion algorithm. The Expansion algorithm, in particular, tends to find
smaller subcommunities, with a methodology characterized by initial
core identification followed by community expansion through label
propagation. This granularity is helpful for investigators aiming to un-
cover specific characteristics of community organizations. The ability of
these algorithms to highlight smaller, preferentially attached communi-
ties enables a more targeted investigation, emphasizing the significance
of selecting the appropriate algorithm to match the investigative focus.

Example case. We provide an example case that shows the nature of
the Expansion algorithm for identifying smaller communities (Fig. 5 for
the exetools forum). The large groupings of nodes show communities
identified by Leiden, but smaller groupings (uniformly colored) are
those identified by Expansion. Leiden identified five communities on
886 users of exetools, whereas Expansion – 59. This illustrates the
tendency of the Expansion algorithm to choose smaller, tightly-knit
sub-communities within the broader network. However, the agree-
ment between the partitions chosen by Leiden and Expansion differs
significantly, as indicated by the diverse node colors within a single
community identified by Leiden.

We qualitatively analyzed one of the communities identified by
Expansion (circled in Fig. 5). Several evident hubs are present within
this community. One of the shared discussion threads (over 5000
comments) is dedicated to maintaining the open-source x64 debugger,
a binary debugger for Windows developed for malware analysis and
reverse engineering of executables without the source code. This open-
source debugger is verified by the security community and sponsored
by several entities. However, due to the nature of the software, it
can also be used for malicious purposes, such as reverse engineering
proprietary software or analyzing the behavior of a produced malicious
software.

One of the most connected members is the developer of the tool,
while at least three others actively provide feedback, suggest improve-
ments, and offer encouragement. Another member is also associated
with the tool. All of these users were identified as belonging to the
same community by Expansion and different communities – by Leiden.
While we do not share the usernames of the members, here is a partial
quote from the major developer identified in the community:
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Fig. 5. Comparison of communities detected in exetools (edges are hidden). Larger clusters are identified by Leiden, while smaller, uniformly colored clusters are identified by
Expansion. The close-up shows the selected community for qualitative analysis. The highlighted nodes (blue) contributed to discussions about the x64 debugger. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

‘‘Please provide as much information as you can on crashes. Please
also try the snapshots found here to see if certain issues are maybe
already fixed...’’

Here is a selected response from another member of the detected
community:

‘‘What can i say other than very nice work, finally someone to
pick up the thread on x64. What I do wonder is though if you can
implement a feature so that we can be able to search full memory...’’

Other shared discussion threads had themes related to a disassem-
bler, a debugger, and other tools that show binary instructions that a
processor executes.

Suggested approach. Drawing on the findings of this study, we propose
an approach for CTI and OSINT researchers to employ community de-
tection algorithms. By understanding the shared theoretical foundations
and recognizing the distinctions in the outcomes produced by these
algorithms across various metrics, researchers can better interpret the
nature of hacker communities. Here, we suggest a guide for CTI and
OSINT researchers to conduct investigative analysis using community
detection benchmark methods. The analysis of the collected dataset
from a hacker forum can be exploratory but will aid researchers in a
more focused exploration of the user content and interactions on the
forums. Researchers should consider the following:

• Use multiple community detection methods from different
methodological approaches. As we have seen, models rarely agree
on partitioning and mostly agree if the core methodological
approach is the same.
• Use benchmarks such as Leiden or Louvain. Both of these models
are validated in numerous experiments, including this study, and
yield high results in quality measures.
• Use multiple metrics to assess the quality of detected communi-
ties, including a proposed metric, Triplet Hub Potential. This metric
indicates the presence of a hub in the community, ignoring node
couples found as a community, which, along with Modularity,
Coverage, and Performance, provides a comprehensive overview of
the nature and structure of the detected communities.
• Use the Expansion algorithm or other methods based on propaga-
tion through the neighbors of nodes. Our results suggest that the
Expansion algorithm excels in performance and also finds smaller,
nuanced communities with notable hubs. Such scoped-sized com-
munities are more manageable for researchers to investigate.

• Investigate identified communities through shared contributions
to specific thread discussions. We provided an example case that
delves into the analysis of a single community identified by
Expansion.

In summary, methods that investigate the neighborhood character-
istics of nodes tend to yield groupings that are smaller and potentially
easier to investigate. This highlights the potential of core expansions
and neighbor-propagation-based approaches as a fruitful avenue for
the development of community detection techniques tailored to cyber
threat intelligence tasks, especially if there is a specific user that
investigators are monitoring already. Furthermore, this study has led
to the creation of an interactive tool that facilitates the exploration
of community structures. It allows users to apply various detection
algorithms and employ visual cues to navigate detected clusters.1 Ul-
timately, such insights and approaches can play an important role
for researchers seeking to develop advanced or targeted cyber threat
intelligence research capabilities.
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Fig. A.6. Communities Detected on Theoretical Graphs using Leiden.

Table A.7
Results of community detection metrics for Fig. A.6.

Figure Modularity Coverage Performance T-hub mean T-hub values

a 0.0 1.0 0.333 1.0 [1.0]
b −0.167 0.167 0.533 0.0 [0, 0, 0]
c 0.26 0.6 0.867 0.0 [0, 0, 0]
d 0.0 1.0 1.0 1.0 [1.0]
e 0.454 0.955 0.909 1.0 [1.0, 1.0]
f 0.489 0.913 0.97 0.667 [1.0, 1.0, 0]
g 0.222 0.611 0.822 0.5 [0.5, 0.5, 0.5]
h 0.42 0.731 0.804 0.419 [0.5, 0.5, 0.3, 0.375]
i −0.222 0.111 0.333 0.0 [0, 0, 0]

Appendix. Triplet hub potential results on theoretical graphs

Table A.7 presents the Triplet Hub Potential results for detected
communities in the theoretical graphs depicted in Fig. A.6. Each the-
oretical graph exemplifies a specific extreme structure, such as star,
cycle, bipartite complete, and fully complete graphs. Additionally, we
include two well-established social graphs frequently used in network
science: Krackhardt’s organizational social graph [74] and Zachary’s
Karate Club social graph [75].

Communities within these graphs were detected using the Leiden al-
gorithm, with each node’s community membership indicated by color.
We calculated four metrics: modularity, coverage, performance, and T-
hub Potential. The values contributing to the average T-hub Potential
are also provided.

The proposed metric assigns a score of 1 for cases of perfect hub
existence, such as in Star and Complete Graphs, where all nodes func-
tion as perfect hubs. Conversely, in cases like Line, Cycle, and Bipartite
graphs, where communities are divided into nodes with few interlinks
or less than 3 nodes, the score is 0. Also note the change in par-
titioning and score as complete two graphs connected by one node
(Fig. A.6(e)) change to the complete two graphs connected by two
nodes (Fig. A.6(f)).
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